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TWO-SCALE FEM FOR HOMOGENIZATION PROBLEMS *
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Abstract. The convergence of a two-scale FEM for elliptic problems in divergence form with coeffi-
cients and geometries oscillating at length scale € < 1 is analyzed. Full elliptic regularity independent
of € is shown when the solution is viewed as mapping from the slow into the fast scale. Two-scale FE
spaces which are able to resolve the € scale of the solution with work independent of ¢ and without
analytical homogenization are introduced. Robust in € error estimates for the two-scale FE spaces are
proved. Numerical experiments confirm the theoretical analysis.
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1. INTRODUCTION

1.1. Homogenization problem

We investigate finite element methods (FEM) for the numerical solution of elliptic homogenization problems
in divergence form, i.e.

z(La)u =9 (4(2)var) o (D) o = flo) (1.1)
€ € €
where ¢ is a small parameter and we assume that A(y), ao(y) are 1-periodic in each variable and that
A() € Lgoer(Q)gyfr?mv ao(') € Lgoer(Q) (12)
satisfy, for some v > 0,
ETAWE =€, aoly) =y VEER", ae yeQC 01" (1.3)

Here @ C [0,1]™ is referred to as unit-cell domain and we assume that @ has Lipschitz boundary 6@ = fper ul N
with I'per = 0Q N 0[0,1]", and I'y = 0Q\I'per (possibly empty). We assume further that I'y is smooth to avoid
regularity issues, but emphasize that this does not constitute an essential limitation.
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We consider (1.1) in a bounded Lipschitz domain €2 covered by a pavement of cells of the form (k + @), with
k € Z™ and ¢/diam (2) < 1. We set . = Q2 N Q, where

QgOZUg(JHQ), F?,E::Ug(k—i—f]v). (1.4)
b b

We complete (1.1) in Q. by Dirichlet boundary conditions on 02, i.e.,

u® =0 on 90 NN, (1.5)
and, if r ~ # 0, by Neumann boundary conditions elsewhere
x
mut=n-A (E) Vu® =0 on dQ\0Q =00 NTT . (1.6)

Problems of type (1.1) have been thoroughly analyzed by asymptotic analysis as € — 0; we mention only [3,14]
and the references there. In this analytical approach to homogenization, the limiting problem as e — 0 of (1.1) is
identified first and then solved numerically. Since the limiting problem does not depend on €, no scale resolution
is required. However, fine scale information on u® has been lost in the analytic homogenization process and
numerical determination of correctors, usually solutions of (1.1) with f = 0 and inhomogeneous Dirichlet data
on 0. N O, is as costly as solving the original problem.

Here we propose and analyze a two-scale FEM for (1.1, 1.5, 1.6) with H > ¢ which does not require analytic
homogenization as e.g. in [2,3,14] and which is able to resolve the e-scale of u®(x) with N < O(e™™) degrees
of freedom, provided that u® exhibits a so-called two-scale regularity which we define below. In this case, we
establish robust error bounds for the h- , p- and the hp-versions of the two-scale FEM.

1.2. Finite element approximation

The FEM is based on the variational form of (1.1, 1.5, 1.6):
findu® € H5(Q:) = B°(uf,v) = (f,v) Yo € HH(), (1.7)

where H}(Q:) := {u € H(Q.) : (1.5) holds for u} and the bilinear form B® : H}, () x H5H(Q.) — R is
given by

B (u,v) = / <A (g) Vu(:c)) -Vo(z) + ao (g) u(z)v(x) de.

€

By (1.3), (1.7) admits a unique solution u® € H}(£2.) for every € > 0 and every f € L?(Q).
Let VS C H} () be any subspace of dimension N = dim (V) < co. Then

uy € Vi« B (uy,v) = (f,v) YveVy (1.8)
defines a unique FE solution and there exists C' > 0 independent of € such that

v ~ iyl ey < € i = vl (1.9)

Even if the right hand side f, the domain Q and the coefficients A and ag are smooth (i.e., C*°), if ¢ /diam(Q)) < 1
the solution u® exhibits oscillations on the e-scale obstructing FE convergence. More specifically, assume that
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Q = [0,1)™ and that f and 99 are smooth. Then Q. = © and there exist positive constants C' = C(€2) and
Cla) = C(a, ), @ € N*, such that

lullr2@) < C, | D%ul|p2() < Cl@)er 1l Ya e N", |a] > 0. (1.10)

Denoting by V5 = Vy = SP1(Q,Ty) € H'(Q) the FE space of piecewise polynomials of degree p > 1 on a
quasiuniform mesh 7y of meshwidth H, it holds

i € _ oy < CHP||DPHL < C(H/e)P.
WESP{I}EE,TH) Hu UHH (@ = H U||L2(Q) - ( /E)

‘We have also that

min u® —vllgi) < ||vfllgiq) < C .
sesttin luf = vl < [l < Cllf e

Therefore the FE error with respect to the usual FE space Vy = SP1(Q, 7y) satisfies the following a priori
bounds

lu® — uyll (o) < Cmin(1, (H/e)P),

with C = C(p,Q, f, A,ap) > 0 a constant independent of ¢ and H. Standard FEM, as e.g., piecewise linears
on a quasiuniform mesh Ty of size H, thus converge only if H < ¢, i.e., if N = dimV§ = O(e~™). This scale
resolution requirement is often prohibitive, especially if n > 3.

In view of (1.9), the key to a robust discretization of (1.1) is the design of V. Rather than incorporating
e.g., the asymptotics of u° (which is not always defined, see [14] and the references herein) into V5, we design
V5 based on a two-scale regularity theory of u®.

1.3. Scale separation for u®

Ignoring boundary conditions (1.5), we consider (1.1) on the unbounded domain €2° in (1.4). For any
f € L2R"), (1.1), (1.6) admits a unique solution u¢ € H'(22°). We will exploit that u¢ admits the represen-
tation [6,7,10]

€ _ 1 R 0o
u®(x) = W / F@®) (z,e,t) dt, =« € O, (1.11)

teR™

where the kernel ¢(x, ¢, t) is the distributional solution of

L) =e"* on O, n-A(z/e)Vi =0 on I'Ye (1.12)
To characterize the solution of (1.12) in Q2°, we introduce weighted Sobolev spaces H7(Q2°) of complex-valued
functions with exponential weights depending on a real parameter v.

Definition 1.1. For j = 0,1 and for any v € R the weighted Sobolev spaces H,Z(ng) equipped with the norm
Il - ||~ are defined to be

Il
H} () = C5°(R™; C) ; (1.13)
QOQ

€
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where

)2, = > Dguf | el dz  (DYu =05 ... 00" u, Va € Np). (1.14)

Q> o] <j

Note that for » > 0 holds H} C H} = H' c H!,. To specify the meaning of (1.12), we generalize (1.7) for
right hand sides f(z) which are not decaying at co. To do so, let us introduce the following sesquilinear form
\P(E)['v ] : Hiu(ng) X Hl}(ng) - C

U(e)[u, o] = / {(A (g)vxu(x)) -WMO@) u(x)m} da. (1.15)

Q2

Note that for v = 0, ¥(e) coincides with B¢ in (1.7). For all € > 0 and for v > 0 sufficiently small, ¥(e) is
bounded and ‘coercive’ with respect to H! (Q°) x H}(Q):

Proposition 1.2. There exist positive constants vy, C and ~y such that for all v € (0,19) and all € >0
Lo |[®(e)lu, ]| < Cllully,—vllvfl1v;
2. | Hinf .. Sup |W(e)[u,v]| >~ > 0;
i —v=4lv]l,, =1
3. sup  |¥(e)[u,v]| >0 for allv € HL(QZ,) and v # 0.
ueH! (Q%)

We emphasize that v is independent of ¢ and depends only on the upper and lower bounds of the matrix
A and of the zero order coefficient ag. The next proposition follows by standard elliptic regularity [1,11] as a
corollary of Proposition 1.2. Representation (1.11) is proved in [6].

Proposition 1.3. The properties 1, 2 and 3 of V(e) imply that the variational problem:
Given f € (HL(Q))", find

(1.16)
€ HL(OF) : W)l 0] = (f.o)mamyy xmpam), Vo € HYQ),

admits a unique weak solution u® € H* () and the a priori estimate
HUEHHl_,,(QgQ) < (U Nz zeyy-

holds. Moreover, u® admits the representation (1.11) where the integral is understood as Bochner integral of
H -valued functions.

Y(x,e,t) is the weak solution of (1.16) with respect to the functional f = e®*® € (H,}(ng))* By Proposi-
tion 1.3 we know that

-

oten] <
L, (Qx)

It is now not difficult to see that

it-x

< 1/1/"/2.

He ||(H,}(Qg°))* =

Therefore, [[¢(-,&, )| g (ae) < 1/(yv"/?).
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Problem (1.1) has separated scales, a slow variable x and a fast variable y = z/e, in the following sense: the
kernel ¢ in (1.12) (which is, in a sense, the fine scale response to the coarse scale excitation e®*®) can be written
in separated form ¢ (z,¢,t) = e ®¢p(x/e,e,t) where ¢(y,e,t) is the solution of the so-called unit-cell problem:

¢ e HL.(Q)

L(e,t,y; 0y)¢ = e VL (y,e719, )’ V¢ = 1in Q,

B(s,t,y; ay)@ZS :

(1.17)

e . A(y)V, (e*7Y¢) = 0 on T'y.

Unlike v, the kernel ¢ is computable by solving the unit-cell problem (1.17) numerically, for example (but not
necessary) with finite elements.

1.4. Two-scale FEM and outline of the paper

Based on the representation (1.11), we see that on Q2° (i.e., in the absence of boundary layers) the solution
u®(z) can be viewed as a map from the “slow variable” x into the “fast variable” z/e: u®(z) = U®(x, x/¢c), where
U¢(x,y) depends smoothly on . In Section 2 we derive new, two-scale regularity results on u®(z) by analyzing
U¢(x,y). The two-scale point of view of regularity gives rise to a “natural” FE discretization of (1.1) by means
of a non-standard two-scale FE-space V5 in ). constructed as follows: Let 7y be a quasiuniform mesh in §2
(not in €., i.e., the fine structure of the coefficients is ignored) of meshwidth H > ¢ and SP(2, 7y) the space
of continuous, piecewise polynomials of degree p on Ty (we assume that 7y is aligned with the periodic pattern
in Q. even if this is not essential for our analysis). Next, we resolve the fast scale by a FEM in @, based on the
mesh 7, (for simplicity also quasiuniform of width k), and the space S{,‘er(@, ’?h) The FE space V§ in (1.8) is
then the two-scale space

VE = 5P (Q,TH; St (sé,eﬁ)) : (1.18)

The elements of the FE space V5 have the form

upp(@) =Y Ni(@)¢r (g) Va e
il

with shape functions N;(-) € SP(Q,7y), and ¢;(-) € Sger(@,ﬁ). Note that N;(-) are defined everywhere in

Q, while ¢;() are defined only in .. Since {1} C S{)‘er(@,’ﬁ), SP(Q, Ti)|a. C V5 and V§ is a generalized
FE-space. With Vy robust convergence rates as h, H — 0 can be achieved for u%; as we shall show in Section 3.
These two-scale approximation results are quite general and applicable whenever the solution has the two-scale
regularity; in particular, the representation (1.11) which is valid only in the linear setting is not necessary.
In contrast, in [4-7,9] a different (in general smaller) space V§ than (1.18) is proposed. In that approach
the kernel ¢(y,e,t) in (1.17) is incorporated directly in the FE-space via shape functions ¢(y, e, t) sampled at
suitable points ¢; in the Fourier space.

Since the understanding of the design and the properties of the two-scale FEM depend crucially on the
two-scale regularity of u®(x), we investigate it first in Section 2. Section 3 is then devoted to the definition and
error analysis of the two-scale FEM. In Section 4 we address computational aspects of the two-scale FEM and
present numerical results which support our error estimates.

We remark that we consider here only smooth I'S?, and smooth (i.e., C°°) coefficients A(-),ao(:) in (1.1).

The nonsmooth case, i.e., discontinuous A(-), ao(+), Lipschitz fN, is analyzed in [8].
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2. TWO-SCALE REGULARITY

Uniform control of the kernel ¢(y, ,t) in (1.17) in terms of ¢ and ¢ implies two-scale regularity results on u®(z).
The key is to interpret u®(z) as a map from a Sobolev-space in the “slow variable” z into the “fast variable”
y = xz/e. More precisely, u®(x) = U®(x, x/e), where U®(x,y) is an element of the Bochner-space H" ({2, H;er(@))
for r, s > 0 depending on the regularity of the coefficients and on the data f and, more importantly, where the
e-dependence of U®(x,y) is smooth. We establish the two-scale regularity by uniform (in ¢) estimates of the
kernel ¢ obtained in Propositions 2.3, 2.4 below. To keep technicalities minimal, we consider here only the case
when the unit cell problem admits maximal elliptic regularity. If this is not so, all assertions below have natural
analogs in a scale of weighted spaces [8].

Our proof uses the the absence of boundaries and is based on a Fourier integral representation of u®. Anal-
ogous representations and two-scale regularity can be obtained e.g. for problems (1.1) in a half-space or in
other “canonical” domains Q aligned with the pavement of cells [12] (if, however, 92 is non-aligned with the
pavement and near corners and edges, scale separation in u® no longer holds and our two-scale FEM must be
coupled locally with a standard FEM that allows full scale resolution near these areas).

2.1. Two scale shift theorem

Theorem 2.1. Assume that A(), ao(-) are smooth and 1-periodic in y = x/e € Q. Then, for f € HE o (R™)
(k > 0), the solution u®(x) of (1.1) on Q5 can be written as u®(x) = US(x,y)|y=z/e, © € Q5,, where U (x,y)
satisfies the two-scale reqularity estimate

||UEHH, R™, Hs Q (k) ||f||HT+S*1(R") (2-1)
( ( ))

per

provided r +s < k—+1, r,s >0, and
lle Y UEHHT(RW ngrl(Q)) C(k) HfHHHS*l(]Rn) (2:2)

provided r +s < k+1, r,s —1 > 0. Here, C(k) is independent of €, but depends on r + s (see Rem. 3.16 ahead
for this dependence).

Proof. The proof is based on the Fourier-Bochner integral representation (1.11) of the solution w®(x) =
U¢(x,z/e) and on the two-scale regularity estimates on the Fourier-Bochner integral kernel in Propositions 2.3,
2.4 below which are uniform in € and ¢. For multiindices a, 3 with [a] < 7, [8] < s, the mixed derivative (in the
sense of distributions) D“DB U¢(z,y) can be interpreted as mapping Lper(Q) into L?(R™). More precisely, for

arbitrary ¢ € Lper(@), (D%DSUE( T1): )2 (Byxr2. (&) is the inverse Fourier transform of a L?*(R") function

@ € 1 it-x f
(DEDYUS@9):0) 1z (@ywrz@ = (gﬁ)nm/et SO (Do), 0W)) 13 _(@xrz.@ U
R

By Parseval’s relation then, the L?(R")-norm of <D$‘D5 Us(z,y), g0> is equal to

L2, (Q)xL2..(Q)

|(D2DfU*(@,y). )

= [ FerDiew. e 0 0w s 6yer @)

L?)er(@)xL?,er(@)‘ L2(R™) L2(R™)
By (2.7) ahead in Propositions 2.3, 2.4, respectively, there exists a positive constant C' > 0 independent of ¢, ¢

and of the test function ¢, such that for all ¢ € R™

(DYo(y. e, ), e W) 12, (@)xr2,@| < CA+ I el g, (23)
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Hence, by Parseval’s identity again,

H<D3D§U€(x,y),<p>m (@nger(é)‘

Ber L2(R") < Cllfllars=r@n) [0l L2y »

which proves (2.1). Proceeding in a similar fashion, by the uniform bounds on the derivatives of the integral
kernel in (2.17) one can prove the two scale regularity estimate on the gradient of the solution in (2.2). O

It therefore remains to analyze the kernel ¢, i.e., to prove (2.3).

2.2. Regularity of the Fourier-Bochner integral kernel

Lemma 2.2. Under the assumptions on A(-) and ag(-) in (1.2, 1.3), there exists a positive constant C > 0
independent of € and t such that fore =1/M, M € N:

I8llo,5 < CA+ D™ and [le™'Vyolly 5 < C. (2.4)

Proof. The key observation is that x(z,e,t) := it ¥ (x,¢e,t) € (HEV(Q‘X’))n solves

€

-V (A (E) VX (:c,e,t)) + ag (E) x(w,e,t) = ite’™™  in QX
€ €
n-A (E) Va.x(z,e,t) =0 on I'>® (if nonempty) ,
€
and for v € (0,vp) the || - ||(z1(x))» norm of the right-hand side is uniformly bounded with respect to t and e
g it-x
Hzte H(Hi(ﬂg"))* < C(v,n).

Therefore, ||x(z,&,t)[1,— < C ||ite™ < C(v,n) and

I -
[z, e, )11, -0 < CA+Jt)) 7,

with C' > 0 depending only on v and v. Then

/Idﬁ(y,&t)IQdy:E‘”/‘qﬁ(g,a,t)fdx
5 A

Q

S [ (e e .

ke{o,l,...,M—1}2n€@+k)
C||1/)(=’Ua &, t)”O, —v

C(1+|t])~2.

1912

IN

IN

We obtain estimates for e~V ||, o by a similar argument:

/|€flvy¢(y,s,t)‘2dy:/‘g*lvﬂ) (g,e,t)rs*”dx = /‘qu& (g,s,t)rs’"dx
Q eQ eQ

= [me(Gef e

k6{0117~~~1M_1}nE(@+k)

<O+t lve.e vl , < C. .
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We now bound higher order norms of ¢ and . To this end, we discuss two cases separately: fN =0, @ =1[0,1]"
and Ty #0, Ty € C*, Q C [0,1]".

2.2.1. Case Q =1[0,1]" and Ty =0
Recall that ¢ = ¢(y,e,t) € H}.,.(Q Q) solves the unit-cell problem

L(e,t,y; 0,)¢ = —(it +e'V) T (A(W) (it + e 'V,)d) + ao(y)p =1 in Q = [0,1]", (2.6)

with periodic, uniformly bounded coefficients A € L> (@)"X” ap € L°°( A

sym

Proposition 2.3. Assume that ag € WE;1°°(Q) and A € WEZL>(Q ) n(k>1). Then ¢ € per(@) and

per per
the following (uniform in t and €) estimates hold

||¢||L2(Q) CL+th~, |¢|Hk(@) < Ce(L+elt))* 1, fork>1 (2.7)

with a constant C = C(k) > 0 depending only on k, ||A||Wk71,oo(@) and ||a0|\Wk,1,x(@).

Proof. (2.7) for k = 1 is just the statement of Lemma 2.2. For k > 2 the proof is done by induction with respect
to k. We use the notation ¥ (y) = (ite + V,))*é(y, ¢, 1) and we mean by this any k-th order derivative of ¢ of
type H ((itje + 0,,)% ¢, with ky + - -+ + k,, = k. From (2.6) we obtain bounds for ¢(*) and ¢(") in terms of ¢
and the (lower) coefficient bounds (A4, ag >y > 0)

2

1
e 28
7 v
By Lemma 2.2, the L2(Q)-estimate for () in (2.8) can be improved to
Hw)H C(L+t))~ (2.9)

To establish the assertion for k = 2 assume that ag € WL°(Q) and A € W12°(Q)™<". Since (2.6) holds in

per per sym

R”™ and the coefficients A(-), ag(-) are in WI}er"o (Q), we may apply the interior regularity theory and deduce

that ¢ € HZ (R™). Apply (it,e + 0;) to (2.6), multiply it by v € H'(Q) and integrate by parts. It follows that
Yy = (it,e + 0,)¢ € HL (R™) satisfies

(e, t)[thr,v] = Lp(v) + Ip (2.10)

per’

where the bilinear form ®(e,t)[, -] and the linear functional L, in (2.10) are given by

B, )i, 0] = / {A(y)(z’ts + V)0 - (ite + V) + s2a0(y)¢v} d

Q

and

Lo(v) = itye® / () dy — &2 / Dya0(y)65(y) dy — / 0, Aly)(ite + V)¢ - (e V)0 dy,
/ / )
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respectively, and the boundary integral 7z is given by
per

7. - / n- (itye + 0,)[A(y) (ite + V,)(y)]o(y) ds,

Ifved (@), then Zg e vanishes. In fact, it turns out that v, € H;er (@) (i.e., ¢ € H, per (@)) is the unique

per
weak solution of (2.10) for all v € H} (@) Next, we take v = v, in (2.10). Then, it follows that

per

. 2
v llGite + V2 o < 1t g, 5 + £2118raoll e g 10l 510 o, &
110, All e g it + V)6l o lIite + V)l 5.

Hence,
[l ], [ (] ol g)) e
0,Q " v v
By (2.8, 2.9) and (2.11) it follows that
Hw@H < Ce(1 +<lt), (2.12)

with a positive constant C' > 0 depending only on ~, ||A||W1,oo(@ and ||ao|y1. @
The assertion for k = 3 can be proved by assuming further that A(-) € W2 (Q)2%™ and ao(-) € WX(Q).

per sym per
By standard interior regularity theory it follows that ¢ € lOC(Q). Apply the differential operator (it,.e +
Or)(itse + Os) to (2.6), multiply the resulting equation by v € H 1(Q) and integrate by parts over Q. It follows
that ¢, := (it,e + O,)(itse + 05)¢ € H} (R™) satisfies

D(e,t)[thrs, v] = Lps(v) + Ip (2.13)

Fper
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where

Loa(v) = £2(itye)(itse) / B(y) dy

Q
- / [0 A(y) (ite + V) (itse + 0s)p + 0s A(y) (ite + V) (itre + 0r) @] - (ite + Vy)vdy

3 (2.14)
—&? / [Orao(y)(itse + Os) + Osao(y)(itre + 0r)] pv dy

Q
- [ @ Awte + 906 T T V0 - ¢ [ Fay)ona,
and the boundary integral prer in (2.13) is given by

1—‘per

. - / n-[(it,«s—l—&n)(itss—l—@s)(A(y)(ita—i—vy)(ﬁ)}ﬁdsy: / n-{8,88(A(y)(ite—i—vy)qb)]ﬁdsy.

Pper Cper

IfveCs (@), then the boundary integral prer in (2.13) vanishes and it turns out that v, € le,er (@), i.e.,

per

¢ € H3, (Q) Take v = (itye + 9,)(itse + y)¢ in (2.13). It follows that

2
N P L |+
7w, 5 <2 o 2ol
2 ~ (1) (2) (1) (3)
#22 ool g [ HO, H o e @ [0, 510 o
2 ~ (0) (2)
e
Hence,
1
[, 5 ;<2||A||W1,oo@ S R )
- (o], 2 [l o]
— t 2 1ocA ~
2 (e [0, o+ 2 ool iy [0, o 2]
1/2
) L W T

By (2.8, 2.9) and (2.12) it follows immediately that

Hw H < Ce(1 +elt])?,

with C' > 0 being a constant which depends only on 7, ||A||W2,m(@), ||a0||W2,w@).
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For any k& > 3, one can easily see that 6*1||w(k)|| o can be estimated analogously in terms of € and ¢, the

dominant term coming from (|¢[F=1||sp(k— 1)|| 5)1/2. Therefore,
e, 4 = Al ~ @ laolwaos. v gy YAt forall k=1,2,....
Recall that v*) = (ite + V,)*¢. Tt follows that
e [DMlly 5 < CL+efth, forallk=1,2,.... (2.15)
O
2.2.2. Case Q C [0,1]", Ty #0, Ty € C
By (1.17), ¢ € per(Q) solves
L(e,t,y;0y)0 = —(it + 7'V, T (A(y)(it +7'V,)¢) +ao(y)p =1 in Q, (2.16a)
n-A(y)(it +e V)¢ =0 onTly. (2.16b)

Proposition 2.4. Assume that ag € WE" 29(Q) and A € Whb oo (Q );nyr? (k> 1). Then ¢ € per(@) and
the following estimates hold

16l 20) < COFID™ e Vil or gy < CQA+ el (2.17)

with a constant C' > 0 depending only on k, ||A||Wk,1,m(@) and ||a0||Wk,1,m(@), but independent of € and t.

Proof. The inequality (2.17) for k = 1 is just the statement of Lemma 2.2. We prove (2.17) in the general case
by induction. Assume that k > 2 and that (2.17) holds for k — 1. We write first (2.16a —2.16b) in the following
form: ¢ € per(Q) solves

~Vy (AW)Vy9) = fly) i Q
n-A(y)Vyé = gly) on T,
with
fly) =& = ao(y)p — 2T A(y)te + 2ietT A(y)Vyé +ict’ (V- A(y)) ¢
9(y) := —ien- A(y)te.

By standard elliptic regularity for Neumann problem it holds for all k¥ > 0

1556 20y < €O (1 llza1@) + 1902y + V0l 3 ) (218)

with some constant C'(k) > 0. Let us estimate now the Hk(@) norm of V¢

1938003y < CE) (1900l s-1 ) + V59l 2 ) -
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We use the induction assumption and (2.18) to conclude
19,0l e @) < Cel1 + lt) ! + |62 = 2a0 — 2T Ayt + 20t A(y) V0

+ietT(V, - A(y))(ﬁHHkil @ +elln - AWl gaiie @y

< C(k)e(1 +elt])". o

2.3. Sharpness of the two-scale regularity

We consider 1-d problems, i.e., n = 1. Let us assume that f € Lf,er(O, 1) has the Fourier expansion f(x) =

> pez Je®™ ke Assume further that a(-) is a l-periodic, L> function and ¢ = 1/M, with M € N*. Let
u®(x) € Hi(0,1) be the solution of the following boundary value problem

,% (a (E) iz;ﬁ) = f(x) mQ=(0,1), | =0.

€ o9
Then, the solution u®(x) exhibits a “two-scale” behavior, in the sense that u®(x) = U®(x,x/e) and U®(x,y) is

1-periodic in y and has certain regularity properties if seen as a mapping from x € €2 into Lger(Q).
We use the notation (g) to denote the mean value of the function g

() = / o(ydt, G =(0.1).

Q
We introduce two further periodic functions
A0 = [ (55~ Waln) as. A0 = [ (A - ) as (219)
0 0

Let Ay, p € Z be the Fourier coefficients of A(:) € H}

per(0,1). With these definitions, we may write now
explicitly the expression for U¢(z,y)

U%(2.9) = ~foaety) ~ 2A0) + 52 (1al) — o 5 (1/a0) - /a()) |

+D () +a(1/a0)) + 3 5 (<A + 2t1/a()

keZ*

_ Z L{e%rikst(y) + <1/a()> (e2wik1‘ o 1)

2mik 2mik
kez~

e27ri(k:c+py) —1. T
—2mike? Ay——————— A o —
mike [ Z P omi(p 1 ko) + kas]}a

pEZL
p#—ke



TWO-SCALE FEM FOR HOMOGENIZATION PROBLEMS 549

and + here means that the summation is done only over k € (1/¢)Z*. The constant D is given by

t

)dt, F(t):/f(s)ds.

0

1R
a0 / alt/=

From this representation, we see from the terms in the sum ), _,. for large & that the regularity || f|| gr+s—1
in (2.1) and (2.2) is optimal. For simplicity, we assume s = 0. Then, it holds

Proposition 2.5. Assume that a(-) is smooth and 1-periodic in y = x/c € Q. Then, for f € HISH Q) (r>0),
the solution u®(z) of (2.3) on § satisfies the two-scale regularity estimate (2.1, 2.2)

10 ar 0, 22,,@)) < CONFllar-1(0)- (2.20)
Moreover, for all ™ > 1

||€71VyUE||HT’1(Q,Lger(é)) < CO\fla— (- (2.21)

The estimates (2.20-2.21) are sharp, in the sense that for € sufficiently small, there exists a constant ¢ = ¢(r) >
0, which does not depend on €, such that for all r > 1

(M f =20 < U g, 12 @) + |‘571VyUEHHT71(Q,L2 @) -

per per

Proof. For the proof we refer to Appendix A.

Remark 2.6. Careful inspection of the proof reveals that for » > 1 the upper bounds in (2.20-2.21) have the
form C(r)|| fl| zr—2() + C(e,7)|| f|| -1 () With C(e,7) > 0 depending on & and vanishing with ¢ — 0. We have
a slightly different situation as, e.g., for

~Au=f inQ, feH %), u|pqsmooth
where 9 is smooth and we have the sharp shift result: there exists C(r,2) > 0
[ull zr) < Cr, DN fllar—=2@), =1,

in the sense that for generic data, ||u|| g~y has a lower bound of the same type (c(r, Q) > 0)

el (@) = e(r, DN £l -2 (0.

In our case, however, the gap C(e,r)|| f|| gr-1(q) cannot be removed.

3. RATE OF CONVERGENCE OF THE TWO-SCALE FEM

In the previous section we saw that uniform regularity of u®(x) in dependence on e could be properly
expressed in terms of the two-scale Sobolev spaces H"(R", Hj,(Q)). The two-scale Finite-Element spaces in
the Introduction are therefore natural for the discretization of homogenization problems. In the present section

we prove robust convergence estimates for these two-scale FEM under two-scale regularity hypothesis on u®(z).
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3.1. Preliminaries
Let Q C R™, ' C R™ be two Lipschitz domains. For «, 8 € N™ two multiindices we define the Sobolev spaces
HP(Q x Q') of mixed order on the product domain © x Q' as
HOP QX ) i={ue L?(Qx Q) : DIDue L>(QxQ), Vy<a,d <},

where v < « is understood componentwise. These are Hilbert spaces with respect to the norm

||U||§1aﬁ(nxnf) = Z HDnguHiﬁ(QxQ/)'

0<v<a
0<6<

3.1.1. Traces in Sobolev spaces of mized order

For a function f(-,-) : @ xQ — C, we denote by (Rf)(z) = f(z,y)|y=» : & — C its restriction to the diagonal
{(z,y) e AxQ |z =y}

Lemma 3.1. Let Q = Q' :=(0,1)" and denote by 1 € N" the multiindex (1,...,1). Then for any fized pair of
multiindices o, 3 € N™ with a + 3 = 1 the restriction operator R : H*P(Q x Q) — L%(Q) is continuous, i.e.,
there exists a constant C = C(n) > 0 such that

IRfll20) < CO)If Irmnoxays ¥ fEHY(Qx Q).

Proof. Without loss of generality we present the proof for the case n = 2 only. By making eventually a change
of coordinates we may assume that & = 1 and § = 0, where we denote by 0 the multiindex (0,...,0) € N*. We
may restrict the proof to the case when f € C°°(Q x Q), we can use then a density argument to conclude for
general f € H*P(Q x Q). Let p € C°(R) be such that

0<p(s) <L VseR, ¢(0)=1, suppyC (-1,1).

Then,

f(l',l’) = /azlf(t,l‘g,l')dt+f(O,Z'Q,l‘)

r1 T2

/Qflmzf(t s, dsdt+/ Oy f(£,0,2)p(0) — Oy, f (£, 1,2) (1)) dt + f(0, 22, x)
00 0
T T2 z1 1

/8§1I2f(tsw dsdt+// 2 e (6, 5,2)0(8) 4+ Op, f(t,5,2)¢ (5)) dsdt + f(0,z2,2).
00 00

Therefore,
IRFOlge<C| D I\Di‘f(~,~)||§79xg+/|f(0,x2,z)|2d:c
0<a;<1 Q

It remains to estimate [ |f(0,2q,2)>dz. To this end, we proceed as before
Q

1

T2 1
(0,29, // 2 (s, 2)elt) + Bunf(t, 5, 2)¢ (1)) dids — /&mfs 0, 2)p(s) + f(s,0,)0/(s) ds.
0

0
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The second integral term can be written as

1 1
/axlfs 0,2)0(s) + f(s,0,2) / 0(5) [ (82,0, F (5,1, 2)0() + Ou f (5,1, 2) (1)) dt
0 0

(O, f(s,t,m)0(t) + f(s,t,2)¢ (1)) dt| ds.

[
o]

Summing up, we obtain that

/ (0, 22,2)2dz <€) S D2 F( Mo areer- 0

e 0<a;<1

Remark 3.2. The trace result of Lemma 3.1 remains true if the domain  is replaced with any subdomain
@ satisfying the following condition. For all x € @ there is a z* € @ such that |z}, z1]| X |25, 22] C @ and
|z} — 1], |25 — x2] > ¢ for some positive constant ¢ independent of x, x*. We denoted here by |a,b] the set of
all points between a and b

[a,b] ifa<b
I_avbJ = {
[b,a] else.

This condition is satisfied if e.g. we assume that @ is given as a finite union of patches 5 = Uilea, I finite,
such that Q; N Q; = 0 for all ¢ # j and each subdomain @Q; = F;((0,1)") is the image of the unit n-simplex
(0,1)™ through a C*° diffeomorphism F; : [0,1]" — @1 Then R f admits the following representation

Rf(x) = f(:cl,xg,x)ga(l) - f(l'y{,l‘g,l')(p(O)

Il
—

{(axlfxx’f T s — 2]), 22, 2) (@ — 2})pls) + F(] + 5o — :m,xg,x)sa’(s)}ds

e

°1

J{@aneane (2250 sy (225) 2 as
xr1 — 7 xr1 — Ty xr1 — Iy

*
Ty

Equivalently,
1 T2 « " *
s—x —x
Rf(z) = 02 t . .
o= [ [{@henooe (5=F) (=5
z7 @3 1
s —a] t— a3
+(0ur f)(s:t,2) < i) ¢ < i) .
T1 — ] T2 — Ty ) T2 — Ty

+<amf><s,t,x>so'<5 ><P<t> L
r1 — Iy T2 — Ty Tl — Ty

—x¥ t— x4 1 1
+f(s,t,x) ( 5 xl*) i :E2*> }dsdt
T2 — Ty Il—IIIQ—IQ
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It follows now that

1 «

0<a;<1

3.1.2. Polynomial approximation results

In the two-scale error estimates below, we shall require the following error bounds for the tensor product
interpolant (unlike standard H'-estimates, here also mixed first derivatives are bound).
Let | - [, denote the Sobolev seminorm of order k on 2 = (—1,1) given by

il gy = 80| oy, Vi € HH(Q).

Lemma 3.3. Let 4 € H’H‘l( ) for some k > 0. Then, for each p > 1, 0 < k < p, there exists a polynomial

interpolant m,4 € SP(Q ), with SP (2 ) denoting the space of polynomials of degree at most p on Q such that it
holds

(p -
HU’ - (7Tp’U,) ||L2(Q) < (p+k’) | |Hk+1(Q)

<1()||
2@ = pp+1) (p+ k) HH@

i — ]l

Proof. One takes m,t such that m,a(+1) = 4(£1) and (m,@)’ is the Legendre series of 4’ truncated after the
Legendre polynomial L. O

In the multi-dimensional case, we denote by ﬁp = 77,(;11) ®-- -®7T,(;z") (n = 2, 3) the tensor product polynomial
interpolant of degree p in the reference element K := (—1,1)™.

Lemma 3.4. Let n = 2,3 and let ﬁp = 71',(;11) Q- ® 7T(I" denote the tensor product polynomial interpolant of
degree p (p > 1) in each variable in K = (—1, 1) . Then, for all & € H**Y(K), n —1 <k < p, it holds

> D - p@)| 2y < CPulp, K)ID* 1| 2 ) (3.1)
Ogajgl
where @, (p, k) is given by
—k — 1!
(I)n(pa k) = w < Cpi(kinJrl)a f07’p — 0

(p+k—n+1)! ~

and C' > 0 is a constant independent of p.

The proof of this lemma by a tensor product argument is given in Appendix B. The loss of p™ in (3.1) is
due to the control of mixed first derivatives of the error. This control is needed for the application of the trace
operator R below.

Remark 3.5. In the case when n =3, p =1 and u € H*(K), with H*(K) being given by

HY(K) c HY(K) := {u | D*0 € L*(K) Y« such that max a; < 1} 1=(1,1,1)
J
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/\ fN
\_/ Tper
FI1GURE 1. Unit cell domain @ as union of four patches @Z—, i =1,...,4, and the boundaries fN, fper.
it holds that
Yo D@ -z < C D 1Dl ez (3.2)
0<a;<1 0<a;<1

Ja|>1

3.1.3. Definition of the FE spaces

We assume that the domain Q is @ = (0,1)" and we take 7y to be a quasiuniform triangulation of Q of
affine quadrilateral elements of size H. We take as macro FE space in 2 the standard affine FE space SP(Q, )
defined as SP(Q,7y) = {u € HY(Q) | u|x o Fc' € SP(K K)VK € Ty}, where we denoted by Fic : K — K the
affine element map associated with element K.

We introduce next the micro FE space in @, i.e. the FE space with respect to the fast variable in the
unit-cell. If @ = (0,1)™, we also take ’?h as a quasiuniform mesh in @ of axiparallel quadrilaterals.

Remark 3.6. For the case when the unit-cell domain Q has e.g. interior holes the “micro” triangulation ’f’h
is obtained as follows. First one assumes the existence of a partition Q = uf le (I < oo fixed) of Q in a
finite number of quadrilateral patches QZ. Each patch Ql = F;((0,1)™) is image of the reference domain (0, 1)"
via the C*° diffeomorphism F; : (0,1)" — @Z These mappings satisfy also a compatibility condition along the
common interfaces in the sense that F; o Fi,_1 =Idon @i N @i/ forall ¢,¢/ =1,...,I (such F; can be constructed
by blending, see e.g. [13]). The mesh ’?h in @ has to be periodic and is given as union of patch meshes

,?h = UZ-IZI'?}M', ﬁz = Fz(,?h)

with 'j:h being a uniform, affine quadrilateral mesh in the reference domain (0,1)"™. Then Sger(@, 'j:h, F) is the
finite element space of all piecewise mapped polynomials of degree u:

per(@ ?HF) = {UG H;er(@) | ( |A OF) |A S SM( )VKE T}l}
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We take as FE space V3, the space of traces of the two-scale FE space
SP(Q, Tr; Sger(@,’?h, F)) = {U(x,y) |IVK € T : U(Fk(Z),y) is polynomial of degree p w.r. to &

in K and continuous, periodic p.w. polynomial with respect to ’j\'h iny € @ }
(3.3)

More specifically,
Vi = RES7(, Tir; Sher(Q. T F)), (34)

where the trace operator R is given by (R°U)(z) = U(w,y)|y==. Note that the elements of the FE space V5
have the form

upp(T) = ZNi(I)¢I (g) Va e Qe

il

with shape functions N;(-) € SP(€2,7p), and ¢ (-) € Sk, (@, T, F) . Note also that N;(-) are defined everywhere
in Q, whereas ¢7(Z) are defined only in ..
3.1.4. Finite element approrimation results

We start with finite dimensional approximations with respect to the macro FE space SP(2, Ty ) in Q = (0,1)™,
n = 2,3. Let II, 7, denote the piecewise polynomial interpolant of degree p > 1 given by II, 7, ulx =

ﬁp(u| ko Fk)o Fgl in each element K € 7y with Fi being the associated affine element mapping. Affine
transformations of the elements in addition to the local estimates from Lemma 3.4 give:

Lemma 3.7. For any u € H*(Q), Q CR", n = 2,3,

1/2
||u — Hp7THU||L2(Q) + H|u — HP,THU|H1(Q) <C ( Z H2(SK+1)Q)n(p, 5K)|U|%[SK+1(K)) (3.5)
KeTy

forn—1 < sk < p such that the right hand side in (3.5) is finite. The constant C > 0 is independent of p, sk
and H.

Remark 3.8. If n = 3 and p = 1, then for all u € H* ()
||u — HI,THU’HLQ(Q) + H|u — HI,THU|H1(Q) < CH2|U|H1(Q), (36)

where C' > 0 is independent of h and we denoted by |u|§{1(m = o0<a;<1 ||D“u||%2(m.
|a|>0

al

Remark 3.9. Estimates (3.5) for the interpolant IT, 7, are explicit in H, p and sx. If only H-dependence is
of interest, other interpolants, e.g., of Clément type, could be used.

In order to obtain similar FE approximation results with respect to the FE space Sf, (@,’?, F) in @ we

define the piecewise polynomial interpolant Iu,f'h € Sher (@, ’?, F) as given by

a.= (1,7, (va,oF)) o Fi"

Then a similar estimate as in Lemma 3.7 for the interpolation error u — Iu 7,U holds.

A
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Lemma 3.10. Forn = 2,3 and for u € ngr (@) there exists a @ periodic interpolant Iu 7,U € Sher (@, ’f’, F)
such that

I

HuffmﬁuHL?(A T hlu—T, 7l gy < CR™ BB, (1) S il o, @ = ulg, (3.7)
=1

for all n — 2 < s, such that the right-hand side in (3.7) is finite. The constant C > 0 is independent of u, s
and h. If n =3 and p = 1, then for all u € HY(Q) there holds

HU—IL,?}LU‘ +h|“_z1,ﬁu|H1(ﬂ) < Ch2|u|H1(Q) (38)

L2 (Q)

Proof. The result is a direct consequence of the definition of the interpolation operator Iu 7, with respect to

Sher (@, ’?h, F) and Lemma 3.7. We prove only the estimate (3.7) since (3.8) can be obtained similarly.

2 2 2 2

2 -~
L2(0) th ‘U o IH»T}LU

-

Hqu

Hu a Imﬁu‘ T

= N +h‘u71' ,jru‘ R
HY(Q) L2(Qy) Fofh T THL(Q))

1=

2
gCZHqu T, (uoF)

L2([0,1]™)

2
+h2}qu ~T,; (uoF)

H([0,1]™)

2

Ky 4 h

:CZHqui—H 3 (qui)‘

L2([0,1]™)

2
+h2‘quZ-—H 2 (qui)‘
wtn H([0,1]™)

Qi

< ORI T2 (1 5) S H“ Qill gy

3.2. Two-scale finite element convergence

By (1.9), it holds

[u® — uppllHi@.) < Cinfuevg [[u® = vllmi(q.)-

The goal of this section is to estimate the approximation error for the two-scale FE space V5, (3.3-3.4) and to
obtain robust estimates with respect to ¢ for H/e > 1.

We have seen that the solution u® may be interpreted as u ( ) = RU%(-,-/¢), where U®(:,-) is defined on
Q x Q This suggests to use hp-interpolants in Q (not €.!) and Q to approximate U€ in 2 x ( and take traces.
We define the two-scale interpolant Uz of U® in SP(Q, Ty; S, (Q, Tn, F)) as given by

US| o F = (ﬁp ®I! ) (Uf|x o Fx) VK €Ty,
s4h
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with F : K— K being the affine element map of K. Here ﬁz ®Iy 7 represents the tensor product interpolant
}

per
The interpolation error % has the form e5(-) := RE5(-,-/¢), in which Es =U®—Us in 2 x Q2°. Let us denote
by USK (@, ) i= U= (Fic(2),y).
If H denotes the mesh size of the quasiuniform “macroscopic” triangulation on €2 and h is the mesh size of
the quasiuniform “micro” triangulation on the unit cell @), we obtain:

between Hz the p interpolant in the reference element K and Ily , the S# (Q, ’?h, F) interpolant in le,er(@)

Proposition 3.11. Assume that n = 2. For p,u,k,s > 1 and H/e € N in (3.3-3.4) it holds

||e§||L2(QE) <C (Hmin(p’k)Jrl(I)n(pa k)HU€||Hk+1(Q; Lger(@)) + hmin(#’s)Jrlq)n(Na S)HUEHH'IL(Q; Héetl(@))) s

where C' > 0 is a positive constant independent of p, u, k,s and €.

Proof. Let K = Fi (IA( ) € Ty be an element of the “macro” triangulation, affine image of the reference element
K under the element mapping Fx. We split the interpolation error as

B5(Fic(),y) i= U (i) = TEUS (2,y) + TR0 (3,9) — (T @ TV 2 ) UK (3,).

w7

We estimate first the L? norm of the error on K and apply the trace result in Lemma 3.1 to move on full two
scale interpolation error estimates

2

E5(e(z+m),y) dz

@fa = >

KNQ. mezZn: E(Q+m)CK

Ce" Z Z 52“"'/ (D2ES)(e(z +m),y)|* dzdy

meZm:e(Q4+m)ck 0<a; <1

z=y

IN

Q)
X
Q

—c 3 @ [ B dedy
Osaysl (KND)x0
<c 3 2 [ |DsEs(w ) dedy

0<a; <1 KX@

2|al
3 ~ o
<o ¥ (5) [ IosEFc@.pP s
0<a; <1 "0
< CH™ (Ix +1g),

where
~ 2
IK:/ 3 ‘ (UEny) H;UE’K(JE,y))‘ di dy
0<a;<1

g = ‘Dg (ﬁZUE’K(i,y) - (H“ ®IY . )Ua’K(JE,y)) ‘2 dz dy.

w7
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By Lemma 3.4, the “macro” error Ix can be estimated as follows

I — / 3 ‘Dg (UE’K(:Tc,y)fﬁZU‘E’K(:ﬁ,y))r i dy

~7 ~ 0<a;<1
Rxg =M=

< CP2(p, k) / |DEFLUSE (¢,y)[" didy
Rx0
< CH* Vo2 (p, k) / |(DEtUe) (FK(i),y)|2 di dy
Rx0
< CH2HD-g2 (5, k) / |(DEU?) ()| dady.
KxQ

Applying now the error estimates in Lemma 3.10 for the interpolation error in the “micro” FE space
Sher (Q, Th, F), the error IIx in the fast variable can be estimated as follows

HK_/ 3 ‘DO‘ H””UEK ) — (HI®IyMTh>U€’K(i,y))‘2 dz dy

xo 0Sessl

<c Z /}D'a‘ (vF(@ay) - 70 UK (@ y))}2 di dy

O<o¢J<1A A
2
—n || € Ty €
<cH Z [ [P (U - 225 o) | doay
Ogajgl ~
KxQ

< CH M0 2031, 5) | U2, e

Summing up over all elements K € 7y we obtain that

lezllz2o.) < C<H‘“i“(”’k)“<1>n(p, Ui s 22, @) 2™ @l )10y o Hseﬂ(@)))' D

A similar result can be derived now for the energy norm of the two scale interpolation error. To this end, we
estimate the L?(Q)-norm of V,e5 in terms of the regularity of the data and of the “macro”, resp. “micro”
triangulations .

Proposition 3.12. Assume thatn =2, k,s > 1 and H/e € N. Then it holds for any p,pu > 1
Va5 @)llz2() < CH™ 0000, k) (I 930 s o 1, @ + 10 Do 23,000

(3.9)
+ORMIEID,, (1, 5) <||€1VyUE”H"(Q; Hy (@) T ”UEHH"(Q;H”I(@))'

per

Proof. Let K € Ty be an arbitrary element of the “macro” triangulation and consider the H' (K N$).) seminorm
of the interpolation error e on K N ). Then it holds

IVaes (@) 22 ey = / Va5 ()2 dz = / ‘((vws*vy)E&)(x,y)
KNQe KNQe
< Ix + 1k,

y=%
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where

Ik (VoE7) (2, 9)

/

KnNQ.

By the trace result in Lemma 3.1 we obtain that

2

(0, BZ)(e(z + m), y) dz

IKZEnZn: /
' Q

y==2

INA
&
3
N

>, & //[ (D30y, F5) (e(= +m),y)” + (DI ES) (e(z +m), u)|” |dzdy.

r=1 m:s(m+@)cK 0<a; <1

arll

The error term Iy can be then estimated as follows

ey e [ ioze, ) @l 105D (o sy

r=1 0<a‘<1
a.,_l

<0y Y //[ (D20, 52) (o) + (D2ED) o) s dy

r=1 0<a;<1
u.,_l

g2lal
<CH”Z Z H2|a\//‘Da e10,,Bz) (Fk (& ‘ d# dy

r=1 0<a;<1
a-,—l K

Q
c2lal-2
2 14
+CH”Z > L //|D“EI #),y)* di dy
r= 10<a <1

cor$ ¥ / / 1Dz ( ‘I%Er) (Fic(@). )" + H~2 DR B3 (Fic(@), ) di dy,

r= 10<a<1A
arl

KNQ. §

By the same arguments as in the proof of Proposition 3.11 we obtain that

. 2 2
IKSClHQm‘“(p’k)@i(p,k)< / |Di(e7 'V, U (2,y)|” dedy + / | DU (2, y))| dwdy)
KxQ KxQ

a0 1, 5) 7D, U7 + U2

(K 3 (@) n(K;H3$1<@>>>'



TWO-SCALE FEM FOR HOMOGENIZATION PROBLEMS 559

Similar considerations for IIx lead to the following estimate

2

My =" Z (e7'VyE3) (e(z +m),y)| dz

mezZn:e(Q+m)CK B

Cem > > el / |(DEES) (e(z +m),y)* dz dy

0<e,; <1
meZn:e(Q4+m)CK 0<e; < Ox0

=C Z g2lel / |Dg (e7'V,EZ) (:E,y)fd:c dy

0<a;<1

z=y

IN

(KNQ)xQ
<C Z g2lel / ‘Dﬁ(sflvyE%) (:E,y)fd:cdy

0<a;<1 Kxd

<cH" Y (%)M / DS (e7'V, E5) (Fi(2), )| di dy

0<a;<1 ~Y ~
SN KxQ

< C H?MPR 92 () / [(DE(e 'V, U9)) ()| dzdy

K><Q

—l—C h2mm(u 5)(1)2 M S HE 1V UEHH"(K Hs (Q)).

per

Summing up over all elements K of the “macro” triangulation we obtain (3.9). ad

Remark 3.13. A careful inspection of the proofs of Propositions 3.11 and 3.12 reveals that the terms
||U5HHW(Q;H;$1(@) and ||€_1VyUE||Hn(Q;ngr(@)) can be replaced by ||U5HH1(Q;H§$1(@)) and

||5*1VyU€||H1(Q; H:..(0)) where for a Banach space X we denote

HY(Q; X) = {u:Q—>X : D€ L*(; X) Vast maxa; < 1}-
J

Remark 3.14. Similar error estimates for the interpolation error as in Propositions 3.11, 3.12 can be obtained
in the case n = 3 by using the appropriate regularity assumptions on U¢(z,y). We restrict here ourselves to
the two-dimensional setting.

Theorem 3.15. Assume for the solution u® of (1.7) the two-scale regularity (2.1-2.2) in Q.. Then, for H/e €
N, the error in the two-scale FEM based on the space (3.53-5.4) can be estimated as follows:

||UE - uaFEnHl(QE) <y (k)Hmin(p’k)q)n(p7 k)HfHH’C(Q) + CQ(S)hmin(u’S)q)n(:u’ S)HfHH"*S(Q)'

Proof. The proof is a direct consequence of Theorem 2.1 and Propositions 3.11, 3.12. O

Remark 3.16. Suppose that the solution U¢(z,y) is patch-wise analytic on the “macro” level and analytic on
the “micro” scale. Then, there exist C' > 0, dx > 0 independent of € such that for all k&
HDk Us

k 1/2
(z,y ||L2(K 2@y < Cldg) KK /

et Vy DU (2, y HL2 K 12(0)) = C(d ) k! K[V2.

In this case the estimates in Propositions 3.11, 3.12 lead to exponential convergence.
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1 ||5§;/||H1(QE) \
flu ”Hl(QS)
1 4
v
2n
1
OeP)p--c-anmemnsansasannnnanacny |6
p
| I
O(e™") log N

FIGURE 2. Qualitative picture on two-scale convergence as H = h — 0 for fixed p = p > 1:
relative error versus # dof in double logarithmic scale. At the critical point N = O(¢~2") the
error slopes switch from % to %, the “jump” § is due to possibly different constants in the
a priort estimates.

Remark 3.17. So far we have only discussed the preasymptotic case when H > ¢ and we obtained the robust
(in €) error estimate ||} g1 (o) < C(HP + h*).

Let us choose p = p. Then, for h =2 H we obtain e g1 (o) < Ch? and N = dim (V§) = O(H™"h™") =
O(h™2m). Hence, in terms of number of degrees of freedom, the two-scale FE error estimate is qualitatively of
the form

lefv|lmi(a.) < CN™F for N < e 2",

since the total number of degrees of freedom at the critical value H = &, h = ¢ is N = O(e~2"). At this
transition point the fine scale is resolved and we switch from the two scale FE space to full discretization with
mesh size H = eh, h < e. This is achieved by breaking the periodicity to get the full space with mesh width
H = eh, h < e. The dimension of the FE space in this asymptotic regime is N = O(H~™) = O(¢~"h~"). Using
standard error estimates, i.e.,

levllar . < CHP[|u|[reia.)

and the a priori estimate (1.10) for u® we obtain

H\? . )
len |l <C (z) =Ch?P <Ce PN~ n <CN72n for N> g 2",
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We see that we obtain a robust convergence rate of O(N~27), as compared to the (non-robust) rate of O(N~=)
of standard FEM. The robustness of the two-scale FEM was achieved by an increase in dimension and the use
of tensor product approximations in Q x Q.

4. IMPLEMENTATION OF THE TWO-SCALE FEM

We address now the implementation of the 2-scale FEM. In order to obtain an efficient algorithm it is
essential that the element stiffness and mass matrices can be computed in a complexity independent of € and
to an accuracy which will not compromise the asymptotic convergence rates in Theorem 3.15. Due to the
rapid oscillations of the coefficients and of the micro-shapefunctions, the elemental stiffness matrices on the
macro mesh can not be evaluated robustly by standard quadratures. The macro stiffness and mass matrices can
be developed from moments, i.e., integrals in the fast variable corresponding to discretization of the unit-cell
problem with monomial weighted coefficients, combined with certain lattice summation formulas. To explain
this is the object of Section 4.1. In Section 4.2 we then present numerical experiments which confirm our error
analysis.

Proposition 4.1. For any ¢ > 0 and for any finite dimensional subspace M4, (Q) of H per (@), with
MG (@) = Span{®;(y)}"_, of dimension p independent of €, the two-scale FEM with respect to the two-

scale discretization SP (Q,TH; ME Lo (EQ)) (/\/l’; per (5@) = Span{®;(x/¢) i:l) can be implemented with a
computational work independent of €.

4.1. Macroelement stiffness matrix

We start from the discrete variational formulation: find v € SP(2, Tg; MY per(eé)) such that

B (u,v) = /fvdx Vo € SP(Q, T MH(£Q)),

where Mger(@) = Span {®;} is any conforming FE discretization of per(@) For u,v € SP(Q, Ty; ME(eQ))
the bilinear form can be split in a sum of elemental bilinear forms B

Z B (u,v).

KeTy

For each macro element element K € 7y with “macroscopic” polynomial space SP(K) = Span {VBK]} 1, the
elemental bilinear form Bg can be written in terms of the reference element matrix

By (u,v) = v KXy, w={up}, v={vn},

where u(a:)‘ = ZI,;‘“HVBK] ()®;(x/e) and v(z)| = ZJ,jijV.[IK] ()@;(z/e). The entries of the element

K K
stiffness matrix g[K I are given by

K5 ;ZA(Z ( J@)a; (f))l <V.[IK](x)q)j (g))/dw
(2o (2]t (2)
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where a prime denotes (f—x. Without loss of generality we assume now that K = (0, H), with M := H/e € N.
For simplicity, we consider only the first integral term in (4.1). Since K = U%;&Km, with K,,, = e(m + @) we

obtain that
4 = [4(E) (W () (s (2) ) as
/ (y},K] ()0, (g) )/dx
o S [ a()0 (£) o) (2) e

m:OK

T

| |
T
BN
~~
o8
~
/N
o
2
)
g
~
N

with suitable constants c%a %a (K) depending only on I, J,«,~,d and on the element K. We see that for

the calculation of the two-scale element stiffness matrices the basic integrals

= C

£ | [a@el el @i a (42)

—u

Q =1,

are needed. Let us remark that (4.2) when 7 = 0 and § = v = 1, corresponds to the global stiffness matrix of
the unit cell problem discretized with M¥, = Span{®; |i =1,...,u}. When 7 > 0 we obtain a scale interaction
stiffness matrix and a discretization of the unit cell problem with monomial weight functions is generally needed.
This procedure is suited for parallel implementation, since the computation for various values of 7 can be done
in parallel.

The entries éEII(i]) i) of the element stiffness matrix are ultimately given by

-1

Z S’iga'r (m7 H? 6)7

M
gl m=0

S Sether e Y (&) (¢) izm - XXX (&)

v,0<1 « T<a 7,0<1 a 1<«

with Zi\,{:—ol S%m(m,H ,€) being directly computable. The idea is to compute sums of powers of natural
M

numbers appearing in Zm;ol S%m(m, H,¢) in terms of Bernoulli numbers B;. These can be easily tabulated

and the sums can be computed with a computational work independent of M. More precisely, one exploits the
fact that for N € N, Zgzl k? is given by

N
Natl N9 1 1
DK = Tt (3) BoN'™l 5 (g) BiN'™ 4 2 (g) BgNI™ 4+ ..., (4.3)
k=1

the last term containing either N or NZ2.

Remark 4.2. It should be remarked that

1 & 1
Nq+1 E kq:O(H—l), asN—>oo,
k=1
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H-Version Two-Scale Method,e = 1e-2 H-Version Two-Scale Method,e = 1e-4
10 T 10 .

Energy error

.
o,
T

Energy error

H
O‘
T

10k

-10

N

TETETE

wononon
FENERINI

-12 -12

102 : : s 10721 L B B Lo — o

10 L L 14 L L

- - 10 - - )
10 10 10 10 10 10

FIGURE 3. Energy error in the H-Version of the two-scale FEM.

so that (4.3) could also be used as asymptotic expansion for very small e = H/M. The amount of work for
computing the element stiffness matrix in the two-scale FEM is therefore independent of . If n > 1, the same
arguments apply if all indices are changed to suitable multiindices.

4.2. Numerical results

We illustrate our error estimates for the two-scale FEM for the one dimensional model problem

“a ((D 5 w) = mazon @

ufloq = 0,

where f(z) =e” and
a(y) = 2 + cos(2my).

The shift Theorem 2.1 applies on 2 and the solution does not exhibit boundary layers, since u®(z) = U¢(z, z/e),
with U¢(z,y) smooth on  x Q and 1-periodic in y.

In Figure 3 we plot the energy error versus H = h and for different p = p € {1,2,3,4}. Computations
were performed for two different e-scales, 1072 and 10~%, respectively. We see that the rate of convergence of
lu® — uS EH%{I(Q) is proportional to H?P as expected from the error estimates in Theorem 3.15. Moreover, we
observe robustness of the convergence rates with respect to the parameter ¢.

The next set of numerical experiments shows that simultaneous refinement on both scales is indeed necessary.
To that end, calculations for ¢ = 107™%, 4 = 1 and fixed h, p were performed. In Figure 4 we plot the error
in energy versus H (for several fixed p). In agreement with our a priori estimates O(H?P + h?*) we observe a
saturation effect.

Since the solution U#(x, y) corresponding to (4.4) is analytic, according to Remark 3.16 we expect exponential
rates of convergence of the p-version of the two-scale method, i.e., keeping H, h fixed and increasing p = pu.
The exponential convergence is observed in Figure 5. We also note robustness as the error curves for e = 1072,
10~* are practically on top of each other.
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p=1e=1e-4

fhedod
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H
FIGURE 4. Energy error versus H for
fixed fast scale resolution h (u = 1,
e=10"%).
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p-Version Two-Scale Method, H=h = 0.5
T T T T

—4— g=1e-2
©-¢e=1le-4

p=p

FIGURE 5. Robust exponential conver-
gence of the p-Version of the two-scale
FEM: energy error versus polynomial
degree p = p at fixed H = h, analytic
solution.

A. PROOF OF PROPOSITION 2.5

Proof. We write first U =

Ui (z,y) + Us (2, y) + Us(2,y) + Ui (z,y) + K, with

10

Ut (e.) = —fo [sfuy) («+ e <§<1/a<->> - (fa)) = 5) = A0 + 51/t - 1)
U2€(:L'ay) = 78 Z ka ke )
1/ O \uiz

(g _ (1/a(-)) p2mika
U3 (2,y) = ;Z:* o zk( ) ik ) (A1)

ey _ 1 e wi(kz+py)
Vite = k% o p;ﬁAP Gy R

__ - fell/a()),
K= k%Z:* el p;éz_:ke Ap 2mi(pM + k) +kzZ:* (2mik)?
A(-) and A(-) are defined in (2.19) and {A,},cz are the Fourier coefficients of A(-) € H}..(0,1). We prove

here (2.20)for r = 0 and (2.21) for r = 1 since the estimates with respect to higher order norms can be obtained
analogously.

The || - [lo, || - ||-=1 norms of f are given in terms of Fourier coefficients by
IFIG = D1 Il = 1 fol +
kez kez*
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Let us estimate first U (x,y). The L(Q, L2(Q)) norm of U (z,y) has the explicit form

1
U5 @) 20, 2@y = 2 WP | D AP s s
(€, L2(Q)) 5. ot (2n(pM + k))

Since

[Aol> + ) 14, [7p* < CJIAII2
p#0

Hl (Q) < CHl/aHO

we have the following estimate

1 | Ao |? 1
E Al — E APPp2 -

p#—ke pi;éﬁ ,
| Ao| 21 2,2 1 1
+ 72 |4p]"p
k2 k2 p;s pM  pM +k
p#0
<ce?t [Aol* + D 14,17 | < ce? >
= k2 0 P p — k27
p#0
with C' > 0 independent of k and €. With this observation the estimate for |U5 (z, y)||L2 . 12(0)) becomes

fx
||U4($ y)||L2(Q LQ(Q)) = CZ | | < CHfHQ—la

with dominant terms coming from ZleZ* 52|fMl:|:1|2|A71|2. One can even prove that
||UZ(I7y)||L2(Q7L2(é)) — 0 ase — 0

provided that || f||-1 < oco. Since the ideas of this proof are relevant for our analysis we will give here the details.
First observe that

2
E ) _ 2 |fk| 1 oo L1
U5 (Zay)”L2(Q7L2(Q)) - Z 2k.2| of” + Z Z (27T)2|Ap| p <pM pM + k

k;éO k£0 p# ke

<oty e S (- LY

- pM + k
ko U

We claim now that

Z'fk' > 14 I“( p—M1+k) < CEIfI%s

k#0 p#—ke
# p#0

with C'(¢) — 0 as € — 0. We observe that

|fk| 22(1 1 ) |fk|2 2
pl <C Iy
> b X wi(—er) <0 X 4

|k|>M P ke
p#0
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and C(g) — 0 as € — 0. It remains to show that e.g.

|fT|2 2,2 1 1 ? 2
Z > 148 (o~ oy ) < CEIA

p#0
with C'(g) — 0 as ¢ — 0. We write this in the following form

M—1 2 2 M-—1 2
Z |fr| Z 14,2 1 n Z 1A | fr]
— o p pMJrr = M2(M —r)?
<C 2 2 C ~ L
€ ||f|| + Z M2(M77")2
T u £ ]2
< CemlIfIZ +CZ M2(M )2+C Z M2(M — )2
r=[M/2]+1
20 112 | fr]?
<CeffIZ, +C Z 5
r=[M/2]+1

CEIfI21,

with C'(¢) — 0 as € — 0. Furthermore,

e 905 @ )| 220, 12, @ = 20 Mel” D | ANy M+k) < ClIf 13-

keZ* pF#—ke
The same type of arguments used for the estimate of the L?(Q, L? (@))—norm of Uf(x,y) imply that
HgilvaZ(m’y)HLz(Q,m(@)) + ||VIUZ(997?J)HL2(Q,L2(Q)) < C(E)Hng

with C'(¢) > 0 such that C(e) — 0 as ¢ — 0.
We see that U (z,y) is polynomial in « and US(z,y) = U5(y) is constant with respect to 2. The bounds for
Us (z,y) are straightforward

10l 200,22, @) < CWol SCIF N1 V30t | oz @y < Clol < CllfI.

Us(z,y) has the form —e (3,c5. faniA—1) 1/(1/a(:))eA(y) and its L?(2, L2(Q))-norm is bounded by || 1.
Further,

105 20, 22, @y < CEIFI 1+ 1712), (€7 VUS| a1y < AN

It remains to analyze the convergence of the first sum in K in (A.1) and to obtain sharp estimates on K with
respect to € and the regularity of f. We split K as

K=5+09,
where

1
Si== 2 <h) D At e

keZ* p#—ke
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and

_ 1 Tk
% =Y omy 2 e

kez*

We recall the definition (2.19) of A(y). This implies that the Fourier coeflicients A, p € Z, are, in terms of the
Fourier coefficients b, of 1/a(-), given by

1 b 10
Apg=—— N2 4 = L0y,
0 QWi;)q’ P omip P

With this observation S7 can be written in the following form

1 by (1 1 1 Jai by
1= (27i)? Zsfk Z q (k qM—i—k:) (27i)? ;EMZ l

k#0 q#0

qM+k#0
1 fr by 1 farr by
= 2m)2 LIPS M+ k| (2m)? POV
0 © \ it 70

Now we use that for all k € Z*, the sequence s* = {(s¥),},ez given by

1
if —k
(=4 ik T7
0 ifp=—k

is an element of 1> and (sk,skl)p = cé’lj', i.e., {s¥}} is an orthogonal system in [? and all s* have the same
I?norm. Indeed, let k # k’. Let us show that (sk,skl)p = 0. Without loss of generality we may assume
that k < k/. Then, it holds

/ 1 1
k .k _
(S,S )lzizq—l—k‘q—f—k’l

a#—k
q#—k'
1 Z ( 1 1 )
K=k &= \a+k q+F
q#—k’
1 1 1
= - -
K — k Noso HZ;N (q—i—kz q+k’>
4%tk
N+k N+kK
1 . 1 1
= WA ;N: ri > 4
q=—N+k q=—N-+k'
q#0 q#0

— N4k N4k

1 1 1
= [ X q 2 q

q=—N+k q=N-+k



568 A.-M. MATACHE AND C. SCHWAB

The last sums are done after a finite, fixed number of ¢ with ¢ — oo when N — oco. Therefore, the limit is zero.
With this observation we can write K as

1 b_ b1

K—=6l182— Tk by /m JMi

* )2 Z %;L g +k (2m)? P Ml o
q’ +k#0

The first sum in the above representation can be interpreted as the % scalar product between the sequences
{fx/k}rez- € 12 and {cp}x , where ¢ = (b, s%);2, with b, = 0 if ¢ ¢ MZ and b, = bq/nr else. Therefore, this
sum is bounded by ¢||b||;2||f]l—1 < ¢||f||-1. The second sum can be estimated by Cel|f||_1. Summing up all
these estimates we see that |K| < C|| f]|-1.

It remains to check if the estimates in (2.20) are sharp. We will analyse this only for the case r = 1. We
assume therefore that || f]lo < oo and we show that for ¢ < 1 sufficiently small ||UEHH1(Q7L?M(©)) > C|fll-1
with C' > 0 a constant independent of €. It is not difficult to see that for ¢ < 1 sufficiently small

2 § fk 2mik
1051 @13 2 CI/2wdole =a%) = 2 mik) Kl @.s,.@)
0

in which we introduced the notation w = (1/a(-)). To this end, we used that

||U4(CL' y)Hl(Q L2, Q) ( )”f”o with C(E) —0 as e—0.
Now,
2y fk 2mikx = 2 2 2
11/2w fole = 2®) =) minze T Kllfa0,2, @) = 120 fol™+
120 ’#O
+iwfoK — 2w fo Zk;&o (27r7c)4
> Cw?|fol®
and
1 |fk|2 e
B 27T'Lk93 — 2 2 2 — 2
k#o k0
9 2 |fk|
> 2 |fol” + Z
k;«éO
1 | fxl?
oWl 2 - _ =
oW |f0| ( )2 k’2 a Z 27Tk’
1 | il
= —(1—a)W?|fol>+ 1—=
12( a)w[fol* + < a) Z (27k)?
k50
for some arbitrary o > 0. Summing up,
2 fk 2mik
1/2wf0(:c — X ) — Z (27Tik)2we 1RT +K
k#0 HY(Q,L2,,(Q))

) ) 1 9 9 2 1 |fk|2
> Cw?|fol +E(1*0‘)W | fol” +w 17& 2(277]?)2.
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Choosing 1 < « such that C + %(1 —a) > 0 we conclude that

fk ik
1/2wf0($—x2)—z (2’/Tik)2we2 kl—’—K ZCHfH%l
k#0 HY(2,12,,(Q))

per

B. PrROOF OF LEMMA 3.4

Proof. We start with the two-dimensional case (n = 2). Let us investigate first the mixed derivatives of the

interpolation error. Since 0, and w,(;zi) commute for all ¢ # j it holds

O, Oy (u - ﬁpu) =0, (amu - w;m(amu)) + O, (ﬂgﬂl)am (u - W](D“)u)) .

For 0 <t <k — 1 we obtain that

o (1= Ty =2 o (=i 0) Hz iy * 210 (0= w,(,“)u))Q) IZ2k)
<2 ’ Ox, (&DQU W](Dxl)(amu)) HL2(f<) +92 ‘ B, (C%lu B 7r](DacQ)(aIlu))‘ )
=2 Eﬁ-ﬁ-g: / ((atﬂa u(ml"w))Q + (amlai;rlu(fEl’xQ))Q) dzy das.

Reasoning in a similar way for the lower order derivatives, for 0 < s,¢t < k we obtain that

~ 2 (p—9)! , 2 1 (p—1) 2
’ Oz, (U - Hpu)‘ £2(R) < QM/@;TIU(%,@)) dzidzs + QIW (p_i_t)!/(amlaglu(xhﬂ%)) dzidxs
K K
and
~ 2 2 P ' p '
-~ ‘ < (05 u)? dzy d / 0, 041 0)? day d
o=l e, < iy § o ] 0" e+ o dos

N

K

Taking now ¢t = s — 1, s = k and summing up all the estimates we get the result.
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For the case n = 3 we start again from the mixed derivatives of the interpolation error

|

O, 0, (u - ﬁpu) ‘ o ‘ Oa, (amamgu - w;,m)amamgu) + 0y, 70, (amu - ﬂ]gm)amu)

(k)

2
0 (150 [

2
am (azQazgu - ﬂ;()ml)azQazzu) ‘ L2(IA()
(@1) (a2) 2
3ml7rp Y0y, (&;SU -, &Eau)‘ (R)
2
+3 Haxﬂr;fl)amw;“)a“ (u - 7r§f‘3)u) ‘

§3]

+3‘

L*(K)

Ors (OraOagt = 04,000 | 2L )
2
HL2(1?)

0, (895181.21& . 771(;””3)89518@16) ‘ ’

< 3|

+3‘

By, (895181.31& - 771(,”2)8x18x3u)

+3‘

(p—1t)!
<30T

L*(K)
/ { |05 00 Du]” + |00, 015 O]+ [0, 0,025 ] }d””'

K

Next, we investigate the lower order derivatives

2 ‘

Oz, O, (u - ﬁpu) ‘

Oz, <8z2u - Wézl)az2u) i 3x1ﬂ]()zl)amz (u B 7r1(f2)“)

2

L2(K)

+ azlwz(,zl)amzﬂ](fz) (u - wé””i")u) ‘

L2(K)

Ba, (amu - ﬂyﬂamzu)‘ ’

= 3‘ L2(K)

o =)
j:?(f()

—3g)!
< 3E§+ 2' / { 1055200, u]* + |02, 05 }dx

+3‘

+3 ‘ D1y Oyt — 7DD, Dy

1 (p—t)!/ t+1,,|2
+3 O, 00, 04T u|™ d.
plp+1) (p+t)!) | sl
R

Similarly,

0z, (u - ﬁpu) = 0Oy, (u - ﬂz(;”l)u> + E)xlﬂl(fl) (u - 771(;”2)u> + axlﬂ](fl)ﬂl(,“) (u - 771(;”3)1&)
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can be estimated as follows

~ 2 2 i 2
|02, (= Tiyu)| (@) S [0, (u—nu) Hm(fq 3000 — 772000 (R)
+3 Hﬂ(mz) (895 u— 7w, u)‘ ’
P ' P e (R)
p 112 1 (p—9)!
<3 ) do +3—— - -
~ T+ /‘ o ul do plp+1)(p+s)!
< {|81185+1u| 20,05 u’ }dx
4
1 p 1 2
+6p 5 12 (b 1) /\axlamaﬁ u|” da.
Finally,
~ 2
[~ T (k) o= mfevu s w0 (w4 afe e (u = nfeou) | 12(R)
1 (p—0! I+1, |2 1+1, 12 1+1, |2
D) L P 2ol ol s

K
1 (p—s)!
Pip+1)2 (p+5s)!

+6 /{\amlasﬂ +2|ax2as+1 + 20,051 }d:c

1 (p—1t)! / 2
+ 12— O, 02, 0T u|” da.
PPp+1)% (p+1)! 90,920 0

24

Assume first that p > k > 2. We take then t = k — 2, s = k — 1 and [ = k in the above estimates and we
obtain (3.1). In case of linear interpolation, i.e. p = 1, under the assumption that u is in the space H!(K), we
obtain (3.2) by taking t = s =1 = 0 in the previous estimates. O
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