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TWO-SCALE FEM FOR HOMOGENIZATION PROBLEMS ∗
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Abstract. The convergence of a two-scale FEM for elliptic problems in divergence form with coeffi-
cients and geometries oscillating at length scale ε � 1 is analyzed. Full elliptic regularity independent
of ε is shown when the solution is viewed as mapping from the slow into the fast scale. Two-scale FE
spaces which are able to resolve the ε scale of the solution with work independent of ε and without
analytical homogenization are introduced. Robust in ε error estimates for the two-scale FE spaces are
proved. Numerical experiments confirm the theoretical analysis.
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1. Introduction

1.1. Homogenization problem

We investigate finite element methods (FEM) for the numerical solution of elliptic homogenization problems
in divergence form, i.e.

Lε
(x
ε
, ∂x

)
uε := −∇ ·

(
A
(x
ε

)
∇uε

)
+ a0

(x
ε

)
uε = f(x), (1.1)

where ε is a small parameter and we assume that A(y), a0(y) are 1-periodic in each variable and that

A(·) ∈ L∞
per(Q̂)n×n

symm, a0(·) ∈ L∞
per(Q̂) (1.2)

satisfy, for some γ > 0,

ξ>A(y)ξ ≥ γ|ξ|2, a0(y) ≥ γ ∀ ξ ∈ R
n, a.e. y ∈ Q̂ ⊂ [0, 1]n. (1.3)

Here Q̂ ⊂ [0, 1]n is referred to as unit-cell domain and we assume that Q̂ has Lipschitz boundary ∂Q̂ = Γ̂per∪Γ̂N

with Γ̂per = ∂Q̂∩∂[0, 1]n, and Γ̂N = ∂Q̂\Γ̂per (possibly empty). We assume further that Γ̂N is smooth to avoid
regularity issues, but emphasize that this does not constitute an essential limitation.
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We consider (1.1) in a bounded Lipschitz domain Ω covered by a pavement of cells of the form ε(k+ Q̂), with
k ∈ Zn and ε/diam(Ω) � 1. We set Ωε = Ω∞

ε ∩ Ω, where

Ω∞
ε =

⋃
Zn

ε
(
k + Q̂

)
, Γ∞

N,ε :=
⋃
Zn

ε
(
k + Γ̂N

)
. (1.4)

We complete (1.1) in Ωε by Dirichlet boundary conditions on ∂Ω, i.e.,

uε = 0 on ∂Ωε ∩ ∂Ω, (1.5)

and, if Γ̂N 6= ∅, by Neumann boundary conditions elsewhere

γ1u
ε := n ·A

(x
ε

)
∇uε = 0 on ∂Ωε\∂Ω = ∂Ωε ∩ Γ∞

N,ε. (1.6)

Problems of type (1.1) have been thoroughly analyzed by asymptotic analysis as ε→ 0; we mention only [3,14]
and the references there. In this analytical approach to homogenization, the limiting problem as ε→ 0 of (1.1) is
identified first and then solved numerically. Since the limiting problem does not depend on ε, no scale resolution
is required. However, fine scale information on uε has been lost in the analytic homogenization process and
numerical determination of correctors, usually solutions of (1.1) with f = 0 and inhomogeneous Dirichlet data
on ∂Ωε ∩ ∂Ω, is as costly as solving the original problem.

Here we propose and analyze a two-scale FEM for (1.1, 1.5, 1.6) with H > ε which does not require analytic
homogenization as e.g. in [2, 3, 14] and which is able to resolve the ε-scale of uε(x) with N � O(ε−n) degrees
of freedom, provided that uε exhibits a so-called two-scale regularity which we define below. In this case, we
establish robust error bounds for the h- , p- and the hp-versions of the two-scale FEM.

1.2. Finite element approximation

The FEM is based on the variational form of (1.1, 1.5, 1.6):

finduε ∈ H1
D(Ωε) : Bε(uε, v) = (f, v) ∀ v ∈ H1

D(Ωε), (1.7)

where H1
D(Ωε) := {u ∈ H1(Ωε) : (1.5) holds for u} and the bilinear form Bε : H1

D(Ωε) × H1
D(Ωε) → R is

given by

Bε(u, v) =
∫
Ωε

(
A
(x
ε

)
∇u(x)

)
· ∇v(x) + a0

(x
ε

)
u(x)v(x) dx.

By (1.3), (1.7) admits a unique solution uε ∈ H1
D(Ωε) for every ε > 0 and every f ∈ L2(Ω).

Let V ε
N ⊂ H1

D(Ωε) be any subspace of dimension N = dim (V ε
N ) <∞. Then

uε
N ∈ V ε

N : Bε(uε
N , v) = (f, v) ∀ v ∈ V ε

N (1.8)

defines a unique FE solution and there exists C > 0 independent of ε such that

‖uε − uε
N‖H1(Ωε) ≤ C min

v∈V ε
N

‖uε − v‖H1(Ωε). (1.9)

Even if the right hand side f , the domain Ω and the coefficientsA and a0 are smooth (i.e., C∞), if ε/diam(Ω) � 1
the solution uε exhibits oscillations on the ε-scale obstructing FE convergence. More specifically, assume that
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Q̂ = [0, 1]n and that f and ∂Ω are smooth. Then Ωε = Ω and there exist positive constants C = C(Ω) and
C(α) = C(α,Ω), α ∈ Nn, such that

‖u‖L2(Ω) ≤ C, ‖Dαu‖L2(Ω) ≤ C(α)ε1−|α|, ∀α ∈ N
n, |α| > 0. (1.10)

Denoting by V ε
N = VN = Sp,1(Ω, TH) ⊂ H1(Ω) the FE space of piecewise polynomials of degree p ≥ 1 on a

quasiuniform mesh TH of meshwidth H , it holds

min
v∈Sp,1(Ω,TH)

‖uε − v‖H1(Ω) ≤ CHp‖Dp+1u‖L2(Ω) ≤ C(H/ε)p.

We have also that

min
v∈Sp,1(Ω,TH)

‖uε − v‖H1(Ω) ≤ ‖uε‖H1(Ω) ≤ C‖f‖L2(Ω).

Therefore the FE error with respect to the usual FE space VN = Sp,1(Ω, TH) satisfies the following a priori
bounds

‖uε − uε
N‖H1(Ω) ≤ Cmin(1, (H/ε)p),

with C = C(p,Ω, f, A, a0) > 0 a constant independent of ε and H . Standard FEM, as e.g., piecewise linears
on a quasiuniform mesh TH of size H , thus converge only if H < ε, i.e., if N = dimV ε

N = O(ε−n). This scale
resolution requirement is often prohibitive, especially if n ≥ 3.

In view of (1.9), the key to a robust discretization of (1.1) is the design of V ε
N . Rather than incorporating

e.g., the asymptotics of uε (which is not always defined, see [14] and the references herein) into V ε
N , we design

V ε
N based on a two-scale regularity theory of uε.

1.3. Scale separation for u"

Ignoring boundary conditions (1.5), we consider (1.1) on the unbounded domain Ω∞
ε in (1.4). For any

f ∈ L2(Rn), (1.1), (1.6) admits a unique solution uε ∈ H1(Ω∞
ε ). We will exploit that uε admits the represen-

tation [6, 7, 10]

uε(x) =
1

(2π)n/2

∫
t∈Rn

f̂(t)ψ (x, ε, t) dt, x ∈ Ω∞
ε , (1.11)

where the kernel ψ(x, ε, t) is the distributional solution of

Lεψ = eit·x on Ω∞
ε , n · A(x/ε)∇ψ = 0 on Γ∞

N,ε. (1.12)

To characterize the solution of (1.12) in Ω∞
ε , we introduce weighted Sobolev spaces Hj

ν(Ω∞
ε ) of complex-valued

functions with exponential weights depending on a real parameter ν.

Definition 1.1. For j = 0, 1 and for any ν ∈ R the weighted Sobolev spaces Hj
ν(Ω∞

ε ) equipped with the norm
‖ · ‖j,ν are defined to be

Hj
ν(Ω∞

ε ) = C∞
0 (Rn; C)

∣∣∣∣
Ω∞

ε

‖·‖j,ν

, (1.13)
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where

‖u‖2
j,ν =

∫
Ω∞

ε

∑
|α|≤j

|Dα
xu|

2

 e2ν‖x‖ dx (Dα
xu = ∂α1

x1
. . . ∂αn

xn
u, ∀α ∈ N

n
0 ). (1.14)

Note that for ν > 0 holds H1
ν ⊂ H1

0 = H1 ⊂ H1
−ν . To specify the meaning of (1.12), we generalize (1.7) for

right hand sides f(x) which are not decaying at ∞. To do so, let us introduce the following sesquilinear form
Ψ(ε)[·, ·] : H1

−ν(Ω∞
ε ) ×H1

ν (Ω∞
ε ) → C:

Ψ(ε)[u, v] =
∫

Ω∞
ε

{(
A
(x
ε

)
∇xu(x)

)
· ∇xv(x) + a0

(x
ε

)
u(x)v(x)

}
dx. (1.15)

Note that for ν = 0, Ψ(ε) coincides with Bε in (1.7). For all ε > 0 and for ν > 0 sufficiently small, Ψ(ε) is
bounded and ‘coercive’ with respect to H1

−ν(Ω∞
ε ) ×H1

ν (Ω∞
ε ):

Proposition 1.2. There exist positive constants ν0, C and γ such that for all ν ∈ (0, ν0) and all ε > 0
1. |Ψ(ε)[u, v]| ≤ C‖u‖1,−ν‖v‖1,ν;
2. inf

‖u‖1,−ν=1
sup

‖v‖1,ν=1

|Ψ(ε)[u, v]| ≥ γ > 0;

3. sup
u∈H1

−ν(Ωε∞)

|Ψ(ε)[u, v]| > 0 for all v ∈ H1
ν (Ωε

∞) and v 6= 0.

We emphasize that ν0 is independent of ε and depends only on the upper and lower bounds of the matrix
A and of the zero order coefficient a0. The next proposition follows by standard elliptic regularity [1, 11] as a
corollary of Proposition 1.2. Representation (1.11) is proved in [6].

Proposition 1.3. The properties 1, 2 and 3 of Ψ(ε) imply that the variational problem:

Given f ∈
(
H1

ν (Ω∞
ε )
)∗
, find

uε ∈ H1
−ν(Ω∞

ε ) : Ψ(ε)[uε, v] = 〈f, v〉(H1
ν (Ω∞

ε ))∗×H1
ν(Ω∞

ε ), ∀ v ∈ H1
ν (Ω∞

ε ),
(1.16)

admits a unique weak solution uε ∈ H1
−ν(Ω∞

ε ) and the a priori estimate

‖uε‖H1
−ν(Ω∞

ε ) ≤ (1/γ)‖f‖(H1
ν(Ω∞

ε ))∗

holds. Moreover, uε admits the representation (1.11) where the integral is understood as Bochner integral of
H1

−ν-valued functions.

ψ(x, ε, t) is the weak solution of (1.16) with respect to the functional f = eit·x ∈
(
H1

ν (Ω∞
ε )
)∗. By Proposi-

tion 1.3 we know that ∥∥∥∥ψ(x, ε, t)
∥∥∥∥

H1
−ν(Ω∞

ε )

≤ 1/γ
∥∥eit·x∥∥

(H1
ν (Ω∞

ε ))∗ .

It is now not difficult to see that ∥∥eit·x∥∥
(H1

ν(Ω∞
ε ))∗ ≤ 1/νn/2.

Therefore, ‖ψ(·, ε, t)‖H1
−ν(Ω∞

ε ) ≤ 1/(γνn/2).
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Problem (1.1) has separated scales, a slow variable x and a fast variable y = x/ε, in the following sense: the
kernel ψ in (1.12) (which is, in a sense, the fine scale response to the coarse scale excitation eit·x) can be written
in separated form ψ(x, ε, t) = eit·xφ(x/ε, ε, t) where φ(y, ε, t) is the solution of the so-called unit-cell problem:
φ ∈ H1

per(Q̂)

L(ε, t, y; ∂y)φ := e−iεt·yLε(y, ε−1∂y)eiεt·yφ = 1 in Q̂,

B(ε, t, y; ∂y)φ := e−iεt·yn ·A(y)∇y(eiεt·yφ) = 0 on Γ̂N .
(1.17)

Unlike ψ, the kernel φ is computable by solving the unit-cell problem (1.17) numerically, for example (but not
necessary) with finite elements.

1.4. Two-scale FEM and outline of the paper

Based on the representation (1.11), we see that on Ω∞
ε (i.e., in the absence of boundary layers) the solution

uε(x) can be viewed as a map from the “slow variable” x into the “fast variable” x/ε: uε(x) = Uε(x, x/ε), where
U ε(x, y) depends smoothly on ε. In Section 2 we derive new, two-scale regularity results on uε(x) by analyzing
U ε(x, y). The two-scale point of view of regularity gives rise to a “natural” FE discretization of (1.1) by means
of a non-standard two-scale FE-space V ε

N in Ωε constructed as follows: Let TH be a quasiuniform mesh in Ω
(not in Ωε, i.e., the fine structure of the coefficients is ignored) of meshwidth H > ε and Sp(Ω, TH) the space
of continuous, piecewise polynomials of degree p on TH (we assume that TH is aligned with the periodic pattern
in Ωε even if this is not essential for our analysis). Next, we resolve the fast scale by a FEM in Q̂, based on the
mesh T̂h (for simplicity also quasiuniform of width h), and the space Sµ

per(Q̂, T̂h). The FE space V ε
N in (1.8) is

then the two-scale space

V ε
N = Sp

(
Ω, TH ; Sµ

per

(
εQ̂, εT̂h

))
. (1.18)

The elements of the FE space V ε
N have the form

uε
FE(x) =

∑
i,I

Ni(x)φI

(x
ε

)
∀x ∈ Ωε

with shape functions Ni(·) ∈ Sp(Ω, TH), and φI(·) ∈ Sµ
per(Q̂, T̂h). Note that Ni(·) are defined everywhere in

Ω, while φI( ·
ε) are defined only in Ωε. Since {1} ⊂ Sµ

per(Q̂, T̂h), Sp(Ω, TH)|Ωε ⊂ V ε
N and V ε

N is a generalized
FE-space. With V ε

N robust convergence rates as h,H → 0 can be achieved for uε
N as we shall show in Section 3.

These two-scale approximation results are quite general and applicable whenever the solution has the two-scale
regularity; in particular, the representation (1.11) which is valid only in the linear setting is not necessary.
In contrast, in [4–7, 9] a different (in general smaller) space V ε

N than (1.18) is proposed. In that approach
the kernel φ(y, ε, t) in (1.17) is incorporated directly in the FE-space via shape functions φ(y, ε, t) sampled at
suitable points tj in the Fourier space.

Since the understanding of the design and the properties of the two-scale FEM depend crucially on the
two-scale regularity of uε(x), we investigate it first in Section 2. Section 3 is then devoted to the definition and
error analysis of the two-scale FEM. In Section 4 we address computational aspects of the two-scale FEM and
present numerical results which support our error estimates.

We remark that we consider here only smooth Γ∞
N , and smooth (i.e., C∞) coefficients A(·), a0(·) in (1.1).

The nonsmooth case, i.e., discontinuous A(·), a0(·), Lipschitz Γ̂N , is analyzed in [8].
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2. Two-scale regularity

Uniform control of the kernel φ(y, ε, t) in (1.17) in terms of ε and t implies two-scale regularity results on uε(x).
The key is to interpret uε(x) as a map from a Sobolev-space in the “slow variable” x into the “fast variable”
y = x/ε. More precisely, uε(x) = Uε(x, x/ε), where Uε(x, y) is an element of the Bochner-spaceHr(Ω, Hs

per(Q̂))
for r, s ≥ 0 depending on the regularity of the coefficients and on the data f and, more importantly, where the
ε-dependence of Uε(x, y) is smooth. We establish the two-scale regularity by uniform (in t) estimates of the
kernel φ obtained in Propositions 2.3, 2.4 below. To keep technicalities minimal, we consider here only the case
when the unit cell problem admits maximal elliptic regularity. If this is not so, all assertions below have natural
analogs in a scale of weighted spaces [8].

Our proof uses the the absence of boundaries and is based on a Fourier integral representation of uε. Anal-
ogous representations and two-scale regularity can be obtained e.g. for problems (1.1) in a half-space or in
other “canonical” domains Ω aligned with the pavement of cells [12] (if, however, ∂Ω is non-aligned with the
pavement and near corners and edges, scale separation in uε no longer holds and our two-scale FEM must be
coupled locally with a standard FEM that allows full scale resolution near these areas).

2.1. Two scale shift theorem

Theorem 2.1. Assume that A(·), a0(·) are smooth and 1-periodic in y = x/ε ∈ Q̂. Then, for f ∈ Hk
comp(R

n)
(k ≥ 0), the solution uε(x) of (1.1) on Ωε

∞ can be written as uε(x) = Uε(x, y)|y=x/ε, x ∈ Ωε
∞, where Uε(x, y)

satisfies the two-scale regularity estimate

‖Uε‖Hr(Rn,Hs
per(

bQ)) ≤ C(k) ‖f‖Hr+s−1(Rn) (2.1)

provided r + s ≤ k + 1, r, s ≥ 0, and

‖ε−1∇yU
ε‖Hr(Rn,Hs−1

per ( bQ)) ≤ C(k) ‖f‖Hr+s−1(Rn) (2.2)

provided r+ s ≤ k+ 1, r, s− 1 ≥ 0. Here, C(k) is independent of ε, but depends on r+ s (see Rem. 3.16 ahead
for this dependence).

Proof. The proof is based on the Fourier-Bochner integral representation (1.11) of the solution uε(x) =
U ε(x, x/ε) and on the two-scale regularity estimates on the Fourier-Bochner integral kernel in Propositions 2.3,
2.4 below which are uniform in ε and t. For multiindices α, β with |α| ≤ r, |β| ≤ s, the mixed derivative (in the
sense of distributions) Dα

xD
β
yU

ε(x, y) can be interpreted as mapping L2
per(Q̂) into L2(Rn). More precisely, for

arbitrary ϕ ∈ L2
per(Q̂), 〈Dα

xD
β
yU

ε(x, ·), ϕ〉L2
per(

bQ)×L2
per(

bQ) is the inverse Fourier transform of a L2(Rn) function

〈
Dα

xD
β
yU

ε(x, y), ϕ
〉

L2
per(

bQ)×L2
per(

bQ)
=

1
(2π)n/2

∫
Rn

eit·xf̂(t)(it)α
〈
Dβ

yφ(y, ε, t), ϕ(y)
〉

L2
per(

bQ)×L2
per(

bQ)
dt.

By Parseval’s relation then, the L2(Rn)-norm of
〈
Dα

xD
β
yU

ε(x, y), ϕ
〉

L2
per(

bQ)×L2
per(

bQ)
is equal to

∥∥∥〈Dα
xD

β
yU

ε(x, y), ϕ〉L2
per(

bQ)×L2
per(

bQ)

∥∥∥
L2(Rn)

=
∥∥∥(it)αf̂(t)〈Dβ

yφ(y, ε, t), ϕ(y)〉L2
per(

bQ)×L2
per(

bQ)

∥∥∥
L2(Rn)

.

By (2.7) ahead in Propositions 2.3, 2.4, respectively, there exists a positive constant C > 0 independent of ε, t
and of the test function ϕ, such that for all t ∈ R

n∣∣∣〈Dβ
yφ(y, ε, t), ϕ(y)〉L2

per(
bQ)×L2

per(
bQ)

∣∣∣ ≤ C(1 + |t|)|β|−1‖ϕ‖L2( bQ). (2.3)
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Hence, by Parseval’s identity again,∥∥∥〈Dα
xD

β
yU

ε(x, y), ϕ〉L2
per(

bQ)×L2
per(

bQ)

∥∥∥
L2(Rn)

≤ C‖f‖Hr+s−1(Rn) ‖ϕ‖L2( bQ) ,

which proves (2.1). Proceeding in a similar fashion, by the uniform bounds on the derivatives of the integral
kernel in (2.17) one can prove the two scale regularity estimate on the gradient of the solution in (2.2). 2

It therefore remains to analyze the kernel φ, i.e., to prove (2.3).

2.2. Regularity of the Fourier-Bochner integral kernel

Lemma 2.2. Under the assumptions on A(·) and a0(·) in (1.2, 1.3), there exists a positive constant C > 0
independent of ε and t such that for ε = 1/M , M ∈ N:

‖φ‖0, bQ ≤ C(1 + |t|)−1 and ‖ε−1∇yφ‖0, bQ ≤ C. (2.4)

Proof. The key observation is that χ(x, ε, t) := it ψ(x, ε, t) ∈
(
H1

−ν(Ω∞
ε )
)n solves

−∇x ·
(
A
(x
ε

)
∇xχ (x, ε, t)

)
+ a0

(x
ε

)
χ(x, ε, t) = iteit·x in Ω∞

ε ,

n ·A
(x
ε

)
∇xχ(x, ε, t) = 0 on Γ∞

ε (if nonempty) ,

and for ν ∈ (0, ν0) the ‖ · ‖(H1
ν(Ω∞

ε ))∗ norm of the right-hand side is uniformly bounded with respect to t and ε∥∥iteit·x∥∥
(H1

ν(Ω∞
ε ))∗ ≤ C(ν, n).

Therefore, ‖χ(x, ε, t)‖1,−ν ≤ C
∥∥iteit·x∥∥

(H1
ν (Ω∞

ε ))∗ ≤ C(ν, n) and

‖ψ(x, ε, t)‖1,−ν ≤ C(1 + |t|)−1,

with C > 0 depending only on γ and ν. Then

‖φ‖2
0, bQ

=
∫
bQ

|φ(y, ε, t)|2dy = ε−n

∫
ε bQ

∣∣∣φ(x
ε
, ε, t

)∣∣∣2 dx

=
∑

k∈{0,1,...,M−1}n

∫
ε( bQ+k)

∣∣∣φ(x
ε
, ε, t

)∣∣∣2 e−2ν|x|e2ν|x|dx

≤ C‖ψ(x, ε, t)‖2
0,−ν

≤ C(1 + |t|)−2.

(2.5)

We obtain estimates for ‖ε−1∇yφ‖0, bQ by a similar argument:∫
bQ

∣∣ε−1∇yφ(y, ε, t)
∣∣2 dy =

∫
ε bQ

∣∣∣ε−1∇yφ
(x
ε
, ε, t

)∣∣∣2 ε−ndx =
∫
ε bQ

∣∣∣∇xφ
(x
ε
, ε, t

)∣∣∣2 ε−ndx

=
∑

k∈{0,1,...,M−1}n

∫
ε( bQ+k)

∣∣∣∇xφ
(x
ε
, ε, t

)∣∣∣2 e−2ν|x|e2ν|x|dx

≤ C
(
1 + |t|2

)
‖ψ(·, ε, t)‖2

1,−ν ≤ C. 2
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We now bound higher order norms of φ and ψ. To this end, we discuss two cases separately: Γ̂N = ∅, Q̂ = [0, 1]n

and Γ̂N 6= ∅, Γ̂N ∈ C∞, Q̂ ⊂ [0, 1]n.

2.2.1. Case Q̂ = [0, 1]n and Γ̂N = ∅
Recall that φ = φ(y, ε, t) ∈ H1

per(Q̂) solves the unit-cell problem

L(ε, t, y; ∂y)φ := −(it+ ε−1∇y)>(A(y)(it+ ε−1∇y)φ) + a0(y)φ = 1 in Q̂ = [0, 1]n, (2.6)

with periodic, uniformly bounded coefficients A ∈ L∞(Q̂)n×n
sym , a0 ∈ L∞(Q̂).

Proposition 2.3. Assume that a0 ∈ W k−1, ∞
per (Q̂) and A ∈ W k−1,∞

per (Q̂)n×n
sym (k ≥ 1). Then φ ∈ Hk

per(Q̂) and
the following (uniform in t and ε) estimates hold

‖φ‖L2( bQ) ≤ C(1 + |t|)−1, |φ|Hk( bQ) ≤ Cε(1 + ε|t|)k−1, for k ≥ 1 (2.7)

with a constant C = C(k) > 0 depending only on k, ‖A‖W k−1, ∞( bQ) and ‖a0‖W k−1, ∞( bQ).

Proof. (2.7) for k = 1 is just the statement of Lemma 2.2. For k ≥ 2 the proof is done by induction with respect
to k. We use the notation ψ(k)(y) = (itε+ ∇y)kφ(y, ε, t) and we mean by this any k-th order derivative of φ of
type

∏n
j=1(itjε+ ∂yj )kjφ, with k1 + · · · + kn = k. From (2.6) we obtain bounds for ψ(0) and ψ(1) in terms of ε

and the (lower) coefficient bounds (A, a0 ≥ γ > 0)

∥∥∥ψ(0)
∥∥∥2

0, bQ
≤ 1
γ
,
∥∥∥ψ(1)

∥∥∥2

0, bQ
≤ ε2

γ
· (2.8)

By Lemma 2.2, the L2(Q̂)-estimate for ψ(0) in (2.8) can be improved to∥∥∥ψ(0)
∥∥∥

0, bQ
≤ C(1 + |t|)−1. (2.9)

To establish the assertion for k = 2 assume that a0 ∈ W 1,∞
per (Q̂) and A ∈ W 1,∞

per (Q̂)n×n
sym . Since (2.6) holds in

Rn and the coefficients A(·), a0(·) are in W 1,∞
per (Q̂), we may apply the interior regularity theory and deduce

that φ ∈ H2
loc(R

n). Apply (itrε+ ∂r) to (2.6), multiply it by v ∈ H1(Q̂) and integrate by parts. It follows that
ψr := (itrε+ ∂r)φ ∈ H1

loc(R
n) satisfies

Φ(ε, t)[ψr, v] = Lr(v) + I
bΓper

, (2.10)

where the bilinear form Φ(ε, t)[·, ·] and the linear functional Lr in (2.10) are given by

Φ(ε, t)[ψ, v] =
∫
bQ

{
A(y)(itε+ ∇y)ψ · (itε+ ∇y)v + ε2a0(y)ψv

}
dy

and

Lr(v) = itrε
3

∫
bQ

v(y) dy − ε2
∫
bQ

∂ra0(y)φv(y) dy −
∫
bQ

∂rA(y)(itε+ ∇y)φ · (itε+ ∇y)v dy,
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respectively, and the boundary integral I
bΓper

is given by

I
bΓper

=
∫

bΓper=∂ bQ

n · (itrε+ ∂r)[A(y)(itε+ ∇y)φ(y)]v(y) dsy

=
∫

bΓper

n · ∂r [A(y)(itε+ ∇y)φ(y)] v(y) dsy

=
∫

bΓper

nr (A(y)(itε+ ∇y)φ(y)) · (itε+ ∇y)v(y) dsy.

If v ∈ C∞
per

(
Q̂
)
, then I

bΓper
vanishes. In fact, it turns out that ψr ∈ H1

per

(
Q̂
)

(i.e., φ ∈ H2
per

(
Q̂
)
) is the unique

weak solution of (2.10) for all v ∈ H1
per

(
Q̂
)
. Next, we take v = ψr in (2.10). Then, it follows that

γ ‖(itε+ ∇y)ψr‖2
0, bQ ≤ ε3|t| ‖ψr‖0, bQ + ε2‖∂ra0‖L∞( bQ)‖φ‖0, bQ‖ψr‖0, bQ

+ ‖∂rA‖L∞( bQ)‖(itε+ ∇y)φ‖0, bQ ‖(itε+ ∇y)ψr‖0, bQ .

Hence,

∥∥∥ψ(2)
∥∥∥

0, bQ
≤ 1
γ
‖A‖W 1, ∞( bQ)

∥∥∥ψ(1)
∥∥∥

0, bQ
+
[

1
γ

(
ε3|t|

∥∥∥ψ(1)
∥∥∥+ ε2 ‖a0‖W 1, ∞( bQ)

∥∥∥ψ(0)
∥∥∥

0, bQ

∥∥∥ψ(1)
∥∥∥

0, bQ

)]1/2

. (2.11)

By (2.8, 2.9) and (2.11) it follows that

∥∥∥ψ(2)
∥∥∥

0, bQ
≤ Cε(1 + ε|t|), (2.12)

with a positive constant C > 0 depending only on γ, ‖A‖W 1, ∞( bQ) and ‖a0‖W 1, ∞( bQ).

The assertion for k = 3 can be proved by assuming further that A(·) ∈ W 2,∞
per (Q̂)n×n

sym and a0(·) ∈W 2,∞
per (Q̂).

By standard interior regularity theory it follows that φ ∈ H3
loc(Q̂). Apply the differential operator (itrε +

∂r)(itsε+ ∂s) to (2.6), multiply the resulting equation by v ∈ H1(Q̂) and integrate by parts over Q̂. It follows
that ψrs := (itrε+ ∂r)(itsε+ ∂s)φ ∈ H1

loc(R
n) satisfies

Φ(ε, t)[ψrs, v] = Lrs(v) + I
bΓper

, (2.13)
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where

Lrs(v) = ε2(itrε)(itsε)
∫
bQ

v(y) dy

−
∫
bQ

[∂rA(y)(itε+ ∇y)(itsε+ ∂s)φ+ ∂sA(y)(itε+ ∇y)(itrε+ ∂r)φ] · (itε+ ∇y)v dy

−ε2
∫
bQ

[∂ra0(y)(itsε+ ∂s) + ∂sa0(y)(itrε+ ∂r)]φv dy

−
∫
bQ

∂2
rsA(y)(itε+ ∇y)φ · (itε+ ∇y)v − ε2

∫
bQ

∂2
rsa0(y)φv dy,

(2.14)

and the boundary integral I
bΓper

in (2.13) is given by

I
bΓper

=
∫

bΓper

n ·
[
(itrε+ ∂r)(itsε+ ∂s) (A(y)(itε+ ∇y)φ)

]
v dsy =

∫
bΓper

n ·
[
∂r∂s (A(y)(itε+ ∇y)φ)

]
v dsy.

If v ∈ C∞
per

(
Q̂
)
, then the boundary integral I

bΓper
in (2.13) vanishes and it turns out that ψrs ∈ H1

per

(
Q̂
)
, i.e.,

φ ∈ H3
per

(
Q̂
)
. Take v = (itrε+ ∂r)(itsε+ ∂s)φ in (2.13). It follows that

γ
∥∥∥ψ(3)

∥∥∥2

0, bQ
≤ ε4|t|2

∥∥∥ψ(2)
∥∥∥

0, bQ
+ 2 ‖A‖W 1, ∞( bQ)

∥∥∥ψ(2)
∥∥∥

0, bQ

∥∥∥ψ(3)
∥∥∥

0, bQ

+2ε2 ‖a0‖W 1, ∞( bQ)

∥∥∥ψ(1)
∥∥∥

0, bQ

∥∥∥ψ(2)
∥∥∥

0, bQ
+ ‖A‖W 2, ∞( bQ)

∥∥∥ψ(1)
∥∥∥

0, bQ

∥∥∥ψ(3)
∥∥∥

0, bQ

+ε2 ‖a0‖W 2, ∞( bQ)

∥∥∥ψ(0)
∥∥∥

0, bQ

∥∥∥ψ(2)
∥∥∥

0, bQ
.

Hence,

∥∥∥ψ(3)
∥∥∥

0, bQ
≤ 1
γ

(
2 ‖A‖W 1, ∞( bQ)

∥∥∥ψ(2)
∥∥∥

0, bQ
+ ‖A‖W 2, ∞( bQ)

∥∥∥ψ(1)
∥∥∥

0, bQ

)

+
[

1
γ

(
ε4|t|2

∥∥∥ψ(2)
∥∥∥

0, bQ
+ 2ε2 ‖a0‖W 1, ∞( bQ)

∥∥∥ψ(1)
∥∥∥

0, bQ

∥∥∥ψ(2)
∥∥∥

0, bQ

)
+ ε2 ‖a0‖W 2, ∞( bQ)

∥∥∥ψ(0)
∥∥∥

0, bQ

∥∥∥ψ(2)
∥∥∥

0, bQ

]1/2

.

By (2.8, 2.9) and (2.12) it follows immediately that∥∥∥ψ(3)
∥∥∥

0, bQ
≤ Cε(1 + ε|t|)2,

with C > 0 being a constant which depends only on γ, ‖A‖W 2, ∞( bQ), ‖a0‖W 2, ∞( bQ).
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For any k ≥ 3, one can easily see that ε−1‖ψ(k)‖0, bQ can be estimated analogously in terms of ε and t, the
dominant term coming from (|t|k−1‖ψ(k−1)‖0, bQ)1/2. Therefore,

ε−1
∥∥∥ψ(k)

∥∥∥
0, bQ

≤ C(‖A‖W k−1, ∞( bQ), ‖a0‖W k−1, ∞( bQ), k)(1 + ε|t|)k−1, for all k = 1, 2, . . . .

Recall that ψ(k) = (itε+ ∇y)kφ. It follows that

ε−1
∥∥Dkφ

∥∥
0, bQ

≤ C(1 + ε|t|)k−1, for all k = 1, 2, . . . . (2.15)

2

2.2.2. Case Q̂ ⊂ [0, 1]n, Γ̂N 6= ∅, Γ̂N ∈ C∞

By (1.17), φ ∈ H1
per(Q̂) solves

L(ε, t, y; ∂y)φ := −(it+ ε−1∇y)>(A(y)(it+ ε−1∇y)φ) + a0(y)φ = 1 in Q̂, (2.16a)

n ·A(y)(it+ ε−1∇y)φ = 0 on Γ̂N . (2.16b)

Proposition 2.4. Assume that a0 ∈ W k−1, ∞
per (Q̂) and A ∈ W k−1,∞

per (Q̂)n×n
sym (k ≥ 1). Then φ ∈ Hk

per(Q̂) and
the following estimates hold

‖φ‖L2( bQ) ≤ C(1 + |t|)−1,
∥∥ε−1∇yφ

∥∥
Hk−1( bQ)

≤ C(1 + ε|t|)k−1, (2.17)

with a constant C > 0 depending only on k, ‖A‖W k−1, ∞( bQ) and ‖a0‖W k−1, ∞( bQ), but independent of ε and t.

Proof. The inequality (2.17) for k = 1 is just the statement of Lemma 2.2. We prove (2.17) in the general case
by induction. Assume that k ≥ 2 and that (2.17) holds for k− 1. We write first (2.16a –2.16b) in the following
form: φ ∈ H1

per(Q̂) solves

−∇y · (A(y)∇yφ) = f(y) in Q̂

n · A(y)∇yφ = g(y) on Γ̂N ,

with

f(y) := ε2 − ε2a0(y)φ− ε2t>A(y)tφ+ 2iεt>A(y)∇yφ+ iεt> (∇y ·A(y))φ

g(y) := −iεn · A(y)tφ.

By standard elliptic regularity for Neumann problem it holds for all k ≥ 0∥∥∇k+1
y φ

∥∥
L2( bQ)

≤ C(k)
(
‖f‖Hk−1( bQ) + ‖g‖Hk−1/2(bΓN ) + ‖∇yφ‖Hk−1( bQ)

)
, (2.18)

with some constant C(k) > 0. Let us estimate now the Hk(Q̂) norm of ∇yφ

‖∇yφ‖Hk( bQ) ≤ C(k)
(
‖∇yφ‖Hk−1( bQ) +

∥∥∇k+1
y φ

∥∥
L2( bQ)

)
.
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We use the induction assumption and (2.18) to conclude

‖∇yφ‖Hk( bQ) ≤ Cε(1 + ε|t|)k−1 +
∥∥∥ε2 − ε2a0φ− ε2t>A(y)tφ+ 2iεt>A(y)∇yφ

+ iεt>(∇y · A(y))φ
∥∥∥

Hk−1( bQ)
+ ε ‖n · A(y)tφ‖Hk−1/2(bΓN )

≤ C(k)ε(1 + ε|t|)k. 2

2.3. Sharpness of the two-scale regularity

We consider 1-d problems, i.e., n = 1. Let us assume that f ∈ L2
per(0, 1) has the Fourier expansion f(x) =∑

k∈Z
fke2πikx. Assume further that a(·) is a 1-periodic, L∞ function and ε = 1/M , with M ∈ N∗. Let

uε(x) ∈ H1
0 (0, 1) be the solution of the following boundary value problem

− d
dx

(
a
(x
ε

) duε

dx

)
= f(x) in Ω = (0, 1), uε

∣∣∣∣
∂Ω

= 0.

Then, the solution uε(x) exhibits a “two-scale” behavior, in the sense that uε(x) = Uε(x, x/ε) and Uε(x, y) is
1-periodic in y and has certain regularity properties if seen as a mapping from x ∈ Ω into L2

per(Q̂).
We use the notation 〈g〉 to denote the mean value of the function g

〈g〉 =
∫
bQ

g(t) dt, Q̂ = (0, 1).

We introduce two further periodic functions

A(t) =

t∫
0

(
1
a(s)

− 〈1/a(·)〉
)

ds, Ã(t) =

t∫
0

(A(s) − 〈A〉) ds. (2.19)

Let Ap, p ∈ Z be the Fourier coefficients of A(·) ∈ H1
per(0, 1). With these definitions, we may write now

explicitly the expression for Uε(x, y)

Uε(x, y) = −f0
[
xεA(y) − ε2Ã(y) +

1
2
x2〈1/a(·)〉 − εx

(
1
2
〈1/a(·)〉 − 〈·/a(·)〉

)]

+D
(
εA(y) + x〈1/a(·)〉

)
+
∑
k∈Z∗

fk

2πik

(
εA(y) + x〈1/a(·)〉

)

−
∑
k∈Z∗

fk

2πik

{
e2πikxεA(y) +

〈1/a(·)〉
2πik

(e2πikx − 1)

−2πikε2
[ ∑

p∈Z

p 6=−kε

Ap
e2πi(kx+py) − 1

2πi(p+ kε)
+̇A−kε

x

ε

]}
,



TWO-SCALE FEM FOR HOMOGENIZATION PROBLEMS 549

and +̇ here means that the summation is done only over k ∈ (1/ε)Z∗. The constant D is given by

D =
1

〈1/a(·)〉

1∫
0

F (t)
a(t/ε)

dt, F (t) =

t∫
0

f(s) ds.

From this representation, we see from the terms in the sum
∑

k∈Z∗ for large k that the regularity ‖f‖Hr+s−1

in (2.1) and (2.2) is optimal. For simplicity, we assume s = 0. Then, it holds

Proposition 2.5. Assume that a(·) is smooth and 1-periodic in y = x/ε ∈ Q̂. Then, for f ∈ Hr−1
per (Ω) (r ≥ 0),

the solution uε(x) of (2.3) on Ω satisfies the two-scale regularity estimate (2.1, 2.2)

‖Uε‖Hr(Ω, L2
per(

bQ)) ≤ C(r)‖f‖Hr−1(Ω). (2.20)

Moreover, for all r ≥ 1 ∥∥ε−1∇yU
ε
∥∥

Hr−1(Ω, L2
per(

bQ))
≤ C(r)‖f‖Hr−1(Ω). (2.21)

The estimates (2.20–2.21) are sharp, in the sense that for ε sufficiently small, there exists a constant c = c(r) >
0, which does not depend on ε, such that for all r ≥ 1

c(r)‖f‖Hr−2(Ω) ≤ ‖Uε‖Hr(Ω, L2
per(

bQ)) +
∥∥ε−1∇yU

ε
∥∥

Hr−1(Ω, L2
per(

bQ))
.

Proof. For the proof we refer to Appendix A.

Remark 2.6. Careful inspection of the proof reveals that for r ≥ 1 the upper bounds in (2.20–2.21) have the
form C(r)‖f‖Hr−2(Ω) +C(ε, r)‖f‖Hr−1(Ω) with C(ε, r) > 0 depending on ε and vanishing with ε→ 0. We have
a slightly different situation as, e.g., for

−∆u = f in Ω, f ∈ Hr−2(Ω), u|∂Ω smooth

where ∂Ω is smooth and we have the sharp shift result: there exists C(r,Ω) > 0

‖u‖Hr(Ω) ≤ C(r,Ω)‖f‖Hr−2(Ω), r ≥ 1,

in the sense that for generic data, ‖u‖Hr(Ω) has a lower bound of the same type (c(r,Ω) > 0)

‖u‖Hr(Ω) ≥ c(r,Ω)‖f‖Hr−2(Ω).

In our case, however, the gap C(ε, r)‖f‖Hr−1(Ω) cannot be removed.

3. Rate of convergence of the two-scale FEM

In the previous section we saw that uniform regularity of uε(x) in dependence on ε could be properly
expressed in terms of the two-scale Sobolev spaces Hr(Rn, Hs

per(Q̂)). The two-scale Finite-Element spaces in
the Introduction are therefore natural for the discretization of homogenization problems. In the present section
we prove robust convergence estimates for these two-scale FEM under two-scale regularity hypothesis on uε(x).
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3.1. Preliminaries

Let Ω ⊂ Rn, Ω′ ⊂ Rn be two Lipschitz domains. For α, β ∈ Nn two multiindices we define the Sobolev spaces
Hα,β(Ω × Ω′) of mixed order on the product domain Ω× Ω′ as

Hα,β(Ω × Ω′) := {u ∈ L2(Ω × Ω′) : Dγ
xD

δ
zu ∈ L2(Ω × Ω′), ∀ γ ≤ α, δ ≤ β},

where γ ≤ α is understood componentwise. These are Hilbert spaces with respect to the norm

‖u‖2
Hα,β(Ω×Ω′) :=

∑
0≤γ≤α
0≤δ≤β

∥∥Dγ
xD

δ
zu
∥∥2

L2(Ω×Ω′) .

3.1.1. Traces in Sobolev spaces of mixed order

For a function f(·, ·) : Ω×Ω → C, we denote by (Rf)(x) = f(x, y)|y=x : Ω → C its restriction to the diagonal
{(x, y) ∈ Ω × Ω | x = y}.
Lemma 3.1. Let Ω = Ω′ := (0, 1)n and denote by 1 ∈ N

n the multiindex (1, . . . , 1). Then for any fixed pair of
multiindices α, β ∈ Nn with α + β = 1 the restriction operator R : Hα,β(Ω × Ω) → L2(Ω) is continuous, i.e.,
there exists a constant C = C(n) > 0 such that

‖Rf‖L2(Ω) ≤ C(n)‖f‖Hα,β(Ω×Ω), ∀ f ∈ Hα,β(Ω × Ω).

Proof. Without loss of generality we present the proof for the case n = 2 only. By making eventually a change
of coordinates we may assume that α = 1 and β = 0, where we denote by 0 the multiindex (0, . . . , 0) ∈ Nn. We
may restrict the proof to the case when f ∈ C∞(Ω × Ω), we can use then a density argument to conclude for
general f ∈ Hα,β(Ω × Ω). Let ϕ ∈ C∞

0 (R) be such that

0 ≤ ϕ(s) ≤ 1, ∀ s ∈ R, ϕ(0) = 1, suppϕ ⊂ (−1, 1).

Then,

f(x, x) =

x1∫
0

∂x1f(t, x2, x) dt+ f(0, x2, x)

=

x1∫
0

x2∫
0

∂2
x1x2

f(t, s, x) ds dt+

x1∫
0

(∂x1f(t, 0, x)ϕ(0) − ∂x1f(t, 1, x)ϕ(1)) dt+ f(0, x2, x)

=

x1∫
0

x2∫
0

∂2
x1x2

f(t, s, x) ds dt+

x1∫
0

1∫
0

(
∂2

x1x2
f(t, s, x)ϕ(s) + ∂x1f(t, s, x)ϕ′(s)

)
ds dt+ f(0, x2, x).

Therefore,

‖Rf(·)‖2
0, Ω ≤ C

 ∑
0≤αj≤1

‖Dα
xf(·, ·)‖2

0, Ω×Ω +
∫
Ω

|f(0, x2, x)|2dx

 .

It remains to estimate
∫
Ω

|f(0, x2, x)|2dx. To this end, we proceed as before

f(0, x2, x) = −
x2∫
0

1∫
0

(
∂2

x1x2
f(t, s, x)ϕ(t) + ∂x2f(t, s, x)ϕ′(t)

)
dt ds−

1∫
0

(∂x1f(s, 0, x)ϕ(s) + f(s, 0, x)ϕ′(s)) ds.
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The second integral term can be written as

−
1∫

0

(∂x1f(s, 0, x)ϕ(s) + f(s, 0, x)ϕ′(s)) ds =

1∫
0

ϕ(s)

1∫
0

(
∂2

x1x2
f(s, t, x)ϕ(t) + ∂x1f(s, t, x)ϕ′(t)

)
dt

+ ϕ′(s)

1∫
0

(∂x2f(s, t, x)ϕ(t) + f(s, t, x)ϕ′(t)) dt

 ds.

Summing up, we obtain that ∫
Ω

|f(0, x2, x)|2dx ≤ C(n)
∑

0≤αj≤1

‖Dα
xf(·, ·)‖0, Ω×Ω . 2

Remark 3.2. The trace result of Lemma 3.1 remains true if the domain Ω is replaced with any subdomain
Q̂ satisfying the following condition. For all x ∈ Q̂ there is a x∗ ∈ Q̂ such that bx∗1, x1c × bx∗2, x2c ⊂ Q̂ and
|x∗1 − x1|, |x∗2 − x2| ≥ c for some positive constant c independent of x, x∗. We denoted here by ba, bc the set of
all points between a and b

ba, bc =

{
[a, b] if a ≤ b

[b, a] else.

This condition is satisfied if e.g. we assume that Q̂ is given as a finite union of patches Q̂ = ∪I
i=1Q̂i, I finite,

such that Q̂i ∩ Q̂j = ∅ for all i 6= j and each subdomain Q̂i = Fi((0, 1)n) is the image of the unit n-simplex

(0, 1)n through a C∞ diffeomorphism Fi : [0, 1]n → Q̂i. Then Rf admits the following representation

Rf(x) = f(x1, x2, x)ϕ(1) − f(x∗1, x2, x)ϕ(0)

=

1∫
0

{
(∂x1f)(x∗1 + s(x1 − x∗1), x2, x)(x1 − x∗1)ϕ(s) + f(x∗1 + s(x1 − x∗1), x2, x)ϕ′(s)

}
ds

=

x1∫
x∗
1

{
(∂x1f)(s, x2, x)ϕ

(
s− x∗1
x1 − x∗1

)
+ f(s, x2, x)ϕ′

(
s− x∗1
x1 − x∗1

)
1

x1 − x∗1

}
ds.

Equivalently,

Rf(x) =

x1∫
x∗
1

x2∫
x∗
2

{
(∂2

x1x2
f)(s, t, x)ϕ

(
s− x∗1
x1 − x∗1

)
ϕ

(
t− x∗2
x2 − x∗2

)

+(∂x1f)(s, t, x)ϕ
(
s− x∗1
x1 − x∗1

)
ϕ′
(
t− x∗2
x2 − x∗2

)
1

x2 − x∗2

+(∂x2f)(s, t, x)ϕ′
(
s− x∗1
x1 − x∗1

)
ϕ

(
t− x∗2
x2 − x∗2

)
1

x1 − x∗1

+f(s, t, x)ϕ′
(
s− x∗1
x1 − x∗1

)
ϕ′
(
t− x∗2
x2 − x∗2

)
1

x1 − x∗1

1
x2 − x∗2

}
dsdt.
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It follows now that

‖Rf‖0,bQ ≤ C
1
c2

∑
0≤αj≤1

‖Dα
xf(·, ·)‖0, bQ× bQ.

3.1.2. Polynomial approximation results

In the two-scale error estimates below, we shall require the following error bounds for the tensor product
interpolant (unlike standard H1-estimates, here also mixed first derivatives are bound).

Let | · |Hk(bΩ) denote the Sobolev seminorm of order k on Ω̂ = (−1, 1) given by

|û|Hk(bΩ) := ‖û(k)‖L2(bΩ), ∀ û ∈ Hk(Ω̂).

Lemma 3.3. Let û ∈ Hk+1(Ω̂) for some k ≥ 0. Then, for each p ≥ 1, 0 ≤ k ≤ p, there exists a polynomial
interpolant πpû ∈ Sp(Ω̂), with Sp(Ω̂) denoting the space of polynomials of degree at most p on Ω̂, such that it
holds

‖û′ − (πpû)′‖2
L2(bΩ)

≤ (p− k)!
(p+ k)!

|û|2
Hk+1(bΩ)

‖û− πpû‖2
L2(bΩ)

≤ 1
p(p+ 1)

(p− k)!
(p+ k)!

|û|2
Hk+1(bΩ)

.

Proof. One takes πpû such that πpû(±1) = û(±1) and (πpû)′ is the Legendre series of û′ truncated after the
Legendre polynomial Lp−1. 2

In the multi-dimensional case, we denote by Π̂p := π
(x1)
p ⊗· · ·⊗π(xn)

p (n = 2, 3) the tensor product polynomial
interpolant of degree p in the reference element K̂ := (−1, 1)n.

Lemma 3.4. Let n = 2, 3 and let Π̂p = π
(x1)
p ⊗ · · · ⊗ π

(xn)
p denote the tensor product polynomial interpolant of

degree p (p ≥ 1) in each variable in K̂ = (−1, 1)n. Then, for all û ∈ Hk+1(K̂), n− 1 ≤ k ≤ p, it holds∑
0≤αj≤1

‖Dα(û − Π̂pû)‖L2( bK) ≤ CΦn(p, k)‖Dk+1û‖L2( bK), (3.1)

where Φn(p, k) is given by

Φn(p, k) =

√
(p− k + n− 1)!
(p+ k − n+ 1)!

≤ Cp−(k−n+1), for p→ ∞

and C > 0 is a constant independent of p.

The proof of this lemma by a tensor product argument is given in Appendix B. The loss of pn in (3.1) is
due to the control of mixed first derivatives of the error. This control is needed for the application of the trace
operator R below.

Remark 3.5. In the case when n = 3, p = 1 and u ∈ H1(K̂), with H1(K̂) being given by

H1(K̂) ⊂ H1(K̂) :=
{
û | Dαû ∈ L2(K̂) ∀α such that max

j
αj ≤ 1

}
, 1 = (1, 1, 1)
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K̂,
̂̂T h

Fi
Q̂i, T̂h,i

Γ̂per

Γ̂N

Figure 1. Unit cell domain Q̂ as union of four patches Q̂i, i = 1, . . . , 4, and the boundaries Γ̂N , Γ̂per.

it holds that ∑
0≤αj≤1

‖Dα(û − Π̂1û)‖L2( bK) ≤ C
∑

0≤αj≤1
|α|≥1

‖Dαû‖L2( bK). (3.2)

3.1.3. Definition of the FE spaces

We assume that the domain Ω is Ω = (0, 1)n and we take TH to be a quasiuniform triangulation of Ω of
affine quadrilateral elements of size H . We take as macro FE space in Ω the standard affine FE space Sp(Ω, TH)
defined as Sp(Ω, TH) = {u ∈ H1(Ω) | u|K ◦ F−1

K ∈ Sp(K̂) ∀K ∈ TH}, where we denoted by FK : K̂ → K the
affine element map associated with element K.

We introduce next the micro FE space in Q̂, i.e. the FE space with respect to the fast variable in the
unit-cell. If Q̂ = (0, 1)n, we also take T̂h as a quasiuniform mesh in Q̂ of axiparallel quadrilaterals.

Remark 3.6. For the case when the unit-cell domain Q̂ has e.g. interior holes the “micro” triangulation T̂h

is obtained as follows. First one assumes the existence of a partition Q̂ = ∪I
i=1Q̂i (I < ∞ fixed) of Q̂ in a

finite number of quadrilateral patches Q̂i. Each patch Q̂i = Fi((0, 1)n) is image of the reference domain (0, 1)n

via the C∞ diffeomorphism Fi : (0, 1)n → Q̂i. These mappings satisfy also a compatibility condition along the

common interfaces in the sense that Fi ◦F−1
i′ = Id on Q̂i ∩ Q̂i′ for all i, i′ = 1, . . . , I (such Fi can be constructed

by blending, see e.g. [13]). The mesh T̂h in Q̂ has to be periodic and is given as union of patch meshes

T̂h = ∪I
i=1T̂h,i, T̂h,i = Fi(

̂̂T h)

with ̂̂T h being a uniform, affine quadrilateral mesh in the reference domain (0, 1)n. Then Sµ
per(Q̂, T̂h,F) is the

finite element space of all piecewise mapped polynomials of degree µ:

Sµ
per(Q̂, T̂h,F) =

{
u ∈ H1

per(Q̂) |
(
u|

bQi
◦ Fi

)
|
b

bK
∈ Sµ( ̂̂K) ∀ ̂̂K ∈ ̂̂T h

}
·
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We take as FE space Vε
N the space of traces of the two-scale FE space

Sp(Ω, TH ;Sµ
per(Q̂, T̂h,F)) =

{
U(x, y) | ∀K ∈ T : U(FK(x̂), y) is polynomial of degree p w.r. to x̂

in K̂ and continuous, periodic p.w. polynomial with respect to ̂̂T h in y ∈ Q̂

}
·

(3.3)

More specifically,

Vε
N = RεSp(Ω, TH ;Sµ

per(Q̂, T̂h,F)), (3.4)

where the trace operator Rε is given by (RεU)(x) = U(x, y)|y= x
ε
. Note that the elements of the FE space Vε

N

have the form

uε
FE(x) =

∑
i,I

Ni(x)φI

(x
ε

)
∀x ∈ Ωε

with shape functionsNi(·) ∈ Sp(Ω, TH), and φI(·) ∈ Sµ
per

(
Q̂, T̂h,F

)
. Note also thatNi(·) are defined everywhere

in Ω, whereas φI( ·
ε) are defined only in Ωε.

3.1.4. Finite element approximation results

We start with finite dimensional approximations with respect to the macro FE space Sp(Ω, TH) in Ω = (0, 1)n,
n = 2, 3. Let Πp,TH denote the piecewise polynomial interpolant of degree p ≥ 1 given by Πp,THu|K =
Π̂p(u|K ◦ FK) ◦ F−1

K in each element K ∈ TH with FK being the associated affine element mapping. Affine
transformations of the elements in addition to the local estimates from Lemma 3.4 give:

Lemma 3.7. For any u ∈ H2(Ω), Ω ⊂ Rn, n = 2, 3,

‖u− Πp,THu‖L2(Ω) +H |u− Πp,THu|H1(Ω) ≤ C

( ∑
K∈TH

H2(sK+1)Φn(p, sK)|u|2HsK+1(K)

)1/2

(3.5)

for n− 1 ≤ sK ≤ p such that the right hand side in (3.5) is finite. The constant C > 0 is independent of p, sK

and H.

Remark 3.8. If n = 3 and p = 1, then for all u ∈ H1(Ω)

‖u− Π1,THu‖L2(Ω) +H |u− Π1,THu|H1(Ω) ≤ CH2|u|H1(Ω), (3.6)

where C > 0 is independent of h and we denoted by |u|2H1(Ω) :=
∑

0≤αj≤1
|α|>0

‖Dαu‖2
L2(Ω).

Remark 3.9. Estimates (3.5) for the interpolant Πp,TH are explicit in H , p and sK . If only H-dependence is
of interest, other interpolants, e.g., of Clément type, could be used.

In order to obtain similar FE approximation results with respect to the FE space Sµ
per

(
Q̂, T̂ ,F

)
in Q̂ we

define the piecewise polynomial interpolant Iµ,bTh
∈ Sµ

per

(
Q̂, T̂ ,F

)
as given by

Iµ,bTh
u|

bQi
=
(
Π

µ,
b

bT h

(
u|

bQi
◦ Fi

))
◦ F−1

i .

Then a similar estimate as in Lemma 3.7 for the interpolation error u− Iµ,bTh
u holds.
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Lemma 3.10. For n = 2, 3 and for u ∈ H2
per

(
Q̂
)

there exists a Q̂ periodic interpolant Iµ,bTh
u ∈ Sµ

per

(
Q̂, T̂ ,F

)
such that

∥∥∥u− Iµ,bTh
u
∥∥∥

L2( bQ)
+ h|u− Iµ,bTh

u|H1( bQ) ≤ Chmin(µ,s)+1Φn(µ, s)
I∑

i=1

‖ûi‖Hs+1( bQi)
, ûi = u|

bQi
(3.7)

for all n− 2 ≤ s, µ such that the right-hand side in (3.7) is finite. The constant C > 0 is independent of µ, s
and h. If n = 3 and µ = 1, then for all u ∈ H1(Ω) there holds∥∥∥u− I1,bTh

u
∥∥∥

L2(Ω)
+ h|u− I1,bTh

u|H1(Ω) ≤ Ch2|u|H1(Ω). (3.8)

Proof. The result is a direct consequence of the definition of the interpolation operator Iµ,bTh
with respect to

Sµ
per

(
Q̂, T̂h,F

)
and Lemma 3.7. We prove only the estimate (3.7) since (3.8) can be obtained similarly.

∥∥∥u− Iµ,bTh
u
∥∥∥2

L2( bQ)
+ h2

∣∣∣u− Iµ,bTh
u
∣∣∣2
H1( bQ)

=
I∑

i=1

∥∥∥u− Iµ,bTh
u
∥∥∥2

L2( bQi)
+ h

∣∣∣u− Iµ,bTh
u
∣∣∣2
H1( bQi)

≤ C
∑

i

∥∥∥u ◦ Fi − Iµ,bTh
(u ◦ Fi)

∥∥∥2

L2([0,1]n)

+ h2
∣∣∣u ◦ Fi − Iµ,bTh

(u ◦ Fi)
∣∣∣2
H1([0,1]n)

= C
∑

i

∥∥∥u ◦ Fi − Π
µ,
b

bT h

(u ◦ Fi)
∥∥∥2

L2([0,1]n)

+ h2
∣∣∣u ◦ Fi − Π

µ,
b

bT h

(u ◦ Fi)
∣∣∣2
H1([0,1]n)

≤ Ch2min(s,µ)+2Φ2
n(µ, s)

∑
i

∥∥∥u|
bQi

∥∥∥2

Hs+1( bQi)
. 2

3.2. Two-scale finite element convergence

By (1.9), it holds

‖uε − uε
FE‖H1(Ωε) ≤ C infv∈Vε

N
‖uε − v‖H1(Ωε).

The goal of this section is to estimate the approximation error for the two-scale FE space Vε
N (3.3–3.4) and to

obtain robust estimates with respect to ε for H/ε ≥ 1.
We have seen that the solution uε may be interpreted as uε(·) = RUε(·, ·/ε), where Uε(·, ·) is defined on

Ω× Q̂. This suggests to use hp-interpolants in Ω (not Ωε!) and Q̂ to approximate Uε in Ω× Q̂ and take traces.
We define the two-scale interpolant Uε

I of Uε in Sp(Ω, TH ;Sµ
per(Q̂, T̂h,F)) as given by

Uε
I |K ◦ FK =

(
Π̂x̂

p ⊗ Iy

µ,bTh

)
(Uε|K ◦ FK) ∀K ∈ TH ,
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with FK : K̂ 7→ K being the affine element map of K. Here Π̂x̂
p ⊗Iy

µ,bTh
represents the tensor product interpolant

between Π̂x̂
p , the p interpolant in the reference element K̂, and Iy

µ,bTh
, the Sµ

per(Q̂, T̂h,F) interpolant in H1
per(Q̂).

The interpolation error eε
I has the form eε

I(·) := REε
I(·, ·/ε), in which Eε

I = Uε −Uε
I in Ω×Ω∞

ε . Let us denote
by Uε,K(x̂, y) := Uε(FK(x̂), y).

If H denotes the mesh size of the quasiuniform “macroscopic” triangulation on Ω and h is the mesh size of
the quasiuniform “micro” triangulation on the unit cell Q̂, we obtain:

Proposition 3.11. Assume that n = 2. For p, µ, k, s ≥ 1 and H/ε ∈ N in (3.3–3.4) it holds

‖eε
I‖L2(Ωε) ≤ C

(
Hmin(p,k)+1Φn(p, k)‖Uε‖Hk+1(Ω; L2

per(
bQ)) + hmin(µ,s)+1Φn(µ, s)‖Uε‖Hn(Ω; Hs+1

per ( bQ))

)
,

where C > 0 is a positive constant independent of p, µ, k, s and ε.

Proof. Let K = FK

(
K̂
)
∈ TH be an element of the “macro” triangulation, affine image of the reference element

K̂ under the element mapping FK . We split the interpolation error as

Eε
I(FK(x̂), y) := Uε,K(x̂, y) − Π̂x̂

pU
ε,K(x̂, y) + Π̂x̂

pU
ε,K(x̂, y) −

(
Π̂x̂

p ⊗ Iy

µ,bTh

)
Uε,K(x̂, y).

We estimate first the L2 norm of the error on K and apply the trace result in Lemma 3.1 to move on full two
scale interpolation error estimates

∫
K∩Ωε

|eε
I(x)|2 dx = εn

∑
m∈Zn:ε( bQ+m)⊂K

∫
bQ

∣∣∣∣∣Eε
I(ε(z +m), y)

∣∣∣∣
z=y

∣∣∣∣∣
2

dz

≤ Cεn
∑

m∈Zn:ε( bQ+m)⊂K

∑
0≤αj≤1

ε2|α|
∫

bQ× bQ

|(Dα
xE

ε
I)(ε(z +m), y)|2 dz dy

= C
∑

0≤αj≤1

ε2|α|
∫

(K∩Ωε)× bQ

|Dα
xE

ε
I(x, y)|2 dxdy

≤ C
∑

0≤αj≤1

ε2|α|
∫

K× bQ

|Dα
xE

ε
I(x, y)|2 dxdy

≤ CHn
∑

0≤αj≤1

(
ε

H

)2|α| ∫
bK× bQ

|Dα
x̂E

ε
I(FK(x̂), y)|2 dx̂dy

≤ CHn (IK + IIK) ,

where

IK =
∫

bK× bQ

∑
0≤αj≤1

∣∣∣Dα
x̂

(
Uε,K(x̂, y) − Π̂x̂

pU
ε,K(x̂, y)

)∣∣∣2 dx̂dy

IIK =
∫

bK× bQ

∑
0≤αj≤1

∣∣∣Dα
x̂

(
Π̂x̂

pU
ε,K(x̂, y) −

(
Π̂x̂

p ⊗ Iy

µ,bTh

)
Uε,K(x̂, y)

)∣∣∣2 dx̂dy.
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By Lemma 3.4, the “macro” error IK can be estimated as follows

IK =
∫

bK× bQ

∑
0≤αj≤1

∣∣∣Dα
x̂

(
Uε,K(x̂, y) − Π̂x̂

pU
ε,K(x̂, y)

)∣∣∣2 dx̂dy

≤ CΦ2
n(p, k)

∫
bK× bQ

∣∣Dk+1
x̂ Uε,K(x̂, y)

∣∣2 dx̂dy

≤ CH2(k+1)Φ2
n(p, k)

∫
bK× bQ

∣∣(Dk+1
x Uε

)
(FK(x̂), y)

∣∣2 dx̂dy

≤ CH2(k+1)−nΦ2
n(p, k)

∫
K× bQ

∣∣(Dk+1
x Uε

)
(x, y)

∣∣2 dxdy.

Applying now the error estimates in Lemma 3.10 for the interpolation error in the “micro” FE space
Sµ

per

(
Q̂, T̂h,F

)
, the error IIK in the fast variable can be estimated as follows

IIK =
∫

bK× bQ

∑
0≤αj≤1

∣∣∣Dα
x̂

(
Π̂x̂

pU
ε,K(x̂, y) −

(
Π̂x̂

p ⊗ Iy

µ,bTh

)
Uε,K(x̂, y)

)∣∣∣2 dx̂ dy

≤ C
∑

0≤αj≤1

∫
bK× bQ

∣∣∣D|α|
x̂

(
Uε,K(x̂, y) − Iy

µ,bTh
Uε,K(x̂, y)

)∣∣∣2 dx̂ dy

≤ CH−n
∑

0≤αj≤1

∫
K× bQ

∣∣∣D|α|
x

(
Uε(x, y) − Iy

µ,bTh
Uε(x, y)

)∣∣∣2 dxdy

≤ CH−nh2min(µ,s)+2Φ2
2(µ, s)‖Uε‖2

Hn(K; Hs+1
per ( bQ))

.

Summing up over all elements K ∈ TH we obtain that

‖eε
I‖L2(Ωε) ≤ C

(
Hmin(p,k)+1Φn(p, k)‖Uε‖Hk+1(Ω; L2

per(
bQ)) + hmin(µ,s)+1Φn(µ, s)‖Uε‖Hn(Ω; Hs+1

per ( bQ))

)
. 2

A similar result can be derived now for the energy norm of the two scale interpolation error. To this end, we
estimate the L2(Ω)-norm of ∇xeε

I in terms of the regularity of the data and of the “macro”, resp. “micro”
triangulations .

Proposition 3.12. Assume that n = 2, k, s ≥ 1 and H/ε ∈ N. Then it holds for any p, µ ≥ 1

‖∇xeε
I(x)‖L2(Ωε) ≤ CHmin(p,k)Φn(p, k)

(
‖ε−1∇yU

ε‖Hk(Ω; L2
per(

bQ)) + ‖Uε‖Hk+1(Ω; L2
per(

bQ))

)
+Chmin(µ,s)Φn(µ, s)

(
‖ε−1∇yU

ε‖Hn(Ω; Hs
per(

bQ)) + ‖Uε‖Hn(Ω;Hs+1
per ( bQ)

)
.

(3.9)

Proof. Let K ∈ TH be an arbitrary element of the “macro” triangulation and consider the H1(K∩Ωε) seminorm
of the interpolation error eε

I on K ∩ Ωε. Then it holds

‖∇xeε
I(x)‖2

L2(K∩Ωε) =
∫

K∩Ωε

|∇xeε
I(x)|2 dx =

∫
K∩Ωε

∣∣∣∣∣((∇x + ε−1∇y)Eε
I
)
(x, y)

∣∣∣∣
y= x

ε

∣∣∣∣∣
2

dx

≤ IK + IIK ,
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where

IK =
∫

K∩Ωε

∣∣∣∣∣(∇xE
ε
I) (x, y)

∣∣∣∣
y= x

ε

∣∣∣∣∣
2

dx, IIK =
∫

K∩Ωε

∣∣∣∣∣(ε−1∇yE
ε
I
)
(x, y)

∣∣∣∣
y= x

ε

∣∣∣∣∣
2

dx.

By the trace result in Lemma 3.1 we obtain that

IK = εn
n∑

r=1

∑
m:ε(m+ bQ)⊂K

∫
bQ

∣∣∣∣∣(∂xrE
ε
I)(ε(z +m), y)

∣∣∣∣
y=z

∣∣∣∣∣
2

dz

≤ Cεn
n∑

r=1

∑
m:ε(m+ bQ)⊂K

∑
0≤αj≤1

αr=1

ε2|α|−2

∫
bQ

∫
bQ

[
|(Dα

x∂yrE
ε
I) (ε(z +m), y)|2 + |(Dα

xE
ε
I) (ε(z +m), y)|2

]
dz dy.

The error term IK can be then estimated as follows

IK ≤ C

n∑
r=1

∑
0≤αj≤1

αr=1

ε2|α|−2

∫
K∩Ωε

∫
bQ

[
|(Dα

x∂yrE
ε
I) (x, y)|2 + |(Dα

xE
ε
I) (x, y)|2

]
dxdy

≤ C

n∑
r=1

∑
0≤αj≤1

αr=1

ε2|α|−2

∫
K

∫
bQ

[
|(Dα

x∂yrE
ε
I) (x, y)|2 + |(Dα

xE
ε
I) (x, y)|2

]
dxdy

≤ CHn
n∑

r=1

∑
0≤αj≤1

αr=1

ε2|α|

H2|α|

∫
bK

∫
bQ

∣∣Dα
x̂

(
ε−1∂yrE

ε
I
)
(FK(x̂), y)

∣∣2 dx̂dy

+ CHn
n∑

r=1

∑
0≤αj≤1

αr=1

ε2|α|−2

H2|α|−2
H−2

∫
bK

∫
bQ

|Dα
x̂E

ε
I(FK(x̂), y)|2 dx̂ dy

≤ CHn
n∑

r=1

∑
0≤αj≤1

αr=1

∫
bK

∫
bQ

∣∣Dα
x̂

(
ε−1∂yrE

ε
I
)
(FK(x̂), y)

∣∣2 +H−2 |Dα
x̂E

ε
I(FK(x̂), y)|2 dx̂dy.

By the same arguments as in the proof of Proposition 3.11 we obtain that

IK ≤ C1H
2min(p,k)Φ2

n(p, k)
( ∫

K× bQ

∣∣Dk
x(ε−1∇yU

ε)(x, y)
∣∣2 dxdy +

∫
K× bQ

∣∣Dk+1
x Uε(x, y)

∣∣2 dxdy
)

+C2h
2min(µ,s)Φ2

n(µ, s)
(
‖ε−1DyU

ε‖2
Hn(K; Hs

per(
bQ))

+ ‖Uε‖2
Hn(K;Hs+1

per ( bQ))

)
.
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Similar considerations for IIK lead to the following estimate

IIK = εn
∑

m∈Zn:ε( bQ+m)⊂K

∫
bQ

∣∣∣∣ (ε−1∇yE
ε
I
)
(ε(z +m), y)

∣∣
z=y

∣∣∣∣2dz
≤ Cεn

∑
m∈Zn:ε( bQ+m)⊂K

∑
0≤αj≤1

ε2|α|
∫

bQ× bQ

|(Dα
xE

ε
I) (ε(z +m), y)|2 dz dy

= C
∑

0≤αj≤1

ε2|α|
∫

(K∩Ωε)× bQ

∣∣Dα
x

(
ε−1∇yE

ε
I
)
(x, y)

∣∣2 dxdy

≤ C
∑

0≤αj≤1

ε2|α|
∫

K× bQ

∣∣Dα
x

(
ε−1∇yE

ε
I
)
(x, y)

∣∣2 dxdy

≤ CHn
∑

0≤αj≤1

(
ε

H

)2|α| ∫
bK× bQ

∣∣Dα
x̂

(
ε−1∇yE

ε
I
)
(FK(x̂), y)

∣∣2 dx̂ dy

≤ C1H
2min(p,k)Φ2

n(p, k)
∫

K× bQ

∣∣(Dk
x(ε−1∇yU

ε)
)
(x, y)

∣∣2 dxdy

+C2h
2min(µ,s)Φ2

n(µ, s)
∥∥ε−1∇yU

ε
∥∥2

Hn(K; Hs
per(

bQ))
.

Summing up over all elements K of the “macro” triangulation we obtain (3.9). 2

Remark 3.13. A careful inspection of the proofs of Propositions 3.11 and 3.12 reveals that the terms
‖Uε‖Hn(Ω; Hs+1

per ( bQ)) and ‖ε−1∇yU
ε‖Hn(Ω; Hs

per(
bQ)) can be replaced by ‖Uε‖H1(Ω; Hs+1

per ( bQ)) and

‖ε−1∇yU
ε‖H1(Ω; Hs

per(
bQ)), where for a Banach space X we denote

H1(Ω; X) :=
{
u : Ω → X : Dα

xu ∈ L2(Ω; X) ∀α s.t. max
j
αj ≤ 1

}
·

Remark 3.14. Similar error estimates for the interpolation error as in Propositions 3.11, 3.12 can be obtained
in the case n = 3 by using the appropriate regularity assumptions on Uε(x, y). We restrict here ourselves to
the two-dimensional setting.

Theorem 3.15. Assume for the solution uε of (1.7) the two-scale regularity (2.1–2.2) in Ωε. Then, for H/ε ∈
N, the error in the two-scale FEM based on the space (3.3–3.4) can be estimated as follows:

‖uε − uε
FE‖H1(Ωε) ≤ C1(k)Hmin(p,k)Φn(p, k)‖f‖Hk(Ω) + C2(s)hmin(µ,s)Φn(µ, s)‖f‖Hn+s(Ω).

Proof. The proof is a direct consequence of Theorem 2.1 and Propositions 3.11, 3.12. 2

Remark 3.16. Suppose that the solution Uε(x, y) is patch-wise analytic on the “macro” level and analytic on
the “micro” scale. Then, there exist C > 0, dK > 0 independent of ε such that for all k∥∥Dk

xU
ε(x, y)

∥∥
L2(K;L2( bQ))

≤ C(dK)kk! |K|1/2∥∥ε−1∇yD
k
xU

ε(x, y)
∥∥

L2(K;L2( bQ))
≤ C(dK)kk! |K|1/2.

In this case the estimates in Propositions 3.11, 3.12 lead to exponential convergence.
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log N

log
‖eε

N‖H1(Ωε)

‖uε‖H1(Ωε)

1

O(εp)

p
2n

1

p
n

1

δ

O(ε−2n)

Figure 2. Qualitative picture on two-scale convergence as H = h → 0 for fixed p = µ ≥ 1:
relative error versus # dof in double logarithmic scale. At the critical point N = O(ε−2n) the
error slopes switch from p

2n to p
n , the “jump” δ is due to possibly different constants in the

a priori estimates.

Remark 3.17. So far we have only discussed the preasymptotic case when H ≥ ε and we obtained the robust
(in ε) error estimate ‖eε

N‖H1(Ωε) ≤ C(Hp + hµ).
Let us choose p = µ. Then, for h ∼= H we obtain ‖eε

N‖H1(Ωε) ≤ Chp and N = dim (Vε
N ) = O(H−nh−n) =

O(h−2n). Hence, in terms of number of degrees of freedom, the two-scale FE error estimate is qualitatively of
the form

‖eε
N‖H1(Ωε) ≤ CN− p

2n for N � ε−2n,

since the total number of degrees of freedom at the critical value H ∼= ε, h ∼= ε is N = O(ε−2n). At this
transition point the fine scale is resolved and we switch from the two scale FE space to full discretization with
mesh size H = εh, h ≤ ε. This is achieved by breaking the periodicity to get the full space with mesh width
H = εh, h ≤ ε. The dimension of the FE space in this asymptotic regime is N = O(H−n) = O(ε−nh−n). Using
standard error estimates, i.e.,

‖eε
N‖H1(Ωε) ≤ CHp‖uε‖Hp+1(Ωε)

and the a priori estimate (1.10) for uε we obtain

‖eε
N‖H1(Ωε) ≤ C

(
H

ε

)p

= Chp ≤ Cε−pN− p
n ≤ CN− p

2n for N � ε−2n.
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We see that we obtain a robust convergence rate of O(N− p
2n ), as compared to the (non-robust) rate of O(N− p

n )
of standard FEM. The robustness of the two-scale FEM was achieved by an increase in dimension and the use
of tensor product approximations in Ω × Q̂.

4. Implementation of the two-scale FEM

We address now the implementation of the 2-scale FEM. In order to obtain an efficient algorithm it is
essential that the element stiffness and mass matrices can be computed in a complexity independent of ε and
to an accuracy which will not compromise the asymptotic convergence rates in Theorem 3.15. Due to the
rapid oscillations of the coefficients and of the micro-shapefunctions, the elemental stiffness matrices on the
macro mesh can not be evaluated robustly by standard quadratures. The macro stiffness and mass matrices can
be developed from moments, i.e., integrals in the fast variable corresponding to discretization of the unit-cell
problem with monomial weighted coefficients, combined with certain lattice summation formulas. To explain
this is the object of Section 4.1. In Section 4.2 we then present numerical experiments which confirm our error
analysis.

Proposition 4.1. For any ε > 0 and for any finite dimensional subspace Mµ
per

(
Q̂
)

of H1
per

(
Q̂
)
, with

Mµ
per

(
Q̂
)

= Span {Φi(y)}µ
i=1 of dimension µ independent of ε, the two-scale FEM with respect to the two-

scale discretization Sp
(
Ω, TH ;Mµ

ε, per

(
εQ̂
)) (

Mµ
ε, per

(
εQ̂
)

= Span {Φi(x/ε)}µ
i=1

)
can be implemented with a

computational work independent of ε.

4.1. Macroelement stiffness matrix

We start from the discrete variational formulation: find u ∈ Sp(Ω, TH ;Mµ
ε, per(εQ̂)) such that

Bε(u, v) =
∫
Ω

fv dx ∀ v ∈ Sp(Ω, TH ;Mµ
ε (εQ̂)),

where Mµ
per(Q̂) = Span {Φi} is any conforming FE discretization of H1

per(Q̂). For u, v ∈ Sp(Ω, TH ;Mµ
ε (εQ̂))

the bilinear form can be split in a sum of elemental bilinear forms Bε
K

Bε(u, v) =
∑

K∈TH

Bε
K(u, v).

For each macro element element K ∈ TH with “macroscopic” polynomial space Sp(K) = Span {ν[K]
I }I , the

elemental bilinear form BK can be written in terms of the reference element matrix

Bε
K(u, v) = v>K[K]u, u = {uIi}, v = {vIi},

where u(x)
∣∣∣∣
K

=
∑

I, i uIiν
[K]
I (x)Φi(x/ε) and v(x)

∣∣∣∣
K

=
∑

J, j vJjν
[K]
J (x)Φj(x/ε). The entries of the element

stiffness matrix K[K] are given by

K[K]

(Ii) (Jj)
=
∫
K

A
(x
ε

)(
ν

[K]
I (x)Φi

(x
ε

))′(
ν

[K]
J (x)Φj

(x
ε

))′
dx

+
∫
K

a0

(x
ε

)
ν

[K]
I (x)Φi

(x
ε

)
ν

[K]
J (x)Φj

(x
ε

)
dx,

(4.1)
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where a prime denotes d
dx . Without loss of generality we assume now that K = (0, H), with M := H/ε ∈ N.

For simplicity, we consider only the first integral term in (4.1). Since K = ∪M−1
m=0Km, with Km = ε(m+ Q̂) we

obtain that

A[K]

(Ii) (Jj)
=
∫
K

A
(x
ε

)(
ν

[K]
I (x)Φi

(x
ε

))′(
ν

[K]
J (x)Φj

(x
ε

))′
dx

=
M−1∑
m=0

∫
Km

A
(x
ε

)(
ν

[K]
I (x)Φi

(x
ε

))′(
ν

[K]
J (x)Φj

(x
ε

))′
dx

=
∑

γ,δ≤1

∑
α

cIJ
γδα ε

−(γ+δ)
M−1∑
m=0

∫
Km

A
(x
ε

)
Φ(γ)

i

(x
ε

)
Φ(δ)

j

(x
ε

)
xα dx

=
∑

γ,δ≤1

∑
α

cIJ
γδα ε

n−(γ+δ)+α
M−1∑
m=0

∫
bQ

A(ŷ)Φ(γ)
i (ŷ)Φ(δ)

j (ŷ) (ŷ +m)α dŷ,

with suitable constants cIJ
γδα = cIJ

γδα(K) depending only on I, J, α, γ, δ and on the element K. We see that for
the calculation of the two-scale element stiffness matrices the basic integrals

K̂
γδτ

µ
=

∫
bQ

A(ŷ)Φ(γ)
i (ŷ)Φ(δ)

j (ŷ)ŷτ dŷ


i,j=1,...,µ

(4.2)

are needed. Let us remark that (4.2) when τ = 0 and δ = γ = 1, corresponds to the global stiffness matrix of
the unit cell problem discretized with Mµ

per = Span{Φi | i = 1, . . . , µ}. When τ > 0 we obtain a scale interaction
stiffness matrix and a discretization of the unit cell problem with monomial weight functions is generally needed.
This procedure is suited for parallel implementation, since the computation for various values of τ can be done
in parallel.

The entries A[K]

(Ii) (Jj)
of the element stiffness matrix are ultimately given by

∑
γ,δ≤1

∑
α

cIJ
γδαε

n−(γ+δ)+α
∑
τ≤α

(
K̂

γδτ

µ

)
ij

(
α

τ

)M−1∑
m=0

mα−τ =
∑

γ,δ≤1

∑
α

∑
τ≤α

(
K̂

γδτ

µ

)
ij

M−1∑
m=0

SIJ
γδατ (m,H, ε),

with
∑M−1

m=0 S
IJ
γδατ (m,H, ε) being directly computable. The idea is to compute sums of powers of natural

numbers appearing in
∑M−1

m=0 S
IJ
γδατ (m,H, ε) in terms of Bernoulli numbers Bi. These can be easily tabulated

and the sums can be computed with a computational work independent of M . More precisely, one exploits the
fact that for N ∈ N,

∑N
k=1 k

q is given by

N∑
k=1

kq =
N q+1

q + 1
+
N q

2
+

1
2

(
q

1

)
B2N

q−1 +
1
4

(
q

3

)
B4N

q−3 +
1
6

(
q

5

)
B6N

q−5 + . . . , (4.3)

the last term containing either N or N2.

Remark 4.2. It should be remarked that

1
N q+1

N∑
k=1

kq = O

(
1

q + 1

)
, as N → ∞,
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Figure 3. Energy error in the H-Version of the two-scale FEM.

so that (4.3) could also be used as asymptotic expansion for very small ε = H/M . The amount of work for
computing the element stiffness matrix in the two-scale FEM is therefore independent of ε. If n > 1, the same
arguments apply if all indices are changed to suitable multiindices.

4.2. Numerical results

We illustrate our error estimates for the two-scale FEM for the one dimensional model problem

− d
dx

(
a
(x
ε

) duε

dx
(x)
)

= f(x) in Ω = (0, 1),

uε|∂Ω = 0,
(4.4)

where f(x) = ex and

a(y) = 2 + cos(2πy).

The shift Theorem 2.1 applies on Ω and the solution does not exhibit boundary layers, since uε(x) = Uε(x, x/ε),
with U ε(x, y) smooth on Ω × Q̂ and 1-periodic in y.

In Figure 3 we plot the energy error versus H = h and for different p = µ ∈ {1, 2, 3, 4}. Computations
were performed for two different ε-scales, 10−2 and 10−4, respectively. We see that the rate of convergence of
‖uε − uε

FE‖2
H1(Ω) is proportional to H2p as expected from the error estimates in Theorem 3.15. Moreover, we

observe robustness of the convergence rates with respect to the parameter ε.
The next set of numerical experiments shows that simultaneous refinement on both scales is indeed necessary.

To that end, calculations for ε = 10−4, µ = 1 and fixed h, p were performed. In Figure 4 we plot the error
in energy versus H (for several fixed p). In agreement with our a priori estimates O(H2p + h2µ) we observe a
saturation effect.

Since the solution Uε(x, y) corresponding to (4.4) is analytic, according to Remark 3.16 we expect exponential
rates of convergence of the p-version of the two-scale method, i.e., keeping H , h fixed and increasing p = µ.
The exponential convergence is observed in Figure 5. We also note robustness as the error curves for ε = 10−2,
10−4 are practically on top of each other.
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Figure 5. Robust exponential conver-
gence of the p-Version of the two-scale
FEM: energy error versus polynomial
degree p = µ at fixed H = h, analytic
solution.

A. Proof of Proposition 2.5

Proof. We write first Uε = Uε
1 (x, y) + Uε

2 (x, y) + Uε
3 (x, y) + Uε

4 (x, y) +K, with

Uε
1 (x, y) = −f0

[
εA(y)

(
x+

ε

〈1/a(·)〉

(
1
2
〈1/a(·)〉 − 〈·/a(·)〉

)
− 1

2

)
− ε2Ã(y) +

1
2
〈1/a(·)〉x(x− 1)

]
U ε

2 (x, y) = −ε2 1
〈1/a(·)〉

( ∑
kε∈Z∗

fkA−kε

)
A(y)

Uε
3 (x, y) = −

∑
k∈Z∗

fk

2πik

(
εA(y) +

〈1/a(·)〉
2πik

)
e2πikx

Uε
4 (x, y) =

∑
k∈Z∗

εfk

 ∑
p6=−kε

Ap
1

2πi(pM + k)
e2πi(kx+py)


K = −

∑
k∈Z∗

εfk

 ∑
p6=−kε

Ap
1

2πi(pM + k)

+
∑
k∈Z∗

fk〈1/a(·)〉
(2πik)2

·

(A.1)

A(·) and Ã(·) are defined in (2.19) and {Ap}p∈Z are the Fourier coefficients of A(·) ∈ H1
per(0, 1). We prove

here (2.20)for r = 0 and (2.21) for r = 1 since the estimates with respect to higher order norms can be obtained
analogously.

The ‖ · ‖0, ‖ · ‖−1 norms of f are given in terms of Fourier coefficients by

‖f‖2
0
∼=
∑
k∈Z

|fk|2, ‖f‖−1
∼= |f0|2 +

∑
k∈Z∗

∣∣∣∣fk

k

∣∣∣∣2 ·
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Let us estimate first Uε
4 (x, y). The L2(Ω, L2(Q̂)) norm of Uε

4 (x, y) has the explicit form

‖Uε
4 (x, y)‖2

L2(Ω, L2( bQ))
=
∑
k∈Z∗

ε2|fk|2
 ∑

p6=−kε

|Ap|2
1

(2π(pM + k))2

 ·

Since

|A0|2 +
∑
p6=0

|Ap|2p2 ≤ C‖A‖2
H1

per(
bQ)

≤ C‖1/a‖2
0

we have the following estimate∑
p6=−kε

|Ap|2
1

(pM + k)2
=

|A0|2
k2

+
∑

p 6=−kε
p 6=0

|Ap|2p2 1
p2(pM + k)2

=
|A0|2
k2

+ ε−2 1
k2

∑
p 6=−kε

p 6=0

|Ap|2p2

(
1
pM

− 1
pM + k

)2

≤ Cε−2 1
k2

|A0|2 +
∑
p6=0

|Ap|2p2

 ≤ Cε−2 1
k2
,

with C > 0 independent of k and ε. With this observation the estimate for ‖Uε
4 (x, y)‖2

L2(Ω, L2( bQ))
becomes

‖Uε
4 (x, y)‖2

L2(Ω, L2( bQ))
≤ C

∑
k 6=0

|fk|2
k2

≤ C‖f‖2
−1,

with dominant terms coming from
∑

l∈Z∗ ε2|fMl±1|2|A−l|2. One can even prove that

‖Uε
4 (x, y)‖L2(Ω,L2( bQ)) → 0 as ε→ 0

provided that ‖f‖−1 <∞. Since the ideas of this proof are relevant for our analysis we will give here the details.
First observe that

‖Uε
4 (x, y)‖2

L2(Ω,L2( bQ))
= ε2

∑
k 6=0

|fk|2
(2π)2k2

|A0|2 +
∑
k 6=0

|fk|2
k2

∑
p 6=−kε

p 6=0

1
(2π)2

|Ap|2p2

(
1
pM

− 1
pM + k

)2

≤ Cε2‖f‖2
−1 + C

∑
k 6=0

|fk|2
k2

∑
p 6=−kε

p 6=0

|Ap|2p2

(
1
pM

− 1
pM + k

)2

·

We claim now that ∑
k 6=0

|fk|2
k2

∑
p 6=−kε

p 6=0

|Ap|2p2

(
1
pM

− 1
pM + k

)2

≤ C(ε)‖f‖2
−1

with C(ε) → 0 as ε→ 0. We observe that

∑
|k|≥M

|fk|2
k2

∑
p 6=−kε

p 6=0

|Ap|2p2

(
1
pM

− 1
pM + k

)2

≤ C
∑

|k|≥M

|fk|2
k2

≤ C(ε)‖f‖2
−1
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and C(ε) → 0 as ε→ 0. It remains to show that e.g.

M−1∑
r=1

|fr|2
r2

∑
p6=0

|Ap|2p2

(
1
pM

− 1
pM + r

)2

≤ C(ε)‖f‖2
−1

with C(ε) → 0 as ε→ 0. We write this in the following form

M−1∑
r=1

|fr|2
r2

∑
p≥1

p≤−2

|Ap|2p2

(
1
pM

− 1
pM + r

)2

+
M−1∑
r=1

|A−1|2
|fr|2

M2(M − r)2

≤ Cε2‖f‖2
−1 + C

M−1∑
r=1

|fr|2
M2(M − r)2

≤ Cε2‖f‖2
−1 + C

[M/2]∑
r=1

|fr|2
M2(M − r)2

+ C
M∑

r=[M/2]+1

|fr|2
M2(M − r)2

≤ Cε2‖f‖2
−1 + C

M∑
r=[M/2]+1

|fr|2
r2

≤ C(ε)‖f‖2
−1,

with C(ε) → 0 as ε→ 0. Furthermore,

∥∥ε−1∇yU
ε
4 (x, y)

∥∥2

L2(Ω, L2
per(

bQ))
=
∑
k∈Z∗

|fk|2
∑

p6=−kε

|Ap|2
p2

(pM + k)2
≤ C‖f‖2

0.

The same type of arguments used for the estimate of the L2(Ω, L2(Q̂))-norm of Ue
4 (x, y) imply that∥∥ε−1∇yU

ε
4 (x, y)

∥∥
L2(Ω,L2( bQ))

+ ‖∇xU
ε
4 (x, y)‖L2(Ω,L2( bQ)) ≤ C(ε)‖f‖2

0

with C(ε) > 0 such that C(ε) → 0 as ε→ 0.
We see that Uε

1 (x, y) is polynomial in x and Uε
2 (x, y) = Uε

2 (y) is constant with respect to x. The bounds for
Uε

1 (x, y) are straightforward

‖Uε
1‖L2(Ω,L2

per(
bQ)) ≤ C|f0| ≤ C‖f‖−1,

∥∥ε−1∇yU
ε
1

∥∥
L2(Ω,L2

per(
bQ))

≤ C|f0| ≤ C‖f‖−1.

U ε
2 (x, y) has the form −ε

(∑
l∈Z∗ fMlA−l

)
1/〈1/a(·)〉εA(y) and its L2(Ω, L2(Q̂))-norm is bounded by ε‖f‖−1.

Further,

‖U ε
3‖L2(Ω, L2

per(
bQ)) ≤ C(ε‖f‖−1 + ‖f‖−2),

∥∥ε−1∇yU
ε
3

∥∥
L2(Ω, L2

per(
bQ))

≤ C‖f‖−1.

It remains to analyze the convergence of the first sum in K in (A.1) and to obtain sharp estimates on K with
respect to ε and the regularity of f . We split K as

K = S1 + S2,

where

S1 = −
∑
k∈Z∗

εfk

 ∑
p6=−kε

Ap
1

2πi(pM + k)


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and

S2 = ω
1

(2πi)2
∑
k∈Z∗

fk

k2
·

We recall the definition (2.19) of A(y). This implies that the Fourier coefficients Ap, p ∈ Z, are, in terms of the
Fourier coefficients bq of 1/a(·), given by

A0 = − 1
2πi

∑
q 6=0

bq
q
, Ap =

1
2πi

bp
p

∀ p 6= 0.

With this observation S1 can be written in the following form

S1 =
1

(2πi)2
∑
k 6=0

εfk

 ∑
q 6=0

qM+k 6=0

bq
q

(
1
k
− 1
qM + k

)− 1
(2πi)2

∑
l 6=0

ε
fMl

Ml

b−l

l

=
1

(2πi)2
∑
k 6=0

fk

k

 ∑
q 6=0

qM+k 6=0

bq
qM + k

− 1
(2πi)2

∑
l 6=0

ε
fMl

Ml

b−l

l
·

Now we use that for all k ∈ Z∗, the sequence sk = {(sk)p}p∈Z given by

(sk)p =


1

p+ k
if p 6= −k

0 if p = −k

is an element of l2 and (sk, sk′
)l2 = cδk′

k , i.e., {sk}k is an orthogonal system in l2 and all sk have the same
l2-norm. Indeed, let k 6= k′. Let us show that (sk, sk′

)l2 = 0. Without loss of generality we may assume
that k < k′. Then, it holds

(sk, sk′
)l2 =

∑
q 6=−k

q 6=−k′

1
q + k

1
q + k′

=
1

k′ − k

∑
q 6=−k

q 6=−k′

(
1

q + k
− 1
q + k′

)

=
1

k′ − k
lim

N→∞

∑
|q|≤N

q 6=−k,q 6=−k′

(
1

q + k
− 1
q + k′

)

=
1

k′ − k
lim

N→∞

 N+k∑
q=−N+k

q 6=0

1
q
−

N+k′∑
q=−N+k′

q 6=0

1
q


=

1
k′ − k

lim
N→∞

 −N+k′∑
q=−N+k

1
q
−

N+k′∑
q=N+k

1
q

 ·
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The last sums are done after a finite, fixed number of q with q → ∞ when N → ∞. Therefore, the limit is zero.
With this observation we can write K as

K = S1 + S2 =
1

(2πi)2
∑
k 6=0

fk

k

∑
q′∈MZ

q′+k 6=0

bq′/M

q′ + k
− 1

(2πi)2
∑
l 6=0

ε
fMl

Ml

b−l

l
·

The first sum in the above representation can be interpreted as the l2 scalar product between the sequences
{fk/k}k∈Z∗ ∈ l2 and {ck}k , where ck = (b̃, sk)l2 , with b̃q = 0 if q 6∈ MZ and b̃q = bq/M else. Therefore, this
sum is bounded by c‖b̃‖l2‖f‖−1 ≤ c‖f‖−1. The second sum can be estimated by Cε‖f‖−1. Summing up all
these estimates we see that |K| ≤ C‖f‖−1.

It remains to check if the estimates in (2.20) are sharp. We will analyse this only for the case r = 1. We
assume therefore that ‖f‖0 < ∞ and we show that for ε � 1 sufficiently small ‖Uε‖H1(Ω,L2

per(
bQ)) ≥ C‖f‖−1

with C > 0 a constant independent of ε. It is not difficult to see that for ε� 1 sufficiently small

‖Uε‖H1(Ω,L2
per(

bQ)) ≥ C‖1/2ωf0(x− x2) −
∑
k 6=0

fk

(2πik)2
ωe2πikx +K‖H1(Ω,L2

per(
bQ)),

in which we introduced the notation ω = 〈1/a(·)〉. To this end, we used that

‖Uε
4 (x, y)H1(Ω,L2

per(
bQ)) ≤ C(ε)‖f‖0 with C(ε) → 0 as ε→ 0.

Now,

‖1/2ωf0(x − x2) −
∑
k 6=0

fk

(2πik)2
ωe2πikx +K‖2

L2(Ω,L2
per(

bQ))
=

1
120

ω2|f0|2 + ω2
∑
k 6=0

|fk|2
(2πk)4

+ |K|2

+ 1
6ωf0K − 2ω2f0

∑
k 6=0

fk

(2πk)4

≥ Cω2|f0|2

and

‖1/2ωf0(1 − 2x) −
∑
k 6=0

fk

2πik
ωe2πikx‖2

L2(Ω,L2
per(

bQ))
=

1
12
ω2|f0|2 + ω2

∑
k 6=0

|fk|2
(2πk)2

− 2ω2f0
fk

(2πk)2

≥ 1
12
ω2|f0|2 + ω2

∑
k 6=0

|fk|2
(2πk)2

−2αω2|f0|2
1

(2π)2
∑
k≥1

1
k2

− 1
α
ω2
∑
k 6=0

|fk|2
(2πk)2

=
1
12

(1 − α)ω2|f0|2 + ω2

(
1 − 1

α

)∑
k 6=0

|fk|2
(2πk)2

for some arbitrary α > 0. Summing up,∥∥∥∥∥∥1/2ωf0(x− x2) −
∑
k 6=0

fk

(2πik)2
ωe2πikx +K

∥∥∥∥∥∥
H1(Ω,L2

per(
bQ))

≥ Cω2|f0|2 +
1
12

(1 − α)ω2|f0|2 + ω2

(
1 − 1

α

)∑
k 6=0

|fk|2
(2πk)2

·
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Choosing 1 < α such that C + 1
12 (1 − α) > 0 we conclude that

∥∥∥∥∥∥1/2ωf0(x− x2) −
∑
k 6=0

fk

(2πik)2
ωe2πikx +K

∥∥∥∥∥∥
H1(Ω,L2

per(
bQ))

≥ C‖f‖2
−1.

2

B. Proof of Lemma 3.4

Proof. We start with the two-dimensional case (n = 2). Let us investigate first the mixed derivatives of the
interpolation error. Since ∂xj and π(xi)

p commute for all i 6= j it holds

∂x1∂x2

(
u− Π̂pu

)
= ∂x1

(
∂x2u− π(x1)

p (∂x2u)
)

+ ∂x1

(
π(x1)

p ∂x2

(
u− π(x2)

p u
))

.

For 0 ≤ t ≤ k − 1 we obtain that

∥∥∥∂x1∂x2

(
u− Π̂pu

)∥∥∥2

L2( bK)
≤ 2

∥∥∥∂x1

(
∂x2u− π(x1)

p (∂x2u)
)∥∥∥2

L2( bK)
+ 2

∥∥∥∂x1

(
π(x1)

p ∂x2(u− π(x2)
p u)

))
‖2

L2( bK)

≤ 2
∥∥∥∂x1

(
∂x2u− π

(x1)
p (∂x2u)

)∥∥∥2

L2( bK)
+ 2

∥∥∥∂x2

(
∂x1u− π

(x2)
p (∂x1u)

)∥∥∥2

L2( bK)

≤ 2
(p− t)!
(p+ t)!

∫
bK

((
∂t+1

x1
∂x2u(x1, x2)

)2
+
(
∂x1∂

t+1
x2

u(x1, x2)
)2)

dx1 dx2.

Reasoning in a similar way for the lower order derivatives, for 0 ≤ s, t ≤ k we obtain that

∥∥∥∂x1

(
u− Π̂pu

)∥∥∥2

L2( bK)
≤ 2

(p− s)!
(p+ s)!

∫
bK

(
∂s+1

x1
u(x1, x2)

)2
dx1dx2 + 2

1
p(p+ 1)

(p− t)!
(p+ t)!

∫
bK

(
∂x1∂

t+1
x2

u(x1, x2)
)2

dx1dx2

and

∥∥∥u− Π̂pu
∥∥∥2

L2( bK)
≤ 2
p(p+ 1)

 (p− s)!
(p+ s)!

∫
bK

(
∂s+1

x1
u
)2

dx1 dx2 +
(p− t)!
(p+ t)!

∫
bK

(
∂x1∂

t+1
x2

u
)2

dx1 dx2

 ·

Taking now t = s− 1, s = k and summing up all the estimates we get the result.
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For the case n = 3 we start again from the mixed derivatives of the interpolation error

∥∥∥∂x1∂x2∂x3

(
u− Π̂pu

)∥∥∥2

L2( bK)
=
∥∥∥∂x1

(
∂x2∂x3u− π(x1)

p ∂x2∂x3u
)

+ ∂x1π
(x1)
p ∂x2

(
∂x3u− π(x2)

p ∂x3u
)

+∂x1π
(x1)
p ∂x2π

(x2)
p ∂x3

(
u− π(x3)

p u
)∥∥∥2

L2( bK)

≤ 3
∥∥∥∂x1

(
∂x2∂x3u− π(x1)

p ∂x2∂x3u
)∥∥∥2

L2( bK)

+3
∥∥∥∂x1π

(x1)
p ∂x2

(
∂x3u− π(x2)

p ∂x3u
)∥∥∥2

L2( bK)

+3
∥∥∥∂x1π

(x1)
p ∂x2π

(x2)
p ∂x3

(
u− π(x3)

p u
)∥∥∥2

L2( bK)

≤ 3
∥∥∥∂x1

(
∂x2∂x3u− π(x1)

p ∂x2∂x3u
)∥∥∥2

L2( bK)

+3
∥∥∥∂x2

(
∂x1∂x3u− π(x2)

p ∂x1∂x3u
)∥∥∥2

L2( bK)

+3
∥∥∥∂x3

(
∂x1∂x2u− π(x3)

p ∂x1∂x2u
)∥∥∥2

L2( bK)

≤ 3
(p− t)!
(p+ t)!

∫
bK

{ ∣∣∂t+1
x1

∂x2∂x3u
∣∣2 +

∣∣∂x1∂
t+1
x2

∂x3u
∣∣2 +

∣∣∂x1∂x2∂
t+1
x3

u
∣∣2 }dx.

Next, we investigate the lower order derivatives

∥∥∥∂x1∂x2

(
u− Π̂pu

)∥∥∥2

L2( bK)
=
∥∥∥∂x1

(
∂x2u− π(x1)

p ∂x2u
)

+ ∂x1π
(x1)
p ∂x2

(
u− π(x2)u

p

)
+ ∂x1π

(x1)
p ∂x2π

(x2)
p

(
u− π(x3)

p u
)∥∥∥2

L2( bK)

≤ 3
∥∥∥∂x1

(
∂x2u− π(x1)

p ∂x2u
)∥∥∥2

L2( bK)

+ 3
∥∥∥∂x2

(
∂x1u− π(x2)

p ∂x1u
)∥∥∥2

L2( bK)

+ 3
∥∥∥∂x1∂x2u− π(x3)

p ∂x1∂x2u
∥∥∥2

L2( bK)

≤ 3
(p− s)!
(p+ s)!

∫
bK

{ ∣∣∂s+1
x1

∂x2u
∣∣2 +

∣∣∂x1∂
s+1
x2

u
∣∣2}dx

+ 3
1

p(p+ 1)
(p− t)!
(p+ t)!

∫
bK

∣∣∂x1∂x2∂
t+1
x3

u
∣∣2 dx.

Similarly,

∂x1

(
u− Π̂pu

)
= ∂x1

(
u− π(x1)

p u
)

+ ∂x1π
(x1)
p

(
u− π(x2)

p u
)

+ ∂x1π
(x1)
p π(x2)

p

(
u− π(x3)

p u
)
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can be estimated as follows∥∥∥∂x1

(
u− Π̂pu

)∥∥∥2

L2( bK)
≤ 3

∥∥∥∂x1

(
u− π(x1)

p u
)∥∥∥2

L2( bK)
+ 3

∥∥∥∂x1u− π(x2)
p ∂x1u

∥∥∥2

L2( bK)

+ 3
∥∥∥π(x2)

p

(
∂x1u− π(x3)

p ∂x1u
)∥∥∥2

L2( bK)

≤ 3
(p− l)!
(p+ l)!

∫
bK

∣∣∂l+1
x1

u
∣∣2 dx+ 3

1
p(p+ 1)

(p− s)!
(p+ s)!

×
∫
bK

{ ∣∣∂x1∂
s+1
x2

u
∣∣2 + 2

∣∣∂x1∂
s+1
x3

u
∣∣2}dx

+ 6
1

p2(p+ 1)2
(p− t)!
(p+ t)!

∫
bK

∣∣∂x1∂x2∂
t+1
x3

u
∣∣2 dx.

Finally, ∥∥∥u− Π̂pu
∥∥∥2

L2( bK)
=
∥∥∥u− π(x1)

p u+ π(x1)
p

(
u− π(x2)

p u
)

+ π(x1)
p π(x2)

p

(
u− π(x3)

p u
)∥∥∥2

L2( bK)

≤ 3
1

p(p+ 1)
(p− l)!
(p+ l)!

∫
bK

{ ∣∣∂l+1
x1

u
∣∣2 + 2

∣∣∂l+1
x2

u
∣∣2 + 4

∣∣∂l+1
x3

u
∣∣2}dx

+ 6
1

p2(p+ 1)2
(p− s)!
(p+ s)!

∫
bK

{ ∣∣∂x1∂
s+1
x2

∣∣2 + 2
∣∣∂x2∂

s+1
x3

∣∣2 + 2
∣∣∂x1∂

s+1
x3

∣∣2}dx

+ 12
1

p3(p+ 1)3
(p− t)!
(p+ t)!

∫
bK

∣∣∂x1∂x2∂
t+1
x3

u
∣∣2 dx.

Assume first that p ≥ k ≥ 2. We take then t = k − 2, s = k − 1 and l = k in the above estimates and we
obtain (3.1). In case of linear interpolation, i.e. p = 1, under the assumption that u is in the space H1(K̂), we
obtain (3.2) by taking t = s = l = 0 in the previous estimates. 2
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