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A POSTERIORI SNAPSHOT LOCATION FOR POD

IN OPTIMAL CONTROL OF LINEAR PARABOLIC EQUATIONSI

Alessandro Alla1,*, Carmen Grässle2 and Michael Hinze2

Abstract. In this paper we study the approximation of an optimal control problem for linear para-
bolic PDEs with model order reduction based on Proper Orthogonal Decomposition (POD-MOR).
POD-MOR is a Galerkin approach where the basis functions are obtained upon information contained
in time snapshots of the parabolic PDE related to given input data. In the present work we show that
for POD-MOR in optimal control of parabolic equations it is important to have knowledge about the
controlled system at the right time instances. We propose to determine the time instances (snapshot
locations) by an a posteriori error control concept. The proposed method is based on a reformulation
of the optimality system of the underlying optimal control problem as a second order in time and
fourth order in space elliptic system which is approximated by a space-time finite element method.
Finally, we present numerical tests to illustrate our approach and show the effectiveness of the method
in comparison to existing approaches.
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1. Introduction

Optimization with PDE constraints is nowadays a well-studied topic motivated by its relevance in industrial
applications. We are interested in the numerical approximation of such optimization problems in an efficient and
reliable way using surrogate models obtained with POD-MOR. The surrogate models are based on snapshots
from a numerical simulation of the underlying system. Here, snapshots refer to the solution of the system at
particular time instances. For the snapshot POD approach we refer the reader to e.g. [30]. The knowledge of the
snapshots is crucial to build accurate surrogate models. In particular, the accuracy of the POD reduced order
model depends on the quality of the chosen snapshots in such a way that they should comply with the physical
properties of the underlying system. The aim of this paper is to investigate the computation of well-suited
snapshot locations for POD-MOR in optimal control problems governed by linear parabolic equations.

Several works investigated the choice of the snapshots to approximate either dynamical systems or optimal
control problems by suitable surrogate models. In [21], the authors proposed to optimize the choice of the time
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instances such that the error between POD and the trajectory of the dynamical system is minimized. A recent
approach proposes to select the snapshots by an a posteriori error estimator in order to equidistribute the state
error on the time grid related to the snapshot locations (see e.g. [15]). We also mention an adaptive method,
proposed in [27], where the aim is to reduce expensive offline costs selecting the snapshots according to an
adaptive time-stepping algorithm using time error-control. For further references we refer the interested reader
to e.g. [27].

In optimal control problems, the computation of the snapshots is not trivial, since state and adjoint state
depend on the unknown optimal control. A common approach here is to sample state (and adjoint) snapshots
for a reference control, chosen a priori, which can be zero or a prediction of the optimal control, for example.
Those will constitute the snapshot set on which the construction of the surrogate model is based. However,
this approach does not guarantee a meaningful surrogate model since we do not know how well this reference
control approximates the sought optimal control. More sophisticated approaches select snapshots by solving
an optimization problem in order to improve the selection of the snapshots according to the desired controlled
dynamics. For this purpose optimality system POD (OS-POD) is introduced in e.g. [20]. In OS-POD, the
computation of the POD basis functions is performed by means of the solution of an enlarged optimal control
problem which involves the full problem, the reduced equation and the computation of the POD modes. Recently,
in [8] different POD basis update strategies are investigated to improve the accuracy of the POD-MOR and
avoid the problem of unmodelled dynamics.

The reduction of optimal control problems with particular focus on adaptive adjustments of the surrogate
models can be found in e.g. [1, 4, 8, 10]. We should also mention another adaptive method for feedback control
problems by means of the Hamilton–Jacobi–Bellman equation, introduced in [2].

Recently, an a posteriori error estimator was introduced in [16, 32] for optimal control problems. In these
works the error between the unknown optimal control and the computed POD suboptimal control is estimated
for linear and nonlinear problems, and it is shown that increasing the number of basis functions leads to the
desired convergence. OS-POD and a posteriori error estimation is combined in [33].

In the present paper we address the question of snapshot location for POD-MOR of optimal control problems.
This approach differs from adaptive methods where the basis functions are updated when necessary. To the best
of the author’s knowledge snapshot location for optimal control problems has not been investigated yet. Our
interest focuses on an efficient selection of snapshot locations by means of an a posteriori error control approach
proposed in [7], which is also generalized to optimal control with control constraints in Theorem 3.1. Our method
works as follows: in a first step, we rewrite the optimality conditions as a second order in time and fourth order
in space elliptic equation for the adjoint variable. This in particular allows us to apply classical concepts from
residual based a posteriori error control to construct a suitable time grid for the temporal variable which then
serves as snapshot grid for the POD-MOR approximation of the underlying optimal control problem. This is
motivated by observations made in [7] related to the temporal a posteriori analysis of parabolic optimal control
problems, where one outcome was that the structure of the temporal grid is not sensitive against changes in
the spatial resolution of the optimal control problem. This motivates us to use the adaptively obtained time
grid based on a very coarse spatial resolution as snapshot grid for the POD-MOR approximation of the optimal
control problem. We note that the POD model order reduction is done with respect to the spatial variable. Here
the novelty for the reduced control problem is twofold: we directly obtain snapshots related to an approximation
of the optimal control and, at the same time, we get information about a suitable time grid. We have proposed a
similar approach based on a reformulation of the optimality system with respect to the state variable in [3]. Now,
we focus our approach on the adjoint variable and generalize the idea presented in [7] to time dependent control
intensities with control shape functions including control constraints. Furthermore, we certify our approach by
means of several error bounds for the state, adjoint and control variable. We also provide a comparison of the
computational cost of our method with OS-POD.

The outline of this paper is as follows. In Section 2 we present the optimal control problem together with the
optimality conditions. In Section 3 we recall the main results of [7] and we generalize it to control constraints.
Proper orthogonal decomposition and its application to optimal control problems is presented in Section 4.
The focus of Section 5 lies in investigating our snapshot location strategy. Finally, numerical tests are discussed in
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Section 6 and conclusions are driven in Section 7.

2. Optimal control problem

In this section we describe the optimal control problem. The governing equation is given by a linear parabolic
PDE:

yt −∆y = f + Bu in ΩT ,
y(·, 0) = y0 in Ω,

y = 0 on ΣT ,

 (2.1)

where Ω ⊂ Rq, q ∈ {1, 2, 3} is an open bounded domain with smooth boundary, T > 0, ΩT := Ω × (0, T ] is
the space-time cylinder, ΣT := ∂Ω × (0, T ], and the state is denoted by y : ΩT → R. As control space we
use

(
L2(0, T ;Rm), 〈·, ·〉U

)
, where 〈u, v〉U :=

∑m
i=1〈ui, vi〉L2(0,T ), and define the control operator as B : U →

L2(0, T ;H−1(Ω)), (Bu)(t) =
∑m
i=1 ui(t)χi, where χi ∈ H−1(Ω)(1 ≤ i ≤ m) denote specified control actions.

Thus B is linear and bounded. For the control variable we require

u ∈ Uad := {u ∈ U | ua(t) ≤ u(t) ≤ ub(t) in Rm a.e. in [0, T ]} ⊂ L∞(0, T ;Rm)

with ua, ub ∈ L∞(0, T ;Rm), ua(t) ≤ ub(t) almost everywhere in (0, T ). It is well-known (see e.g. [22]) that for
a given initial condition y0 ∈ L2(Ω) and a forcing term f ∈ L2(0, T ;H−1(Ω)) equation (2.1) admits a unique
solution y = y(u) ∈W (0, T ), where

W (0, T ) :=

{
v ∈ L2

(
0, T ;H1

0 (Ω)
)
,
∂v

∂t
∈ L2

(
0, T ;H−1(Ω)

)}
.

If y0 ∈ H1
0 (Ω), higher regularity results can be derived according to [5].

The weak formulation of (2.1) is given by: find y ∈W (0, T ) with y(0) = y0 and

T∫
0

〈yt(t), v〉H−1,H1
0

+

∫
Ω

∇y(x, t)∇v(x, t)dx

 dt =

T∫
0

〈f(t) + Bu(t), v〉H−1,H1
0
dt for all v ∈ L2(0, T ;H1

0 (Ω)).

(2.2)
The cost functional we want to minimize is given by

J(y, u) :=
1

2
‖y − yd‖2L2(ΩT ) +

α

2
‖u‖2U , (2.3)

where yd ∈ L2(ΩT ) is the desired state and the regularization parameter α is a real positive constant. The
optimal control problem then reads

min
u∈Uad

Ĵ(u) := J(y(u), u), where y(u) satisfies (2.1). (2.4)

Note that Uad is a non-empty, bounded, convex and closed subset of L∞(0, T ;Rm). Hence, it is easy to argue
that (2.4) admits a unique solution u ∈ Uad with associated state y(u) ∈W (0, T ), see e.g. [22].



1850 A. ALLA ET AL.

The first order optimality system of the optimal control problem (2.4) is given by the state equation (2.1),
together with the adjoint equation

−pt −∆p = y − yd in ΩT ,
p(·, T ) = 0 in Ω,

p = 0 on ΣT ,

 (2.5)

and the variational inequality

〈αu+ B∗p, v − u〉U ≥ 0 for all v ∈ Uad, (2.6)

where B∗ : L2(0, T ;H−1(Ω))∗ → U∗ is the dual operator of B. In (2.6) we have identified L2(0, T ;H−1(Ω))∗

with L2(0, T ;H1
0 (Ω)) and U∗ with U , where we use that Hilbert spaces are reflexive. The variational inequality

(2.6) is equivalent to the projection formula

u(t) = PUad

{
− 1

α
(B∗p)(t)

}
for almost all t ∈ [0, T ], (2.7)

where PUad
: U → Uad denotes the orthogonal projection onto Uad. It follows from the reflexivity of the involved

spaces that the action of the adjoint operator B∗ is given as

(B∗v)(t) =
(
〈χ1, v〉H−1,H1

0
, . . . , 〈χm, v〉H−1,H1

0

)
and

PUad

{
− 1

α
B∗p

}
i

= max

{
ua,min{ub,−

1

α
〈χi, p〉H−1,H1

0
}
}
.

Since our domain is smooth, the regularity of the optimal state, the optimal control and the associated
adjoint state are limited through the regularity of the initial state y0, the right hand side f , the control u and
the desired state yd.

3. Space-time approximation

In this section, we consider the reformulation of the optimality system (2.1)–(2.5)–(2.6) as an elliptic equation
of fourth order in space and second order in time for the adjoint variable p. We refer to [7, 24] for more details.
Following these works, we include control constraints. Here, we aim to derive an a posteriori error estimate
for the time discretization as suggested in [7], which then turns out to be the basis for our model reduction
approach to solve (2.4).

We define

H2,1
0 (ΩT ) :=

{
v ∈ H2,1(ΩT ) : v(T ) = 0 in Ω

}
,

where

H2,1(ΩT ) = L2
(
0, T ;H2(Ω

)
∩H1

0 (Ω)) ∩H1
(
0, T ;L2(Ω)

)
is equipped with the norm

‖w‖2H2,1(ΩT ) :=
(
‖w‖2L2(0,T ;H2(Ω)) + ‖w‖2H1(0,T ;L2(Ω))

)
.
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Under the assumptions y0 ∈ H1
0 (Ω), χi ∈ L2(Ω) for i = 1, . . . ,m and yd ∈ H2,1(ΩT ), the regularity of y, p ∈

H2,1(ΩT ) is ensured, see [5] for the details. Then, the first order optimality conditions (2.1)–(2.5)–(2.6) can be
transformed into an initial boundary value problem for p in space-time:

−ptt + ∆2p− BPUad

(
− 1

α
B∗p

)
= −(yd)t + ∆yd in ΩT ,

p(·, T ) = 0 in Ω,
p = 0 on ΣT ,

∆p = yd on ΣT ,
(pt + ∆p) (0) = yd(0)− y0 in Ω,


(3.1)

where, without loss of generality, we have set f ≡ 0. We note that the quantity

BPUad

(
− 1

α
B∗p

)
is nondifferentiable and nonlinear in p and thus (3.1) becomes a semilinear second order in time and fourth
order in space elliptic problem with a monotone nonlinearity. Existence of a unique weak solution for (3.1) can
be proved analogously to [24] and follows from the fact that the optimal control problem (2.4) in the case of
control constraints with closed and convex Uad ⊂ U admits a unique solution.

In order to provide the weak formulation of (3.1), we define the operator A0 and the linear form L0 as

A0 : H2,1
0 (ΩT )×H2,1

0 (ΩT )→ R, L0 : H2,1
0 (ΩT )→ R,

A0(v, w) :=

∫
ΩT

(
vtwt − BPUad

(
− 1

α
B∗v

)
w

)
+

∫
ΩT

∆v∆w +

∫
Ω

∇v(0) · ∇w(0),

L0(v) :=

∫ T

0

〈−∂yd
∂t

+ ∆yd, v〉H−1(Ω)×H1
0 (Ω) −

∫
Ω

(yd(0)− y0)v(0) +

∫
ΣT

yd∇v · n̂,

where n̂ denotes the outer normal to the boundary ∂Ω. The weak formulation of equation (3.1) for given
yd ∈ H2,1(ΩT ), y0 ∈ H1

0 (Ω), reads:

find p ∈ H2,1
0 (ΩT ) with A0(p, v) = L0(v) ∀v ∈ H2,1

0 (ΩT ). (3.2)

It follows from the monotonicity of the orthogonal projection that (3.2) admits a unique solution p, compare
e.g. ([14], Thm. 1.25). We put our attention on the semi-discrete approximation of (3.1) and investigate a priori
and a posteriori error estimates for the time discrete problem, where the space is kept continuous. Let us
consider the time discretization 0 = t0 < t1 < · · · < tn = T with ∆tj = tj − tj−1 and ∆t := maxj ∆tj . Let
Ij := [tj−1, tj ]. We define the time discrete space

V kt :=
{
v ∈ H2,1(ΩT ) : v(·)|Ij ∈ P1(Ij)

}
, V̄ kt := V kt ∩H

2,1
0 (ΩT ),

where the notation P1(Ij) stands for the polynomials of first order on the interval Ij and k refers to the time
discretization. Then, we consider the semi-discrete problem:

find pk ∈ V̄ kt with A0(pk, vk) = L0(vk), ∀vk ∈ V̄ kt . (3.3)
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Using the arguments of e.g. ([14], Thm. 1.25) one can show that problem (3.3) admits a unique solution pk ∈ V̄ kt .
We note that with (3.2) and (3.3) we have the Galerkin orthogonality

A0(p, vk)−A0(pk, vk) = 0 ∀vk ∈ V̄ kt . (3.4)

Thus, for v ∈ H2,1
0 (ΩT ) it holds true

A0(p, v)−A0(pk, v) = A0(p, v − vk)−A0(pk, v − vk), ∀vk ∈ V̄ kt .

The following theorem states a temporal residual type a posteriori error estimate for p, which generalizes the
estimation of ([7], Thm. 3.5) to the control constrained optimal control problem (2.4):

Theorem 3.1. Let p ∈ H2,1
0 (ΩT ) and pk ∈ V̄ kt denote the solutions to (3.2) and (3.3), respectively. Then we

obtain

‖p− pk‖2H2,1(ΩT ) ≤ C1η
2, (3.5)

where C1 > 0 and

η2 =
∑
j

∆t2j

∫
Ij

∥∥∥∥−∂yd∂t + ∆yd +
∂2pk
∂t2

+ BPUad

(
− 1

α
B∗pk

)
−∆2pk

∥∥∥∥2

L2(Ω)

+
∑
j

∫
Ij

‖yd −∆pk‖2L2(∂Ω).

Proof. We start the proof showing a consequence of the monotonicity of the projector operator −PUad
{− 1

αB
∗p}.

We find that

〈
−PUad

{
− 1

α
B∗p1

}
+ PUad

{
− 1

α
B∗p2

}
,B∗p1 − B∗p2

〉
U

≥ 0, ∀p1, p2 ∈ H2,1
0 (ΩT ),

and hence

∫
ΩT

(
−BPUad

{
− 1

α
B∗p1

}
+ BPUad

{
− 1

α
B∗p2

})
(p1 − p2) ≥ 0. (3.6)

For easier notation, we set N(p) := −BPUad

{
− 1
αB
∗p
}

.
Let ep := p − pk and let πke

p denote the standard Lagrange type temporal interpolation of ep. Using the
inequality

‖v‖2H2,1(ΩT ) ≤ C
(
‖∂v
∂t
‖2L2(ΩT ) + ‖∆v‖2L2(ΩT )

)
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for v ∈ H2,1
0 (ΩT ) and C > 0 from ([7], Lem. 2.5), the monotonicity (3.6) and the Galerkin orthogonality (3.4),

we can estimate:

c‖p− pk‖2H2,1(ΩT )

≤
∥∥∥∥∂(p− pk)

∂t

∥∥∥∥2

L2(ΩT )

+ ‖∆(p− pk)‖2L2(ΩT )

≤
∥∥∥∥∂(p− pk)

∂t

∥∥∥∥2

L2(ΩT )

+ ‖∆(p− pk)‖2L2(ΩT ) +

∫
ΩT

(N(p)−N(pk))(p− pk)

=

∫
ΩT

∂(p− pk)

∂t

∂ep

∂t
+

∫
ΩT

∆(p− pk)∆ep +

∫
ΩT

(N(p)−N(pk))ep

=

∫
ΩT

∂(p− pk)

∂t

∂(ep − πkep)
∂t

+

∫
ΩT

∆(p− pk)∆(ep − πkep) +

∫
ΩT

(N(p)−N(pk))(ep − πkep)

=

∫
ΩT

(−∂yd
∂t

+ ∆yd)(e
p − πkep) +

∫
ΣT

yd∇(ep − πkep) · n̂−
∫

ΩT

∂pk
∂t

∂(ep − πkep)
∂t

−
∫

ΩT

∆pk∆(ep − πkep)−
∫

ΩT

N(pk)(ep − πkep)

Integration by parts on each time interval and Green’s formula lead to

c‖p− pk‖2H2,1(ΩT )

≤
∑
j

∫
Ij

∫
Ω

(
−∂yd
∂t

+ ∆yd +
∂2pk
∂t2

−∆2pk −N(pk)

)
(ep − πkep) +

∑
j

∫
Ij

∫
∂Ω

(yd −∆pk)∇(ep − πkep) · n̂.

Utilizing error estimates of the Lagrange interpolation πk, the trace inequality and Young’s inequality, we find

‖p− pk‖2H2,1(ΩT )

≤ C1

∑
j

∆t2j

∫
Ij

∥∥∥∥−∂yd∂t + ∆yd +
∂2pk
∂t2

−∆2pk + BPUad

{
− 1

α
B∗pk

}∥∥∥∥2

L2(Ω)

+C1

∑
j

∫
Ij

‖yd −∆pk‖2L2(∂Ω).

Theorem 3.1 provides a tool to refine the time grid by means of the residual of the system (3.1). Due to (2.7),
the time instances of this grid may be regarded as ideal snapshot locations for POD-MOR applied to problem
(2.4).

4. POD for optimal control problems

In this section, we recall the POD method which we use to replace the original problem (2.4) by a surrogate
model. The main interest when applying the POD method is to reduce computation times and storage capacity
while retaining a satisfying approximation quality. This is possible due to the key fact that POD basis functions
(unlike typical finite element ansatz functions) contain information about the underlying model, since the POD
modes are derived from snapshots of a solution data set. Usually, we are able to improve the accuracy of a POD
suboptimal solution by enlarging the number of utilized POD basis functions or enriching the snapshot set, for
instance. The snapshot form of POD proposed by Sirovich in [30] works in the continuous version as follows.
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Let us suppose that the continuous solution y(t) of (2.1) and p(t) of (2.5) belong to a real separable Hilbert
space V , where V = H1

0 (Ω) or L2(Ω), equipped with its inner product 〈·, ·〉 and associated norm ‖ · ‖2 = 〈·, ·〉.
We set V := span{zk(t) | t ∈ [0, T ] and 1 ≤ k ≤ 3} ⊆ V , where z1(t) := y(t), z2(t) := p(t), z3(t) := ṗ(t). Note
that the initial condition y(0) = y0 is included in V. The aim is to determine a POD basis {ψ1, . . . , ψ`} ⊂ V of
rank ` ∈ {1, ..., d} with d = dim(V) ≤ ∞, by solving the following constrained minimization problem:

min
ψ1,...,ψ`

3∑
k=1

∫ T

0

∥∥∥∥∥zk(t)−
∑̀
i=1

〈zk(t), ψi〉 ψi

∥∥∥∥∥
2

dt s.t. 〈ψj , ψi〉 = δij for 1 ≤ i, j ≤ `, (4.1)

where δij denotes the Kronecker symbol, i.e. δij = 0 for i 6= j and δii = 1.
It is well-known (see [9]) that a solution to problem (4.1) is given by the first ` eigenvectors {ψ1, . . . , ψ`}

corresponding to the ` largest eigenvalues λi > 0 of the self-adjoint linear operator R : V → V, i.e. Rψi = λiψi,
i = 1, . . . , `, where R is defined as follows:

Rψ =

3∑
k=1

∫ T

0

〈zk(t), ψ〉 zk(t)dt for ψ ∈ V.

Moreover, we can quantify the POD approximation error by the neglected eigenvalues (more details in [9]) as
follows:

3∑
k=1

∫ T

0

∥∥∥∥∥zk(t)−
∑̀
i=1

〈zk(t), ψi〉 ψi

∥∥∥∥∥
2

dt =

d∑
i=`+1

λi. (4.2)

Let us assume that we have computed POD basis functions {ψi}`i=1. Then, we define the POD Galerkin
ansatz of order ` for the state y as:

y`(t) =
∑̀
i=1

wi(t)ψi, (4.3)

where y` ∈ V ` := span{ψ1, . . . , ψ`} and the unknown coefficients are denoted by {wi}`i=1. If we plug this ansatz
into the weak formulation of the state equation (2.2) and use V ` as the test space, we get the following reduced
order model for (2.2) of low dimension:∫ T

0

(
〈y`t (t), ψ〉H−1,H1

0
+

∫
Ω

∇y`(t, x) · ∇ψ(x)dx

)
dt =

∫ T

0

〈(f + Bu)(t), ψ〉H−1,H1
0
dt

∀ψ ∈ V ` and t ∈ (0, T ] a.e.,∫
Ω

y`(0)ψdx =

∫
Ω

y0ψdx

(4.4)

Choosing ψ = ψi for i = 1, . . . , ` and utilizing (4.3), we infer from (4.4) that the coefficients
(w1(t), . . . , w`(t)) =: w(t) satisfy

M `ẇ(t) +A`w(t) = F `(t) a.e. in (0, T ], M `w(0) = y`0,

where (M `)ij =
∫

Ω
ψjψidx, (A`)ij =

∫
Ω
∇ψj · ∇ψidx, (F `(t))j =

∫ T
0

(f + Bu)(t)ψjdx and (y`0)j =
∫

Ω
y0ψjdx.

Note that M ` is the identity matrix, if we choose as inner product 〈·, ·〉 := 〈·, ·〉L2(Ω).
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The reduced order model surrogate (ROM) for the optimal control problem is given by

min
u∈Uad

Ĵ`(u) s.t. y`(u) satisfies (4.4), (4.5)

where Ĵ` is the reduced cost functional, i.e. Ĵ`(u) := Ĵ(y`(u), u). We recall that the discretization of the optimal
solution ū` to (4.5) is determined by the relation between the adjoint state and control and refer to [11] for
more details about the variational discretization concept.

In order to solve the reduced optimal control problem (4.5), we consider the well-known first order optimality
condition given by the variational inequality

〈∇Ĵ`(ū`), u− ū`〉U ≥ 0 ∀u ∈ Uad,

which is sufficient since the underlying problem is convex.
By construction of the POD space the first order optimality conditions of (4.5) also deliver that the adjoint

POD scheme for the approximation of p is given by: find p`(t) ∈ V ` with p`(T ) = 0 satisfying∫ T

0

(
−〈p`t(t), ψ〉H−1,H1

0
+

∫
Ω

∇p`(x, t) · ∇ψ(x)dx

)
dt =

∫ T

0

∫
Ω

(y` − yd)(x, t)ψ(x)dxdt

∀ψ ∈ V ` and t ∈ (0, T ) a.e. (4.6)

5. Snapshot location strategy for optimal control problem

In Section 4, we recalled the POD method in the infinite dimensional settings, where the POD basis functions
are computed in such a way that the error between the state y(t) and adjoint p(t) trajectories and its POD
projection is minimized in (4.1). In practice, we can only compute approximate solutions {y(tj)}nj=0 and
{p(tj)}nj=0 for some given time instances 0 = t0 < t1 < · · · < tn = T . Hence, we introduce the following

time-discrete version of (4.1):

min
ψ1,...,ψ`

3∑
k=1

n∑
j=0

βj

∥∥∥∥∥zk(tj)−
∑̀
i=1

〈zk(tj), ψi〉ψi

∥∥∥∥∥
2

, s.t. 〈ψj , ψi〉 = δij for 1 ≤ i, j ≤ ` (5.1)

which is obtained by applying quadrature to the time integral in (4.1) using the trapezoidal rule with weights
β0, . . . , βn.

We note that problem (5.1) constitutes a strong dependence of the POD basis functions on the chosen
snapshot locations t0, . . . , tn. The related snapshots shall have the property to capture the main features of the
dynamics of the truth solution as much as possible. Here it is important to select suitable time instances at
which important features of the optimal solution are located. A natural question is:

How to pick time instances that represent good locations for snapshots in POD-MOR for (4.5)?

This problem is usually addressed in the offline stage for POD, which is the phase needed for snapshot
generation, POD basis computation and the projection of the dynamical system into the low-dimensional space.
Nevertheless, the computation of the snapshots in optimal control problems is not straightforward due to the
presence of the unknown control u(t) in the dynamical system. Snapshots are usually computed from a given
input control u0 ∈ Uad (a very common choice is u0 ≡ 0), since we do not have information about the problem. It
turns out that this approach might be inappropriate and therefore the POD basis functions need to be updated
as suggested in e.g. [8]. These circumstances raise the question about the quality of the POD basis and of the
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POD suboptimal solution. Our approach focuses on the snapshot location for optimal control problems. For
this reason we take advantage of the a posteriori error estimator (3.5) in Section 3 which provides a suitable
location of time instances for the POD adjoint state and at the same time we get an approximation of the
optimal control which can be used as an input control u0 in order to generate the snapshots.

The use in the offline-stage of equation (3.1) allows to overcome the choice of an input control u0 and to select
snapshot locations according to the a posteriori error estimation presented in Theorem 3.1. We note that the
ellipticity of equation (3.1) plays a crucial role in this approach. The same approach would not work, if one solves
the optimality conditions directly. The numerical approximation of p provides important information about the
control input. In fact, due to the variational inequality (2.6), we are first able to build an approximate control
u and finally compute the associated state y(u). In this way our snapshot set will contain information about
the state corresponding to an approximation of the optimal control. Thanks to this numerical approximation
of the optimal control problem we can build the snapshot matrix and compute the POD basis functions where
the number ` is chosen such that

∑d
i=`+1 λi ≈ 0.

To summarize, the approximation of equation (3.1) is very useful in model order reduction since we overcome
the choice of the initial input control to generate the snapshot set. Moreover, we also gain information about a
temporal grid, which allows us to better resolve p with respect to time.

The a posteriori error estimation (3.5) guarantees that the finite element approximation of (3.1) in the time
variable is below a certain tolerance. Therefore, the reduced optimal control problem (4.5) is set up and solved
on the resulting adaptive time grid. Now the question is:

How good is the quality of the computed time grid in terms of the error between
the optimal solution and the POD surrogate solution?

5.1. Error analysis for the adjoint variable

Let us motivate our approach by analyzing the error ‖p(u) − p̃`k(u`k)‖L2(0,T,V ) between the optimal adjoint

solution p(u) of (2.5) associated with the optimal control u for (2.4), i.e. u = PUad
(− 1

αB
∗p) and the POD

reduced approximation p̃`k(u`k), which is the time discrete solution to the POD-ROM for (2.5) associated with
the time discrete optimal control u`k for (4.5), i.e. y = y(u`k) in (2.5). We denote by V the space V = H1

0 (Ω)
and by H the space L2(Ω).

To ease notation let us denote by pk(uk) the time discrete adjoint solution of (3.3) associated with the control
uk = PUad

(− 1
αB
∗pk), and by p̃k(uk) the time discrete adjoint solution to (2.5) with respect to the control uk.

Furthermore, pk(u`k) is the time discrete adjoint solution to (2.5) with respect to the suboptimal control u`k, i.e.
y = y(u`k) in (2.5). By P` : V → V ` we denote the orthogonal POD projection operator as follows:

P`y :=
∑̀
i=1

〈y, ψi〉V ψi for y ∈ V.

Proposition 5.1. Suppose that ` > 0, p(u) is the solution of (2.5) and p̃`k(u`k) is the time discrete solution of
(2.5). Let us also assume that

‖pk(uk)− p̃k(uk)‖L2(0,T ;V ) ≤ ε. (5.2)

Then, there exist C1, C2, C3 > 0 such that

‖p(u)− p̃`k(u`k)‖L2(0,T,V ) ≤
√
C1η +

C2

α
(‖ζk‖U + ‖ζ`k‖U ) +

√√√√C3

(
d∑

i=`+1

λki + ‖yk − y`k‖2L2(0,T,H)

)
. (5.3)
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Proof. By the triangular inequality we get the following estimates for the L2(0, T ;V )-norm:

‖p(u)− p̃`k(u`k)‖ ≤ ‖p(u)− pk(uk)‖︸ ︷︷ ︸
(5.4.1)

+ ‖pk(uk)− P`pk(uk)‖︸ ︷︷ ︸
(5.4.2)

+ ‖P`pk(uk)− P`p̃k(u`k)‖︸ ︷︷ ︸
(5.4.3)

+ ‖P`p̃k(u`k)− p̃`k(u`k)‖︸ ︷︷ ︸
(5.4.4)

(5.4)

The term (5.4.1) can be estimated by (3.5) and concerns the snapshot generation. Thus, we can decide on
a certain tolerance in order to have a prescribed error. The second term (5.4.2) in (5.4) is the POD projection
error and can be estimated by the sum of the neglected eigenvalues. Then, we note that the third term (5.4.3)
can be estimated as follows:

‖P`pk(uk)− P`p̃k(u`k)‖ ≤ ‖P`‖ ‖pk(uk)− p̃k(u`k)‖ ≤ C2‖uk − u`k‖U , (5.5)

where ‖P`‖ ≤ 1 and C2 > 0 is the constant referring to the Lipschitz continuity of pk independent of k as in
[23]. In equation (5.5) we make use of assumption (5.2).

In order to control the quantity ‖uk − u`k‖U ≤ ‖uk − u‖U + ‖u− u`k‖U we make use of the a posteriori error
estimation of [32], which provides an upper bound for the error between the (unknown) optimal control and
any arbitrary control up (here up = uk and up = u`k) by

‖u− up‖U ≤
1

α
‖ζp‖U ,

where α is the regularization parameter in the cost functional and ζp ∈ L2(0, T ;Rm) is chosen such that

〈αup − B∗p(up) + ζp, u− up〉U ≥ 0 ∀u ∈ Uad

is satisfied. Finally, the last term (5.4.4) can be estimated according to [13] and involves the sum of the eigen-
values not considered, the first derivative of the time discrete adjoint variable and the difference between the
state and the POD state:

‖P`pk(u`k)− p`k(u`k)‖2 ≤ C3

(
d∑

i=`+1

λki + ‖ṗk(u`k)− P`ṗk(u`k)‖2L2(0,T,V ′) + ‖yk(u`k)− y`k(u`k)‖2L2(0,T,H)

)
, (5.6)

for a constant C3 > 0. We note that the sum of the neglected eigenvalues is sufficiently small provided that
` is large enough. Furthermore, the error estimation (5.6) depends on the time derivative ṗk. To avoid this
dependence, we include time derivative information concerning the adjoint variable into the snapshot set, see
[19].

Remark 5.1.

1. We assume in (5.2) that the difference between pk(uk) and p̃k(uk) is small since the continuous solution
of (3.3) coincides with solution of (2.5).

2. We note that estimations (5.3) and (5.6) involve the state variable which is estimated in the following
Section 5.2.

5.2. Error analysis for the state variable

In this section we address the problem of the certification of the quality for POD approximation for the
state variable. It may happen that the time grid selected for the adjoint p will not be accurate enough for the
state variable y. Therefore a further refinement of the time grid might be useful in order to reduce the error
between the POD state and the true state below a given threshold. This is not guaranteed if we use the time
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grid, which results from the use of the estimate (3.5). Here, we consider the error between the full solution
y(u`k) corresponding to the suboptimal control u`k and the time discrete POD solution y`k(u`k), where we assume
to have the same temporal grid for snapshots and the solution of our POD reduced order problem. In this
situation, the following estimate is proved in [19]:

n∑
j=0

βj‖y(tj ;u
`
k)− y`j(u`k)‖2H ≤

n∑
j=1

(
∆t2jCy((1 + c2p)‖ytt(u`k)‖2L2(Ij ,H) + ‖yt(u`k)‖L2(Ij ;V ))

)
(5.7a)

+

n∑
j=1

Cy

(
d∑

i=`+1

(
|〈ψi, y0〉V |2 + λi

))
(5.7b)

+

n∑
j=1

d∑
i=`+1

Cy
λi

∆t2j
(5.7c)

where Cy > 0 is a constant depending on T , but independent of the time grid {tj}nj=0. We note that y(tj ;u
`
k)

is the continuous solution of (2.1) at given time instances related to the suboptimal control u`k. The temporal
step size in the subinterval [tj−1, tj ] is denoted by ∆tj . The positive weights βj are given by

β0 =
∆t1

2
, βj =

∆tj + ∆tj+1

2
for j = 1, . . . , n− 1, and βn =

∆tn
2
.

The constant cp is an upper bound of the projection operator. A similar estimate can be carried out for the
V -norm. We refer the interested reader to [19].

Estimate (5.7) provides now a recipe for further refinement of the time grid in order to approximate the
state y within a prescribed tolerance. One option here consists in equidistributing the error contributions of the
term (5.7a), while the number of modes has to be adapted to the time grid size according to the term (5.7c).
Finally, the number ` of modes should be chosen such that the term in (5.7b) remains within the prescribed
tolerance.

5.3. The algorithm

The a posteriori error control concept for (3.1) now offers the possibility to select snapshot locations by a
time adaptive procedure. For this purpose, (3.1) is solved adaptively in time, where the spatial resolution (∆x
in Algorithm 5.1) is chosen to be very coarse in order to keep the computational costs low. This is possible due
to the fact that spatial and temporal discretization decouple when using the solution technique of [7] as we will
see in Section 6, compare Figure 3. The resulting time grid points now serve as snapshot locations, on which
our POD reduced order model for the optimization is based. The snapshots are now obtained from a simulation
on the time adaptive grid of (2.1) and (2.5) with fine resolution h. Then, we generate time derivative adjoint
snapshots by finite differences. The right-hand side u in the simulation of (2.1) is obtained from (2.6) with p
from (2.5) computed with spatially coarse resolution ∆x. The certification of the state variable is then performed
according to (5.7) as a post-processing procedure. Finally, we set up and solve the POD-ROM problem (4.5)
where the POD model reduction is performed with respect to the spatial dimension This strategy might not
deliver the optimal time instances, but it is a practical and efficient strategy, which turns out to deliver good
approximation results (compare Sect. 6) at low costs.

The algorithm is summarized below in Algorithm 5.1.
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Algorithm 5.1. Adaptive snapshot selection for optimal control problems.

Require: coarse spatial grid size ∆x, fine spatial grid size h, maximal number of degrees of
freedom (dof) for the adaptive time discretization, T > 0.
1: Solve (3.1) adaptively w.r.t. time with spatial resolution ∆x and obtain the time grid T with solution
p∆x.

2: Set u∆x = PUad

(
− 1

α
B∗p∆x

)
.

3: Solve (2.1) on T with spatial resolution ∆x corresponding to the control u∆x.
4: Refine the time interval T according to (5.7) and construct the time grid Tnew.
5: Generate state and adjoint snapshots by solving (2.1) with r.h.s. u∆x and (2.5), respectively, on Tnew
with spatial resolution h. Generate time derivative adjoint snapshots with time finite differences on those
adjoint snapshots.
6: Compute a POD basis of order ` and build the POD reduced order model (4.5) based on the state,
adjoint state and time derivative adjoint state snapshots.
7: Solve (4.5) with the time grid Tnew

6. Numerical tests

In our numerical computations we use a one-dimensional spatial domain and a finite element discretization
in space by means of conformal piecewise linear polynomials. In order to treat (3.1) numerically, we use a
space-time mixed finite element method analogue to [7]. We generate the snapshots and the POD-ROM (4.5)
by using the implicit Euler method in time and piecewise linear and continuous finite elements in space. The
solution of the optimal control problem (4.5) is combined with a projected gradient method with stopping
criteria ‖Ĵ ′(uk)‖ ≤ τr‖Ĵ ′(uk)‖U + τa and an Armijo linesearch. We note that τr, τa are the relative and absolute
tolerance, respectively. In the following numerical examples, we apply Algorithm 5.1 in order to validate this
strategy by numerical results.

The numerical tests illustrate that a time adaptive grid for snapshot location and for POD reduced order
optimal control delivers more accurate approximation results than a uniform time grid. We show three different
numerical tests. The first example presents a steep gradient at the end of the time interval in the adjoint variable.
In the second example the adjoint state develops an interior layer in the middle of the time interval and finally
we introduce control contraints in the third example. Moreover we also show the benefits of the post processing
for the state variable (step 4 in Algorithm 5.1) to achieve more accurate approximation results for both state
and adjoint state.

All coding is done in Matlab R2015a and the computations are performed on a 2.50 GHz computer with
8 Gb RAM. To solve the nonlinear, nonsmooth equation (3.1), we have extended the MATLAB codes of [7] to
control constrained systems and computed a solution with a fixed point iteration.

6.1. Test 1: solution with steep gradient towards final time

The data for this test example is inspired from Example 5.3 in [7], with the following choices: Ω = (0, 1) and
[0, T ] = [0, 1]. We set Uad = L∞(0, T ;Rm). The example is built such that the exact optimal solution (ȳ, ū) of
problem (2.4) with associated optimal adjoint state p̄ is known:

ȳ(x, t) = sin(πx) sin(πt),

p̄(x, t) = x(x− 1)

(
t− e(t−1)/ε − e−1/ε

1− e−1/ε

)
,

ū(t) = − 1

α
B∗p̄(x, t) = −t+

e(t−1)/ε − e−1/ε

1− e−1/ε
(6.1)
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Figure 1. Test 1: analytical optimal adjoint state p̄ (left), POD adjoint solution p` utilizing an
equidistant time grid with ∆t = 1/20 (middle), POD adjoint solution p` utilizing an adaptive
time grid with dof = 21 (right).

Figure 2. Test 1: contour lines of the analytical optimal adjoint state p̄ (left), POD adjoint
solution p` utilizing an equidistant time grid with ∆t = 1/20 (middle), POD adjoint solution
p` utilizing an adaptive time grid with dof = 21 (right).

with m = 1 and the control shape function χ(x) = x(x − 1) for the operator B. This leads to the right hand
side

f(x, t) = π sin(πx)(cos(πt) + π sin(πt)) + x(x− 1)

(
t− e(t−1)/ε − e−1/ε

1− e−1/ε

)
,

the desired state

yd(x, t) = sin(πx) sin(πt) + x(x− 1)

(
1− e(t−1)/ε · 1/ε

1− e−1/ε

)
+ 2

(
t− e(t−1)/ε − e−1/ε

1− e−1/ε

)
and the initial condition y0(x) = 0. We choose the regularization parameter to be α = 1/30. For small values
of ε (we use ε = 10−4), the adjoint state p̄ develops a layer towards t = 1, which can be seen in the left plots of
Figures 1 and 2.

In this test run we focus on the influence of the time grid to approximate of the POD solution. Therefore,
we compare the use of two different types of time grids: an equidistant time grid characterized by the time
increment ∆t = 1/n and a non-equidistant (adaptive) time grid characterized by n+ 1 degrees of freedom (dof).
We build the POD-ROM from the uncontrolled problem; we create the snapshot ensemble by determining the
associated state y(u0) and adjoint state p(u0) corresponding to the control function u0 ≡ 0 and we also include
the initial condition y0 and the time derivatives of the adjoint pt(u0) into our snapshot set, which is accomplished
with time finite differences of the adjoint snapshots. We use ` = 1 POD basis function. Although we would also
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Figure 3. Test 1: adaptive space-time grids with dof = 21 according to the strategy in [7]
and ∆x = 1/100 (left) and ∆x = 1/5 (middle), respectively, and the equidistant grid with
∆t = 1/20 (right).

Figure 4. Test 1: analytical optimal control ū (top left), approximation u∆x of the optimal
control gained by step 1 of Algorithm 5.1 (top middle), approximation of the optimal control
utilizing OS-POD on a uniform time grid with ∆t = 1/20 (top right); POD control utilizing a
uniform time grid with ∆t = 1/20 (bottom left), POD control utilizing an adaptive time grid
with dof = 21 (bottom middle), approximation of the optimal control utilizing OS-POD on an
adaptive time grid with dof = 21 (bottom right).

have the possibility to use suboptimal snapshots corresponding to an approximation u∆x of the optimal control,
here, we want to emphasize the importance of the time grid. Nevertheless in this example, the quality of the
POD solution does not really differ, if we consider suboptimal or uncontrolled snapshots. First, we leave out
the post-processing step 4 of Algorithm 5.1 and discuss the inclusion of it later.

Figure 3 visualizes the space-time mesh of the numerical solution of (3.1) with the temporal residual type
a posteriori error estimate (3.5). The first grid in Figure 3 corresponds to the choice of dof = 21 and ∆x = 1/100,
whereas the grid in the middle refers to using dof = 21 and ∆x = 1/5. Both choices for spatial discretization
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Table 1. Test 1: absolute errors between the analytical optimal solution and the POD solution
depending on the time discretization (equidistant: columns 1–4, adaptive: columns 5–8).

∆t εyabs εuabs εpabs dof εyabs εuabs εpabs

1/20 1.5120 · 10−02 1.9837 · 10−01 3.6247 · 10−02 21 5.1874 · 10−02 5.3428 · 10−02 9.6343 · 10−03

1/42 1.1186 · 10−02 2.1071 · 10−01 3.8490 · 10−02 43 5.1634 · 10−02 2.4868 · 10−02 4.3611 · 10−03

1/61 1.0774 · 10−02 2.1447 · 10−01 3.9173 · 10−02 62 5.1599 · 10−02 2.3275 · 10−02 4.0691 · 10−03

1/114 1.1157 · 10−02 2.1846 · 10−01 3.9893 · 10−02 115 5.1568 · 10−02 2.3027 · 10−02 4.0340 · 10−03

1/6500 2.0485 · 10−02 1.2893 · 10−01 2.3480 · 10−02 – – – –

Table 2. Test 1: CPU times for POD offline computations (snapshot generation and POD
basis computation) depending on the time discretization (equidistant: columns 1–3, adaptive:
columns 4–7.

∆t POD offline POD online dof Compute T POD offline POD online

1/20 0.12 s 0.04 s 21 2.3 s 0.12 s 0.04 s
1/42 0.13 s 0.07 s 43 4.2 s 0.13 s 0.07 s
1/61 0.14 s 0.09 s 62 5.5 s 0.14 s 0.09 s
1/114 0.18 s 0.10 s 115 8.9 s 0.18 s 0.10 s
1/6500 58.6 s 4.74 s – – – –

Table 3. Absolute errors between the analytical optimal solution and the finite element solution
of spatial resolution h = 1/100 depending on the resolution of the uniform time discretization.

∆t εyabs εuabs εpabs J

1/20 1.2961 · 10−02 1.9898 · 10−01 3.6325 · 10−02 4.1652 · 10+04

1/42 6.8850 · 10−03 2.1144 · 10−01 3.8602 · 10−02 1.9834 · 10+04

1/61 5.1979 · 10−03 2.1528 · 10−01 3.9303 · 10−02 1.3656 · 10+04

1/114 3.5501 · 10−03 2.1939 · 10−01 4.0054 · 10−02 7.3078 · 10+03

1/6500 1.2343 · 10−03 1.3016 · 10−01 2.3716 · 10−02 1.4116 · 10+02

1/20 000 5.0444 · 10−04 5.2073 · 10−02 9.3888 · 10−03 9.0788 · 10+01

1/40 000 2.8080 · 10−04 2.7981 · 10−02 4.9088 · 10−03 8.5692 · 10+01

lead to the exact same time grid, which displays fine time steps towards the end of the time horizon (where the
layer in the optimal adjoint state is located), whereas at the beginning and in the middle of the time interval
the time steps are larger. This clearly indicates that the resulting time adaptive grid is very insensitive against
changes in the spatial resolution. For the sake of completeness, the equidistant grid with the same number of
degrees of freedom is shown in the right plot of Figure 3.

Since the generation of the time adaptive grid as well as the approximation of the optimal solution is done
in the offline computation part of POD-MOR, this process shall be performed quickly, which is why we pick
∆x = 1/5 for step 1 in Algorithm 5.1.

In the middle and right panel of Figures 1 and 2, we show the surface and contour lines of the POD
adjoint state with an equidistant and adaptive time grid, respectively. The analytical control intensity ū(t), the
approximation u∆x of the optimal control computed in step 1 of Algorithm 5.1 as well as the POD controls
utilizing a uniform and time adaptive grid, respectively, are shown in Figure 4.

Table 1 summarizes the approximation quality of the POD solution depending on different time discretiza-
tions. The fineness of the time discretization (characterized by ∆t and dof, respectively) is chosen in such
a way that the results of uniform and adaptive temporal discretization are comparable. The absolute errors
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Table 4. Computational times of the full finite element solution compared with the
computational times of the POD-MOR solution including all offline times.

∆t h Full FE run dof Compute T POD offline POD online Speedup

1/6500 1/100 6.15 2.5
1/20 000 1/100 16.81 21 2.3 0.12 0.04 6.8

1/40 000 1/100 34.50 14.0

1/6500 1/1000 37.51 15.0
1/20 000 1/1000 115.62 21 2.3 0.16 0.04 46.2

1/40 000 1/1000 231.38 92.5

Table 5. Test 1: evaluation of each summand of the error estimation (5.3).

dof εpabs ηip ηbp ‖ζk‖U + ‖ζ`k‖U
∑d
i=`+1 λi

21 9.6343 · 10−03 4.9518 · 10+00 4.8031 · 10−04 1.6033 · 10−02 3.3938 · 10−04

43 4.3611 · 10−03 1.1976 · 10+00 5.0087 · 10−05 1.9200 · 10−02 2.9454 · 10−04

62 4.0691 · 10−03 7.2852 · 10−01 2.9835 · 10−05 1.9707 · 10−02 2.9212 · 10−04

115 4.0340 · 10−03 3.4966 · 10−01 1.4845 · 10−05 2.0191 · 10−02 2.9090 · 10−04

Table 6. Test 1: value of the cost functional at the POD solution utilizing uniform and adaptive
time discretization, respectively, analytical value: J ≈ 8.3988 · 10+01.

∆t J(y`, u) dof J(y`, u)

1/20 4.1652 · 10+04 21 8.7960 · 10+01

1/42 1.9834 · 10+04 43 8.4252 · 10+01

1/61 1.3656 · 10+04 62 8.4102 · 10+01

1/114 7.3078 · 10+03 115 8.4034 · 10+01

1/6500 1.4116 · 10+02 – –

between the analytical optimal state ȳ and the POD solution y`, defined by εyabs := ‖ȳ − y`‖L2(ΩT ), are listed

in columns 2 and 6; same applies for the errors in the control εuabs := ‖ū− u`‖U (columns 3 and 7) and adjoint
state εpabs := ‖p̄ − p`‖L2(ΩT ) (columns 4 and 8). If we compare the results, we note that we gain one order of
accuracy for the adjoint and control variable with the time adaptive grid. For the state variable, the use of an
adaptive time grid leads to slightly worse results, which we will discuss later. Both for the full solution and
the reduced order solution, three steepest descent iterations are needed. In order to achieve an accuracy in
the control variable of order 10−2 and an accuracy in the adjoint state of order 10−3 with an equidistant time
grid, we would need about n = 20 000 time steps (not listed in Tab. 1) which is not feasible with our machine.
The largest number of time steps we are able to manage with our computing resources is n = 6500. With
n = 6500 time steps, the accuracy in the control and adjoint state is one order worse than the results obtained
with the time adaptive grid with only 21 degrees of freedom. Furthermore, the offline CPU time for snapshot
generation and POD basis computation is 58.6 s. On the contrary, Algorithm 5.1 leads to a total CPU time of
2.46 s if we consider offline and online altogether (compare Tab. 2). This emphasizes that using an appropriate
(non-equidistant) time grid for the adjoint variable is of particular importance in order to efficiently achieve
POD controls of good quality.

Furthermore, we compare the optimization of the full FE model to the optimization with the POD-MOR
model obtained with our approach. First of all, Table 3 lists the errors between the FE solution with spatial
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Figure 5. Test 1: analytical optimal state ȳ (top left), desired state yd (top right); POD state y`

utilizing a uniform time grid with ∆t = 1/20 (bottom left), POD state y` utilizing an adaptive
time grid with dof = 21 (bottom right).

Table 7. Test 1: improvement of approximation quality concerning the state variable and the
corresponding CPU times. The initial time grid T is computed with dof = 43.

Nrefine εyabs εuabs εpabs CPU time

0 5.1874 · 10−02 5.3428 · 10−02 9.6343 · 10−03 –
5 4.0058 · 10−02 2.1145 · 10−02 3.6378 · 10−03 0.2 s
10 3.0909 · 10−02 1.8396 · 10−02 3.0895 · 10−03 0.3 s
20 2.4759 · 10−02 1.7104 · 10−02 2.8210 · 10−03 0.4 s
30 2.3028 · 10−02 1.6971 · 10−02 2.7906 · 10−03 0.4 s

discretization h = 1/100 and the analytical solution. It shows that we need more about n = 40 000 equidistantly
distributed time steps to achieve a value of the cost functional close to the analytical value which is J ≈
8.3988 · 10+01. Our POD-MOR approach with an adaptive time grid reaches this value with only dof = 115 (see
Tab. 6).

We note that we were only able to realize the computation for n ≥ 20 000 on a compute server for memory
reasons. On top of that, we compare in Table 4 the computational times of the full FE optimization using a
uniform time grid with the POD-MOR solution utilizing our approach. If we want to achieve a FE solution with
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Table 8. Test 1: accuracy of the approximate control u∆x from Algorithm 5.1 in comparison
with the approximate OS-POD control uOSPOD on uniform (columns 2 and 4) and adaptive
(column 3) time grids.

error ∆t = 1/20 dof = 21 ∆t = 1/6500

‖uOSPOD − ū‖U 2.2988 · 10−01 9.2801 · 10−02 1.2896 · 10−01

‖u∆x − ū‖U – 1.1162 · 10−02 –

Table 9. Test 1: computational times for computing an approximation of the optimal control
using step 1–2 of Algorithm 5.1 (row 2) and using OS-POD for different temporal resolutions
(rows 3–4).

Control CPU time

u∆x, dof = 21 2.3 s
uOSPOD,∆t = 1/20 0.37 s
uOSPOD,∆t = 1/6500 315.6 s

similar accuracy as the POD solution on a time adaptive grid, a very large number of time steps are needed,
which leads to high computational times, so that we get large speedup factors. Finally, we want to mention
that solving (2.4) with the adaptive space-time approach of [7], it takes 43.8 s for dof = 21 and h = 1/100 and
2111.5 s for dof = 21 and h = 1/1000 (compare Tab. 2). We note that our method has a speedup factor of 17.8
and 851, respectively.

Table 5 contains the evaluations of each term in (5.3). The value ηip (ηbp) refers to the first (second) part in

(3.5). For this test example, we note that the term ηip influences the estimation. However, we observe that the
better the semi-discrete adjoint state p∆x from step 1 of Algorithm 5.1 is, the better will be the POD adjoint
solution. Since all summands of (5.3) can be estimated, Table 5 allows us to control the approximation of the
POD adjoint state. The estimation (5.7) concerning the state variable will be investigated later on.

Furthermore, a comparison of the value of the cost functional is given in Table 6. The aim of the optimization
problem (2.4) is to minimize the quantity of interest J(y, u). The analytical value of the cost functional at the
optimal solution is J(ȳ, ū) ≈ 8.3988 · 101. Table 6 clearly points out that the use of a time adaptive grid
is fundamental for solving the optimal control problem (2.4). The huge differences in the values of the cost
functional is due to the great increase of the desired state yd at the end of the time interval (see Fig. 5). Small
time steps at the end of the time interval, as it is the case in the time adaptive grid, lead to much more accurate
results.

Now, let us discuss the inclusion of step 4 in Algorithm 5.1. Since we went for an adaptive time grid regarding
the adjoint variable, we cannot in general expect that the resulting time grid is a good time grid for the state
variable. Table 1 confirms that a uniform time grid leads to better approximation results in the state variable
than the time adaptive grid. In order to improve also the approximation quality in the state variable, we
incorporate the error estimation (5.7) from [19] in a post-processing step after producing the time grid with the
strategy of [7] and before starting the POD solution process. We define

ηPODj
:= ∆t2j

(∫
Ij

(‖yktt‖2H + ‖ykt ‖2V )

)
where ykt ≈ yt(tk) and yktt ≈ ytt(tk) are computed via finite difference approximation. We perform bisection on
those time intervals Ij , where the quantity ηPODj

has its maximum value and repeat this Nrefine times. This
results in the time grid Tnew. The improvement in the approximation quality in the state variable can be seen
in Table 7. The more additional time instances we include according to (5.7), the better the approximation



1866 A. ALLA ET AL.

results get with respect to the state. Moreover, also the approximation quality in the control and adjoint state
is improved. The CPU times for this post-processing step are listed in Table 7.

We note that the sum of the neglected eigenvalues
∑d
i=2 λi is approximately zero and the second largest

eigenvalue of the correlation matrix is of order 10−10, which makes the use of additional POD basis functions
redundant. Likewise, in this particular example the choice of richer snapshots (even the optimal snapshots) does
not bring significant improvements in the approximation quality of the POD solutions. So, this example shows
that solely the use of an appropriate adaptive time mesh efficiently improves the accuracy of the POD solution.

Finally, we compare the approximation u∆x for the optimal control from step 2 in Algorithm 5.1 with an
approximation of the optimal control we get by performing OS-POD1 (optimality system POD, see e.g. [20])
on a uniform time grid. In our runs for OS-POD, the snapshots are taken from the state, adjoint state, time
derivative of the adjoint state and the initial condition y0. We use ` = 1 basis function and perform two gradient
steps. The comparison of the controls u∆x (Fig. 4, top middle) and uOSPOD on a uniform time grid (Fig. 4,
top right) with the optimal control ū (Fig. 4, top left) visualizes that u∆x is closer to the optimal solution than
uOSPOD. We also combined OS-POD with the time adaptive grid (Fig. 4, bottom right). In this example, it turns
out that the accuracy of the control variable is improved by a well-suited adaptive time grid. Tables 8 and 9
show the control error and the CPU time. As expected, a very large number of time steps for a uniform time
discretization is needed. Indeed, the control computed on a fine equidistant grid with n = 6500 is less accurate
than a corse adaptive grid (compare Tab. 8). Finally, Table 9 shows the computational costs of the offline stage
to compute a reference control with OS-POD and our approach.

6.2. Test 2: solution with steep gradient in the middle of the time interval

Let Ω = (0, 1) be the spatial domain and [0, T ] = [0, 1] be the time interval. We choose ε = 10−4 and α = 1.
To begin with, we consider an unconstrained optimal control problem and investigate the inclusion of control
constraints separately in Test 3. We build the example in such a way that the analytical solution (ȳ, ū) of (2.4)
is given by:

ȳ(x, t) = x3(x− 1)t, p̄(x, t) = sin(πx)atan

(
t− 0.5

ε

)
(t− 1),

ū1(t) = ū2(t) = −atan

(
t− 0.5

ε

)
(t− 1)

(
32

π3
− 8

π2

)
,

χ̄1(x) = max
{

0, 1− 16(x− 0.25)2
}
, χ̄2(x) = max

{
0, 1− 16(x− 0.75)2

}
.

The desired state and the forcing term are chosen accordingly. Due to the arcus-tangent term and the small
value for ε, the adjoint state exhibits an interior layer with steep gradient at t = 0.5, which can be seen in
the left panel of Figures 6 and 7. The shape functions χ1 and χ2 are shown in Figure 8 on the left side. As in
Test 1, we study the use of two different time grids: an equidistant time discretization and the time adaptive grid
computed in step 1 of Algorithm 5.1 (see Fig. 9). Once again, we note that spatial and temporal discretization
decouple when computing the time adaptive grid utilizing the a posteriori estimation (3.5), which enables us
to use a large spatial resolution ∆x for solving the elliptic system and to keep the offline costs low.

We choose state and adjoint snapshots as well as time derivative adjoint snapshots corresponding to u0 = 0
and we also include the initial condition y0 into our snapshot set. We take ` = 4 POD modes. Later we will also

1OS-POD concerns the computation of the POD basis functions in optimal control problems. Therefore, the POD problem (4.1)
is included in the whole optimization process, i.e. the POD reduced order model is computed from the snapshots corresponding
to the optimal control. Thus, the POD basis are optimal for the investigated problem. However, the method might turn out to be
computationally as expensive as the original optimal control problem, and for practical realizations, the idea is to update the POD
basis in the direction of the minimum. We refer the interested reader to [20] for a complete description of the method.
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Figure 6. Test 2: analytical optimal adjoint state p̄ (left), POD adjoint solution p` with ` = 4
utilizing an equidistant time grid with ∆t = 1/40 (middle), POD adjoint solution p` with ` = 4
utilizing an adaptive time grid with dof = 41 (right).

Figure 7. Test 2: contour lines of the analytical optimal adjoint state p̄ (left), POD adjoint
solution p` with ` = 4 utilizing an equidistant time grid with ∆t = 1/40 (middle), POD adjoint
solution p` with ` = 4 utilizing an adaptive time grid with dof = 41 (right).

Figure 8. Test 2: shape functions χ1(x) and χ2(x) (left), decay of the eigenvalues on semilog
scale (middle) and first POD basis function ψ1 (right) utilizing uniform time grid with ∆t =
1/40.

try out different numbers of utilized POD basis functions. The middle and right plots of Figures 6 and 7 show
the surface and contour lines of the POD adjoint solution utilizing an equidistant time grid (with ∆t = 1/40)
and utilizing the adaptive time grid (with dof = 41), respectively. Clearly, the equidistant time grid fails to
capture the interior layer at t = 1/2 satisfactorily, whereas the POD adjoint state utilizing the adaptive time
grid approximates the interior layer accurately.
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Figure 9. Test 2: adaptive space-time grids with dof = 41 according to the strategy in [7]
and ∆x = 1/100 (left) and ∆x = 1/5 (middle), respectively, and the equidistant grid with
∆t = 1/40 (right).

Figure 10. Test 6.2: analytical optimal state ȳ (left), POD solution y` with ` = 4 utilizing
an equidistant time grid with ∆t = 1/40 (middle), POD solution y` with ` = 4 utilizing an
adaptive time grid with dof = 41 (right).

Figure 11. Test 6.2: contour lines of the analytical optimal state ȳ (left), POD solution y`

with ` = 4 utilizing an equidistant time grid with ∆t = 1/40 (middle), POD solution y` with
` = 4 utilizing an adaptive time grid with dof = 41 (right).

Unlike Test Example 6.1, the adaptive time grid is also a suitable time grid for the state variable in this
numerical test example. This can be seen visually when comparing the results for the POD state utilizing
uniform discretization and utilizing the adaptive time grid with the analytical optimal state, Figures 10 and 11.

Table 10 summarizes the absolute errors between the analytical optimal solution and the POD solution for
the state, control and adjoint state for all test runs with an equidistant and adaptive time grid, respectively. If
we compare the results of the numerical approximation, we note that the use of an adaptive time grid heavily
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Table 10. Test 6.2: absolute errors between the analytical optimal solution and the POD
solution with ` = 4 depending on the time discretization (equidistant: columns 1–4, adaptive:
columns 5–8).

∆t εyabs εuabs εpabs dof εyabs εuabs εpabs

1/20 5.0767 · 10−01 7.8419 · 10+00 3.5413 · 10+01 21 4.0346 · 10−02 5.4053 · 10−01 2.4409 · 10+00

1/40 2.6242 · 10−01 4.1058 · 10+00 1.8542 · 10+01 41 2.2178 · 10−04 5.3471 · 10−03 1.3186 · 10−02

1/68 1.5603 · 10−01 2.4503 · 10+00 1.1065 · 10+01 69 9.7031 · 10−05 4.5702 · 10−03 4.2670 · 10−03

1/134 7.8741 · 10−02 1.2386 · 10+00 5.5938 · 10+00 135 8.5577 · 10−05 4.4901 · 10−03 2.3507 · 10−03

1/6500 1.4104 · 10−04 4.9177 · 10−03 9.3324 · 10−03 – – – –

Table 11. Test 2: CPU times for POD offline computations (snapshot generation and POD
basis computation) depending on the time discretization (equidistant: columns 1–3, adaptive:
columns 4–7).

∆t POD offline POD online dof Compute T POD offline POD online

1/20 0.16 s 0.07 s 21 1.89 s 0.16 s 0.07 s
1/40 0.17 s 0.08 s 41 5.32 s 0.17 s 0.08 s
1/68 0.17 s 0.10 s 69 7.81 s 0.17 s 0.10 s
1/134 0.19 s 0.17 s 135 12.71 s 0.19 s 0.17 s
1/6500 52.4 s 5.99 s – – – –

Table 12. Test 2: value of the cost functional with ` = 4, true value J ≈ 1.0085 · 10+03.

∆t J(y`, u) dof J(y`, u)

1/20 3.1225 · 10+05 21 1.9553 · 10+04

1/40 1.5619 · 10+05 41 1.0274 · 10+03

1/68 9.1901 · 10+04 69 1.0065 · 10+03

1/134 4.6655 · 10+04 135 1.0082 · 10+03

1/10 000 1.0350 · 10+03 – –

improves the quality of the POD solution with respect to an equidistant grid. In fact, we get an improvement
of order four.

The exact optimal control intensities ū1(t) and ū2(t) as well as the POD solutions utilizing uniform and
adaptive temporal discretization are illustrated in Figure 12.

Another point of comparison is the evaluation of the cost functional. Since the exact optimal solution is
known analytically, we can compute the exact value of the cost functional, which is J(ȳ, ū) = 1.0085 · 103. As
expected, the adaptive time grid enables us to approximate this value of the cost functional quite well when
using dof = 135, see Table 12. In contrast, the use of a very fine temporal discretization with ∆t = 1/10 000 is
still worse than the results with the adaptive time grid with only 41 degrees of freedom. Again, this emphasizes
the importance of a suitable time grid.

For computing the full solution and the reduced order solution, we need three gradient steps in each case.
The CPU times for the test runs are summarized in Table 11. In order to achieve an accuracy in the control and
adjoint variable of order 10−3, we need around n = 6500 time steps. In this case, the CPU time for the POD
offline phase gets really large (52.4 s). In contrast, computing a time adaptive grid on which the snapshots are
sampled and the POD-ROM simulation is performed, makes computationally sense.

For the sake of completeness we also study and compare the POD approximation for ` = 1 POD basis
function. To begin, we note that the decay of the eigenvalues are in the middle of Figure 8. As one can see, the
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Figure 12. Test 2: analytical control intensities ū1(t) (top left) and ū2(t) (bottom left), POD
control utilizing an equidistant time grid with ∆t = 1/40 (middle) and ` = 4, POD control
utilizing an adaptive time grid with dof = 41 (right) and ` = 4.

Table 13. Test 2: absolute errors between the analytical optimal solution and the POD solution
with ` = 1 depending on the time discretization (equidistant: columns 1–4, adaptive: columns
5–8).

∆t εyabs εuabs εpabs dof εyabs εuabs εpabs

1/20 5.0631 · 10−01 7.8420 · 10+00 3.5413 · 10+01 21 4.5255 · 10−02 5.4054 · 10−01 2.4409 · 10+00

1/40 2.6230 · 10−01 4.1059 · 10+00 1.8542 · 10+01 41 2.0721 · 10−02 5.3475 · 10−03 1.3186 · 10−02

1/68 1.5684 · 10−01 2.4503 · 10+00 1.1065 · 10+01 69 2.0713 · 10−02 4.5706 · 10−03 4.2670 · 10−03

1/134 8.1129 · 10−02 1.2386 · 10+00 5.5938 · 10+00 135 2.0664 · 10−02 4.4905 · 10−03 2.3507 · 10−03

Table 14. Test 3: inclusion of box constraints for the control intensities: absolute errors
between the analytical optimal solution and the POD solution with ` = 4 depending on the
time discretization (equidistant: columns 1–4, adaptive: columns 5–8).

∆t εyabs εuabs εpabs dof εyabs εuabs εpabs

1/20 2.8601 · 10−01 5.7201 · 10+00 3.5430 · 10+01 21 2.2714 · 10−02 3.9586 · 10−01 2.4423 · 10+00

1/40 1.4802 · 10−01 2.9955 · 10+00 1.8551 · 10+01 41 2.9482 · 10−04 4.4969 · 10−03 1.3183 · 10−02

1/68 8.8124 · 10−02 1.7882 · 10+00 1.1071 · 10+01 69 2.1247 · 10−04 3.2811 · 10−03 4.2629 · 10−03

1/134 4.4570 · 10−02 9.0470 · 10−01 5.5965 · 10+00 135 2.1330 · 10−04 3.1321 · 10−03 2.3474 · 10−03

1/6500 2.6019 · 10−04 3.8720 · 10−03 9.3290 · 10−03 – – – –
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Figure 13. Test 3: inclusion of box constraints for the control intensities: analytical control
intensities ū1(t) (top left) and ū2(t) (bottom left), POD control utilizing an equidistant time
grid with ∆t = 1/40 (middle) and ` = 4, POD control utilizing an adaptive time grid with
dof = 41 (right) and ` = 4.

use of more than ` = 4 POD basis functions does not lead to more accurate approximations. The first POD
mode ψ1 can be seen in the right panel of Figure 8. Table 13 shows the absolute error between the analytical
solution and the POD solution in the state, control and adjoint state for uniform as well as for adaptive time
discretization for ` = 1. We note that in the case of the uniform temporal discretization, the use of ` = 1 POD
basis function leads to similar approximation results as using ` = 4 POD modes. On the contrary, the adaptive
time discretization with ` = 4 POD basis functions leads to more accurate approximation results for the state
variable than using ` = 1 POD modes (compare Tabs. 13 and 10). However, with only one POD mode, the time
adaptive grid gives very accurate results.

6.3. Test 3: control constrained problem

In this test we add control constraints to the previous example. We set u1,a(t) ≤ u1(t) ≤ u1,b(t) and u2,a(t) ≤
u2(t) ≤ u2,b(t) for the time dependent control intensities u1(t) and u2(t). The analytical value range for both
controls is u1(t), u2(t) ∈ [−0.3479, 0.1700] for t ∈ [0, 1]. For each control intensity we choose different upper and
lower bounds: we set u1,a(t) = −100 (i.e. no restriction), u1,b = 0.1 and u2,a(t) = −0.2, u2,b(t) = 0. For the
solution of problem (4.5) we use a projected gradient method. For both the full solution and the reduced order
solution, 5 projected gradient steps are needed.

The solution of the nonlinear, nonsmooth equation (3.1) can be done by a semi-smooth Newton method or by
a Newton method utilizing a regularization of the projection formula, see [24]. In our numerical tests we compute
the approximate solution to (3.1) with a fixed point iteration and initialize the method with the adjoint state
corresponding to the control unconstrained optimal control problem. In this way, only two iterations are needed
for convergence. Convergence of the fixed point iteration can be argued for large enough values of α, see [12].

The analytical optimal solutions ū1 and ū2 are shown in the left plots in Figure 13. For POD basis computa-
tion, we use state, adjoint and time derivative adjoint snapshots corresponding to the reference control u0 = 0
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Table 15. Test 3: CPU times for POD offline computations (snapshot generation and POD
basis computation) depending on the time discretization (equidistant: columns 1–3, adaptive:
columns 4–7).

∆t POD offline POD online dof Compute T POD offline POD online

1/20 0.16 s 0.06 s 21 1.09 s 0.16 s 0.06 s
1/40 0.17 s 0.12 s 41 5.31 s 0.17 s 0.12 s
1/68 0.20 s 0.14 s 69 7.84 s 0.20 s s 0.14 s
1/134 0.25 s 0.22 s 135 13.09 s 0.25 s 0.22 s
1/6500 46.76 s 9.12 s – – – –

and we also include the initial condition y0 into our snapshot set. Figure 13 refers to the POD controls using
a uniform (middle panel) and an adaptive temporal discretization (right panel). We again like to emphasize
how accurate our approximation with an adaptive time grid is in comparison to a uniform grid (see Tab. 14).
We note that the inclusion of box constraints on the control functions leads in general to better approximation
results, compare Table 10 with Table 14. This is due to the fact that on the active sets the error between the
analytical optimal controls and the POD solutions vanishes.

The CPU time is listed in Table 15. As one can see, to achieve an accuracy of order 10−3 for the control and
adjoint variable, n ≈ 6500 time steps are necessary with a uniform temporal discretization (compare Tab. 14).
In this case, the POD simulation including the offline phase takes 55.88 s, whereas utilizing our approach with
69 degrees of freedom takes around 8.18 s. This gives us an impressive speedup of factor approximately 7.

7. Conclusion

In this paper we investigated the problem of snapshot location in optimal control problems. We showed
that the numerical POD solution is much more accurate if we use an adaptive time grid, especially when the
solution of the problem presents steep gradients. The time grid was computed by means of an a posteriori
error estimation strategy of a space-time approximation of a second order in time and fourth order in space
elliptic equation which describes the optimal control problem and has the advantage that it is independent of an
input control function. Furthermore, a coarse approximation with respect to space of the latter equation gives
information about the snapshots one can use to build the surrogate model. Finally, we provided a certification
of our surrogate model by means of an a posteriori error estimation for the error between the optimal solution
and the POD solution.

In the next step, we extend our approach to optimal control problems subject to nonlinear parabolic equations.
In case of fully distributed controls, a reformulation of the optimality system as a second order in time and
fourth order in space nonlinear elliptic PDE for the state is also possible. However, the reformulation with
respect to p still would contain the state y, so that our approach does not directly extend to this situation. But,
if one applies the SQP framework to the solution of the underlying optimal control problem our approach is
directly applicable to the optimality conditions associated with the linear quadratic SQP subproblems.
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[16] E. Kammann, F. Tröltzsch and S. Volkwein, A method of a posteriori error estimation with application to proper orthogonal
decomposition. ESAIM: M2AN 47 (2013) 555–581.
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