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OPTIMAL ERROR ESTIMATES FOR FULLY DISCRETE GALERKIN
APPROXIMATIONS OF SEMILINEAR PARABOLIC EQUATIONS

Dominik Meidner1,∗ and Boris Vexler1

Abstract. We consider a semilinear parabolic equation with a large class of nonlinearities without
any growth conditions. We discretize the problem with a discontinuous Galerkin scheme dG(0) in time
(which is a variant of the implicit Euler scheme) and with conforming finite elements in space. The
main contribution of this paper is the proof of the uniform boundedness of the discrete solution. This
allows us to obtain optimal error estimates with respect to various norms.
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1. Introduction

In this paper, we consider the following semilinear parabolic equation.

∂tu(t, x)−∆u(t, x) + d(t, x, u(t, x)) = f(t, x), (t, x) ∈ I ×Ω,
u(t, x) = 0, (t, x) ∈ I × ∂Ω,
u(0, x) = u0(x), x ∈ Ω.

(1.1)

Here, Ω ⊂ RN , N ∈ { 2, 3 } is a convex polygonal/polyhedral domain, I = (0, T ) is a time interval and f is the
right-hand side fulfilling a certain regularity requirement to be specified later.

For the nonlinearity d(t, x, u), we essentially assume that the partial derivative ∂ud(t, x, u) is bounded from
below for all (t, x) ∈ I × Ω and all u ∈ R, see (2.2b). But we do not require any growth conditions for d, see
the next section for details. The class of possible nonlinearities includes monotone nonlinearities like d(u) =u5,
d(u) = eu or d(u) =u3|u| as well as FitzHugh–Nagumo or Allen–Cahn type nonlinearities like d(u) =u3 − αu
with some positive α ∈ R.

For this class of problems (under a suitable assumption on the right-hand side f and the initial data u0),
it is possible to show the existence of a unique bounded solution u. The goal of the paper is to prove the
uniform boundedness of the discrete approximation ukh to u. To this end, we discretize the equation with the
discontinuous Galerkin dG(0) method in time and with conforming finite elements in space. The dG(0) time
discretization is known to be a variant of the implicit Euler scheme, see Section 3 for details. For this type of
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discretization we prove that ukh is uniformly bounded, i.e.,

‖ukh‖L∞(I×Ω) ≤ C

with a constant C independent of the discretization parameters k and h, see Theorem 5.4. Based on this result
we are able to prove best-approximation-type error estimates with respect to various norms. We provide such
results in particular for the L2(I×Ω), L∞(I;L2(Ω)), and L∞(I×Ω) norms, cf. the Theorems 6.1, 6.3, and 6.5,
respectively.

Let us review the related results in the literature. In [10, 25, 26], error estimates for discretization of the
semilinear parabolic equation are derived under the assumption that d and ∂ud are uniformly bounded. In [7,13]
growth conditions on d (resp. ∂ud) are assumed for derivation of semi-discrete error estimates. For further results
in a different setting we refer to [1]. The most related result is provided in [21], where the uniform boundedness
of ukh is shown under a slightly stronger condition ∂ud ≥ 0 (cf. (2.2b)) in the two-dimensional setting. The
technique from [21] does not extend to the three-dimensional situation, due to the inverse inequality used there.
Our method here strongly relies on recent discrete maximal parabolic regularity estimates [17], cf. also [12] for
related results, and extends best approximation estimates from [15] to the semilinear equation.

Our error estimates being of independent interest are important for treatment of optimal control problems.
Some recent papers in this context (see, e.g., [4, 6]) are restricted to two-dimensional domains only due to the
lack of corresponding results in the three-dimensional setting. Thus, our estimates allow to extend the results
of these papers to convex polyhedral domains Ω ⊂ R3.

The outline of the paper is as follows: In Section 2, we state the precise functional analytic setting of the
problem under consideration and formulate assumptions on the nonlinearity d and the remaining problem data.
Under these assumptions, we prove Hölder continuity of the solution u to (1.1). The discrete analog of (1.1) is
formulated in Section 3. To this end, we introduce a time discretization by the discontinuous Galerkin dG(0)
scheme, whereas the discretization in space is done by means of classical Lagrange finite elements. In this setting,
we prove the unique solvability of the discrete nonlinear problem. In the following Section 4, we consider a linear
auxiliary equation and its discrete analog. For the solution to this linear discrete problem, we provide maximal
parabolic estimates in various norms, which will be the basis for analysis in the remaining two sections. In
Section 5, we derive the main result of this paper, namely the boundedness of the solution ukh to the discrete
analog of (1.1). Based on this, we provide in the final Section 6 optimal error estimates for the error between u
and ukh with respect to the L2(I ×Ω), L∞(I;L2(Ω)), and L∞(I ×Ω) norms.

2. Continuous problem

To state the precise setting for the problem under consideration, we introduce the following notation: for
r ∈ [1,∞] and l ∈ {−1, 0 }, we denote the domain in W l,r(Ω) of the negative Laplacian with homogeneous
Dirichlet boundary conditions by

Doml,r(−∆) =
{
u ∈W l,r(Ω)

∣∣ −∆u ∈W l,r(Ω)
}
.

Further, for p ∈ [1,∞], we define the space for the initial data by real interpolation as

Up,r(Ω) = (Lr(Ω),Dom0,r(−∆))1− 1
p ,p
. (2.1)

The following set of assumptions holds throughout the article.

Assumption 2.1.

• Let f ∈ Lp(I;Lr(Ω)) for some p ∈ (1,∞) and r ∈
(
N
2 ,∞

)
satisfying 1

p + N
2r < 1.

• Let u0 ∈ Up0,r0(Ω) for some p0 ∈ (1,∞) and r0 ∈
(
N
2 ,∞

)
satisfying 1

p0
+ N

2r0
< 1.
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Further, for the nonlinearity d= d(t, x, u) : I ×Ω × R→ R, we assume the following properties:

• d is measurable with respect to (t, x) ∈ I ×Ω for all u ∈ R and continuously differentiable with respect to u
for almost all (t, x) ∈ I ×Ω.

• It holds d(·, ·, 0) = 0.
• ∂ud is locally bounded, i.e., for each M > 0 there is CM > 0 such that

|∂ud(t, x, u)| ≤ CM (2.2a)

for almost all (t, x) ∈ I ×Ω and all u ∈ [−M,M ].
• There is γ ≥ 0 such that d fulfills the relaxed monotonicity condition

∂ud(t, x, u) ≥ −γ (2.2b)

for almost all (t, x) ∈ I ×Ω and all u ∈ R.

Remark 2.2. A typical setting fulfilling the assumption on u0 would be u0 ∈ H2(Ω) ∩ H1
0 (Ω). Then, u0 ∈

Up0,r0(Ω) and the relation 1
p0

+ N
2r0

< 1 is valid for r0 = 2 and any p0 >
4

4−N .

Remark 2.3. Each of the assumptions on f and u0 can be replaced independently by the following assumptions,
see the corresponding Remarks 2.5 and 2.9 below.

• Let f ∈ Lq(I;W−1,s(Ω)) for q ∈ (1,∞) and s ∈
(
N,∞

)
satisfying 1

q + N
2s <

1
2 .

• Let u0 ∈ Ũq0,s0(Ω) = (W−1,s0(Ω),Dom−1,s0(−∆))1− 1
q0
,q0 for q0 ∈ (1,∞) and s0 ∈

(
N,∞

)
satisfying 1

q0
+

N
2s0

< 1
2 .

A typical setting fulfilling this assumption on u0 would be u0 ∈ W 1,s0
0 (Ω) with some s0 > N . Then, u0 ∈

Ũq0,s0(Ω) and the relation 1
q0

+ N
2s0

< 1
2 is valid for any q0 > 2s0

s0−N .

To state the existence and boundedness of the solution to (1.1), we need the following lemma.

Lemma 2.4. Under the assumptions on p0 and r0 from Assumption 2.1, there is α > 0 such that

Up0,r0(Ω) ↪→ Cα(Ω) ↪→ L∞(Ω).

Proof. By Assumption 2.1, there are ε, α > 0 such that 1− 1
p0
− ε > N

2r0
+ α

2 . Using Theorems 1.3.3 and 1.15.2
from [27] as well as Theorem 2.10 from [8], we get

(Lr0(Ω),Dom0,r0(−∆))1− 1
p0
,p0 ↪→ (Lr0(Ω),Dom0,r0(−∆))1− 1

p0
−ε,1 ↪→ Dom0,r0((−∆)1−

1
p0
−ε) ↪→ Cα(Ω).

By the definition of Up0,r0(Ω) from (2.1), this states the assertion. �

Remark 2.5. Using Lemma 4.8 from [8], a corresponding result also holds for Ũq0,s0(Ω) with 1
q0

+ N
2s0

< 1
2 .

Proposition 2.6. Under Assumption 2.1, problem (1.1) admits a unique solution u ∈ L∞(I×Ω) with a priori
estimate

‖u‖L∞(I×Ω) ≤ C
{
‖f‖Lp(I;Lr(Ω)) + ‖u0‖L∞(Ω)

}
.

Proof. The property (2.2b) in Assumption 2.1 implies that

d(·, ·, u)u= (d(·, ·, u)− d(·, ·, 0))u ≥ −γu2 for all u ∈ R.

Moreover from Lemma 2.4 we have u0 ∈ L∞(Ω). These two facts and the rest of Assumption 2.1 ensure that
the nonlinearity d fulfills the assumptions made in (2.6) and (2.7) from [3]. Hence, we can apply Theorem 5.1
from [3], which states the existence and uniqueness of a solution u ∈ L∞(I × Ω) to (1.1) as well as the stated
a priori estimate.

A similar result under the assumption that f ∈ Lp̂(I × Ω) for p̂ > N
2 + 1 and u0 ∈ L∞(Ω) can be found

in Lemma A.1 from [22]. �
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The goal of the remaining part of this section is to prove the Hölder continuity of the solution of (1.1). Before
doing so, we need to establish some results for the following linear homogeneous and inhomogeneous problems

∂tv(t, x)−∆v(t, x) = g(t, x), (t, x) ∈ I ×Ω,
v(t, x) = 0, (t, x) ∈ I × ∂Ω,
v(0, x) = 0, x ∈ Ω

(2.3)

and

∂tw(t, x)−∆w(t, x) = 0, (t, x) ∈ I ×Ω,
w(t, x) = 0, (t, x) ∈ I × ∂Ω,
w(0, x) = u0(x), x ∈ Ω.

(2.4)

Proposition 2.7. Let g ∈ Lp(I;Lr(Ω)) with 1
p + N

2r < 1. Then, there are β, κ ∈ (0, 1) depending on p and r

such that the solution v of (2.3) fulfills v ∈ Cβ(I;Cκ(Ω)) with

‖v‖Cβ(I;Cκ(Ω)) ≤ C‖g‖Lp(I;Lr(Ω)).

Additionally, provided that g ∈ Lp̂(I;L2(Ω)) for some 1< p̂<∞, it holds that v ∈W 1,p̂(I;L2(Ω))∩Lp̂(I;H2(Ω))
with the estimate

‖∂tv‖Lp̂(I;L2(Ω)) + ‖∇2v‖Lp̂(I;L2(Ω)) ≤ Cp̂‖g‖Lp̂(I;L2(Ω))

where Cp̂ ≤ C p̂2

p̂−1 .

Proof. The first result is proven, e.g., in Theorem 3.1 from [8] setting u0 = 0 there. The second result can be
found in Lemma 2.1 from [16], which itself mainly relies on [2, 9]. �

Proposition 2.8. Let u0 ∈ Up0,r0(Ω) with 1
p0

+ N
2r0

< 1. Then, there are β, κ ∈ (0, 1) depending on p0 and r0

such that the solution w of (2.4) fulfills w ∈ Cβ(I;Cκ(Ω)) with

‖w‖Cβ(I;Cκ(Ω)) ≤ C‖u0‖Up0,r0 (Ω).

Additionally, provided that u0 ∈ H2(Ω) ∩H1
0 (Ω), it holds that w ∈ W 1,∞(I;L2(Ω)) ∩ L∞(I;H2(Ω)) with the

estimate
‖∂tw‖L∞(I;L2(Ω)) + ‖∇2w‖L∞(I;L2(Ω)) ≤ C‖∇2u0‖L2(Ω).

Proof. The first result is proven, e.g., in Theorem 3.1 from [8] setting f = 0 there. The second result follows
from standard estimates for z= ∆w solving

∂tz −∆z = 0, in I ×Ω,
z(0) = ∆u0, on Ω

and elliptic regularity. �

Remark 2.9. Using Theorem 4.5 from [8], the results of the Propositions 2.7 and 2.8 can also be proven under
the assumptions f ∈ Lq(I;W−1,s(Ω)) with 1

q + N
2s <

1
2 and u0 ∈ Ũq0,s0(Ω) with 1

q0
+ N

2s0
< 1

2 .

Based on these lemmas, we can derive the main result of this section, namely the Hölder continuity of the
solution of (1.1).

Theorem 2.10. Let Assumption 2.1 be fulfilled. Then, there are β, κ ∈ (0, 1) such that the solution u of (1.1)
fulfills u ∈ Cβ(I;Cκ(Ω)) with a priori estimate

‖u‖Cβ(I;Cκ(Ω)) ≤ C
{
‖f‖Lp(I;Lr(Ω)) + ‖u0‖Up0,r0 (Ω)

}
.
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Proof. We write the solution u of (1.1) as u= v + w where v solves (2.3) with right-hand side g= f − d(·, ·, u)
and w solves (2.4). Using Assumption 2.1 and the boundedness of u given by Proposition 2.6, we get by (2.2a)

‖d(·, ·, u)‖Lp(I;Lr(Ω)) = ‖d(·, ·, u)− d(·, ·, 0)‖Lp(I;Lr(Ω)) ≤ C‖u‖L∞(I×Ω) ≤ C
{
‖f‖Lp(I;Lr(Ω)) + ‖u0‖L∞(Ω)

}
.

Hence, g lies in Lp(I;Lr(Ω)) and Proposition 2.7 implies the existence of β1, κ1 ∈ (0, 1) such that

‖v‖Cβ1 (I;Cκ1 (Ω)) ≤ C‖g‖Lp(I;Lr(Ω)) ≤ C
{
‖f‖Lp(I;Lr(Ω)) + ‖u0‖L∞(Ω)

}
.

Further, by Proposition 2.8, there are β2, κ2 ∈ (0, 1) such that

‖w‖Cβ2 (I;Cκ2 (Ω)) ≤ C‖u0‖Up0,r0 (Ω).

Then, setting β= min {β1, β2 } and κ= min {κ1, κ2 } and using Lemma 2.4 yields the assertion for
u= v + w. �

3. Discrete problem

To introduce the time discontinuous Galerkin discretization for the problem, we partition the interval (0, T ]
into subintervals Im = (tm−1, tm] of length km = tm − tm−1, where 0 = t0 < t1 < · · · < tM−1 < tM =T . The
maximal and minimal time steps are denoted by k= maxm km and kmin = minm km, respectively.

Assumption 3.1. We impose the following conditions on the temporal mesh (as, e.g., in [17] or [19]):

• There are constants c1, c2 > 0 independent of k such that kmin ≥ c1kc2 .
• There is a constant c > 0 independent of k such that for all m= 1, 2, . . . ,M − 1 it holds c−1 ≤ km

km+1
≤ c.

• It holds k ≤ 1
4T .

Further, let γ ≥ 0 be such that (2.2b) holds. If γ > 0, we make the following assumption on the smallness of k:

• There is 0 < ρ < 1 such that k fulfills k ≤ ρ
γ .

If γ= 0, no further assumption on k has to be made.

For the discretization in space with discretization parameter h > 0, let T denote a quasi-uniform triangulation
of Ω with mesh size h, i.e., T = {τ} is a partition of Ω into cells (triangles or tetrahedrons) τ of diameter hτ
such that for h= maxτ hτ ,

diam(τ) ≤ h ≤ C|τ | 1N , ∀τ ∈ T .

Let Vh be the set of all functions in H1
0 (Ω) that are Lagrange polynomials of order ν ≥ 1 on each τ ∈ T . We

consider the space-time finite element space

X0,ν
k,h =

{
vkh ∈ L2(I;Vh)

∣∣ vkh,m : = vkh|Im ∈ P0(Im;Vh), m= 1, 2, . . . ,M
}
,

where P0(I;V ) is the space of constant polynomial functions in time with values in a Banach space V .
Throughout, we denote by Ph : L2(Ω) → Vh the spatial orthogonal L2 projection and by Rh : H1

0 (Ω) → Vh
the spatial Ritz projection. Moreover, we introduce the discrete Laplace operator ∆h : Vh → Vh defined by

(−∆hvh, ϕh)Ω = (∇vh,∇ϕh)Ω , ∀ϕh ∈ Vh.

Further, we denote by Pk the temporal L2 projection given for a function v ∈ L1(I) by

(Pkv)
∣∣
Im

=
1
km

∫
Im

v(t) dt, m= 1, 2, . . . ,M.
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Finally, the projection Πk is given for v ∈ C(Ī) by

(Πkv)
∣∣
Im

= v(tm), m= 1, 2, . . . ,M.

The extension of these operators to space- and time-dependent functions is obvious.
We will employ the following notation for time-dependent functions v:

v+
m = lim

ε→0+
v(tm + ε), v−m = lim

ε→0+
v(tm − ε), [v]m = v+

m − v−m.

Note, that by definition, for vkh ∈ X0,ν
k,h, it holds

v+
kh,m = vkh,m+1, v−kh,m = vkh,m, [vkh]m = vkh,m+1 − vkh,m.

Based on these preparations, we define the bilinear form B by

B(u, ϕ) =
M∑

m= 1

〈∂tu, ϕ〉Im×Ω + (∇u,∇ϕ)I×Ω +
M∑

m= 2

([u]m−1, ϕ
+
m−1)Ω + (u+

0 , ϕ
+
0 )Ω , (3.1)

where (·, ·)Ω and (·, ·)Im×Ω are the usual L2 space and space-time inner products, 〈·, ·〉Im×Ω is the duality pairing
between L2(Im;H−1(Ω)) and L2(Im;H1

0 (Ω)). Rearranging the terms in (3.1), we obtain an equivalent (dual)
expression for B:

B(u, ϕ) = −
M∑

m= 1

〈u, ∂tϕ〉Im×Ω + (∇u,∇ϕ)I×Ω −
M−1∑
m= 1

(u−m, [ϕ]m)Ω + (u−M , ϕ
−
M )Ω . (3.2)

We note, that the first sum in (3.1) vanishes for u=ukh ∈ X0,ν
k,h and the first sum in (3.2) for ϕ=ϕkh ∈ X0,ν

k,h,
respectively. Hence, on X0,ν

k,h ×X
0,ν
k,h, the semilinear form B can be reduced to

B(ukh, ϕkh) = (∇ukh,∇ϕkh)I×Ω +
M∑

m= 2

([ukh]m−1, ϕkh,m)Ω + (ukh,1, ϕkh,1)Ω (3.3)

and

B(ukh, ϕkh) = (∇ukh,∇ϕkh)I×Ω −
M−1∑
m= 1

(ukh,m, [ϕkh]m)Ω + (ukh,M , ϕkh,M )Ω . (3.4)

Then, we define the fully discrete cG(ν)dG(0) approximation ukh ∈ X0,ν
k,h of (1.1) by

B(ukh, ϕkh) + (d(·, ·, ukh), ϕkh)I×Ω = (f, ϕkh)I×Ω + (u0, ϕkh,1)Ω , ∀ϕkh ∈ X0,ν
k,h. (3.5)

Theorem 3.2. Under the Assumptions 2.1 and 3.1, there is a unique solution ukh ∈ X0,ν
k,h of (3.5).

Proof. Using (3.3), problem (3.5) can be written as time stepping scheme for ukh,m =ukh
∣∣
Im

for m= 1, 2, . . . ,M
as follows:

km(∇ukh,m,∇ϕh)Ω + (ukh,m + kmd̄m(·, ukh,m), ϕh)Ω = (ukh,m−1 + kmf̄m, ϕh)Ω , ∀ϕh ∈ Vh,

where ukh,0 =Phu0 and the mean values d̄m and f̄m are given on I ×Ω by

d̄m(x, u) =
1
km

∫
Im

d(t, x, u) dt for u ∈ R and f̄m(x) =
1
km

∫
Im

f(t, x) dt.
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Hence, in each time step, the following discrete semilinear elliptic equation for ukh,m with given ukh,m−1 has to
be solved:

km(∇ukh,m,∇ϕh)Ω + (d̃m(·, ukh,m), ϕh)Ω = (ukh,m−1 + kmf̄m, ϕh)Ω , ∀ϕh ∈ Vh. (3.6)

The nonlinearity d̃m is given for u ∈ R as d̃m(·, u) =u + kmd̄m(·, u). Hence, Assumption 3.1 and (2.2b) imply
∂ud̃(·, u) ≥ 1 − kmγ ≥ 1 − ρ > 0 for γ > 0 and ∂ud̃(·, u) ≥ 1 independent of km for γ= 0. The remaining
assumptions on d carry over to d̃ and ensures the unique solvability of (3.6) for m= 1, 2, . . . ,M by application
of Brouwer’s fixed-point theorem, see, e.g., [5]. �

4. Discrete maximal parabolic estimates for a linear auxiliary equation

For given g ∈ L1(I ×Ω), we consider the discrete linear auxiliary equation for vkh ∈ X0,ν
k,h

B(vkh, ϕkh) + (bvkh, ϕkh)I×Ω = (g, ϕkh)I×Ω , ∀ϕkh ∈ X0,ν
k,h (4.1)

with a coefficient b ∈ L∞(I×Ω) fulfilling b(t, x) ≥ −γ for γ ≥ 0 from Assumption 2.1 and almost all (t, x) ∈ I×Ω.
For the solution vkh of (4.1), discrete maximal parabolic estimates in various norms are available in the

literature in the case b= 0, see [17]. In this section, we extend these results to the case b 6= 0. The extended
results will be used later in the Sections 5 and 6 to prove the results for the semilinear problem.

Before doing so, we start with an existence result for (4.1).

Lemma 4.1. Under Assumption 3.1, there is a unique solution vkh ∈ X0,ν
k,h of (4.1).

Proof. By setting d(·, ·, vkh) = bvkh, the assertion follows directly from Theorem 3.2. �

Lemma 4.2. Let Assumption 3.1 be fulfilled and g ∈ L1(I;L2(Ω)). Then, for the solution vkh ∈ X0,ν
k,h of (4.1)

there holds
‖vkh‖L∞(I;L2(Ω)) ≤ C‖g‖L1(I;L2(Ω))

with a constant C independent of h, k, g, and b.

Proof. We consider the dual problem for zkh ∈ X0,ν
k,h given by

B(ϕkh, zkh) + (bϕkh, zkh)I×Ω = (vkh,M , ϕkh,M )Ω , ∀ϕkh ∈ X0,ν
k,h.

Using (3.4), zkh,m satisfies for m=M − 1,M − 2, . . . , 1 the scheme

km(∇ϕh,∇zkh,m)Ω + (zkh,m + kmb̄mzkh,m, ϕh)Ω = (zkh,m+1, ϕh)Ω , ∀ϕh ∈ Vh, (4.2)

where zkh,M = vkh,M and b̄m is given as before by

b̄m(x) =
1
km

∫
Im

b(t, x) dt.

To proceed, we will first prove the boundedness of zkh in L∞(I;L2(Ω)). To this end, we employ the discrete
transformation argument from [18]. For µ > 0 a sufficient large number to be chosen later let ykh,m be defined
as

ykh,m = zkh,m

M∏
l=m

1
1 + µkl

, m= 1, 2, . . . ,M.
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Then, by (4.2), we get

km

M∏
l=m

(1 + µkl)(∇ϕh,∇ykh,m)Ω +
M∏
l=m

(1 + µkl)(ykh,m + kmb̄mykh,m, ϕh)Ω

=
M∏

l=m+1

(1 + µkl)(ykh,m+1, ϕh)Ω , ∀ϕh ∈ Vh.

Dividing both sides by
∏M
l=m+1(1 + µkl) yields

km(1 + µkm)(∇ϕh,∇ykh,m)Ω + (1 + µkm)(ykh,m + kmb̄mykh,m, ϕh)Ω = (ykh,m+1, ϕh)Ω , ∀ϕh ∈ Vh,

which can be rewritten as

km(1 + µkm)(∇ϕh,∇ykh,m)Ω + (ykh,m + kmb̃mykh,m, ϕh)Ω = (ykh,m+1, ϕh)Ω , ∀ϕh ∈ Vh (4.3)

with b̃m = b̄m + µ(1 + kmb̄m). Using Assumption 3.1 and choosing µ ≥ γ
1−ρ yields

b̃m ≥ −γ + µ(1− kmγ) ≥ −γ + µ(1− ρ) ≥ 0.

Then, by testing (4.3) with ϕh = yhk,m, we get ‖ykh,m‖2L2(Ω)≤ (ykh,m+1, ykh,m)Ω , which implies
‖ykh,m‖L2(Ω)≤‖ykh,m+1‖L2(Ω). Using this recursively for m= 1, 2, . . . ,M − 1, we get

‖ykh,1‖L2(Ω)≤‖ykh,M‖L2(Ω) = ‖vkh,M‖L2(Ω).

Transforming back to zkh,m and using 1 + µkl≤ eµkl yields

‖zkh,1‖L2(Ω) = ‖ykh,1‖L2(Ω)

M∏
l= 1

(1 + µkl)≤ eµT ‖vkh,M‖L2(Ω)

and hence
‖zkh‖L∞(I;L2(Ω))≤ eµT ‖vkh,M‖L2(Ω).

Using this and (4.1), we obtain

‖vkh,M‖2L2(Ω) =B(vkh, zkh) + (bvkh, zkh)I×Ω = (g, zkh)I×Ω

≤‖g‖L1(I;L2(Ω))‖zkh‖L∞(I;L2(Ω))≤ eµT ‖g‖L1(I;L2(Ω))‖vkh,M‖L2(Ω),

which completes the proof. �

The next lemma provides a discrete maximal parabolic estimate for vkh with respect to the L∞(I;L2(Ω))
norm.

Lemma 4.3. Let Assumption 3.1 be fulfilled and g ∈ L∞(I;L2(Ω)). Then, for the solution vkh ∈ X0,ν
k,h of (4.1)

there holds

‖∆hvkh‖L∞(I;L2(Ω)) + max
1≤m≤M

∥∥∥∥ [vkh]m−1

km

∥∥∥∥
L2(Ω)

≤C ln
T

k

{
1 + ‖b‖L∞(I×Ω)

}
‖g‖L∞(I;L2(Ω))

with a constant C independent of h, k, g, and b.
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Proof. The solution vkh ∈ X0,ν
k,h of (4.1) fulfills

B(vkh, ϕkh) = (g̃, ϕkh)I×Ω , ∀ϕkh ∈ X0,ν
k,h

with g̃= g − bvkh. Using Lemma 4.2, we can estimate

‖g̃‖L∞(I;L2(Ω))≤‖g‖L∞(I;L2(Ω)) + ‖b‖L∞(I×Ω)‖vkh‖L∞(I;L2(Ω))

≤‖g‖L∞(I;L2(Ω)) + ‖b‖L∞(I×Ω)‖g‖L1(I;L2(Ω))

≤C
{

1 + ‖b‖L∞(I×Ω)

}
‖g‖L∞(I;L2(Ω)).

Applying the discrete maximal parabolic regularity result of Theorem 2 and Corollary 2 from [17], we obtain
the desired estimate for vkh. �

Before continuing with estimates for the solution of (4.1), we recall for completeness two well-known results
for finite element functions.

Lemma 4.4. For any wh ∈ Vh, it holds

‖wh‖L∞(Ω)≤C‖∆hwh‖L2(Ω) and ‖wh‖L2(Ω)≤C‖∆hwh‖L1(Ω).

Proof. Let w ∈ H1
0 (Ω) given as the solution of

(∇w,∇ϕ)Ω = (−∆hwh, ϕ)Ω , ∀ϕ ∈ H1
0 (Ω).

Note, that by construction, it holds Rhw=wh for the Ritz projection Rh. Elliptic regularity yields w ∈ H2(Ω)
with ‖w‖H2(Ω)≤C‖∆hwh‖L2(Ω). Further, it holds ‖w‖L2(Ω)≤C‖∆hwh‖L1(Ω) For the first assertion, let
ih : C(Ω̄) → Vh be the nodal interpolant. Since ν ≥ 1, by standard estimates for wh − w and for the inter-
polation error w − ihw as well as an inverse estimate, we get

‖wh‖L∞(Ω)≤‖wh − ihw‖L∞(Ω) + ‖ihw − w‖L∞(Ω) + ‖w‖L∞(Ω)

≤Ch−N2
{
‖wh − w‖L2(Ω) + ‖w − ihw‖L2(Ω)

}
+ ‖ihw − w‖L∞(Ω) + ‖w‖L∞(Ω)

≤C(h2−N2 + 1)‖∇2w‖L2(Ω)≤C‖∆hwh‖L2(Ω).

Similarly, we get for the second assertion that

‖wh‖L2(Ω)≤‖wh − w‖L2(Ω) + ‖w‖L2(Ω)≤C
{
h2‖∆hwh‖L2(Ω) + ‖∆hwh‖L1

}
≤C(h2−N2 + 1)‖∆hwh‖L1(Ω)≤C‖∆hwh‖L1(Ω).

This completes the proof. �

The next lemma provides a discrete maximal parabolic estimate for vkh with respect to the L1(I ×Ω) norm.

Lemma 4.5. Let Assumption 3.1 be fulfilled and g ∈ L1(I × Ω). Then, for the solution vkh ∈ X0,ν
k,h of (4.1)

there holds

‖∆hvkh‖L1(I×Ω) +
M∑

m= 1

‖[vkh]m−1‖L1(Ω)≤C
(

ln
T

k

)2 {
1 + ‖b‖2L∞(I×Ω)

}
‖g‖L1(I×Ω)

with a constant C independent of h, k, g, and b.
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Proof. We consider the dual problem for zkh ∈ X0,ν
k,h given by

B(ϕkh, zkh) + (bϕkh, zkh)I×Ω = (ϕkh, sgnvkh)I×Ω , ∀ϕkh ∈ X0,ν
k,h,

where sgn: L2(I ×Ω)→ L∞(I ×Ω) denotes the sign function. Then, it holds

‖vkh‖L1(I×Ω) =B(vkh, zkh) + (bvkh, zkh)I×Ω = (g, zkh)I×Ω ≤‖g‖L1(I×Ω)‖zkh‖L∞(I×Ω).

By Lemma 4.3 applied to the dual solution zkh and Lemma 4.4 applied separately to wh = zkh,m for
m= 1, 2, . . . ,M , we get

‖zkh‖L∞(I×Ω)≤C‖∆hzkh‖L∞(I;L2(Ω))≤C ln
T

k

{
1 + ‖b‖L∞(I×Ω)

}
‖sgnvk‖L∞(I;L2(Ω))

≤C ln
T

k

{
1 + ‖b‖L∞(I×Ω)

}
and consequently

‖vkh‖L1(I×Ω)≤C ln
T

k

{
1 + ‖b‖L∞(I×Ω)

}
‖g‖L1(I×Ω). (4.4)

As before, this implies for g̃= g − bvkh that

‖g̃‖L1(I×Ω)≤C ln
T

k

{
1 + ‖b‖2L∞(I×Ω)

}
‖g‖L1(I×Ω),

which yields the assertion again by means of Theorem 2 and Corollary 2 from [17]. �

5. Boundedness of the discrete solution

In this section, we derive the boundedness of the solution ukh to (3.5) in L∞(I ×Ω). In the case N = 2, this
was already proven in [21] using a different approach than used here. The technique employed there does not
extend to the three-dimensional situation, due to the used inverse inequality.

First, we introduce a modified nonlinearity dR with bounded derivative ∂udR, To this end, let for R > 0 the
nonlinearity dR be defined by

dR(t, x, u) =


d(t, x,R) + (u−R)∂ud(t, x,R), for u > R,

d(t, x, u), for |u| ≤R,
d(t, x,−R) + (u+R)∂ud(t, x,−R), for u < −R.

Further, let uR and uRkh be the solutions of the continuous problem (1.1) and the discrete problem (3.5) with
dR instead of d. Assumption (2.2a) on the local boundedness of ∂ud implies the global boundedness of

∂udR(t, x, u) =


∂ud(t, x,R), for u > R,

∂ud(t, x, u), for |u| ≤R,
∂ud(t, x,−R), for u < −R

by a constant CR depending on R:

|∂udR(t, x, u)| ≤CR for almost all (t, x) ∈ I ×Ω and all u ∈ R. (5.1)

Additionally, by (2.2b), it holds
∂udR(t, x, u) ≥ −γ. (5.2)
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In the following lemma, we state an quasi best approximation result for the error between uR and uRkh with
respect to the L∞(I ×Ω) norm:

Lemma 5.1. Let the Assumptions 2.1 and 3.1 be fulfilled, uR be the solution of (1.1), and uRkh ∈ X
0,ν
k,h be the

solution of (3.5) each with dR instead of d. Then, it holds

‖uR − uRkh‖L∞(I×Ω)≤CR|lnh|
(

ln
T

k

)2

‖uR − χkh‖L∞(I×Ω)

for any χkh ∈ X0,ν
k,h.

Proof. Let χkh be an arbitrary but fixed element of X0,ν
k,h. We decompose the error e=uR − uRkh as

e= (uR − χkh) + (χkh − uRkh) = η + ξkh,

By Galerkin orthogonality, there holds

B(e, ϕkh) + (dR(·, ·, uR)− dR(·, ·, uRkh), ϕkh)I×Ω = 0, ∀ϕkh ∈ X0,ν
k,h

and therefore

B(ξkh, ϕkh) + (dR(·, ·, χkh)− dR(·, ·, uRkh), ϕkh)I×Ω = −B(η, ϕkh)− (dR(·, ·, uR)− dR(·, ·, χkh), ϕkh)I×Ω (5.3)

for all ϕkh ∈ X0,ν
k,h. To formulate an appropriate dual problem, we define the coefficient b by

b=
∫ 1

0

∂udR(·, ·, uRkh + s(χkh − uRkh)) ds.

By (5.1), it follows ‖b‖L∞(I×Ω)≤CR and (5.2) implies b(t, x) ≥ −γ for almost all (t, x) ∈ I × Ω. Further, by
construction, it holds

bξkh = dR(·, ·, χkh)− dR(·, ·, uRkh).

We will estimate ξkh,M (x0) by using a duality argument. To this end, let δ̃x0 : Ω → R be a smoothed Dirac
function with support contained in a single spatial cell τ̄ 3 x0 fulfilling∫

τ

δ̃x0(x)χ(x) dx=χ(x0), ∀χ ∈ Pν(τ) and ‖δ̃x0‖L1(Ω)≤C.

The explicit construction of such a function is given for instance in Appendix from [24]. Further, let θM : I → R
be a smooth function with support contained in IM and fulfilling θM ≥ 0 as well as∫

IM

θM (t) dt= 1.

Them, let zkh ∈ X0,ν
k,h be given as solution of

B(ϕkh, zkh) + (bϕkh, zkh)I×Ω = (θM δ̃x0 , ϕkh)I×Ω , ∀ϕkh ∈ X0,ν
k,h.

Using (5.3), we obtain

ξkh,M (x0) = (θM δ̃x0 , ξkh)I×Ω =B(ξkh, zkh) + (bξkh, zkh)I×Ω
=B(ξkh, zkh) + (dR(·, ·, χkh)− dR(·, ·, uRkh), zkh)I×Ω
= −B(η, zkh)− (dR(·, ·, uR)− dR(·, ·, χkh), zkh)I×Ω

= − (∇η,∇zkh)I×Ω +
M∑

m= 1

(ηm, [zkh]m)Ω − (dR(·, ·, uR)− dR(·, ·, χkh), zkh)I×Ω ,

(5.4)



2318 D. MEIDNER AND B. VEXLER

where ηm =uR(tm)− χkh,m. For the first term on the right-hand side of (5.4), we get

|(∇η,∇zkh)I×Ω | = |(∇Rhη,∇zkh)I×Ω |= |(Rhη,∆hzkh)I×Ω | ≤ ‖Rhη‖L∞(I×Ω)‖∆hzkh‖L1(I×Ω)

≤C|lnh|‖η‖L∞(I×Ω)‖∆hzkh‖L1(I×Ω),

where the stability of Rh in L∞(Ω) from [23] for N = 2 and from Theorem 12 of [14] for N = 3 was used. For
the second term on the right-hand side of (5.4), it follows∣∣∣∣∣

M∑
m= 1

(ηm, [zkh]m)Ω

∣∣∣∣∣ ≤
M∑

m= 1

‖ηm‖L∞(Ω)‖[zkh]m‖L1(Ω)≤‖η‖L∞(I×Ω)

M∑
m= 1

‖[zkh]m‖L1(Ω).

Finally, for the third term on the right-hand side of (5.4), we obtain due to (5.1) that

|(dR(·, ·, uR)− dR(·, ·, χkh), zkh)I×Ω | ≤CR‖η‖L∞(I×Ω)‖zkh‖L1(I×Ω).

Combining the previous estimates and applying Lemma 4.5 to the dual problem considered here as well as
Lemma 4.4 for ‖zkh‖L1(I×Ω) leads to

ξkh,M (x0)≤CR|lnh|‖η‖L∞(I×Ω)

{
‖∆hzkh‖L1(I×Ω) +

M∑
m= 1

‖[zkh]m‖L1(Ω) + ‖zkh‖L1(I×Ω)

}

≤CR|lnh|
(

ln
T

k

)2

‖η‖L∞(I×Ω)‖θM δ̃x0‖L1(I×Ω).

Using the bound
‖θM δ̃x0‖L1(I×Ω) = ‖θM‖L1(I)‖δ̃x0‖L1(Ω)≤C

concludes the estimate of ξkh. Then, we get for the error

‖e‖L∞(I×Ω)≤‖η‖L∞(I×Ω) + ‖ξkh‖L∞(I×Ω)≤CR|lnh|
(

ln
T

k

)2

‖η‖L∞(I;L∞(Ω)),

which states the assertion. �

To formulate the boundedness result for ukh ∈ X0,ν
k,h, we require the following mild assumption on k and h.

Assumption 5.2. There exist σ > 0 (arbitrary small) and a constant C > 0 such that

k≤Chσ.

Remark 5.3. This is a very mild condition, since σ can be choosen arbitrary small. We do not require any
conditions like k≤Ch or even k≤Ch2 in the whole paper.

Theorem 5.4. Let the Assumptions 2.1, 3.1, and 5.2 be fulfilled. Then, there exists h0 > 0 and a constant
C > 0 independent of k and h such that for all h < h0 the solution ukh ∈ X0,ν

k,h of (3.5) fulfills

‖ukh‖L∞(I×Ω)≤‖u‖L∞(I×Ω) + 1.

Proof. Let R= ‖u‖L∞(I×Ω) + 1. By the boundedness of u, see Proposition 2.6, we have R < ∞. Due to this
choice, it holds uR =u. Using the estimate from Lemma 5.1, setting χkh =PkPhu and using the stability of the
temporal L2 projection Pk in L∞(I ×Ω), we get

‖u− uRkh‖L∞(I×Ω)≤CR|lnh|
(

ln
T

k

)2 {
‖uR − PkuR‖L∞(I×Ω) + ‖Pk(uR − PhuR)‖L∞(I×Ω)

}
≤CR|lnh|

(
ln
T

k

)2 {
‖uR − PkuR‖L∞(I×Ω) + ‖uR − PhuR‖L∞(I×Ω)

}
.
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By standard estimates for Ph and Pk together with the regularity of u from Theorem 2.10, it follows

‖u− uRkh‖L∞(I×Ω)≤CR|lnh|
(

ln
T

k

)2 {
‖u− Pku‖L∞(I×Ω) + ‖u− Phu‖L∞(I×Ω)

}
≤ CR|lnh|

(
ln
T

k

)2 (
kβ + hκ

)
‖u‖Cβ(I;Cκ(Ω))

≤ CR|lnh|
(

ln
T

k

)2 (
kβ + hκ

){
‖f‖Lp(I;Lr(Ω)) + ‖u0‖Up0,r0 (Ω)

}
.

Using Assumptions 5.2, it follows with δ= min{σβ, κ} > 0

‖u− uRkh‖L∞(I×Ω)≤CR|lnh|3hδ.

Consequently, there exists h0 > 0, such that for all h < h0 we have ‖u− uRkh‖L∞(I×Ω)≤ 1. This yields

‖uRkh‖L∞(I×Ω)≤‖u‖L∞(I×Ω) + ‖u− uRkh‖L∞(I×Ω)≤‖u‖L∞(I×Ω) + 1 =R,

and therefore ukh =uRkh. This gives the boundedness of ukh. �

Remark 5.5. As already mentioned in the introduction, the result of this theorem is available in the literature
for N = 2, see Theorem 4.1 from [21]. The proof from [21] can not be extended to the three-dimensional case
(N = 3) due to application of an inverse inequality.

6. Error estimates

In this section, we provide (quasi) best approximation results and error estimates of the discretization error
between the continuous solution u of (1.1) and the discrete solution ukh of (3.5) in various norms. Basis of all
given estimates is the boundedness of ukh given by Theorem 5.4.

We start with a best-approximation-type result in the L2(I ×Ω) norm.

Theorem 6.1. Let the Assumptions 2.1, 3.1 and 5.2 be fulfilled. Further, let u be the solution of (1.1), and
ukh ∈ X0,ν

k,h be the solution of (3.5). Then, it holds

‖u− ukh‖L2(I×Ω)≤C
{
‖u− χkh‖L2(I×Ω) + ‖u−Πku‖L2(I×Ω) + ‖u−Rhu‖L2(I×Ω)

}
for any χkh ∈ X0,ν

k,h.

Proof. Due to the boundedness of u by Proposition 2.6 and the boundedness of ukh by Theorem 5.4, we have

Ru = ‖u‖L∞(I×Ω) <∞ and Rukh = sup
k,h
‖ukh‖L∞(I×Ω) <∞.

Choosing R= max(Ru, Rukh) in Lemma 5.1, we directly obtain u=uR and ukh =uRkh. Proceeding as in the
proof of Lemma 5.1, we decompose

e=u− ukh = (u− χkh) + (χkh − ukh) = η + ξkh

and introduce the following dual problem for zkh ∈ X0,ν
k,h:

B(ϕkh, zkh) + (bϕkh, zkh)I×Ω = (ξkh, ϕkh)I×Ω , ∀ϕkh ∈ X0,ν
k,h
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with b as in the proof of Lemma 5.1. Testing with ϕkh = ξkh yields

‖ξkh‖2L2(I×Ω) =B(ξkh, zkh) + (bξkh, zkh)I×Ω

= − (∇η,∇zkh)I×Ω +
M∑

m= 1

(ηm, [zkh]m)Ω − (dR(·, ·, u)− dR(·, ·, χkh), zkh)I×Ω .
(6.1)

For the first term on the right-hand side of (6.1), we get

|(∇η,∇zkh)I×Ω | = |(Rhη,∆hzkh)I×Ω | ≤ ‖Rhη‖L2(I×Ω)‖∆hzkh‖L2(I×Ω).

For the second term on the right-hand side of (6.1), it follows from the definition of Πk that

ηm =u(tm)− χkh,m =u(tm)− χkh(tm) = (Πku)(tm)−Πk(χkh)(tm) = (Πkη)m

and thus ∣∣∣∣∣
M∑

m= 1

(ηm, [zkh]m)Ω

∣∣∣∣∣=
∣∣∣∣∣
M∑

m= 1

((Πkη)m, [zkh]m)Ω

∣∣∣∣∣ ≤
M∑

m= 1

‖(Πkη)m‖L2(Ω)‖[zkh]m‖L2(Ω)

≤

(
M∑

m= 1

km‖Πkη‖2L2(Ω)

) 1
2
(

M∑
m= 1

k−1
m ‖[zkh]m‖2L2(Ω)

) 1
2

= ‖Πkη‖L2(I×Ω)

(
M∑

m= 1

k−1
m ‖[zkh]m‖2L2(Ω)

) 1
2

.

Finally, for the third term on the right-hand side of (6.1), we obtain due to (5.1)

|(dR(·, ·, u)− dR(·, ·, χkh), zkh)I×Ω | ≤CR‖η‖L2(I×Ω)‖zkh‖L2(I×Ω).

It remains to bound the arising terms involving zkh. By Lemma 4.2 applied to the dual problem for zkh, we
have ‖zkh‖L∞(I;L2(Ω))≤‖ξkh‖L1(I;L2(Ω)) and consequently

‖bzkh‖L2(I×Ω)≤‖b‖L∞(I×Ω)‖zkh‖L2(I×Ω)≤‖b‖L∞(I×Ω)‖ξkh‖L2(I×Ω).

Then, Corollary 4.2 from [20] applied to the rewritten dual problem for zkh

B(ϕkh, zkh) = (ξkh − bzkh, ϕkh)I×Ω , ∀ϕkh ∈ X0,ν
k,h

yields

‖∆hzkh‖L2(I×Ω) +

(
M∑

m= 1

k−1
m ‖[zkh]m‖2L2(Ω)

) 1
2

≤‖ξkh − bzkh‖L2(I×Ω)

≤
{

1 + ‖b‖L∞(I×Ω)

}
‖ξkh‖L2(I×Ω).

Using Lemma 4.4 to bound ‖zkh‖L2(I×Ω) by ‖∆hzkh‖L2(I×Ω) and the boundedness of ‖b‖L∞(I×Ω) due to (5.1),
we obtain

‖ξkh‖L2(I×Ω)≤C
{
‖η‖L2(I×Ω) + ‖Πkη‖L2(I×Ω) + ‖Rhη‖L2(I×Ω)

}
.

Then, the triangle inequality implies the assertion. �

Under slightly strengthened assumptions on f and u0 Theorem 6.1 yields an error estimate in the L2(I ×Ω)
norm of second order, which is optimal for ν= 1, i.e., for linear ansatz functions in space.
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Corollary 6.2. Let the Assumptions 2.1, 3.1 and 5.2 be fulfilled and additionally p, r ≥ 2 and u0 ∈ H1
0 (Ω).

Then, for the solution u of (1.1), it holds u ∈ H1(I;L2(Ω)) ∩ L2(I;H2(Ω)) with

‖∂tu‖L2(I×Ω) + ‖∇2u‖L2(I×Ω)≤C
{
‖f‖Lp(I;Lr(Ω)) + ‖∇u0‖L2(Ω) + ‖u0‖L∞(Ω)

}
.

Further, for the error between u and the solution ukh ∈ X0,ν
k,h of (3.5), it holds

‖u− ukh‖L2(I×Ω)≤C(k + h2)
{
‖f‖Lp(I;Lr(Ω)) + ‖∇u0‖L2(Ω) + ‖u0‖L∞(Ω)

}
.

Proof. By putting the nonlinearity d to the right-hand side as

∂tu−∆u= f − d(·, ·, u),

regularity theory for the linear equation (cf., e.g., [11], Chap. 7, Thm. 5) yields as in the proof of Theorem 2.10
by means of Proposition 2.6 that

‖∂tu‖L2(I×Ω) + ‖∇2u‖L2(I×Ω)≤C
{
‖f − d(·, ·, u)‖L2(I×Ω) + ‖∇u0‖L2(Ω)

}
≤C

{
‖f‖L2(I×Ω) + ‖u‖L∞(I×Ω) + ‖∇u0‖L2(Ω)

}
≤C

{
‖f‖Lp(I;Lr(Ω)) + ‖∇u0‖L2(Ω) + ‖u0‖L∞(Ω)

}
,

since p, r ≥ 2.
From Theorem 6.1, we have

‖u− ukh‖L2(I×Ω)≤C
{
‖u− χkh‖L2(I×Ω) + ‖u−Πku‖L2(I×Ω) + ‖u−Rhu‖L2(I×Ω)

}
.

Choosing χkh =PkPhu as in the proof of Theorem 5.4, we get by the stability of Pk in L2(I ×Ω)

‖u− χkh‖L2(I×Ω)≤C
{
‖u− Pku‖L2(I×Ω) + ‖u− Phu‖L2(I×Ω)

}
.

Then, the standard estimates

‖u− Pku‖L2(I×Ω) + ‖u−Πku‖L2(I×Ω)≤Ck‖∂tu‖L2(I×Ω),

‖u− Phu‖L2(I×Ω) + ‖u−Rhu‖L2(I×Ω)≤Ch2‖∇2u‖L2(I×Ω)

yield the assertion. �

Next, we derive a best-approximation-type result in the L∞(I;L2(Ω)) norm.

Theorem 6.3. Let the Assumptions 2.1, 3.1 and 5.2 be fulfilled. Further, let u be the solution of (1.1), and
ukh ∈ X0,ν

k,h be the solution of (3.5). Then, it holds for all 1≤ p̂≤∞

‖u− ukh‖L∞(I;L2(Ω))≤C ln
T

k

{
‖u− χkh‖L∞(I;L2(Ω)) + k−

1
p̂ ‖u−Rhu‖Lp̂(I;L2(Ω))

}
Proof. Similar to the proof of Theorem 6.1, we obtain by the boundedness of u (see Prop. 2.6) and of ukh (see
Thm. 5.4) that

Ru = ‖u‖L∞(I×Ω) <∞ and Rukh = sup
k,h
‖ukh‖L∞(I×Ω) <∞.

Hence, setting R= max(Ru, Rukh) in Lemma 5.1 yields uR =u and uRkh =ukh. Like in the proof of Lemma 5.1,
we decompose

e=u− ukh = (u− χkh) + (χkh − ukh) = η + ξkh.
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and introduce the following dual problem for zkh ∈ X0,ν
k,h:

B(ϕkh, zkh) + (bϕkh, zkh)I×Ω = (ξkh,MθM , ϕkh)I×Ω , ∀ϕkh ∈ X0,ν
k,h.

with b and θM as in the proof of Lemma 5.1. Testing with ϕkh = ξkh yields

‖ξkh,M‖2L2(Ω) =B(ξkh, zkh) + (bξkh, zkh)I×Ω

= − (∇η,∇zkh)I×Ω +
M∑

m= 1

(ηm, [zkh]m)Ω − (dR(·, ·, u)− dR(·, ·, χkh), zkh)I×Ω .
(6.2)

For the first term on the right-hand side of (6.2), we get by an inverse estimate for 1
p̂ + 1

p̂′ = 1 that

|(∇η,∇zkh)I×Ω | = |(Rhη,∆hzkh)I×Ω | ≤ |(u−Rhu,∆hzkh)I×Ω |+ |(η,∆hzkh)I×Ω |
≤ ‖u−Rhu‖Lp̂(I;L2(Ω))‖∆hzkh‖Lp̂′ (I;L2(Ω)) + ‖η‖L∞(I;L2(Ω))‖∆hzkh‖L1(I;L2(Ω))

≤C
{
k−

1
p̂ ‖u−Rhu‖Lp̂(I;L2(Ω)) + ‖η‖L∞(I;L2(Ω))

}
‖∆hzkh‖L1(I;L2(Ω)).

For the second term on the right-hand side of (6.2), we obtain∣∣∣∣∣
M∑

m= 1

(ηm, [zkh]m)Ω

∣∣∣∣∣ ≤
M∑

m= 1

‖ηm‖L2(Ω)‖[zkh]m‖L2(Ω)≤‖η‖L∞(I;L2(Ω))

M∑
m= 1

‖[zkh]m‖L2(Ω).

Finally, for the third term on the right-hand side of (6.2), we obtain due to (5.1) that

|(dR(·, ·, u)− dR(·, ·, χkh), zkh)I×Ω | ≤CR‖η‖L∞(I;L2(Ω))‖zkh‖L1(I;L2(Ω)).

It remains to bound the arising terms involving zkh. By Lemma 4.2 applied to the dual problem for zkh, we
have ‖zkh‖L∞(I;L2(Ω))≤‖ξkh,MθM‖L1(I;L2(Ω)) and consequently

‖bzkh‖L1(I;L2(Ω))≤‖b‖L∞(I×Ω)‖zkh‖L1(I;L2(Ω))

≤‖b‖L∞(I×Ω)‖ξkh,MθM‖L1(I;L2(Ω) = ‖b‖L∞(I×Ω)‖ξkh,M‖L2(Ω)

due to the properties of θM . By Theorem 11 from [17] applied to the rewritten dual problem for zkh

B(ϕkh, zkh) = (ξkh,MθM − bzkh, ϕkh)I×Ω , ∀ϕkh ∈ X0,ν
k,h

yields

‖∆hzkh‖L1(I;L2(Ω)) +
M∑

m= 1

‖[zkh]m‖L2(Ω)≤C ln
T

k
‖ξkh,MθM − bzkh‖L1(I;L2(Ω))

≤C ln
T

k

{
1 + ‖b‖L∞(I×Ω)

}
‖ξkh,M‖L2(Ω).

Using Lemma 4.4 for ‖zkh‖L1(I;L2(Ω)) and the boundedness of ‖b‖L∞(I×Ω) due to (2.2a), we obtain

‖ξkh,M‖L2(Ω)≤C ln
T

k

{
‖η‖L∞(I;L2(Ω)) + Ck−

1
p̂ ‖u−Rhu‖Lp̂(I;L2(Ω))

}
,

which yields the assertion. �

Under further strengthened assumptions on f and ud, also this quasi best approximation result implies an
error estimate of second order, which is optimal (up to logarithmic terms) for ν= 1.
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Corollary 6.4. Let the Assumptions 2.1, 3.1 and 5.2 be fulfilled and additionally r ≥ 2, f ∈ L∞(I, Lr(Ω)),
and u0 ∈ H2(Ω)∩H1

0 (Ω). Then, for the solution u of (1.1), it holds u ∈W 1,p̂(I;L2(Ω))∩Lp̂(I;H2(Ω)) for all
1 < p̂ <∞ and there exists a constant Cp̂≤C p̂2

p̂−1 with

‖∂tu‖Lp̂(I;L2(Ω)) + ‖∇2u‖Lp̂(I;L2(Ω))≤Cp̂
{
‖f‖L∞(I;Lr(Ω)) + ‖∇2u0‖L2(Ω)

}
.

Further, for the error between u and the solution ukh ∈ X0,ν
k,h of (3.5), it holds

‖u− ukh‖L∞(I;L2(Ω))≤C(k + h2)
(

ln
T

k

)2 {
‖f‖L∞(I;Lr(Ω)) + ‖∇2u0‖L2(Ω)

}
.

Proof. We put the nonlinearity d to the right-hand side as

∂tu−∆u= f − d(·, ·, u) in I ×Ω,
u(0) =u0 on Ω,

and split the solution as u= v + w where v solves (2.3) with g= f − d(·, ·, u) and w solves (2.4). Then the
Propositions 2.7 and 2.8 imply

‖∂tv‖Lp̂(I;L2(Ω)) + ‖∇2v‖Lp̂(I;L2(Ω))≤Cp̂‖f − d(·, ·, u)‖Lp̂(I;L2(Ω)).

with Cp̂≤C p̂2

p̂−1 and
‖∂tw‖L∞(I;L2(Ω)) + ‖∇2w‖L∞(I;L2(Ω))≤C‖∇2u0‖L2(Ω).

Combining these estimates and proceeding similarly to the proof of Theorem 2.10 by means of Proposition 2.6
then implies

‖∂tu‖Lp̂(I;L2(Ω)) + ‖∇2u‖Lp̂(I;L2(Ω))≤Cp̂‖f − d(·, ·, u)‖Lp̂(I;L2(Ω)) + C‖∇2u0‖L2(Ω)

≤Cp̂
{
‖f‖L∞(I;L2(Ω)) + ‖u‖L∞(I×Ω)

}
+ C‖∇2u0‖L2(Ω)

≤Cp̂
{
‖f‖L∞(I;Lr(Ω)) + ‖∇2u0‖L2(Ω)

}
,

since r ≥ 2 and p̂ <∞.
From Theorem 6.3, we have

‖u− ukh‖L∞(I;L2(Ω))≤C ln
T

k

{
‖u− χkh‖L∞(I;L2(Ω)) + k−

1
p̂ ‖u−Rhu‖Lp̂(I;L2(Ω))

}
.

Choosing χkh =PkPhu as in the proof of Theorem 5.4, we get

‖u− χkh‖L∞(I;L2(Ω))≤‖u− Pku‖L∞(I;L2(Ω)) + ‖Pk(u− Phu)‖L∞(I;L2(Ω))

≤‖u− Pku‖L∞(I;L2(Ω)) + Ck−
1
p̂ ‖Pk(u− Phu)‖Lp̂(I;L2(Ω))

≤‖u− Pku‖L∞(I;L2(Ω)) + Ck−
1
p̂ ‖u− Phu‖Lp̂(I;L2(Ω)).

From the stability of Pk in L∞(I;L2(Ω)) and standard interpolation estimates, we have

‖u− Pku‖L∞(I;L2(Ω))≤Ck1− 1
p̂ ‖∂tu‖Lp̂(I;L2(Ω)).

Further, standard estimates for ‖u− Phu‖L2(Ω) and ‖u−Rhu‖L2(Ω) imply

‖u− Phu‖Lp̂(I;L2(Ω)) + ‖u−Rhu‖Lp̂(I;L2(Ω))≤Ch2‖∇2u‖Lp̂(I;L2(Ω)).
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Using these estimates, we get

‖u− ukh‖L∞(I;L2(Ω))≤C ln
T

k
k−

1
p̂
{
k‖∂tu‖Lp̂(I;L2(Ω)) + h2‖∇2u‖Lp̂(I;L2(Ω))

}
≤Cp̂k−

1
p̂ (k + h2) ln

T

k

{
‖f‖L∞(I;Lr(Ω)) + ‖∇2u0‖L2(Ω)

}
.

Then, by setting p̂= ln T
k we have Cp̂k

− 1
p̂ ≤C ln T

k , since T
k ≥ 4 by assumption. This implies the

assertion. �

Finally, in the following Theorem, a best approximation result in L∞(I × Ω) is stated. This is a direct
consequence of Theorem 5.4.

Theorem 6.5. Let the Assumptions 2.1, 3.1 and 5.2 be fulfilled. Further, let u be the solution of (1.1), and
ukh ∈ X0,ν

k,h be the solution of (3.5). Then, it holds

‖u− ukh‖L∞(I×Ω)≤C|lnh|
(

ln
T

k

)2

‖u− χkh‖L∞(I×Ω)

for any χkh ∈ X0,ν
k,h.

Proof. Due to the boundedness of u by Proposition 2.6 and the boundedness of ukh by Theorem 5.4, we have

Ru = ‖u‖L∞(I×Ω) <∞ and Rukh = sup
k,h
‖ukh‖L∞(I×Ω) <∞.

Choosing R= max(Ru, Rukh) in Lemma 5.1, we directly obtain

‖u− ukh‖L∞(I×Ω) = ‖uR − uRkh‖L∞(I×Ω)≤C|lnh|
(

ln
T

k

)2

‖u− χkh‖L∞(I×Ω).

This concludes the short proof. �
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