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MATHEMATICAL AND NUMERICAL ANALYSIS
OF A STRATIGRAPHIC MODEL

Véronique Gervais1 and Roland Masson1

Abstract. In this paper, we consider a multi-lithology diffusion model used in stratigraphic modelling
to simulate large scale transport processes of sediments described as a mixture of L lithologies. This
model is a simplified one for which the surficial fluxes are proportional to the slope of the topography
and to a lithology fraction with unitary diffusion coefficients. The main unknowns of the system are
the sediment thickness h, the L surface concentrations cs

i in lithology i of the sediments at the top
of the basin, and the L concentrations ci in lithology i of the sediments inside the basin. For this
simplified model, the sediment thickness decouples from the other unknowns and satisfies a linear
parabolic equation. The remaining equations account for the mass conservation of the lithologies, and
couple, for each lithology, a first order linear equation for cs

i with a linear advection equation for ci

for which cs
i appears as an input boundary condition. For this coupled system, a weak formulation is

introduced which is shown to have a unique solution. An implicit finite volume scheme is derived for
which we show stability estimates and the convergence to the weak solution of the problem.
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1. Introduction

Recent progress in geosciences, and more especially in seismic- and sequence-stratigraphy, have improved
the understanding of sedimentary basins infill. Indeed, the sediments architecture is the response to complex
interactions between the available space created in the basin by sea level variations, tectonic, compaction, . . . ,
the sediment supply (boundary fluxes, sediment production), and the transport of the sediments at the surface
of the basin. In order to have a quantified view of this response and to determine the relative influence of each
involved process, stratigraphic models have been developed.

Among basin infill models considering the dynamics of sediment transport, authors usually distinguish be-
tween fluid-flow and dynamic-slope models (see [12, 13]). The first ones use fluid flow equations and empirical
algorithms to simulate the transport of sediments in the hydrodynamic flow field (see e.g. [14]). They provide
an accurate description of depositional processes for small scales in time and space but, at larger scale such as
basin scales, they are computationally too expensive.
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Dynamic-slope models use mass conservation equations of sediments combined with diffusive transport laws.
These laws do not describe each geological process in details, but average over these processes (river transport,
creep, slumps, small slides, . . . ). One can refer to [1, 6, 8, 10, 12, 15] for a detailed description of these models.
The dynamic-slope models have been shown to offer a good description of sedimentation and erosion processes
for large time scales (greater than 104 y) and basin space scales (greater than 1 km).

We consider here a dynamic-slope model simulating the evolution of a sedimentary basin in which sediments
are modeled as a mixture of several lithologies i = 1, . . . , L characterized by different grain size populations.
The surficial transport process is a multi-lithology diffusive model introduced in [12], for which the fluxes are
proportional to the slope of the topography and to a lithology fraction csi of the sediments at the surface of
the basin (see also [5, 9]). In the sequel, a simplified model is considered for which the diffusion coefficients are
taken equal to one. It results that the sediment thickness h is decoupled from the other unknowns of the system
(i.e. for each lithology, the surface concentration csi , and the concentration ci in lithology i of the sediments in
the basin), and satisfies a linear parabolic equation.

The remaining equations accounting for the mass conservation of the lithologies couple, for all i = 1, . . . , L,
a first order linear equation for the surface concentration csi and a linear advection equation for the basin
concentration ci for which csi appears as an input boundary condition at the top of the basin.

In [4], a weak formulation of (2.7) has been introduced (recalled in Def. 2.2) in order to cope with the difficulty
to define the trace of the basin concentration ci at the top of the basin. In this previous article, the system has
been discretized by an implicit integration in time and a cell centered finite volume scheme in space which has
been shown to converge to a weak solution up to a subsequence.

The convergence of the numerical scheme proves the existence of a weak solution. The main objective of
this article is to prove that this solution is unique, which will also yield the convergence of the full sequence of
approximate solutions to the weak solution. This result is stated in Theorem 2.3 below.

The proof uses the linearity of the system (2.7) in the concentration unknowns ci and csi , as well as the adjoint
equations for which existence of a weak solution is obtained using the convergence of a numerical scheme. The
core of the proof is derived in Section 4 and uses three lemmae which are proved in the subsequent sections. The
numerical scheme for the adjoint equation and its convergence to a weak solution up to a subsequence is given
in Section 5. The proof of this convergence is an adaptation of the one given in [4] for the direct problem, so
only the main differences will be detailed. The main new difficulty to prove the uniqueness lies in two lemmae
stating integration by part results for non smooth solutions of the adjoint and direct systems. The proof of
these lemmae are detailed in Section 6 for the linear advection direct and adjoint equations and in Section 7 for
the linear first order direct and adjoint equations.

The remaining of the paper outlines as follows. The mathematical model and its weak formulation are defined
in Section 2, and the fully implicit finite volume discretization from [5] or [4] is recalled in Section 3.

2. Mathematical model and weak formulation

A basin model specifies the geometry defined by the basin horizontal extension, the position of its base due
to vertical tectonics displacements, and the sea level variations. It provides a description of the sediments
considered as a mixture of different lithologies such as sand or shale. Finally it specifies the sediment transport
laws and their coupling, as well as the sediment fluxes at the boundary of the basin (boundary conditions).

In this paper, the multi-lithology diffusion model described in [5,9,12] is studied in a simplified case for which
the diffusion coefficients of the lithologies are equal (to one to fix ideas). Also, for the sake of simplicity, the
tectonics displacements, as well as the sea level variations, are not taken into account in the sequel.

The projection of the basin on a reference horizontal plane is considered as a fixed domain Ω ⊂ R
d, defining

the horizontal extension of the basin, with d = 1 for two dimensional basin models and d = 2 for three
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dimensional models. Throughout this article, the symbols ∇ and div denote respectively the gradient and the
divergence operator in R

d.
We denote by h the sediment thickness unknown defined on the domain Ω × R

∗
+, and by B the domain

B =
{
(x, z, t) | (x, t) ∈ Ω × R

∗
+, z < h(x, t)

}
.

The sediments are modeled as a mixture of L lithologies characterized by their grain size population. Each
lithology, i = 1, . . . , L, is considered as an incompressible material of constant grain density and null porosity. On
each point of the basin, the mixture is described by its composition given by the concentrations ci, i = 1, . . . , L,
defined on B, and such that ci ≥ 0 for i = 1, . . . , L and

∑L
i=1ci = 1.

The model assumes that the sediment fluxes are nonzero only at the surface of the basin (i.e. for z = h).
The sediments transported by these surficial fluxes, i.e. which are deposited at the surface of the basin in case
of sedimentation, or which pass through the surface in case of erosion, are characterized by their concentrations
denoted by csi , defined on Ω × R

∗
+, and such that csi ≥ 0 for i = 1, . . . , L and

∑L
i=1c

s
i = 1.

Since the compaction is not considered, no change in time of the concentration ci can occur inside the basin.
It results that ∂tci = 0 on B. The evolution of ci is governed by the boundary condition at the top of the basin
stating that ci|z=h = csi in the case of sedimentation ∂th > 0. Let D+ denote the domain

D+ =
{
(x, t) ∈ Ω × R

∗
+ | ∂th(x, t) > 0

}
,

then, ci satisfies the conservation equation:{
∂tci = 0 on B,

ci|z=h = csi on D+.
(2.1)

The conservation of the thickness fraction in lithology i

Mi(x, t) =
∫ h(x,t)

0

ci(x, z, t) dz, (2.2)

with
∑L

i=1 Mi = h, states that for all i = 1, . . . , L

{
∂tMi + div fi = 0 on Ω × R

∗
+,∑L

i=1 c
s
i = 1 on Ω × R

∗
+.

(2.3)

In the multi-lithology diffusive model described in [12], the flux fi is proportional to the gradient of the topog-
raphy h and to the concentration csi , with a diffusion coefficient ki. In the sequel, we shall restrict ourselves to
the simplified case ki = 1 for all i = 1, . . . , L, i.e. fi := −csi∇h, so that the sediment thickness h decouples from
the concentrations and satisfies a linear parabolic equation (see (2.6)). This assumption means physically that
the lithologies are supposed to have the same transport properties. In such a case, the composition inside the
basin is determined by the composition of the initial and input boundary sediments.

Neumann boundary conditions are imposed to h on ∂Ω × R
∗
+,

∇h · n = g on ∂Ω × R
∗
+,

with n the unit normal vector to ∂Ω, outward to Ω, and Dirichlet boundary conditions are prescribed to the
surface concentrations

csi = c̃i on Σ+

with
Σ+ =

{
(x, t) ∈ ∂Ω × R

∗
+ | g(x, t) > 0

}
,

c̃i ≥ 0 for all i = 1, . . . , L and
∑L

i=1 c̃i = 1.
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Initial conditions are prescribed to the sediment thickness stating that h|t=0 = h0 on Ω, and to the basin
concentrations stating that ci|t=0 = c0i on the domain {(x, z) |x ∈ Ω, z < h0(x)}, with c0i ≥ 0 for all i = 1, . . . , L
and

∑L
i=1 c

0
i = 1.

In the following, we shall consider the new coordinate system for which the vertical position of a point in
the basin is measured downward from the top of the basin, i.e. given by the change of variable (x, ξ, t) =
(x′, h(x′, t′) − z, t′). In this coordinate system, let us consider the new unknown

ui(x, ξ, t) = ci(x, h(x, t) − ξ, t) defined for all (x, ξ, t) ∈ Ω × R
∗
+ × R

∗
+,

and the initial condition

u0
i (x, ξ) = c0i (x, h

0(x) − ξ, t) defined for all (x, ξ) ∈ Ω × R
∗
+.

Gathering all the equations, we obtain the following multi-lithology diffusive model:

Surface conservations:




ui|ξ=0 ∂th+ div(−csi∇h) = 0 on Ω × R
∗
+,∑L

i=1c
s
i = 1 on Ω × R

∗
+,

∇h · n|∂Ω×R∗
+

= g on ∂Ω × R
∗
+,

csi |Σ+ = c̃i on Σ+,
h|t=0 = h0 on Ω,

(2.4)

Column conservations:




∂tui + ∂th ∂ξui = 0 on Ω × R
∗
+ × R

∗
+,

ui|ξ=0 = csi on D+,
ui|t=0 = u0

i on Ω × R
∗
+,

(2.5)

where we have taken into account the equality ∂tMi = ui|ξ=0 ∂th on Ω × R
∗
+ which derives formally from the

definition (2.2) and the equation ∂tci = 0 on B.
For this simplified model, summing equations (2.4) over i = 1, . . . , L, it is clear that the sediment thickness

h satisfies the parabolic equation 


∂th− ∆h = 0 on Ω × R
∗
+,

∇h · n|∂Ω×R∗
+

= g on ∂Ω × R
∗
+,

h|t=0 = h0 on Ω,
(2.6)

while the concentrations (csi , ui) verify, for each i = 1, . . . , L, the system of equations


ui|ξ=0 ∂th+ div(−csi∇h) = 0 on Ω × R
∗
+,

csi |Σ+ = c̃i on Σ+,
∂tui + ∂th ∂ξui = 0 on Ω × R

∗
+ × R

∗
+,

ui|ξ=0 = csi on D+,
ui|t=0 = u0

i on Ω × R
∗
+.

(2.7)

In the sequel, the following assumptions are made on the data.

Hypothesis 2.1.
(i) Ω is an open bounded subset of R

d, of class C∞;
(ii) h0 ∈ C2(Ω̄);
(iii) g ∈ C1(∂Ω × R+) ∩ L2(∂Ω × R+);
(iv) g and h0 are chosen according to the assumptions of Theorem 5.3 of [11] (p. 320) so that the unique

solution h of (2.6) is in C2(Ω̄ × [0, T ]) for all T > 0;
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(v) c̃i ∈ L∞(Σ+) with c̃i ≥ 0 for i = 1, . . . , L and
∑L

i=1 c̃i = 1;
(vi) u0

i ∈ L∞(Ω × R
∗
+), u0

i ≥ 0 for i = 1, . . . , L and
∑L

i=1 u
0
i = 1;

(vii) For all T > 0, the boundaries ∂Σ+
T and ∂Σ−

T of the sets Σ+
T =

{
(x, t) ∈ ∂Ω × (0, T ) | g(x, t) > 0

}
and

Σ−
T =

{
(x, t) ∈ ∂Ω× (0, T ) | g(x, t) < 0

}
are the union of a finite number of C1 manifolds of dimension

at most d− 1;
(viii) For all T > 0, the boundaries ∂D+

T and ∂D−
T of the sets D+

T =
{
(x, t) ∈ Ω × (0, T ) | ∂th(x, t) > 0

}
, and

D−
T =

{
(x, t) ∈ Ω × (0, T ) | ∂th(x, t) < 0

}
are the union of a finite number of C1 manifolds of dimension

at most d.

In the following, we shall denote by C∞
c (Rn) the space of real valued functions

{ϕ ∈ C∞(Rn) | Supp(ϕ) bounded in R
n}.

To obtain a rigorous mathematical formulation of (2.7), we are looking for weak solutions defined as follows for
all i = 1, . . . , L.

Definition 2.2. Let us assume that Hypothesis 2.1 holds, and let h denote the solution of problem (2.6). Then
(ui, c

s
i ) ∈ L∞(Ω × R

∗
+ × R

∗
+) × L∞(Ω × R

∗
+) is said to be a weak solution of (2.7) if it satisfies:

(i) for all ϕ ∈
{
φ ∈ C∞

c (Rd+2) |φ(., 0, .) = 0 on Ω × R
∗
+ \ D+

}
∫

Ω

∫
R+

∫
R+

[
∂tϕ(x, ξ, t) + ∂th(x, t) ∂ξϕ(x, ξ, t)

]
ui(x, ξ, t) dt dξ dx

+
∫

Ω

∫
R+

u0
i (x, ξ)ϕ(x, ξ, 0) dξ dx+

∫
Ω

∫
R+

∂th(x, t) csi (x, t)ϕ(x, 0, t) dt dx = 0;
(2.8)

(ii) for all ψ ∈
{
φ ∈ C∞

c (Rd+2) |φ(., 0, .) = 0 on ∂Ω × R
∗
+ \ Σ+

}
−
∫

Ω

∫
R+

∫
R+

[
∂tψ(x, ξ, t) + ∂th(x, t) ∂ξψ(x, ξ, t)

]
ui(x, ξ, t) dt dξ dx−

∫
Ω

∫
R+

u0
i (x, ξ)ψ(x, ξ, 0) dξ dx

+
∫

R+

(∫
Ω

csi (x, t)∇h(x, t) · ∇ψ(x, 0, t) dx−
∫

∂Ω

c̃i(x, t) g(x, t)ψ(x, 0, t) dγ(x)
)

dt = 0.

(2.9)

The main objective of this article is to prove the following theorem.

Theorem 2.3. Assuming that Hypothesis 2.1 holds, for all i = 1, . . . , L there exists a weak solution (ui, c
s
i ) to

problem (2.7) in the sense of Definition 2.2 satisfying
∑L

i=1 ui = 1, ui ≥ 0, and
∑L

i=1 c
s
i = 1, csi ≥ 0. Moreover,

for all i = 1, . . . , L, the weak solution ui in the sense of Definition 2.2 is unique.

Existence of a weak solution (ui, c
s
i ) has already been proved in [4] using the convergence of the numerical

scheme recalled in the next section. The proof of uniqueness will be obtained using the existence of a weak
solution to the adjoint system described in Section 4 and two integration by part technical lemmae the proof
of which is detailed in Sections 6 and 7. The existence of the adjoint weak solution is proved in Section 5 using
the convergence of a numerical scheme in a very similar way as in [4].

Remark 2.4. Existence and uniqueness still hold when considering a compaction model given by a depth
porosity relation Φ(h−z) or/and when considering a non linear diffusion coefficient ki = k(h) for all i = 1, . . . , L.
The main difference is that h denotes the solution of a non linear parabolic equation of the form

∂th− ∆Ψ(h) = 0,

with Ψ a strictly increasing smooth function and Ψ′ is bounded from below by a strictly positive constant and
bounded from above.
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3. Finite volume scheme

In this section the numerical scheme described in [5] and [4] is recalled.

The system (2.4)–(2.5) is discretized by a fully implicit time integration and a finite volume method with
cell centered variables. We shall consider in the sequel admissible meshes according to the following definition.

Definition 3.1 (admissible meshes). Let Ω be a bounded domain of R
d, d = 1 or 2. An admissible finite volume

mesh of Ω for the discretization of problem (2.4)–(2.5) is given by a family of “control volumes”, denoted by K,
which are open disjoint subsets of Ω, and a family of points of Ω, denoted by P , satisfying the following properties:

(i) The closure of the union of all the control volumes of K is Ω̄.

(ii) For any κ, κ′ ∈ K with κ �= κ′, either the (d− 1)-dimensional measure of κ̄ ∩ κ̄′, denoted by m(κ̄ ∩ κ̄′),
is null, or it is strictly positive and κ̄ ∩ κ̄′ is included in an hyperplane of R

d. In the following, we
will denote by Σint the family of subsets σ of Ω contained in hyperplanes of R

d with strictly positive
measures, and such that there exist κ, κ′ ∈ K with m(κ̄ ∩ κ̄′) > 0 and σ̄ = κ̄ ∩ κ̄′. We shall also denote
by κ|κ′ ∈ Σint the edge between the cells κ and κ′.

(iii) The family P = (xκ)κ∈K is such that xκ ∈ κ̄ (for any κ ∈ K) and, if σ = κ|κ′ ∈ Σint, it is assumed that
xκ �= xκ′ and that the straight line going through xκ and xκ′ is orthogonal to the edge σ.

(iv) For any κ ∈ K, there exists a subset Σκ of Σint such that ∂κ \ ∂Ω = κ̄ \ (κ ∪ ∂Ω) = ∪σ∈Σκ σ̄.

We shall denote by (K,Σint,P) this admissible mesh.

Note that, in this definition, no assumption is made on the boundary edges of the mesh.
Let (K,Σint,P) be an admissible mesh of Ω in the sense of Definition 3.1. In the sequel, δK = sup {diam(κ), κ ∈

K} will denote the mesh size of (K,Σint,P), |κ| is the d-dimensional Lebesgue measure of the cell κ, Kκ the set of
neighboring cells of κ (excluding κ), |σ| (resp. |∂κ∩∂Ω|) the (d−1)-dimensional Lebesgue measure of the edge σ
(resp. of ∂κ∩∂Ω), Tκκ′ = Tσ the transmissibility of the edge σ = κ|κ′, defined by Tκκ′ := |σ|

d(κ,κ′) with d(κ, κ′) the
distance between the points xκ and xκ′ , reg(K) the geometrical factor defined by reg(K) = max σ∈Σint

σ=κ|κ′
δK

d(κ,κ′) ,

and nκκ′ the unit normal vector to σ = κ|κ′ outward to κ.

For a given set P of disjoint points of Ω, an example of such an admissible mesh is the Voronöı mesh defined by

κ = {x ∈ Ω, d(x, xκ) < d(x, xκ′ ) for all xκ′ ∈ P , xκ′ �= xκ}. (3.1)

For any set A, we shall also denote by χA the function such that χA(y) = 1 if y ∈ A and χA(y) = 0 otherwise.
Finally, for any function f , let us define f+ = max(f, 0) ≥ 0, f− = −min(f, 0) ≥ 0, such that f = f+ − f−,
and |f | = f+ + f−.

The time discretization is denoted by tn, n ∈ N, such that t0 = 0 and ∆tn+1 = tn+1−tn > 0. In the following,
the superscript n, n ∈ N, will be used to denote that the unknowns are considered at time tn. Assuming that
the set {∆tn |n ∈ N} is bounded, let ∆t denote sup{∆tn |n ∈ N} and, for a given T > 0, let N∆t be the integer
such that tN∆t < T ≤ tN∆t+1.

Let us now recall the discretization of (2.4)–(2.5) already introduced in [5]. For all control volumes κ ∈ K,
the following initial values are defined:

(1) h0
κ is the initial approximation of h in κ defined by h0

κ = h0(xκ);
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(2) u0
i,κ, for all species i, is the approximation of u0

i on the cell κ, defined by u0
i,κ(ξ) = 1

|κ|
∫

κ
u0

i (x, ξ) dx for
ξ ∈ R

∗
+, and let c0i,κ be defined on (−∞, h0

κ) by c0i,κ(z) = u0
i,κ(h0

κ − z).

We now give a discretization of equations (2.4)–(2.5) within a given control volume κ ∈ K between times tn

and tn+1:

Conservation of surface sediments:

∆Mn+1
i,κ

∆tn+1
|κ|+

∑
κ′∈Kκ

cs,n+1
i,κκ′ Tκκ′(hn+1

κ − hn+1
κ′ )−|∂κ ∩ ∂Ω| c̃n+1

i,κ g(+),n+1
κ +|∂κ ∩ ∂Ω| cs,n+1

i,κ g(−),n+1
κ = 0, (3.2)

∑L
i=1 c

s,n+1
i,κ = 1. (3.3)

Conservation of column sediments:

if hn+1
κ ≥ hn

κ,




∆Mn+1
i,κ = cs,n+1

i,κ (hn+1
κ − hn

κ)
cn+1
i,κ (z) = cni,κ(z), z < hn

κ

cn+1
i,κ (z) = cs,n+1

i,κ , z ∈ (hn
κ , h

n+1
κ )

(3.4)

else

{
∆Mn+1

i,κ =
∫ hn+1

κ

hn
κ

cni,κ(z) dz
cn+1
i,κ (z) = cni,κ(z), z < hn+1

κ .
(3.5)

In (3.2)–(3.5), the following notation is used.

1. hn
κ is the approximation of the sediment thickness h at time tn in κ;

2. cs,n+1
i,κ is the approximation of the surface sediment concentration csi at time tn+1 in κ;

3. the function cni,κ, defined on the column (−∞, hn
κ), is the approximation of the sediment concentration

in lithology i in the column {(x, z) |x ∈ κ, z < h(x, tn)} at time tn;
4. cs,n+1

i,κκ′ is the upstream weighted evaluation of the surface sediment concentration in lithology i at the
edge σ between the cells κ and κ′ with respect to the sign of hn+1

κ − hn+1
κ′ :

cs,n+1
i,κκ′ =

{
cs,n+1
i,κ if hn+1

κ > hn+1
κ′ ,

cs,n+1
i,κ′ otherwise ;

5. g(+),n+1
κ and g(−),n+1

κ are the following approximations of the boundary fluxes g+ and g−:

g
(+),n+1
κ =

{
1

∆tn+1
1

|∂κ∩∂Ω|
∫ tn+1

tn

∫
∂κ∩∂Ω

g+(x, t) dγ(x) dt if |∂κ ∩ ∂Ω| �= 0,
0 otherwise,

g
(−),n+1
κ =

{
1

∆tn+1
1

|∂κ∩∂Ω|
∫ tn+1

tn

∫
∂κ∩∂Ω

g−(x, t) dγ(x) dt if |∂κ ∩ ∂Ω| �= 0,
0 otherwise,

and consequently for all κ ∈ K,

gn+1
κ =

1
∆tn+1

1
|∂κ ∩ ∂Ω|

∫ tn+1

tn

∫
∂κ∩∂Ω

g(x, t) dγ(x) dt = g(+),n+1
κ − g(−),n+1

κ ;
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6. c̃n+1
i,κ is the approximation of c̃i extended by 0 on (∂Ω × R

∗
+) \ Σ+:

c̃n+1
i,κ =

{
1

∆tn+1
1

|∂κ∩∂Ω|
∫ tn+1

tn

∫
∂κ∩∂Ω

c̃i(x, t) dγ(x) dt if |∂κ ∩ ∂Ω| �= 0,
0 otherwise,

and it results that c̃n+1
i,κ ∈ [0, 1].

Considering the coordinate system ξ = hn
κ−z, the function un

i,κ is defined for all κ ∈ K, n ≥ 0 and i = 1, . . . , L, by

un
i,κ(ξ) = cni,κ(hn

κ − ξ) for all ξ ∈ R
∗
+. (3.6)

For the sake of simplicity, it is assumed in the remaining of this article that ∆t = ∆tn for all n ≥ 1, although
all the results presented in the sequel readily extend to variable time steps.

In [4], we have proved, for all n ≥ 0, the existence of solutions (hn
κ)κ∈K, (cs,n+1

i,κ )κ∈K, (cni,κ)κ∈K and (un
i,κ)κ∈K,

i = 1, . . . , L, to problem (3.2)–(3.6). These solutions are unique except for the surface concentrations cs,n+1
i,κ

which are arbitrary (such that
∑L

j=1 c
s,n+1
j,κ = 1) at some degenerate points (κ, n+ 1).

For any admissible mesh (K,Σint,P) of Ω in the sense of Definition 3.1, any time step ∆t > 0, and i = 1, . . . , L,
let hK,∆t and ui,K,∆t, defined on Ω × R

∗
+ and Ω × R

∗
+ × R

∗
+, denote the functions such that{

hK,∆t(x, t) = hn+1
κ ,

ui,K,∆t(x, ξ, t) = un+1
i,κ (ξ), (3.7)

for all x ∈ κ, κ ∈ K, t ∈ (tn, tn+1], n ≥ 0, ξ ∈ R
∗
+, where hn

κ, un
i,κ are the solutions of (3.2)–(3.6).

The following theorem is a straightforward corollary of both Theorem 2.3 and the theorem proved in [4]
stating the convergence up to a subsequence of the approximate solutions to a weak solution in the sense of
Definition 2.2.

Theorem 3.2. Hypothesis 2.1 is assumed to hold. For all m ∈ N, let (Km,Σm
int,Pm) be an admissible mesh of

Ω in the sense of Definition 3.1 and ∆tm > 0. Let us assume that there exists α > 0 such that reg(Km) ≤ α

for all m ∈ N, and that ∆tm → 0, δKm√
∆tm

→ 0 as m→ ∞.
For all m ∈ N and i = 1, . . . , L, let hKm,∆tm and ui,Km,∆tm denote the unique solutions of (3.2)–(3.6) defined

by (3.7) with K = Km, ∆t = ∆tm.
Then, the sequence (hKm,∆tm)m∈N converges to the solution h of problem (2.6) in L∞(0, T ; L2(Ω)) for all

T > 0, and the sequence (ui,Km,∆tm)m∈N converges to the weak solution ui of (2.7) in the sense of Definition 2.2
in L∞(Ω × R

∗
+ × R

∗
+) for the weak-� topology.

4. Proof of Theorem 2.3

To show the existence of a weak solution (ui, c
s
i ), i = 1, ..., L, we apply the convergence of the numerical

scheme (3.2)–(3.5) proved in [4] for a family of admissible meshes (Km,Σm
int,Pm)m∈N satisfying the assumptions

of Theorem 3.2. To build such a family, let us consider for all m ∈ N, the time step ∆tm = 1
m+1 , the set of

points Pm = { k
m+1 , k ∈ Z

d} ∩ Ω, and let Km be the Voronöı mesh (3.1) obtained from the set Pm. Using the
smoothness of the bounded domain Ω, one can check that this family of meshes satisfies all the assumptions of
Theorem 3.2.

The main objective of this article is now to prove the uniqueness of the weak solution ui, i = 1, . . . , L. For
any given surface concentration csi ∈ L∞(Ω × R

∗
+), we need to study the weak formulation (2.8) of the linear

advection equation ∂tui +∂th ∂ξui = 0 with the input boundary condition csi on D+ and the initial condition u0
i .
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We also need to prove an integration by part formula for the solutions of this equation and its adjoint equation.
These results are the purpose of the following lemma, the proof of which is postponed to section 6.

In the sequel, L will denote the operator L = ∂t + ∂th ∂ξ.

Lemma 4.1. Hypothesis 2.1 is assumed to hold. Then, for any time T > 0, any functions f ∈ L∞(Ω × R
∗
+ ×

(0, T )), ls ∈ L∞(D+
T ), and v0 ∈ L∞(Ω × R

∗
+), the equation




Lv = f on Ω × R
∗
+ × (0, T ),

v|ξ=0 = ls on D+
T ,

v|t=0 = v0 on Ω × R
∗
+,

(4.1)

has a unique weak solution in L∞(Ω × R
∗
+ × (0, T )) in the sense that for all ϕ ∈

{
φ ∈ C∞

c (Rd+2) |φ(., 0, .) =
0 on Ω × (0, T ) \ D+

T and φ(., ., T ) = 0 on Ω × R
∗
+

}
, one has

∫
Ω

∫
R+

∫ T

0

(
(Lϕ)(x, ξ, t) v(x, ξ, t) + f(x, ξ, t)ϕ(x, ξ, t)

)
dt dξ dx

+
∫

Ω

∫
R+

v0(x, ξ)ϕ(x, ξ, 0) dξ dx+
∫

Ω

∫ T

0

∂th(x, t) ls(x, t)ϕ(x, 0, t) dt dx = 0.
(4.2)

The weak solution v of (4.1) has a trace on t = T in L∞(Ω × R
∗
+), and the function v ∂th has a trace on ξ = 0

in L∞(Ω × (0, T )), such that for any ϕ ∈ C∞
c (Rd+2) one has

∫
Ω

∫
R+

∫ T

0

(
(Lϕ)(x, ξ, t) v(x, ξ, t) + f(x, ξ, t)ϕ(x, ξ, t)

)
dt dξ dx

+
∫

Ω

∫
R+

(
v(x, ξ, 0)ϕ(x, ξ, 0) − v(x, ξ, T )ϕ(x, ξ, T )

)
dξ dx

+
∫

Ω

∫ T

0

∂th(x, t) v(x, 0, t)ϕ(x, 0, t) dt dx = 0.

(4.3)

Let T > 0, and w be the weak solution in L∞(Ω × R
∗
+ × (0, T )) of the adjoint equation




−Lw = r on Ω × R
∗
+ × (0, T ),

w|ξ=0 = qs on D−
T ,

w|t=T = wT on Ω × R
∗
+,

(4.4)

defined in a similar way as above with r ∈ L∞(Ω×R
∗
+×(0, T )) a compactly supported function on Ω̄×R+×[0, T ],

wT ∈ L∞(Ω × R
∗
+) a compactly supported function on Ω̄ × R+, and qs ∈ L∞(Ω × (0, T )). Then, one has

∫
Ω

∫
R+

∫ T

0

(
v(x, ξ, t) (Lw)(x, ξ, t) + (Lv)(x, ξ, t)w(x, ξ, t)

)
dt dξ dx

−
∫

Ω

∫
R+

(
v(x, ξ, T )w(x, ξ, T ) − v(x, ξ, 0)w(x, ξ, 0)

)
dξ dx

+
∫

Ω

∫ T

0

∂th(x, t) v(x, 0, t)w(x, 0, t) dt dx = 0.

(4.5)

Let us denote by (vi, d
s
i ) the difference between any two weak solutions of (2.7). From the linearity of the set

of equations (2.7), the functions (vi, d
s
i ) satisfy the weak formulation (2.8)–(2.9) with homogeneous boundary

and initial conditions.
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Let T > 0, from Lemma 4.1, the function vi ∂th has a trace at ξ = 0 in L∞(Ω× (0, T )) denoted by vi|ξ=0 ∂th.
Then, from the integration by part formula (4.3) of Lemma 4.1 and the weak formulation (2.9), it results that
for all ϕ ∈

{
φ ∈ C∞

c (Rd+1) |φ(x, t) = 0 on ∂Ω × (0, T ) \ Σ+
T , and φ(x, T ) = 0 on Ω

}
, one has

∫
Ω

∫ T

0

vi(x, 0, t) ∂th(x, t)ϕ(x, t) dt dx+
∫

Ω

∫ T

0

ds
i (x, t)∇h(x, t) · ∇ϕ(x, t) dt dx = 0. (4.6)

We deduce that
div(−ds

i ∇h) = −vi|ξ=0 ∂th ∈ L∞(Ω × (0, T )). (4.7)
Since ∂th− ∆h = 0 one has also

∇h · ∇ds
i = (vi|ξ=0 − ds

i ) ∂th ∈ L∞(Ω × (0, T )). (4.8)

Let us consider the adjoint system


−wi|ξ=0 ∂th+ div(qs
i∇h) = 0 on Ω × (0, T ),
qs
i |Σ−

T
= 0 on Σ−

T ,

−Lwi = vi on Ω × R
∗
+ × (0, T ),

wi|ξ=0 = qs
i on D−

T ,
wi|t=T = vi|t=T on Ω × R

∗
+.

(4.9)

The following lemma states that there exists at least one weak solution (wi, q
s
i ) in L∞(Ω × R

∗
+ × (0, T )) ×

L∞(Ω × (0, T )) to these adjoint equations defined similarly as in Definition 2.2 (see also Def. 5.2). The proof
of this lemma uses the convergence of the numerical scheme described in Section 3 adapted to the case of a non
vanishing right hand side vi in L∞(Ω × R

∗
+ × (0, T )). It is postponed to Section 5.

Lemma 4.2. Hypothesis 2.1 is assumed to hold. Then, there exists at least one weak solution (wi, q
s
i ) of (4.9)

defined in a similar way as in Definition 2.2.

Considering such a weak solution, the following equation is derived as above

div(qs
i ∇h) = wi|ξ=0 ∂th ∈ L∞(Ω × (0, T )). (4.10)

From equations (4.8) and (4.10), the function div(qs
i d

s
i ∇h) is in L∞(Ω × (0, T )). It results from Lemma 7.2

proved in Section 7 that the vector field qs
i d

s
i∇h has a normal trace in L∞(∂Ω× (0, T )). As formally ds

i vanishes
on Σ+

T , qs
i vanishes on Σ−

T , and the normal trace g of ∇h vanishes on ∂Ω × (0, T ) \ (Σ+
T ∪ Σ−

T ), the normal
trace of qs

i d
s
i∇h vanishes on the boundary ∂Ω × (0, T ). This result is stated by the following lemma for which

a rigorous proof will be given in section 7.

Lemma 4.3. Hypothesis 2.1 is assumed to hold. Then, for any T > 0, any weak solutions (wi, q
s
i ) of the adjoint

problem (4.9) and (vi, d
s
i ) of problem (2.7) with homogeneous boundary and initial conditions, one has∫

Ω

∫ T

0

div(qs
i d

s
i ∇h) dt dx = 0. (4.11)

Since the velocity ∂th is uniformly bounded on Ω̄ × [0, T ] for any time T > 0, the function vi (resp. its trace
vi|t=T ) is compactly supported in Ω̄×R+ × [0, T ] (resp. in Ω̄×R+) (see also the definition of the characteristic
solution of (2.7) in section 6). Applying the integration by part formula (4.5) of Lemma 4.1 to v = vi and
w = wi, we obtain that for any time T > 0∫

Ω

∫
R+

∫ T

0

|vi|2(x, ξ, t) dt dξ dx+
∫

Ω

∫
R+

|vi|2(x, ξ, T ) dξ dx =
∫

Ω

∫ T

0

∂th(x, t) vi(x, 0, t)wi(x, 0, t) dt dx.

(4.12)
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From Lemma 4.3 and the integration over Ω × (0, T ) of equation (4.10) multiplied by ds
i , it results that

∫
Ω

∫ T

0

ds
i (x, t)wi(x, 0, t) ∂th(x, t) dt dx+

∫
Ω

∫ T

0

qs
i (x, t)∇ds

i (x, t) · ∇h(x, t) dt dx = 0. (4.13)

Also, multiplying equation (4.8) by qs
i and integrating over Ω × (0, T ), we obtain that

∫
Ω

∫ T

0

(
vi(x, 0, t) − ds

i (x, t)
)
qs
i (x, t) ∂th(x, t) dt dx−

∫
Ω

∫ T

0

qs
i (x, t)∇ds

i (x, t) · ∇h(x, t) dt dx = 0. (4.14)

Summing equations (4.13) and (4.14) and taking into account the boundary conditions wi|ξ=0 = qs
i on D−

T ,
vi|ξ=0 = ds

i on D+
T , and that ∂th = 0 on Ω × (0, T ) \ (D+

T ∪D−
T ), we get

∫
Ω

∫ T

0

(
wi(x, 0, t) ds

i (x, t) + vi(x, 0, t) qs
i (x, t) − ds

i (x, t) q
s
i (x, t)

)
∂th(x, t) dt dx

=
∫

Ω

∫ T

0

vi(x, 0, t)wi(x, 0, t) ∂th(x, t) dt dx = 0.
(4.15)

Equation (4.15) together with equation (4.12) conclude the proof of Theorem 2.3.

5. Existence of a solution to the adjoint equations

The objective of this section is to prove Lemma 4.2 stating the existence of a weak solution to the adjoint
problem (4.9). This proof will use the convergence of a finite volume numerical scheme in a similar way as in [4].
Thus, to fit into the framework of [4], we rather consider here the direct problem (2.6)–(2.7) on Ω×R

∗
+× (0, T ),

T > 0, but with non vanishing right hand sides fi ∈ L∞(Ω×R
∗
+ × (0, T )) in the advection equations: using the

same notations as previously, we study in this section the system


ui|ξ=0 ∂th+ div(−csi∇h) = 0 on Ω × (0, T ),
csi |Σ+

T
= c̃i on Σ+

T ,

Lui = fi on Ω × R
∗
+ × (0, T ),

ui|ξ=0 = csi on D+
T ,

ui|t=0 = u0
i on Ω × R

∗
+,

(5.1)

for all i = 1, . . . , L, with h given by (2.6). Furthermore, no assumptions are made on the sign nor the sum over
the lithologies of the boundary and initial conditions c̃i, u0

i , and in the sequel, the hypothesis made on the data
are the following ones:

Hypothesis 5.1.
(i) Ω is an open bounded subset of R

d, of class C∞;
(ii) h0 ∈ C2(Ω̄);
(iii) g ∈ C1(∂Ω × R

∗
+) ∩ L2(∂Ω × R

∗
+);

(iv) g and h0 are chosen according to the assumptions of Theorem 5.3 of [11] (p. 320) so that the unique
solution h of (2.6) is in C2(Ω̄ × [0, T ]);

(v) c̃i ∈ L∞(Σ+
2T ) for all i = 1, . . . , L;

(vi) u0
i ∈ L∞(Ω × R

∗
+) for all i = 1, . . . , L;

(vii) fi ∈ L∞(Ω × R
∗
+ × (0, 2T )) for all i = 1, . . . , L.

Since any weak solution of (2.6)–(2.7) is by definition in L∞, the study of the adjoint problem (4.9) under
Hypothesis 2.1 amounts to the study of the direct problem (5.1) under Hypothesis 5.1.
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To obtain a rigorous mathematical formulation of problem (5.1), we are looking for weak solutions defined
as follows for all i = 1, . . . , L.

Definition 5.2. Let us assume that Hypothesis 5.1 holds, and let h denote the solution of problem (2.6). Then
(ui, c

s
i ) ∈ L∞(Ω × R

∗
+ × (0, T )) × L∞(Ω × (0, T )) is said to be a weak solution of (5.1) if it satisfies:

(i) for all ϕ ∈
{
φ ∈ C∞

c (Rd+2) |φ(., 0, .) = 0 on Ω × (0, T ) \ D+
T and φ(., ., T ) = 0 on Ω × R+

}
∫

Ω

∫
R+

∫ T

0

(Lϕ)(x, ξ, t)ui(x, ξ, t) dt dξ dx+
∫

Ω

∫
R+

∫ T

0

fi(x, ξ, t)ϕ(x, ξ, t) dt dξ dx

+
∫

Ω

∫
R+

u0
i (x, ξ)ϕ(x, ξ, 0) dξ dx+

∫
Ω

∫ T

0

∂th(x, t) csi (x, t)ϕ(x, 0, t) dt dx = 0,
(5.2)

(ii) for all ψ ∈
{
φ ∈ C∞

c (Rd+2) |φ(., 0, .) = 0 on ∂Ω × (0, T ) \ Σ+
T and φ(., ., T ) = 0 on Ω × R+

}
−
∫

Ω

∫
R+

∫ T

0

(Lψ)(x, ξ, t)ui(x, ξ, t) dt dξ dx

−
∫

Ω

∫
R+

∫ T

0

fi(x, ξ, t)ψ(x, ξ, t) dt dξ dx−
∫

Ω

∫
R+

u0
i (x, ξ)ψ(x, ξ, 0) dξ dx

+
∫ T

0

(∫
Ω

csi (x, t)∇h(x, t) · ∇ψ(x, 0, t) dx−
∫

∂Ω

c̃i(x, t) g(x, t)ψ(x, 0, t) dγ(x)
)

dt = 0.

(5.3)

In the following, we shall denote by f̄i the function obtained by the change of variables (x, z, t) = (x′, h(x′, t′)−
z, t′) in fi for all i = 1, . . . , L:

f̄i(x, z, t) = fi(x, h(x, t) − z, t) on BT = {(x, z, t) | (x, t) ∈ Ω × (0, T ), z < h(x, t)}.

In this new coordinate system, the variables ci satisfy for all i = 1, . . . , L{
∂tci = f̄i on BT ,

ci|z=h = csi on D+
T .

(5.4)

The aim of this section is to prove Theorem 5.3 stated below, which gives the existence of a weak solution to
problem (5.1) in the sense of Definition 5.2. Under Hypothesis 2.1, Lemma 4.2 is a straightforward corollary of
Theorem 5.3.

The proof of Theorem 5.3 is achieved by adapting the proof of convergence of the finite volume scheme (3.2)–
(3.5) given in [4] to the case of non vanishing right hand sides. It outlines as follows: first, the numerical scheme
derived from (2.6) and (5.1) is given in Section 5.1. Then, the existence, uniqueness and stability of the discrete
solutions are obtained (see Sect. 5.2), followed by the proof of convergence of these solutions towards a weak
solution in the sense of Definition 5.2. In this last subsection, only the main differences with the proof given in
[4] will be detailed.

5.1. Finite volume scheme

The finite volume scheme derived here is the same as the one given in Section 3, except for the column
concentrations. Indeed, following equation (5.4) and using the same notation as in Section 3, the discrete
unknown cn+1

i,κ (z), n ≥ 0, is here defined as the exact solution at time tn+1 of the problem


∂tci,κ(z, t) = f̄i,κ(z, t),
ci,κ(z, tn) = cni,κ(z) if z < hn

κ,

ci,κ(hκ(t), t) = cs,n+1
i,κ if ∂thκ(t) > 0,

(5.5)
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for all κ ∈ K, t ∈ (tn, tn+1], z < hκ(t), with

f̄i,κ(z, t) =
1
|κ|

∫
κ

f̄i(x, z, t) dx,

hκ(t) = hn
κ + (t− tn) ∂thκ(t), and ∂thκ(t) =

hn+1
κ − hn

κ

∆t
for all t ∈ (tn, tn+1]. (5.6)

This leads to the following discretization of equations (2.6) and (5.1):

Sediment thickness:

|κ|h
n+1
κ − hn

κ

∆t
+

∑
κ′∈Kκ

Tκκ′(hn+1
κ − hn+1

κ′ ) − |∂κ ∩ ∂Ω| gn+1
κ = 0. (5.7)

Conservation of surface sediments:

∆Mn+1
i,κ

∆t
|κ|+

∑
κ′∈Kκ

cs,n+1
i,κκ′ Tκκ′(hn+1

κ − hn+1
κ′ ) − |∂κ ∩ ∂Ω| c̃n+1

i,κ g(+),n+1
κ + |∂κ ∩ ∂Ω| cs,n+1

i,κ g(−),n+1
κ = 0. (5.8)

Column sediments:

∆Mn+1
i,κ =

{
cs,n+1
i,κ (hn+1

κ − hn
κ) if hn+1

κ ≥ hn
κ,∫ hn+1

κ

hn
κ

cni,κ(z) dz otherwise,
(5.9)

cn+1
i,κ (z) =




cni,κ(z) +
∫ tn+1

tn f̄i,κ(z, t) dt if z ≤ min(hn
κ, h

n+1
κ ),

cs,n+1
i,κ +

∫ tn+1

tn+∆t
(

z−hn
κ

h
n+1
κ −hn

κ

) f̄i,κ(z, t) dt if hn
κ < z < hn+1

κ ,
(5.10)

un
i,κ(ξ) = cni,κ(hn

κ − ξ) for all ξ ∈ R
∗
+. (5.11)

In the next subsection, we shall prove the existence of solutions (hn
κ)κ∈K, (cs,n+1

i,κ )κ∈K, (cni,κ)κ∈K and (un
i,κ)κ∈K,

i = 1, . . . , L, n ∈ {0, . . . , N∆t}, to problem (5.7)–(5.11). These solutions are unique except for the surface
concentration cs,n+1

i,κ which is arbitrary at some degenerate points (κ, n+ 1) for which it is chosen according to
Lemma 5.4 stated below. For any admissible mesh (K,Σint,P) of Ω in the sense of Definition 3.1, any time
step ∆t > 0, and i = 1, . . . , L, let us define, as in [4], the functions hK,∆t, csi,K,∆t on Ω × (0, (N∆t + 1)∆t], and
ui,K,∆t on Ω × R

∗
+ × (0, (N∆t + 1)∆t], by


hK,∆t(x, t) = hn+1

κ ,
ui,K,∆t(x, ξ, t) = un+1

i,κ (ξ),
csi,K,∆t(x, t) = cs,n+1

i,κ ,

(5.12)

for all x ∈ κ, κ ∈ K, t ∈ (tn, tn+1], n ∈ {0, . . . , N∆t}, ξ ∈ R
∗
+, where hn

κ, cs,n+1
i,κ , and un

i,κ are any given solution
of (5.7)–(5.11) chosen according to Lemma 5.4.

Then, the objective of this section is to prove the following theorem:

Theorem 5.3. Hypothesis 5.1 is assumed to hold. For all m ∈ N, let (Km,Σm
int,Pm) be an admissible mesh of

Ω in the sense of Definition 3.1 and ∆tm ∈ (0, T ). Let us assume that there exists α > 0 such that reg(Km) ≤ α

for all m ∈ N, and that ∆tm → 0, δKm√
∆tm

→ 0 as m→ ∞.
For all m ∈ N and i = 1, . . . , L, let hKm,∆tm , ui,Km,∆tm denote the unique functions defined by (5.12), and

csi,Km,∆tm
be a function defined by (5.12) from any solution of (5.7)–(5.11) chosen according to Lemma 5.4 with

K = Km, ∆t = ∆tm.
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Then, the sequence (hKm,∆tm)m∈N converges to the solution h of problem (2.6) in L∞(0, T ; L2(Ω)), and there
exists a subsequence of (Km,∆tm)m∈N, still denoted by (Km,∆tm)m∈N, such that, for all i ∈ {1, . . . , L}, the
subsequence (csi,Km,∆tm

)m∈N (resp. (ui,Km,∆tm)m∈N) converges to a function csi in L∞(Ω × (0, T )) (resp. ui in
L∞(Ω × R

∗
+ × (0, T ))) for the weak-� topology. Furthermore, for all i ∈ {1, . . . , L}, the limit (ui, c

s
i ) is a weak

solution of problem (5.1) in the sense of Definition 5.2.

5.2. Proof of Theorem 5.3

The proof of Theorem 5.3 is very similar to the one giving the existence of a weak solution to problem (2.7)
in the sense of Definition 2.2 and developed in [4].

The existence, uniqueness and convergence of the sequence of discrete sediment thicknesses (hKm,∆tm)m∈N

to the solution of (2.6) have already been shown in [4], as well as the following bounds, used in the sequel: for
any m ∈ N,

N∆tm+1∑
n=0

∆tm
∑

κ∈Km

|κ|
(
hn+1

κ − hn
κ

∆tm

)2

≤ D1, (5.13)

‖h− hKm,∆tm‖L∞(0,T ;L2(Ω)) ≤ D2

(
δKm + ∆tm

)
, (5.14)

with D1 (resp. D2) only depending on h, Ω, T and α (resp. on h and Ω).
Concerning the concentration variables, the system (3.2)–(3.5) differs from (5.7)–(5.11) by the right hand

sides fi in L∞(Ω × R
∗
+ × (0, 2T )), i = 1, . . . , L, in the advection equations and by the unconstrained values

in L∞ of the initial and boundary conditions. Despite these differences, the same stages as in [4] are followed
to prove the existence of a weak solution to the coupled problem: we first show the existence of a bounded
solution for the discrete concentrations (Lem. 5.4), which yields the convergence of these concentrations in L∞

for the weak-� topology (Prop. 5.5). Then, a linear advection equation satisfied in the weak sense by the discrete
solutions is obtained (Prop. 5.6), and is finally used to show the existence of a weak solution.

Lemma 5.4. Under Hypothesis 5.1, let (K,Σint,P) be an admissible mesh of Ω in the sense of Definition 3.1,
∆t ∈ (0, T ), Mi = max

(
||u0

i ||L∞(Ω×R∗
+), ||c̃i||L∞(Σ+

2T )

)
+2T ||fi||L∞(Ω×R∗

+×(0,2T )) for all i ∈ {1, . . . , L} and, for all
n ∈ {0, . . . , N∆t+1}, let (hn

κ)κ∈K be the solution of (5.7). For i ∈ {1, . . . , L} and n ∈ {0, . . . , N∆t}, there exists a
unique solution (cn+1

i,κ )κ∈K, and there exists at least one solution (cs,n+1
i,κ )κ∈K to the set of equations (5.8)–(5.11)

such that

|cs,n+1
i,κ | ≤Mi for all κ ∈ K and n ∈ {0, . . . , N∆t}. (5.15)

Furthermore, one has

|cni,κ(z)| ≤Mi for all κ ∈ K, n ∈ {0, . . . , N∆t + 1} and z < hn
κ. (5.16)

Proof. Since the discrete accumulation term is the same as in problem (3.2)–(3.5), the proof of existence and
uniqueness of the approximate concentrations (cs,n+1

i,κ )κ∈K, (cni,κ)κ∈K and (un
i,κ)κ∈K, i = 1, . . . , L, is unchanged

(see [4] for details).
The inequalities (5.15) and (5.16) are proved by induction over n ∈ {0, . . . , N∆t} and over the control vol-

umes in decreasing topographical order. Let us consider a control volume κ ∈ K and a time step n ≥ 0. The
induction hypothesis assumes that |cni,κ′(z)| ≤Mn

i for all κ′ ∈ K, and that, for the higher cells κ′ ∈ K such that
hn+1

κ < hn+1
κ′ , |cs,n+1

i,κ′ | ≤Mn
i , with Mn

i = max
(
||u0

i ||L∞(Ω×R∗
+), ||c̃i||L∞(Σ+

2T )

)
+ n∆t ||fi||L∞(Ω×R∗

+×(0,2T )).
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Let us first consider the erosion case for which hn+1
κ ≤ hn

κ . It results from the induction hypothesis over n
and over the control volumes that

|cs,n+1
i,κ |


 ∑

κ′∈Kκ
hκ>h

κ′

Tκκ′(hn+1
κ − hn+1

κ′ ) + |∂κ ∩ ∂Ω| g(−),n+1
κ




≤Mn
i


|∂κ ∩ ∂Ω| g(+),n+1

κ +
∑

κ′∈Kκ
hκ≤h

κ′

Tκκ′(hn+1
κ′ − hn+1

κ ) +
|κ|
∆t

(hn
κ − hn+1

κ )


 .

Thus, using the fact that the discrete sediment thickness satisfies equation (5.7), we get

(
|cs,n+1

i,κ | −Mn
i

)  ∑
κ′∈Kκ

hκ>h
κ′

Tκκ′(hn+1
κ − hn+1

κ′ ) + |∂κ ∩ ∂Ω| g(−),n+1
κ




︸ ︷︷ ︸
≤ 0.

A+
κ

In this equation, either the term A+
κ is strictly positive, or it vanishes. In the first case, it results that

|cs,n+1
i,κ | ≤ Mn

i for all i = 1, . . . , L. In the second case, the point (κ, n + 1) is said to be degenerated in
the sense that the concentrations cs,n+1

i,κ can be chosen arbitrarily in the interval [−Mn
i ,M

n
i ].

Let us now assume that hn+1
κ > hn

κ (sedimentation). Proceeding as above, we get

|cs,n+1
i,κ |


 |κ|

∆t
(hn+1

κ − hn
κ) +

∑
κ′∈Kκ

hκ>h
κ′

Tκκ′(hn+1
κ − hn+1

κ′ ) + |∂κ ∩ ∂Ω| g(−),n+1
κ




≤Mn
i


|∂κ ∩ ∂Ω| g(+),n+1

κ +
∑

κ′∈Kκ
hκ≤h

κ′

Tκκ′(hn+1
κ′ − hn+1

κ )




which yields, according to equation (5.7),

(
|cs,n+1

i,κ | −Mn
i

)  |κ|
∆t

(hn+1
κ − hn

κ) +
∑

κ′∈Kκ
hκ>h

κ′

Tκκ′(hn+1
κ − hn+1

κ′ ) + |∂κ ∩ ∂Ω| g(−),n+1
κ


 ≤ 0.

Since we have assumed hn+1
κ > hn

κ, the second term into brackets is strictly positive, and thus |cs,n+1
i,κ | ≤Mn

i .

This proof is still valid for n = 0 and for all the highest cells κ0 ∈ K at any time tn+1, n ≥ 0.

Finally, concerning the basin concentrations, we have by definition |c0i,κ(z)| ≤ ||u0
i ||L∞(Ω×R∗

+) and, for n ∈
{0, . . . , N∆t}, (5.10) easily gives the inequality

||cn+1
i,κ (.)||L∞(−∞,hn+1

κ ) ≤ max
(
||cni,κ(.)||L∞(−∞,hn

κ), |cs,n+1
i,κ |

)
+ ∆t ||fi||L∞(Ω×R∗

+×(0,2T )) ≤Mn+1
i ,

which concludes the proof. �
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Denoting by ci,κ(z, t) the exact solution at time t of (5.5) for all κ ∈ K, t ∈ (0, (N∆t + 1)∆t ] and z < hκ(t),
we can extend the discrete solutions (un

i,κ)n∈{0,...,N∆t+1} and (cs,n+1
i,κ )n∈{0,...,N∆t} given by Lemma 5.4 to t ∈

(0, (N∆t + 1)∆t ] for all κ ∈ K as follows:

ui,κ(ξ, t) = ci,κ(hκ(t) − ξ, t) for all t ∈ (0, (N∆t + 1)∆t ] and ξ ∈ R
∗
+, (5.17)

csi,κ(t) = cs,n+1
i,κ for all t ∈ (tn, tn+1]. (5.18)

And we can easily deduce from Lemma 5.4 that the functions ci,κ(z, t) and ui,κ(ξ, t) are bounded in the interval
[−Mi,Mi] for all i = 1, . . . , L.

Let us now define ūi,K,∆t on Ω × R
∗
+ × (0, (N∆t + 1)∆t ) by

ūi,K,∆t(x, ξ, t) = ui,κ(ξ, t) (5.19)

for all x ∈ κ, κ ∈ K. Then we have the following proposition:

Proposition 5.5. For all m ∈ N, let (Km,Σm
int,Pm) be an admissible mesh of Ω in the sense of Definition 3.1

and ∆tm ∈ (0, T ). Let us assume that ∆tm → 0 and δKm → 0 as m→ ∞.
For all m ∈ N and i = 1, . . . , L, let ui,Km,∆tm (resp. ūi,Km,∆tm) denote the unique function defined by

(5.12) (resp. by (5.19)) and csi,Km,∆tm
be a function defined by (5.12), from any solution of (5.8)–(5.11) chosen

according to Lemma 5.4 with K = Km, ∆t = ∆tm.
Then, under Hypothesis 5.1, there exists a subsequence of (Km,∆tm)m∈N, still denoted by (Km,∆tm)m∈N,

such that for all i ∈ {1, . . . , L}
(i) the subsequence (csi,Km,∆tm

)m∈N converges to a function csi in L∞(Ω × (0, T )) for the weak-� topology,
(ii) the subsequences (ui,Km,∆tm)m∈N and (ūi,Km,∆tm)m∈N converge to a function ui in L∞(Ω×R

∗
+× (0, T ))

for the weak-� topology.

Proof. Denoting by ui (resp. ūi) the limit asm→ ∞ of the subsequence (ui,Km,∆tm)m∈N (resp. (ūi,Km,∆tm)m∈N)
in L∞(Ω×R

∗
+ × (0, T )), the only difficulty is to prove that ui = ūi. It is achieved as in the proof of Proposition

5.2 in [4] using the assumption fi ∈ L∞(Ω × R
∗
+ × (0, 2T )), the bounds (5.13), (5.15), (5.16) on the solutions,

and the following relation: for x ∈ κ, κ ∈ Km and t ∈ (tn, tn+1],

un+1
i,κ (ξ) =




ui,κ

(
ξ − (hκ(t) − hn

κ), t
)

+
∫ t

tn fi,κ

(
ξ − (hκ(t) − hn

κ), s
)

ds
for all ξ ≥ hκ(t) − hn

κ if hn+1
κ ≥ hn

κ,

ui,κ

(
ξ + (hκ(t) − hn+1

κ ), t
)

+
∫ tn+1

t fi,κ

(
ξ + (hκ(t) − hn+1

κ ), s
)

ds
for all ξ ≥ 0 if hn+1

κ < hn
κ,

with fi,κ(ξ, t) = f̄i,κ(hκ(t) − ξ, t). �

Then, to show the convergence of the approximate solutions towards a weak solution of the coupled problem,
we state, as in [4], that the functions ci,κ(z, t) satisfy a linear advection equation. Indeed, using equation (5.5),
Lemma 5.5 of [4] extends to:

Proposition 5.6. Let us assume that Hypothesis 5.1 holds and let h denote the solution of problem (2.6). Let
(K,Σint,P) be an admissible mesh of Ω in the sense of Definition 3.1, and ∆t ∈ (0, T ).

Let hK,∆t, ui,K,∆t, i = 1, . . . , L, (resp. ūi,K,∆t, i = 1, . . . , L) denote the unique functions defined by (5.12)
(resp. by (5.19)) and csi,K,∆t, i = 1, . . . , L, be a function defined by (5.12), from any solution of (5.8)–(5.11)
chosen according to Lemma 5.4.
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Then, for any κ ∈ K and i ∈ {1, . . . , L}:
(i) for all ϕ ∈ {φ ∈ C∞

c (R2) |φ(., T ) = 0 on R+},∫ T

0

∫
R+

[
∂tϕ(ξ, t) + ∂thκ(t) ∂ξϕ(ξ, t)

]
ui,κ(ξ, t) dξ dt+

∫ T

0

∫
R+

fi,κ(ξ, t)ϕ(ξ, t) dξ dt

+
∫

R+

u0
i,κ(ξ)ϕ(ξ, 0) dξ +

∫ T

0

∂thκ(t)ui,κ(0, t)ϕ(0, t) dt = 0;
(5.20)

(ii) for all ϕ ∈ {φ ∈ C∞
c (R2) |φ(., T ) = 0 on R+ and φ(0, t) = 0 for all t > 0 such that ∂thκ(t) ≤ 0},∫ T

0

∫
R+

[
∂tϕ(ξ, t) + ∂thκ(t) ∂ξϕ(ξ, t)

]
ui,κ(ξ, t) dξ dt+

∫ T

0

∫
R+

fi,κ(ξ, t)ϕ(ξ, t) dξ dt

+
∫

R+

u0
i,κ(ξ)ϕ(ξ, 0) dξ +

∫ T

0

∂thκ(t)csi,κ(t)ϕ(0, t) dt = 0.
(5.21)

Let us now prove Theorem 5.3.
The proof of convergence of the numerical scheme (3.2)–(3.5) in [4] does not directly use the value of the

bounds on the discrete solutions nor the value of the sum over the lithologies of the discrete concentrations, but
only the stability of the solutions and the decoupling of the sediment thickness variable from the concentration
variables. Thus, to complete the proof in our case, we just need to show the convergence of the terms involving
the functions fi, i = 1, . . . , L.

The first expression (5.2) in the weak formulation is obtained using the discrete linear advection equa-
tion (5.20) applied to ϕ(xκ, ξ, t), ϕ ∈

{
φ ∈ C∞

c (Rd+2) |φ(., 0, .) = 0 on Ω × (0, T )\D+
T and φ(., ., T ) = 0 on Ω×

R+

}
. The convergence of this equation towards (5.2) has already been shown in [4] in the case fi = 0. Thus,

there only remains to prove that:

Ai,m =
∑

κ∈Km

|κ|
∫ T

0

∫
R+

fi,κ(ξ, t)ϕ(xκ, ξ, t) dξ dt →
∫

Ω

∫
R+

∫ T

0

fi(x, ξ, t)ϕ(x, ξ, t) dt dξ dx (5.22)

as m→ ∞.
Then, we will show the convergence towards (5.3) of the sum over κ ∈ Km, n ∈ {0, . . . , N∆tm} of equation (5.8)

multiplied by ϕ(xκ, 0, tn+1), ϕ ∈
{
φ ∈ C∞

c (Rd+2) |φ(., 0, .) = 0 on ∂Ω × (0, T ) \ Σ+
T and φ(., ., T ) = 0 on Ω ×

R+

}
. Proceeding as in [4] and using (5.22), it amounts to prove that

Bi,m =
∑

κ∈Km

|κ|
∫ T

0

∂thκ(t)ui,κ(0, t)ϕ(xκ, 0, t) dt−
∑

κ∈Km

|κ|
N∆tm∑
n=0

∆Mn+1
i,κ ϕ(xκ, 0, tn+1) → 0 (5.23)

as m→ ∞.

Let us now prove (5.22) and (5.23).
First, it can be shown that the function fi,Km , defined by fi,Km(x, ξ, t) = fi,κ(ξ, t) = 1

|κ|
∫

κ f̄i

(
y, hκ(t)−ξ, t

)
dy

for all x ∈ κ, κ ∈ Km, ξ ∈ R
∗
+, t ∈ (0, T ), converges towards fi in L1

loc(Ω × R
∗
+ × (0, T )) using a density argu-

ment, the assumption fi ∈ L∞(Ω×R
∗
+×(0, 2T )), and the bounds (5.13), (5.14). This result readily implies (5.22).

Then, for any κ ∈ Km, n ∈ {0, . . . , N∆tm} and i ∈ {1, . . . , L}, we get

∆Mn+1
i,κ =

∫ tn+1

tn

ui,κ(0, t)∂thκ(t) dt −
{ ∫ tn+1

tn

( ∫ t

tn f̄i,κ(hκ(t), s) ds
)
∂thκ(t) dt if hn+1

κ < hn
κ

0 otherwise
.
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Substituting this equality in the definition of Bi,m leads to

Bi,m =
∑

κ∈Km

∫
κ

∫ tN∆tm
+1

T

ūi,Km,∆tm(x, 0, t) δthKm,∆tm(x, t)ϕ(xκ, 0, t) dt dx

+
∑

κ∈Km

N∆tm∑
n=0

∫
κ

∫ tn+1

tn

ūi,Km,∆tm(x, 0, t) δthKm,∆tm(x, t) [ϕ(xκ, 0, tn+1) − ϕ(xκ, 0, t)] dt dx

−
N∆tm∑
n=0

∫ tn+1

tn

∑
κ∈Km

h
n+1
κ <hn

κ

|κ|
(∫ t

tn

f̄i,κ(hκ(t), s) ds
)
∂thκ(t)ϕ(xκ, 0, tn+1) dt,

with δthKm,∆tm(x, t) = ∂thκ(t) = (hn+1
κ − hn

κ)/∆tm for all x ∈ κ, κ ∈ Km, t ∈ (tn, tn+1]. Thanks to the
regularity of ϕ, there exists D3 > 0, only depending on ϕ, such that |ϕ(xκ, 0, tn+1) − ϕ(xκ, 0, t)| ≤ D3 ∆tm for
all t ∈ [tn, tn+1]. Since the function δthKm,∆tm is uniformly bounded in L2(Ω× (0, tN∆tm+1)) (see (5.13)), since
ūi,Km,∆tm ∈ [−Mi,Mi], f̄i ∈ L∞(Ω × R

∗
+ × (0, 2T )) and |tN∆tm+1 − T | < ∆tm, the convergence of Bi,m to 0 as

m→ ∞ is obtained: the limit (ui, c
s
i ) satisfies equation (5.3), which ends the proof of Theorem 5.3.

6. Proof of Lemma 4.1

The proof of Lemma 4.1 uses the characteristics ζ(.;x, ξ, t) and the so called “characteristic solution” vc of
equation (4.1) (see [7]) defined below (see (6.4)) which is shown to be the unique weak solution of (4.1) and to
satisfy the properties of Lemma 4.1.

The proof uses a partition of unity on a covering of R
d+2 built from the characteristics such that on each open

set of the covering intersecting the boundary Ω×∂[R∗
+×(0, T )], the characteristic solution vc is regular assuming

regular data. This will enable an easy derivation of the integration by part formulae stated in Lemma 4.1. In
order to stay away from the boundaries ∂D+

T ×{ξ = 0}, ∂D−
T ×{ξ = 0}, and Ω×{ξ = 0}× {t = 0, T }, we shall

need in addition a trick from [2] to prove that their contribution in the integration by part vanishes.

For all (x, ξ, t) ∈ Ω̄ × R+ × R+, let us define the characteristic ζ(.;x, ξ, t) by

ζ(s;x, ξ, t) =
∫ s

t

∂th(x, r) dr + ξ = h(x, s) − h(x, t) + ξ (6.1)

for all s ∈ R+. For all (x, ξ, t) ∈ Ω̄×R+ × [0, T ], the input time τe and the output time τs of the characteristic
ζ(.;x, ξ, t) into and out of the domain Ω × R

∗
+ × (0, T ) are defined by{

τe(x, ξ, t) = inf
{
s such that 0 ≤ s ≤ t and ζ(s;x, ξ, t) ≥ 0

}
,

τs(x, ξ, t) = sup
{
s such that t ≤ s ≤ T and ζ(s;x, ξ, t) ≥ 0

}
.

(6.2)

We can prove the following lemma.

Lemma 6.1. For all (x, ξ, t) ∈ Ω × R+ × [0, T ] such that τ = τe(x, ξ, t) > 0, then (x, τ) ∈ D+
T ∩ Ω × (0, T ].

Let us now introduce the covering of R
d+2 built from the characteristics such that on each open set, we can

control the smoothness of the solutions of the direct and adjoint advection equations and derive the integration
by part formulae.

From the regularity of the boundary ∂Ω, it is possible to build a C2 extension of h on an open neighbourhood
ω × [0, T ] of Ω̄ × [0, T ] in R

d × [0, T ]. Let us denote by h̄ this extension and by ζ̄ the extension of ζ on
ω × R+ × [0, T ].
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One can check that the set

V0 =
{

(x, ξ,±t) |x ∈ ω, t ∈ [0, T ), ξ = ζ̄(t;x, η, 0) with η ∈ R
∗
+, ζ̄(s;x, η, 0) > 0 for all s ∈ [0, t]

}
defines an open neighbourhood of Ω̄ × R

∗
+ × {t = 0}. Similarly the set

VT =
{

(x, ξ, t), (x, ξ, 2T − t) |x ∈ ω, t ∈ (0, T ], ξ = ζ̄(t;x, η, T ) with η ∈ R
∗
+, ζ̄(s;x, η, T ) > 0 for all s ∈ [t, T ]

}
defines an open neighbourhood of Ω̄ × R

∗
+ × {t = T }.

Also, the set

VD+ =
{
(x,±ξ, t) | (x, t) ∈ ω × (0, T ), ξ = ζ̄(t;x, 0, s), t ≥ s > 0, ∂th̄(x, r) > 0 for all r ∈ [s, t]

}
defines an open neighbourhood of {(x, t) ∈ Ω̄ × (0, T ) | ∂th(x, t) > 0} × {ξ = 0}, and the set

VD− =
{
(x,±ξ, t) | (x, t) ∈ ω × (0, T ), ξ = ζ̄(t;x, 0, s), t ≤ s < T, ∂th̄(x, r) < 0 for all r ∈ [t, s]

}
defines an open neighbourhood of {(x, t) ∈ Ω̄ × (0, T ) | ∂th(x, t) < 0} × {ξ = 0}.

Let D0 denote the interior of the set
{
(x, t) ∈ ω × (0, T ) | ∂th̄(x, t) = 0

}
in ω × (0, T ), and consider the set

VD0 =
{
(x, ξ, t) | (x, t) ∈ D0, ξ ∈ (−1, 1)

}
,

which is an open neighbourhood of D0 × {ξ = 0}.

Finally, in order to stay away from the set S = B1∪B2∪B3∪B4 with B1 = ∂D+
T ×{ξ = 0}, B2 = ∂D−

T ×{ξ =
0}, B3 = Ω × {ξ = 0} × {t = 0}, and B4 = Ω × {ξ = 0} × {t = T }, let us consider δ > 0 and the set

V δ
S =

{
(x, ξ, t) ∈ R

d+2 | dS(x, ξ, t) < 3δ
}

where dS(x, ξ, t) denote the distance of the point (x, ξ, t) to the set S.
The construction is completed noting that for each δ > 0, there exists an open set V δ

c such that the set(
V0, VT , VD+ , VD− , VD0 , V δ

S , V
δ
c

)
defines a covering of R

d+2 with Ω̄ × R+ × {t = 0, T } ∩ V δ
c = ∅, Ω̄ × {ξ = 0} × [0, T ] ∩ V δ

c = ∅.
A partition of unity is built on this covering denoted by(

ωδ
0 , ω

δ
T , ω

δ
D+ , ωδ

D− , ωδ
D0, ωδ

S , ω
δ
c

)
.

From Hypothesis 2.1, the set S is the union of a finite number of C1 manifolds of dimension at most d. Hence,
following [2], the function ωδ

S can be chosen such that


ωδ
S(x, ξ, t) = 1 if dS(x, ξ, t) < δ,
ωδ

S(x, ξ, t) = 0 if dS(x, ξ, t) > 2δ,
Measure

(
Supp (ωδ

S) ∩ {(x, ξ, t), |(x, ξ, t)| ≤ R}
)
≤ C(R)δ2,

sup
(
‖∂ξω

δ
S‖L∞ , ‖∂tω

δ
S‖L∞

)
≤ C

δ .

(6.3)
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Let us now define the characteristic solution vc as follows

vc(x, ξ, t) =
{
ls(x, τe(x, ξ, t)) if (x, τe(x, ξ, t)) ∈ D+

T

v0(x, ζ(0;x, ξ, t)) if τe(x, ξ, t) = 0 +
∫ t

τe(x,ξ,t)

f(x, ζ(s;x, ξ, t), s) ds, (6.4)

formally defined on Ω × [0,+∞) × [0, T ]. Then we have the following lemma:

Lemma 6.2. Hypothesis 2.1 is assumed to hold. Then the function vc is in L∞(Ω × R
∗
+ × (0, T )) and satisfies

‖vc‖L∞(Ω×R∗
+×(0,T )) ≤ ‖ls‖L∞(D+

T ) + ‖v0‖L∞(Ω×R∗
+) + T ‖f‖L∞(Ω×R∗

+×(0,T )).

Proof. From Hypothesis 2.1, the set{
(x, ξ = ζ(s;x, 0, t), s) | s ∈ [τe(x, 0, t), τs(x, 0, t)], (x, t) ∈ ∂D+

T ∩ Ω × (0, T )
}

has a vanishing measure for the Lebesgue measure dx dξ ds (see the following computation of the term I1). We
deduce from Lemma 6.1 that the function vc is defined a.e. on Ω × R

∗
+ × (0, T ). Let ϕ ∈ C∞

c (Ω × R
∗
+ × (0, T ))

be a test function, and consider the integral∫
Ω×R∗

+×(0,T )

vc(x, ξ, t)ϕ(x, ξ, t) dx dξ dt = I1 + I2 + I3 with

I1 =
∫{

(x,ξ,t)∈Ω×R∗
+×(0,T ) | (x,τe(x,ξ,t))∈D+

T

} ls(x, τe(x, ξ, t))ϕ(x, ξ, t) dx dξ dt,

I2 =
∫{

(x,ξ,t)∈Ω×R∗
+×(0,T ) | τe(x,ξ,t)=0

} v0(x, ζ(0;x, ξ, t))ϕ(x, ξ, t) dx dξ dt,

I3 =
∫

Ω×R∗
+×(0,T )

∫ t

τe(x,ξ,t)

f(x, ζ(s;x, ξ, t), s)ϕ(x, ξ, t) ds dx dξ dt.

Using the change of variables (x, ξ, t) = (y, ζ(s; y, 0, τ), s), the first term rewrites

I1 =
∫
D+

T

∫ τs(y,0,τ)

τ

ls(y, τ) ∂th(y, τ)ϕ(y, ζ(s; y, 0, τ), s) ds dy dτ

≤ ‖ls‖L∞(D+
T )

∫
D+

T

∫ τs(y,0,τ)

τ

∂th(y, τ) |ϕ(y, ζ(s; y, 0, τ), s)| ds dy dτ.

Back to the original variables, we obtain that I1 is bounded by ‖ls‖L∞(D+
T ) ‖ϕ‖L1(Ω×R∗

+×(0,T )). Using the change
of variables (x, ξ, t) = (y, ζ(s; y, η, 0), s), the second term rewrites

I2 =
∫

Ω

∫
R+

∫ τs(y,η,0)

0

v0(y, η)ϕ(y, ζ(s; y, η, 0), s) ds dη dy

for which we obtain the bound I2 ≤ ‖v0‖L∞(Ω×R∗
+) ‖ϕ‖L1(Ω×R∗

+×(0,T )). Finally, using the change of variable
(x, ξ, t, s) = (y, ζ(t′; y, η, s′), t′, s′), we obtain similarly that the last term I3 is bounded by

T ‖f‖L∞(Ω×R∗
+×(0,T )) ‖ϕ‖L1(Ω×R∗

+×(0,T ))

which ends the proof. �
Lemma 6.3. Hypothesis 2.1 is assumed to hold, then Lvc = f .
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Proof. Let T ∈ L∞(Ω×R
∗
+×(0, T )) be such that for all (x0, ξ0, t0) ∈ Ω×R

∗
+×(0, T ), there exists a neighbourhood

V of (x0, ξ0, t0) in Ω × R
∗
+ × (0, T ) and s ∈ (0, T ) such that ζ(s;x, ξ, t) > 0 and T (x, ζ(s;x, ξ, t), s) = T (x, ξ, t)

for all (x, ξ, t) ∈ V . Then, let us show that LT = 0 in D′(Ω × R
∗
+ × (0, T )) and hence in L∞(Ω × R

∗
+ × (0, T )).

Let ϕ be a test function in C∞
c (V ), then one has∫

V

T (x, ξ, t) (Lϕ)(x, ξ, t) dx dξ dt =
∫

V

T (x, ζ(s;x, ξ, t), s) (Lϕ)(x, ξ, t) dx dξ dt.

Let us consider the change of variables (x′, ξ′, t′) = (x, ζ(s;x, ξ, t), t), mapping V ′ to V , and the function φ such
that φ(x′, ξ′, t′) = ϕ(x, ξ, t) on V ′. One has∫

V

T (x, ξ, t) (Lϕ)(x, ξ, t) dx dξ dt =
∫

V ′
T (x′, ξ′, s) ∂t′φ(x′, ξ′, t′) dx′ dξ′ dt′ = 0.

To conclude that LT = 0, it suffices to consider a test function ψ ∈ C∞
c (Ω × R

∗
+ × (0, T )), a finite covering of

Supp(ψ) satisfying the above property, and a partition of unity on this covering.

The above property is clearly satisfied for the functions τe, T1, and T2 with

T1(x, ξ, t) = ls(x, τe(x, ξ, t))χ{(x,ξ,t)∈Ω×R
∗
+×(0,T ) | (x,τe(x,ξ,t))∈D+

T }

and
T2(x, ξ, t) = v0(x, ζ(0;x, ξ, t))χ{(x,ξ,t)∈Ω×R∗

+×(0,T ) | τe(x,ξ,t)=0}

on Ω×R
∗
+×(0, T ). We deduce that L(τe) = LT1 = LT2 = 0, and also that LT3 = f with T3 the function defined

by T3(x, ξ, t) =
∫ t

τe(x,ξ,t) f(x, ζ(s;x, ξ, t), s) ds, which finally proves that Lvc = LT1 + LT2 + LT3 = f . �

In order to prove the integration by part formula (4.3), we need the following lemma which is a direct
application of the up-to-the boundary Friedrichs’ lemma ([3], Cor. 3.2, p. 882).

Lemma 6.4. The function space C∞
c (Ω̄ × R+ × [0, T ]) is dense in the Hilbert space

WL(Ω × R
∗
+ × (0, T )) = {v ∈ L2(Ω × R

∗
+ × (0, T )) such that Lv ∈ L2(Ω × R

∗
+ × (0, T ))}

endowed with the norm ‖v‖WL(Ω×R∗
+×(0,T )) = ‖v‖L2(Ω×R∗

+×(0,T )) + ‖Lv‖L2(Ω×R∗
+×(0,T )).

Let n = (nx, nξ, nt) denote the unit vector normal to the boundary ∂[Ω × R
∗
+ × (0, T )] outward to Ω ×

R
∗
+ × (0, T ) and defined almost everywhere. It results from Lemma 6.4 that we can define by prolongation

the continuous trace operator γL from WL(Ω × R
∗
+ × (0, T )) to L2[Ω; H−1/2(∂[R∗

+ × (0, T )])] such that for all
ϕ ∈ C∞

c (Ω̄ × R+ × [0, T ]), γLϕ = ϕ(nt + ∂thnξ)|Ω×∂[R∗
+×(0,T )], and satisfying

∫
Ω

∫
R+

∫ T

0

φ(x, ξ, t)Lv(x, ξ, t) dt dξ dx +
∫

Ω

∫
R+

∫ T

0

v(x, ξ, t)Lφ(x, ξ, t) dt dξ dx

=
∫

Ω

∫
∂[R∗

+×(0,T )]

φ(x, ξ, t) γLv(x, ξ, t) dσ dx,
(6.5)

for all φ ∈ L2[Ω;H1(R∗
+ × (0, T ))], where the last integral on Ω × ∂[R∗

+ × (0, T )] is taken in the sense of the
duality product.

The next lemma states that (4.3) is satisfied for any function v ∈ L∞(Ω × R
∗
+ × (0, T )) such that Lv ∈

L∞(Ω × R
∗
+ × (0, T )), which is the case in particular for v = vc from Lemmae 6.2 and 6.3.
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Lemma 6.5. For any function v ∈ L∞(Ω × R
∗
+ × (0, T )) such that Lv ∈ L∞(Ω × R

∗
+ × (0, T )), the trace γLv

belongs to L∞(Ω × ∂[R∗
+ × (0, T )]) and satisfies the estimate

‖γLv‖L∞(Ω×∂[R∗
+×(0,T )]) ≤ C

(
‖v‖L∞(Ω×R∗

+×(0,T )) + ‖Lv‖L∞(Ω×R∗
+×(0,T ))

)
with C independent of v. This trace is denoted by vc(., 0, .)∂th on ξ = 0, vc(., ., 0) on t = 0, and vc(., ., T ) on
t = T and we have the integration by part formula∫

Ω

∫
R+

∫ T

0

(
(Lφ)(x, ξ, t) v(x, ξ, t) + (Lv)(x, ξ, t)φ(x, ξ, t)

)
dt dξ dx

+
∫

Ω

∫
R+

(
v(x, ξ, 0)φ(x, ξ, 0) − v(x, ξ, T )φ(x, ξ, T )

)
dξ dx

+
∫

Ω

∫ T

0

∂th(x, t) v(x, 0, t)φ(x, 0, t) dt dx = 0.

(6.6)

for all φ ∈ L1[Ω;W 1,1(R∗
+ × (0, T ))].

Proof. Since v and L v belong to L∞(Ω × R
∗
+ × (0, T )), (6.5) holds for all φ ∈ C∞

c (Rd+2).
It is known that C∞

c (Ω̄×R+ × [0, T ]) is dense in L1[Ω;W 1,1(R∗
+ × (0, T ))], and that the trace operator from

L1[Ω;W 1,1(R∗
+×(0, T ))] to L1(Ω×∂[R∗

+×(0, T )]) is onto. It results that the set of traces of C∞
c (Ω̄×R+× [0, T ])

on Ω×∂[R∗
+×(0, T )] defines a space denoted by C∞

c (Ω̄×∂[R∗
+×(0, T )]) which is dense in L1(Ω×∂[R∗

+×(0, T )]).
For any function θ of C∞

c (Ω̄×∂[R∗
+× (0, T )]), one can built a function φ ∈ L2[Ω;H1(R∗

+ × (0, T ))] compactly
supported and such that

‖φ‖L1[Ω;W 1,1(R∗
+×(0,T ))] ≤ C‖θ‖L1(Ω×∂[R∗

+×(0,T )])

with C independent of θ. Hence we have∫
Ω

∫
∂[R∗

+×(0,T )]

θ γLv dσ dx ≤ C
(
‖v‖L∞(Ω×R∗

+×(0,T )) + ‖Lv‖L∞(Ω×R∗
+×(0,T ))

)
‖θ‖L1(Ω×∂[R∗

+×(0,T )])

for all θ ∈ C∞
c (Ω̄ × ∂[R∗

+ × (0, T )]). By density, we conclude that γLv belongs to L∞(Ω × ∂[R∗
+ × (0, T )]).

The integration by part formula results from (6.5) and the density of C∞
c (Ω̄×R+ × [0, T ]) in L1[Ω;W 1,1(R∗

+ ×
(0, T ))]. �

We shall now use the partition of unity to prove that vc is a weak solution i.e. that vc(., 0, .)∂th = ls on D+
T

and vc(., ., 0) = v0.

Lemma 6.6. Hypothesis 2.1 is assumed to hold, then vc is a weak solution to (4.1).

Proof. Let us consider a function ϕ in C∞
c (Rd+2) such that ϕ(., 0, .) = 0 on Ω × (0, T ) \ D+

T and ϕ(., ., T ) = 0
on Ω × R

∗
+. By construction of the sets V0 and VD+ , assuming smooth data f , v0, and ls, the function vc is

smooth on the sets V0 ∩ Ω̄ × R+ × [0, T ] and VD+ ∩ Ω̄ × R+ × [0, T ]. Hence one has∫
Ω

∫
R+

∫ T

0

(
L(ϕωδ

0)(x, ξ, t) vc(x, ξ, t) + f(x, ξ, t) (ϕωδ
0)(x, ξ, t)

)
dt dξ dx

+
∫

Ω

∫
R+

v0(x, ξ) (ϕωδ
0)(x, ξ, 0) dξ dx = 0,

(6.7)

and ∫
Ω

∫
R+

∫ T

0

(
L(ϕωδ

D+)(x, ξ, t) vc(x, ξ, t) + f(x, ξ, t) (ϕωδ
D+)(x, ξ, t)

)
dt dξ dx

+
∫

Ω

∫ T

0

∂th(x, t) ls(x, t) (ϕωδ
D+)(x, 0, t) dt dx = 0.

(6.8)
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From Lemma 6.2, vc is a linear continuous function of f , v0, and ls in L∞ norms. We deduce that (6.7) and
(6.8) extend by continuity and density to data f , v0, and ls in L∞.

By definition of ϕ and (6.6) one has

∫
Ω

∫
R+

∫ T

0

(
L
(
ϕ (ωδ

D− + ωδ
T )
)
(x, ξ, t) vc(x, ξ, t) + f ϕ (ωδ

D− + ωδ
T )(x, ξ, t)

)
dt dξ dx = 0. (6.9)

The equality

∫
Ω

∫
R+

∫ T

0

(
L
(
ϕ (ωδ

D0 + ωδ
c)
)
(x, ξ, t) vc(x, ξ, t) + f ϕ (ωδ

D0 + ωδ
c)(x, ξ, t)

)
dt dξ dx = 0 (6.10)

which clearly holds for any smooth function, readily extends by density from Lemma 6.4 to vc since the functions
vc and L vc are in L∞(Ω × R

∗
+ × (0, T )) and ϕ is compactly supported.

Finally, from the properties (6.3) verified by the function ωδ
S, one has∣∣∣∣∣

∫
Ω

∫
R+

∫ T

0

(
L(ϕωδ

S)(x, ξ, t) vc(x, ξ, t) + f(x, ξ, t) (ϕωδ
S)(x, ξ, t)

)
dt dξ dx

∣∣∣∣∣ ≤ C(ϕ, vc) δ, (6.11)

where C(ϕ, vc) only depends on ϕ and vc. Passing to the limit δ → 0, we conclude that vc is a weak solution. �

The following lemma states that vc is the unique weak solution to (4.1). The proof uses again the partition
of unity.

Lemma 6.7. Hypothesis 2.1 is assumed to hold, then vc is the unique weak solution to (4.1).

Proof. Let u be a weak solution of (4.1) with f = v0 = ls = 0. In the sense of distributions, it results that
Lu = 0 on Ω × R

∗
+ × (0, T ), and that the trace γLu (in L∞(Ω × ∂[R∗

+ × (0, T )]) from Lemma 6.5) vanishes on
D+

T ∪Ω×R
∗
+ ×{t = 0}. On the sets V0 ∩Ω×R

∗
+ × [0, T ), and VD+ ∩Ω×R+ × (0, T ), the equation Lu = 0 can

be integrated along the characteristics using the boundary conditions leading to u = 0 on these sets. For any
function ψ in C∞

c (Rd+2), let us consider the compactly supported function

w(x, ξ, t) =
∫

Ω

∫
R+

∫ T

0

∫ t

τs(x,ξ,t)

ψ(x, ζ(s;x, ξ, t), s) ds dt dξ dx, (6.12)

which is, from the previous results applied to the adjoint system, a weak solution to




−Lw = ψ on Ω × R
∗
+ × (0, T ),

w|ξ=0 = 0 on D−
T ,

w|t=T = 0 on Ω × R
∗
+.

(6.13)

Since u = 0 on (V0 ∪ VD+) ∩ Ω × R+ × [0, T ], one clearly has

∫
Ω

∫
R+

∫ T

0

L[uw(ωδ
D+ + ωδ

0)](x, ξ, t) dt dξ dx = 0.

Let ρ be a function in C∞
c (Rd+2) such that ρ = 1 on the compact support of w. Since ρ u belongs to WL(Ω×R

∗
+×

(0, T )) and w is smooth on (VT ∪VD−)∩ Ω̄×R+× [0, T ], equation (6.5) applied to v = ρ u and φ = w(ωδ
D− +ωδ

T )
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yields that ∫
Ω

∫
R+

∫ T

0

L[uw(ωδ
D− + ωδ

T )](x, ξ, t) dt dξ dx = 0.

Also, since (uw) belongs to WL(Ω × R
∗
+ × (0, T )), by density of the smooth functions in WL(Ω × R

∗
+ × (0, T ))

we conclude that ∫
Ω

∫
R+

∫ T

0

L[uw(ωδ
D0 + ωδ

c)](x, ξ, t) dt dξ dx = 0.

Finally, as above ∣∣∣∣∣
∫

Ω

∫
R+

∫ T

0

L[uwωδ
S ](x, ξ, t) dt dξ dx

∣∣∣∣∣ ≤ C(u,w) δ,

and passing to the limit δ → 0, we conclude that

∫
Ω

∫
R+

∫ T

0

L(uw)(x, ξ, t) dt dξ dx = −
∫

Ω

∫
R+

∫ T

0

ψ(x, ξ, t)u(x, ξ, t) dt dξ dx = 0

for all ψ ∈ C∞
c (Rd+2), which ends the proof. �

Proof of the integration by part formula (4.5)
From Lemma 6.7, the solutions v and w of the direct and adjoint equations (4.1) and (4.4) are defined by

their characteristic solutions, and w is compactly supported on Ω̄×R+ × [0, T ]. From Lemmae 6.2 and 6.5, the
functions v and w and their traces depend continuously on the data f , v0, ls, r, qs, and wT in L∞ norms so
that it suffices to prove the integration by part formula (4.5) assuming smooth data.

Let ρ be a function in C∞
c (Rd+2) such that ρ = 1 on the compact support of w. On the sets V0 ∩ Ω̄×R+×[0, T ]

and VD+ ∩ Ω̄× R+ × [0, T ], the solution v is smooth and we can apply the integration by part formula (4.3) to
w and ϕ = v (ωδ

D+ + ωδ
0) ρ. Similarly, on the sets VT ∩ Ω̄ × R+ × [0, T ] and VD− ∩ Ω̄ × R+ × [0, T ], the solution

w is smooth and we can apply the integration by part formula (4.3) to v and ϕ = w (ωδ
D− + ωδ

T ). Since (v w)
belongs to the function space WL(Ω × R

∗
+ × (0, T )), it results from the density Lemma 6.4 that

∫
Ω

∫
R+

∫ T

0

L[vw(ωδ
D0 + ωδ

c)](x, ξ, t) dt dξ dx = 0.

We conclude the proof using the estimate∣∣∣∣∣
∫

Ω

∫
R+

∫ T

0

L[vw ωδ
S ](x, ξ, t) dt dξ dx

∣∣∣∣∣ ≤ C(v, w) δ,

and passing to the limit δ → 0.

7. Proof of Lemma 4.3

We shall need the following lemma which is proved using the up-to-the boundary version of Friedrich’s lemma
([3], Cor. 3.2, p. 882).

Lemma 7.1. The function space C∞(Ω̄ × [0, T ]) is dense in the Hilbert space

Wh(Ω × (0, T )) =
{
v ∈ L2(Ω × (0, T )) such that ∇h · ∇v ∈ L2(Ω × (0, T ))

}
endowed with the norm ‖v‖Wh(Ω×(0,T )) = ‖v‖L2(Ω×(0,T )) + ‖∇h · ∇v‖L2(Ω×(0,T )).
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It results from Lemma 7.1 that we can define by prolongation the continuous trace operator γh from Wh(Ω×
(0, T )) to L2[(0, T ); H−1/2(∂Ω)] such that for all ϕ ∈ C∞(Ω̄ × [0, T ]), γhϕ = ϕ∇h · nx|∂Ω×(0,T ), and

∫
Ω

∫ T

0

div(φ v∇h) dt dx =
∫ T

0

∫
∂Ω

φγhv dt dσ, (7.1)

for all φ ∈ L2[(0, T );H1(Ω)], where the last integral on the boundary ∂Ω × (0, T ) is taken in the sense of the
duality product.

As in the previous section, one can prove the following lemma.

Lemma 7.2. For any function v ∈ L∞(Ω × (0, T )) such that ∇h · ∇v ∈ L∞(Ω × (0, T )), the trace γhv is in
L∞(∂Ω × (0, T )) and one has

∫
Ω

∫ T

0

div(φ v∇h) dt dx =
∫ T

0

∫
∂Ω

φγhv dt dσ, (7.2)

for all φ ∈ L1[(0, T );W 1,1(Ω)].

From (4.7) and Lemma 7.2 it results that the trace γh d
s
i is in L∞(∂Ω× (0, T )). From (4.6) and Lemma 7.2,

we deduce that γh d
s
i vanishes on Σ+

T . The same remarks hold for the trace γh q
s
i on Σ−

T . Since ∇h · nx > 0 on
Σ+

T and ∇h · nx < 0 on Σ−
T , it results that ds

i has a vanishing trace on Σ+
T and qs

i a vanishing trace on Σ−
T .

From equations (4.10) and (4.7), the functions qs
i d

s
i and ∇h · ∇(qs

i d
s
i ) belong to L∞(Ω × (0, T )). Hence the

trace γh(qs
i d

s
i ) is in L∞(∂Ω× (0, T )). To prove Lemma 4.3, we need to show that γh(qs

i d
s
i ) = 0. The proof will

proceed as in the previous section using a covering of the domain Ω̄ × [0, T ] built from the trajectories of the
vector field ∇h and a partition of unity. To work away from the set Z = ∂Σ+

T ∪ ∂Σ−
T ∪ ∂Ω × {t = 0, T }, the

trick from [2] and Hypothesis 2.1 will again be used.

Let ω be an open neighbourhood of Ω̄, and h̄ a C2 extension of h on ω × [0, T ]. Let us define for all
(x, t) ∈ ω × (0, T ), the trajectories X(τ ;x, t) of the vector field ∇h̄ as the maximal solutions in ω of{

∂X

∂τ
(τ ;x, t) = ∇h̄(X(τ ;x, t), t),

X(0;x, t) = x.
(7.3)

Since ∇h ·nx > 0 on Σ+
T , for all a ∈ Σ+

T , there exists an open neighbourhood va of a in Σ+
T and 1 > εa > 0 such

that the set
Va =

{
(X(τ ;x, t), t) | (x, t) ∈ va, τ ∈ (−εa, εa)

}
satisfies

(i) Va is an open neighbourhood of a in ω × (0, T );

(ii) the mapping (x′ = X(τ ;x, t), t′ = t) defines a C1 diffeomorphism from va × (−εa, εa) to Va.
It results that the set

W+ =
⋃

a∈Σ+
T

Va

is an open neighbourhood of Σ+
T in ω× (0, T ). Let us denote by W− the open neighbourhood of Σ−

T in ω× (0, T )
built similarly.

Let Σ0
T denote the interior of the set {(x, t) ∈ ∂Ω × (0, T ) | g(x, t) = 0} in ∂Ω × (0, T ). From the regularity

of the boundary of Ω, we can define a neighbourhood W0 of Σ0
T in ω × (0, T ) such that W0 ∩ (Σ̄+

T ∪ Σ̄−
T ) = ∅.
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For all (x, t) ∈ R
d+1, let dZ(x, t) denote the distance of the point (x, t) to the set Z = ∂Σ+

T ∪∂Σ−
T ∪∂Ω×{t =

0, T }, and let W δ
Z be the set

W δ
Z =

{
(x, t) ∈ R

d+1 | dZ(x, t) < 3δ
}
.

There exists an open set W δ
c such that the set(

W+,W−,W0,W
δ
Z ,W

δ
c

)
defines a covering of R

d+1 with ∂Ω × [0, T ]∩W δ
c = ∅. A partition of unity is built on this covering denoted by(
θδ
+, θ

δ
−, θ

δ
0, θ

δ
Z , θ

δ
c

)
.

From Hypothesis 2.1, the set Z is the union of a finite number of manifolds of dimension at most d− 1. Hence,
following [2], the function θδ

Z can be chosen such that


θδ
Z(x, t) = 1 if dZ(x, t) < δ,
θδ

Z(x, t) = 0 if dZ(x, t) > 2δ,
Measure

(
Supp (θδ

Z) ∩ {(x, t), |(x, t)| ≤ R}
)
≤ C(R)δ2,

‖|∇θδ
Z |‖L∞ ≤ C

δ .

(7.4)

Let us consider the change of variables (x = X(τ ;x′, t′), t = t′) from
⋃

a∈Σ+
T
va × (−εa, εa) to W+, and let us

denote by d̄s
i , β̄ the functions such that d̄s

i (x
′, t′, τ) = ds

i (X(τ ;x′, t′), t′), and β̄(x′, t′, τ) = β(X(τ ;x′, t′), t′) with
β = (vi|ξ=0 − ds

i ) ∂th. Then, the function d̄s
i satisfies the equation

{
∂

∂τ
d̄s

i (x
′, t′, τ) = β̄(x′, t′, τ),

d̄s
i (x

′, t′, 0) = 0,

which yields

d̄s
i (x

′, t′, τ) =
∫ τ

0

β̄(x′, t′, s) ds, (7.5)

and ∫
W+

ds
i (x, t)φ(x, t) dx dt ≤ ‖β‖L∞(W+ ∩Ω×(0,T ))‖φ‖L1(W+) (7.6)

for all φ ∈ C∞
c (W+).

Let us assume for an instant that β is in C∞
c (Ω× (0, T )). In that case, it results from (7.5) that the function

ds
i is smooth on W+ ∩ Ω̄ × (0, T ), so that we can apply (7.1) to φ = θδ

+ d
s
i and v = qs

i :∫
Ω

∫ T

0

div(θδ
+ d

s
i q

s
i ∇h) dt dx = 0. (7.7)

From (7.6), the equality (7.7) still holds by density and continuity for β ∈ L∞(Ω × (0, T )) and hence for the
true function ds

i .
The same arguments applied to qs

i and W− yield that

∫
Ω

∫ T

0

div(θδ
− d

s
i q

s
i ∇h) dt dx = 0. (7.8)
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Since the function qs
i d

s
i belongs to Wh(Ω × (0, T )), it results by density from Lemma 7.1 that

∫
Ω

∫ T

0

div[(θδ
0 + θδ

c) d
s
i q

s
i ∇h] dt dx = 0. (7.9)

Finally, from the properties (7.4) verified by the function θδ
Z , it is clear that∣∣∣∣∣

∫
Ω

∫ T

0

div(θδ
Z d

s
i q

s
i ∇h) dt dx

∣∣∣∣∣ ≤ C(h, ds
i , q

s
i ) δ. (7.10)

Passing to the limit δ → 0 in equations (7.7)–(7.10) concludes the proof of Lemma 4.3.
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