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GOAL-ORIENTED ERROR ESTIMATION FOR

PARAMETER-DEPENDENT NONLINEAR PROBLEMS

Alexandre Janon1, Maëlle Nodet2, Christophe Prieur3

and Clémentine Prieur2,∗

Abstract. The main result of this paper gives a numerically efficient method to bound the error that
is made when approximating the output of a nonlinear problem depending on an unknown parameter
(described by a probability distribution). The class of nonlinear problems under consideration includes
high-dimensional nonlinear problems with a nonlinear output function. A goal-oriented probabilistic
bound is computed by considering two phases. An offline phase dedicated to the computation of a
reduced model during which the full nonlinear problem needs to be solved only a small number of
times. The second phase is an online phase which approximates the output. This approach is applied
to a toy model and to a nonlinear partial differential equation, more precisely the Burgers equation
with unknown initial condition given by two probabilistic parameters. The savings in computational
cost are evaluated and presented.
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1. Introduction

Numerical simulation is a key component of numerous domains: industry, environment, engineering, physics
for instance. In some cases time is the limiting factor, and the numerical simulation should be very fast and
accurate. For example, the control of the trajectory of a space satellite may require efficient real-time compu-
tations. Another example would be the iterative optimization algorithm used in numerical weather prediction,
which requires numerous calls to a numerical atmosphere model, to be performed in a limited time. In both
examples, the computing time is a key factor: it must be very short, either because the computation is repeated
many times in a relatively short interval (many-query context) or because the result cannot wait (real-time
context).

In this context, it is crucial to provide fast numerical evaluations for linear or nonlinear problems. These
procedures are generally called “metamodelling”, “model reduction”, “dimension reduction”. It consists in
replacing the existing model, called the “full” model, by a fast approximation. There exist both stochastic and
deterministic approaches to building such approximations. On the stochastic part we can mention polynomial
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chaos approximation [6, 13, 23], Gaussian processes (including Kriging and RKHS-based methods – reproducing
kernel Hilbert spaces) [12, 19], low-rank tensor methods [18], etc. which all provide cheap and fast approximations
of the full model. On the deterministic side we can cite the reduced basis method [14], POD (proper orthogonal
decomposition) [25], balanced truncation [15], etc. All these methods have in common that they provide a way
to build a numerical model which is faster than the full model.

Of course, decreasing the computational time required for solving the model is not the only aim these methods
have. It is crucial that they also provide accurate approximations of the full model. The approximation error,
i.e. the comparison between the full model and the metamodel, should ideally be certified and known by the user
of the metamodel. In practice, some metamodelling methods only provide limited validation and certification
so that the user has to take a leap of faith because there is no quantified guarantee about the metamodel
accuracy. However, it is possible in some cases to design metamodels which include a certified error bound. In
this latter case, the user does not know exactly the approximation error, but the error is guaranteed to be lower
than the provided bound. Moreover, the error bound computation is included in the metamodel, so that its
computational burden stays small compared to the full model. For example, we can cite [16] where the authors
provide such bounds in the framework of the reduced basis method (dimension reduction).

Furthermore, in many application cases, one is not interested in the solution by itself, but rather in a quantity
of interest, or model output, which is a functional of this solution. Taking this functional into account when
performing the model reduction leads to a so-called goal-oriented method. For instance, goal-oriented basis
choice procedures have been successfully introduced in the context of dynamical systems in [7, 26], where the
basis is chosen so as to contain the modes that are relevant to accurately represent the output of interest, and
in a general context in [3], where the basis is chosen so as to minimize the overall output error. All those papers
showed that using an adapted basis could lead to a great improvement of reduction error. In [16], the authors
consider, in the context of reduced basis, goal-oriented error estimation, that is, the description of a rigorous
and computable error bound between the model output and the reduced one. In [9], the authors outperform the
accuracy of the bound in [16] by accepting a small risk α ∈ (0, 1) of this bound to be violated. They provide a
so-called probabilistic error bound. Providing such error bound for a large class of nonlinear problems and for
any approximation procedure is the aim of this paper.

More precisely, we are considering, for a given parameter µ in a parameter space P, the solution u(µ) ∈ X of
an equation of the form M(µ, u(µ)) = 0, with M : P ×X → Y , and X, Y two finite dimensional vector spaces
that are introduced in Section 2.

We extend in the present paper the results in [9] by providing a probabilistic goal-oriented error estimation
procedure for a large class of nonlinear problems M(µ, u(µ)) = 0, and for very general metamodelling meth-
ods. More specifically, let s(µ) = 〈`, u(µ)〉X , for a given ` ∈ X, and s̃(µ) = 〈`, ũ(µ)〉X , with ũ a quite general
metamodel for u. The problem under consideration in this paper is to derive a numerically efficient method
to compute a probabilistic bound for the error |s(µ)− s̃(µ)|. Our approach is based on a generalized notion
of the finite difference adjoint of an operator in the nonlinear and probabilistic context. Two different phases
are applied when estimating the error on the output of the nonlinear problem. First an offline phase, where
the high-dimensional nonlinear problem is solved a small number of times, and an online phase where, using
the new notion of finite difference adjoint, a low dimensional problem is solved. This paper also provides an
illustration by means of numerical experiments.

The notion of adjoint we introduce here is related to the adjoint used in a posteriori error estimation works
such as in [2]. We propose a simple and robust definition, nicely tailored to the online error bound setting. The
idea of probabilistic error estimation also appeared in the ROMES method [5]. This last approach is of different
nature, as it is based on a step of statistical modeling of the errors introduced by the reduced-order model.

The paper is organized as follows: in Section 2, we precise the objectives of our study, that is the derivation
of an offline/online probabilistic goal-oriented error estimation procedure in a nonlinear context. In Section 3,
we describe the different steps of the procedure. More precisely, we introduce in Section 3.1, the notion of finite
difference adjoint of an operator, before extending in Section 3.2 the procedure in [9] to nonlinear models and
linear outputs. In Section 3.3, we prove that the results in Section 3.2 can easily be extended to nonlinear
models and nonlinear outputs. Section 3.5 provides the different steps for a practical efficient evaluation of the
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error bound. Some numerical experiments are presented in Section 4, first with a linear transport equation,
then with the nonlinear Burgers partial differential equation. Section 5 contains some concluding remarks and
Appendix A collects the proof of some intermediate results.

2. Problem statement

Let P ⊂ Rd denote a parameter space, and let P be a probability distribution on P. Let X (resp. Y ) be
vector space of dimension N (resp. S) endowed with a scalar product 〈·, ·〉X (resp. 〈·, ·〉Y ). In the following,
when there is no ambiguity, the dependence in the vector space for the scalar product will be omitted in the
notation 〈·, ·〉. Let us consider a nonlinear function M : P ×X → Y . Given a parameter µ ∈ P, we denote by
u(µ) ∈ X a solution to the equation:

M(µ, u(µ)) = 0, (2.1)

and we define the output by

s(µ) = 〈`, u(µ)〉X , (2.2)

for a given ` ∈ X.
We assume that for every µ ∈ P, equation (2.1) admits a unique solution in X, so that the application

s : P → R is well-defined.
In a many-query context, that is in a context requiring a potentially large number of evaluations of the output,

it is common to call for model reduction. More precisely, let X̃ be a subspace of X, of dimension N such that
N � N . We consider ũ : P → X̃ an approximation (in a very wide sense of the term) of u : P → X. Let us
define the approximate output s̃(µ) by

s̃(µ) = 〈`, ũ(µ)〉X .

The objective is then to provide a probabilistic error bound between s(µ) and s̃(µ). In other words, one accepts
the risk of this bound ε(µ;α) being violated for a set of parameters having ”small” probability measure α ∈ (0, 1):

P
(
|s(µ)− s̃(µ)| ≥ ε(µ;α)

)
≤ α.

This quantity ε(µ;α) is a so-called “goal-oriented probabilistic error bound”.
For sake of efficiency, the computation of the approximate output can be split into two phases:

• an offline phase, dedicated to the construction of the reduced model ũ, during which one has to solve the
full dimensional problem (2.1) only for a reasonably small number of parameters µ1, . . . , µκ;

• an online phase, during which we evaluate the approximate output s̃(·) = 〈`, ũ(·)〉X for all queried µ.

In practice, for any µ ∈ P, the computational time of ũ(µ) is much smaller than the one of u(µ), hence this
splitting into offline and online phases can be interesting in terms of overall computing time: the offline phase
can be computationally expensive, provided that the number of queries is large enough and/or the online phase
per query is fast enough.

In this article, we will not focus on the ways of constructing efficient offline-online approximation procedures
for u(µ), as in e.g., [11, 16, 21]. Assumptions on the approximation procedure in use are very mild (see Sect. 3.5
and more specifically Lem. 3.11). Under these mild assumptions, we propose hereafter a new procedure to
compute efficiently, using an online / offline decomposition, a goal-oriented probabilistic error bound ε(µ;α)
which generalizes the error bound described in [9] (see also [10] for further results in control theory).
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3. Probabilistic nonlinear error bound

In this section, we aim at providing a goal-oriented probabilistic error bound on the output. In [9], the
authors propose such an error bound in the linear context, that is assuming that for any µ ∈ P, the operator
M(µ, ·) : X → Y is affine (linear operator + a constant), and that the output is also linear. In the sequel we
will call linear this case, as opposed to the nonlinear case where the model is not affine.

By accepting a small risk α ∈ (0, 1) that this bound could be violated, the authors avoid the use of (often
pessimistic) Lipschitz bounds. In this section, we extend the results in [9] to the cases where the operator
M(µ, ·) : X → Y is nonlinear. In Section 3.2, the output is assumed to be linear, then in Section 3.3, the output
may be nonlinear.

To derive an error bound, it seems natural to consider the so-called residual

r(µ) =M(µ, ũ(µ))−M(µ, u(µ)), µ ∈ P. (3.1)

In the sequel we explain why we need to define a new adjoint. To do so we recall the computations of the
linear case, in order to draw the parallel with the nonlinear case and motivate the need for a new adjoint
definition. In the linear case, M(µ, u) = A(µ)u− b(µ) where b(µ) ∈ Y is a given vector and A(µ) : X → Y is
a linear operator which is assumed to be invertible. In the following, A(µ)> denotes the transpose of A(µ). We
can define w(µ) ∈ Y as the solution of the so-called dual problem:

M?(µ,w(µ)) = A>(µ)w(µ) = `, (3.2)

where ` ∈ X is used in the definition of the linear output in (2.2), and with M?(µ, ·) the linear adjoint of
M(µ, ·). Let Φ = {φ1, . . . , φS} denote any orthonormal basis of Y . We then have

s̃(µ)− s(µ) = 〈`, ũ(µ)− u(µ)〉X = 〈A>(µ)w(µ), ũ(µ)− u(µ)〉X
= 〈w(µ), A(µ)ũ(µ)−A(µ)u(µ)〉Y = 〈w(µ), r(µ)〉Y

=

S∑
i=1

〈w(µ), φi〉Y 〈r(µ), φi〉Y . (3.3)

In order to adapt this procedure to the nonlinear context, we need to define a generalization of the adjointM?

for nonlinear operators, that still allows (3.3). In Section 3.1, we will define M? : P ×X ×X × Y → X, and
the associated adjoint problem for w(µ):

M?(µ, ũ(µ), u(µ), w(µ)) = `, (3.4)

which generalizes (3.2).

3.1. Finite difference adjoint of an operator

The definition of the adjoint problem for nonlinear operators is not unique. In order to generalize (3.3) for
nonlinear problems, we require a specific property, which leads us to choose the following definition:

Definition 3.1 (Finite difference adjoint). We call finite difference adjoint any operator

M? : P ×X ×X × Y → X,

linear in the last variable, such that the following identity holds:

∀µ ∈ P, ∀x1, x2 ∈ X, ∀y ∈ Y, 〈x1 − x2,M?(µ, x1, x2, y)〉X = 〈M(µ, x1)−M(µ, x2), y〉Y . (3.5)
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Let us underline that previous definitions of nonlinear adjoint do not readily allow for this property, such as,
e.g., the one offered by Definition 2.1 in [20]:

∀µ ∈ P, ∀x ∈ X, ∀y ∈ Y, 〈x,M?(µ, x, y)〉X = 〈M(µ, x), y〉Y .

In our case the dependence in both x1, x2 is crucial, and missing in previous definitions. Indeed, as we will see
later on in equation (3.10) we do need a dependence in u and ũ, and not only in u− ũ as in the linear case. A
similar trick can be found in [2] (p. 12), formalized below in Proposition 3.2, in which we propose a formula for
finite difference adjoint candidate.

Proposition 3.2. Assume that the operatorM : P ×X → Y is continuously Fréchet-differentiable with respect
to the second variable. Let dM(µ, x) : X → Y denote the Fréchet-derivative of M with respect to x ∈ X at
(µ, x). Let dM?(µ, x) : Y → X denote the (linear) adjoint of dM(µ, x). We now denote

M?(µ, x1, x2, y) =

∫ 1

0

dM?(µ, x2 + s(x1 − x2))(y)ds, (3.6)

for all (µ, x1, x2, y) ∈ P ×X ×X × Y . Then M? is a finite difference adjoint.

Proof of Proposition 3.2. The proof is postponed to Appendix A.1.

From now on, we will choose formula (3.6) for the adjoint of M. The following properties are immediate:

1. Assume that M(µ, ·) is affine, with M(µ, x) = A(µ)x − b(µ) where A(µ) : X → Y is a linear operator
and b(µ) ∈ Y . Then

∀µ ∈ P, ∀x1, x2 ∈ X, ∀y ∈ Y, M?(µ, x1, x2, y) = A(µ)>y.

2. For all µ ∈ P, and for all x1, x2 ∈ X, M?(µ, x1, x2, ·) is linear.

Let us now consider the adjoint problem described by (3.4):

Find w(µ) solution of M?(µ, ũ(µ), u(µ), w(µ)) = `. (3.7)

This problem is linear. Let us assume that, for all µ ∈ P, it admits a solution. We have then the following
lemma:

Lemma 3.3. Assume that the operator M : P ×X → Y is continuously Fréchet-differentiable with respect to
the second variable, and let M∗ be defined by (3.6). Let s(µ) = 〈`, u(µ)〉 s̃(µ) = 〈`, ũ(µ)〉, r(µ) be defined in
(3.1), let w(µ) be a solution of (3.7) and let {φ1, . . . , φS} denote any orthonormal basis of Y . Then it holds

s̃(µ)− s(µ) =

S∑
i=1

〈w(µ), φi〉Y 〈r(µ), φi〉Y . (3.8)

Proof of Lemma 3.3. Proposition 3.2 applies and Item 2 after Proposition 3.2 claims that M? is linear in its
fourth argument, thus the adjoint problem described in (3.4) is linear. We assume that for all µ ∈ P it admits
a solution w(µ).

Following the beginning of the proof of Theorem 1.1 in [9], we expand the residual in the basis Φ:

r(µ) =

S∑
i=1

〈r(µ), φi〉Y φi. (3.9)
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Then:

s̃(µ)− s(µ) = 〈l, ũ(µ)− u(µ)〉X .

As w(µ) is solution of (3.4), we get:

s̃(µ)− s(µ) = 〈M?(µ, ũ(µ), u(µ), w(µ)), ũ(µ)− u(µ)〉X .

Then, applying Identity (3.5) we obtain:

s̃(µ)− s(µ) = 〈M(µ, ũ(µ)))−M(µ, u(µ)), w(µ)〉Y = 〈r(µ), w(µ)〉Y . (3.10)

Finally, recalling (3.9), and as the basis Φ is orthonormal, we get (3.8).

3.2. Probabilistic error bound for a nonlinear model with linear output

This section is devoted to the statement of our probabilistic error bound, in the context where the model is
nonlinear and where the output is linear.

We now introduce some notation necessary to the statement of our bound. Recall that Φ = {φ1, . . . , φS}
denotes any orthonormal basis of Y . Let K ≤ S be a “truncation index”. For any i ∈ {1, . . . ,K}, we define:

Di(µ,Φ) = 〈w(µ), φi〉Y , βmin
i (Φ) = minµ∈PDi(µ,Φ), βmax

i (Φ) = maxµ∈PDi(µ,Φ).

The probabilistic error bound depends on the residual defined by (3.1):

r(µ) =M(µ, ũ(µ))−M(µ, u(µ)) =M(µ, ũ(µ)).

Our aim is to propose a probabilistic upper bound for |s(ũ(µ))− s(u(µ))|. For this, let us consider the right-

hand term in (3.8):

S∑
i=1

〈r(µ), φi〉Y 〈w(µ), φi〉Y . In order to bound this term, it seems natural to define, for any

µ ∈ P, and for any 1 ≤ i ≤ S:

βup
i (µ,Φ) =

{
βmax
i (Φ), if 〈r(µ), φi〉Y > 0,
βmin
i (Φ), else,

βlow
i (µ,Φ) =

{
βmin
i (Φ), if 〈r(µ), φi〉Y > 0,
βmax
i (Φ), else,

We then introduce a truncation argument, K. Our aim is then to bound the truncated sum∣∣∣∣∣
K∑
i=1

〈r(µ), φi〉Y 〈w(µ), φi〉Y

∣∣∣∣∣. We thus define:

T up
1 (µ,K,Φ) =

K∑
i=1

〈r(µ), φi〉Y βup
i (µ,Φ), T low

1 (µ,K,Φ) =

K∑
i=1

〈r(µ), φi〉Y βlow
i (µ,Φ),

and

T1(µ,K,Φ) = max
(
|T up

1 (µ,K,Φ)| ,
∣∣T low

1 (µ,K,Φ)
∣∣) .
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We refer to Section 3.5 for the computation of T1(µ,K, φ). Let us just underline that it will require, during the
online phase, the computation of the K scalar products 〈r(µ), φi〉Y , i = 1, . . . ,K. Under additional assumptions
(see Lem. 3.11), it is possible to compute each of these scalar products with a cost independent from the full
dimension S. However, we still need to choose a truncation argument K independent from S to keep the cost of
the online phase independent from S. Note also that during the offline phase, 2K optimization problems have
to be solved for the computation of βmin

i , βmax
i , i = 1, . . . ,K. Thus if we increase K, we also increase the cost

of the offline phase. To deal with the remainder of the sum, we define:

T2(K,Φ) = Eµ

(∣∣∣∣∣
S∑

i=K+1

〈r(µ), φi〉Y 〈w(µ), φi〉Y

∣∣∣∣∣
)
,

with Eµ denoting the expectation with respect to the probability distribution of µ.
Our main result is then:

Theorem 3.4. Let α ∈ (0, 1). We have

P (|s(µ)− s̃(µ)| ≥ ε(µ;α)) ≤ α,

where the error bound ε(µ;α) is defined by

ε(µ;α) = T1(µ,K,Φ) +
T2(K,Φ)

α
.

Remark 3.5. The result of Theorem 3.4 is a generalization of Theorem 1.1 in [9] to nonlinear operators M.

The result of Theorem 3.4 is true for any orthonormal basis Φ of Y . For efficiency reasons, we would like to
choose Φ so that the parameter-independent part T2(K,Φ) is the smallest possible, for a fixed truncation index
K ∈ N∗.

To our knowledge, minimizing T2(K,Φ) over orthonormal bases of Y is an optimization problem for which
no efficient algorithm exists. However, we can minimize an upper bound of T2(K,Φ).

We define a self-adjoint, positive semi-definite operator G : Y → Y by:

∀ϕ ∈ Y, Gϕ =
1

2
Eµ (〈r(µ), ϕ〉Y r(µ) + 〈w(µ), ϕ〉Y w(µ)) . (3.11)

Let λ1 ≥ λ2 ≥ · · · ≥ λS ≥ 0 be the eigenvalues of G. Let, for i ∈ {1, 2, . . . ,S}, φGi be an unit eigenvector of G
associated with the ith eigenvalue, and

ΦG = {φG1 , . . . , φGS }.

We recall the following result that will be useful to prove our main result.

Lemma 3.6 (Thm. 1.2. in [9]). It holds

T2(K,ΦG) ≤
S∑

K+1

λ2
i .

Lemma 3.6 suggests a heuristic choice of Φ = ΦG. Indeed, we see that the study of the eigenvalues of G

allows to bound T2(K,ΦG), e.g., if there exist 0 < ρ < 1 and C > 0 such that λi ≤ Cρ
i
2 , then T2(K,ΦG) ≤

CρK+1 1− ρS−K

1− ρ
. In many applications, the eigenvalues of G are observed to fast decay to zero.
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We are now in position to prove our main result.

Proof of Theorem 3.4. We start from the result of Lemma 3.3:

s̃(µ)− s(µ) =

S∑
i=1

〈r(µ), φi〉Y 〈w(µ), φi〉Y .

Then, we can argue as in the proof of Theorem 1.1 in [9]. By construction of T1(µ,K,Φ) one gets:∣∣∣∣∣
K∑
i=1

〈r(µ), φi〉Y 〈w(µ), φi〉Y

∣∣∣∣∣ ≤ T1(µ,K,Φ).

Thus, for any α ∈ (0, 1),

P

(
|s̃(µ)− s(µ)| ≥ T1(µ,K,Φ) +

T2(K,Φ)

α

)
≤ P

(
|s̃(µ)− s(µ)| ≥

∣∣∣∣∣
K∑
i=1

〈r(µ), φi〉Y 〈w(µ), φi〉Y

∣∣∣∣∣+
T2(K,Φ)

α

)

≤ P

(∣∣∣∣∣
S∑

i=K+1

〈r(µ), φi〉Y 〈w(µ), φi〉Y

∣∣∣∣∣ ≥ T2(K,Φ)

α

)
,

where in the last inequality, Lemma 3.3 has been used. Then, by Markov Inequality, using α ∈ (0, 1), and by
definition of T2(µ,K,Φ) we get:

P

(∣∣∣∣∣
S∑

i=K+1

〈r(µ), φi〉Y 〈w(µ), φi〉Y

∣∣∣∣∣ ≥ T2(Φ)

α

)
≤

Eµ

(∣∣∣∑Si=K+1〈r(µ), φi〉Y 〈w(µ), φi〉Y
∣∣∣)

T2(K,Φ)
α

= α.

This concludes the proof of Theorem 3.4.

3.3. Corollary: error bound for a nonlinear output

In this section we provide an extension of Theorem 3.4 to the context of a nonlinear output S(µ). To do so
we consider the following problem:

Problem 3.7. Find v(µ) such that

H(µ, v(µ)) = 0,

where H : P ×X → Y is a (not necessarily linear with respect to the second argument) function, and consider
the following output:

S(µ) = f(v(µ)),

where f is a (not necessarily linear) function from Y to R.
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In the context of this section, our main result is based on

Lemma 3.8. Problem 3.7 can be written in the framework of a non necessarily linear modelM : P × (X×R)→
Y and of a linear output s(µ) = 〈`, u(µ)〉X with ` ∈ X × R.

Proof of Lemma 3.8. It relies on a classical idea in the field of Data Assimilation (see, e.g., [29]), which consists
in augmenting the state vector v(µ) with the output S(µ):

u(µ) =

(
v(µ)
S(µ)

)
=

(
u(µ)
u(µ)

)
∈ X × R,

where u(µ) ∈ X denotes the first component of u(µ) (corresponding to v(µ)) and u(µ) ∈ R its last component
(corresponding to S(µ)). We then define M : P × (X × R)→ Y by:

M(µ, u(µ)) =

(
H(µ, u(µ))

f(u(µ))− u(µ)

)
,

and consider the following linear output:

s(µ) = S(µ) = u(µ) = 〈`, u(µ)〉 with ` =

(
0
1

)
∈ X × R.

Problem 3.7 is then equivalent to:

find u(µ) such that M(µ, u(µ)) = 0 with the output s(µ) = `.

This concludes the proof of Lemma 3.8.

By combining Lemma 3.8 with Theorem 3.4, we get an error bound in the context of a nonlinear output
S(µ). This gives a solution to Problem 3.7.

3.4. Computation of the finite difference adjoint of M
Except in some particular cases there exists no explicit formulation of the adjoint of M in the context

of Proposition 3.2. To illustrate this purpose, let us consider the case where H is affine (with respect to the
second argument). For the sake of simplicity, let us fix in this section X = RN . Let B(µ) denote the matrix
representation of the linear part of H(µ, ·) with respect to the canonical basis of X. Even in that case, as the
output is nonlinear, the operator M is also nonlinear. Recall that we assume that M is continuously-Fréchet
differentiable with respect to its second variable. We want to provide an explicit formulation for the adjoint of
the operator M, starting from (3.6). We first consider dM(µ, ·). For v ∈ RN+1, recall that:

dM(µ, u)(v) = lim
α→0

M(µ, u+ αv)−M(µ, u)

α
,

which leads immediately to:

dM(µ, u)(v) =

(
B(µ)v

df(u)(v)− v

)
=

(
B(µ) (0)
df(u) −1

)(
v
v

)
,
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so that dM(µ, u) is the following matrix, defined by blocks:

dM(µ, u) =

(
B(µ) (0)
df(u) −1

)
,

where the top left block has size S ×N , the top right block S × 1, the bottom left 1×N (as f : RN → R) and
the bottom right lives in R. Then we have, for x, x′ ∈ RN :

M?(µ, x, x′, y) =
∫ 1

0

(
B(µ)> df(x′ + α(x− x′))>

(0) −1

)
(y)dα =

(
B(µ)> (

∫ 1

0
df(x′ + α(x− x′)) dα)>

(0) −1

)
(y).

The above formula cannot be simplified, in general. Except in special cases, the integral over (0, 1) therefore
must be numerically computed. In Section 4 we will consider both cases, analytical (Section 4.1) or numerical
computation (Sect. 4.2).

Below we provide examples for which an explicit formulation for the integral

∫ 1

0

df(x′ + α(x − x′)) dα) is

available.

Example 3.9 (Special case N = 1). In the special case where N = 1 we can change variable in the integral:∫ 1

0

df(x′ + α(x− x′)) dα =
f(x)− f(x′)

x− x′
.

Although this case is exceedingly simple (because for any numerical problem N > 1), this kind of simplification
can happen in other cases, as we will see below.

Example 3.10 (Special cases

∫
f explicit). In some cases the above integral can also be explicitly computed.

We give a few nonlinear examples below.

1. f additive: f : RN → R, x 7→ f(x) =

N∑
i=1

fi(xi) where fi are R→ R differentiable functions. In that case,

the previous change of variable still applies, and we get:

∫ 1

0
dfT (x′ + α(x− x′))dα =

∫ 1

0
(f ′1(x′1 + α(x1 − x′1)), . . .)dα =

(
f1(x1)−f1(x′

1)
x1−x′

1
, . . . ,

fN (xN )−fN (x′
N )

xN−x′
N

)
.

For example:

(a) f : RN → R, x 7→ f(x) =

N∑
i=1

x2
i , then we get

∫ 1

0

dfT (x′ + α(x− x′)) dα = (x1 + x′1, x2 + x′2, . . . , xN + x′N ),

(b) f : RN → R, x 7→ f(x) =

N∑
i=1

exi , and it holds

∫ 1

0

dfT (x′ + α(x− x′)) dα =

(
ex1 − ex′

1

x1 − x′1
, . . . ,

exN − ex′
N

xN − x′N

)
,
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2. f : RN → R, x 7→ f(x) =

( N∑
i=1

x2
i

)1/2

. Then it holds

∫ 1

0

dfT (x′ + α(x− x′)) dα =

∫ 1

0

1(∑N
i=1(x′i + α(xi − x′i))2

)1/2
(x′1 + α(x1 − x′1), . . .) dα,

which can therefore be explicitly computed as a function of x and x′ coordinates:

(
x′iγa

−1/2 − x
√
ca−1 +

1

2
γa−3/2 + x′i

√
ca−1 − 1

2
x′ibγa

−3/2 + x′iδa
−1/2

+ xi
√
a+ b+ ca−1 − 1

2
xibδa

−3/2 − x′i
√
a+ b+ ca−1 +

1

2
x′ibδa

−3/2
)
i=1,...,N

,

where:

a =

N∑
i=1

(xi − x′i)2, b = 2

N∑
i=1

xi(xi − x′i), c =

N∑
i=1

x′i
2
, γ = ln

b+ 2
√
ac√

a
, δ = ln

b+ 2a+ 2
√
a+ b+ c

√
a√

a
.

3.4.1. Dual error bound in the context of a nonlinear output

Let us come back to our initial purpose, that is the extension of our procedure to the context of a nonlinear
output. The adjoint problem writes:

M?(µ, ũ(µ), u(µ), w(µ)) = ` =

(
0
1

)
∈ X × R.

In a general context, the existence of a solution to this problem is not trivial, and may fail. However, if the
operator H is linear, even if the output is nonlinear, as the adjoint problem writes equivalently:

{
B(µ)>w +

∫ 1

0
df(u+ s(ũ− u))>w ds = 0 } N equations,

−w = 1 } 1 equation,

the unicity of the solution is provided as soon as B(µ) is invertible. In other words, w is equal to:

w = B(µ)−>
∫ 1

0

df(ũ+ s(u− ũ))>ds.

3.5. Efficient bound evaluation in a many-query or real-time context

In practice, the error bound ε(µ;α) used in Theorem 3.4 can not be directly evaluated, and one has to define
a computable approximation ε̂(µ;α). Our approximation is justified and commented in [9] Section 1.3, and
we recall it here for sake of self-containedness. We end this section with Lemma 3.11, which gives sufficient
conditions to ensure efficient computation of our online error bound.
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3.5.1. Estimation of ΦG.

We consider a finite subset of parameters Ξ ⊂ P, randomly sampled from the probability distribution P ,
and we estimate the linear operator G : Y → Y by a linear operator Ĝ : Y → Y defined as:

∀ϕ ∈ Y, Ĝϕ =
1

2#Ξ

∑
µ∈Ξ

(〈r(µ), ϕ〉Y r(µ) + 〈w(µ), ϕ〉Y w(µ)) ,

and we take as {φi}i=1,...,K the unit eigenvectors of Ĝ associated with its K largest eigenvalues. The computation
of these eigenvectors can be entirely processed during the offline phase (see [9], Sect. 1.3 for more details).

3.5.2. Computation of T1(µ,K,Φ).

Recall that

T1(µ,K,Φ) = max
(
|T up

1 (µ,K,Φ)| ,
∣∣T low

1 (µ,K,Φ)
∣∣) ,

with 
T up

1 (µ,K,Φ) =

K∑
i=1

〈r(µ), φi〉Y βup
i (µ,Φ) ,

T low
1 (µ,K,Φ) =

K∑
i=1

〈r(µ), φi〉Y βlow
i (µ,Φ) .

The β(µ,Φ) values can be approximated using a simple discrete minimization (i.e., replacing P by a discrete
sample Ξ in the minimum/maximum defining βmax(Φ) and βmin(Φ)). In some cases, one can use a continuous
optimization method to solve these minimum/maximum problems. It is clear that all these computations can
be done during the offline phase.

We now discuss the computation of the K scalar products 〈r(µ), φi〉Y for i = 1, . . . ,K with an offline/online

procedure. Recall that X̃ is a subspace of X, of dimension N such that N � N .

Lemma 3.11. Let {y1, . . . , yS} denote an orthonormal basis of Y and {x1, . . . , xN } denote an orthonormal
basis of X. Assume that M : P ×X → Y is defined by:

M

(
µ,

N∑
i=1

vixi

)
=

S∑
j=1

mj(µ, v1, . . . , vN )yj , (3.12)

where for all j = 1, . . . ,S, mj is a function from P × RN to R.
Assume moreover that: ∀ j = 1, . . . ,S, ∀µ ∈ P, ∀(v1, . . . , vN ) ∈ RN ,

mj(µ, v1, . . . , vN ) =

Tj∑
k=0

Qk,j(v1, . . . , vN )hk(µ), (3.13)

with

hk : P → R, ∀k ∈ {0, . . . , Tj} ,
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and

Qk,j(v1, . . . , vN ) =
∑

α=(α1,...,αN )∈Ij,k

qj,k,α
∏
l∈Vα

ϕαl(vl), (3.14)

where:

Ij,k ⊂ NN , I =

S⋃
j=1

Tj⋃
k=1

Ij,k, #I = M, Vα ⊂ {1, . . . ,N}, max
α∈I

#{Vα} = L, (3.15)

and {ϕl}l∈{1,...,N} a set of functions from R to R. We set T = max
j=1,...,S

Tj. Assume that, for α ∈ I, l ∈ Vα, the

cost of computing ϕαl(vl) is bounded by some positive constant R. Then, it is possible to compute each of the
scalar products 〈r(µ), φi〉Y for i = 1, . . . ,K, with an offline/online procedure whose online phase has the cost
T ×M × L×R.

Proof of Lemma 3.11. The proof is postponed to Appendix A.2.

Let us now comment the result and the assumptions in Lemma 3.11 with a few remarks.

Remark 3.12. The decomposition (3.13) plays an analogous role to the “affine parameter dependence” that
is commonly assumed in the literature (see, e.g., [16], p. 1526) on linear problems.

In case decomposition (3.13) does not hold true anymore but one still wants a complexity independent from
the full dimension N , we may employ empirical interpolation methods (EIM) introduced in [1] to recover the
required affine decomposition in the parameter µ.

Remark 3.13. Equations (3.14) and (3.15) imply that the functions {Qk,j(v1, . . . , vN )}1≤j≤N ,1≤k≤Tj admit a
sparse representation on {ϕαl(vl)}α∈I,l∈Vα and that the interaction order is bounded by L. Let us emphasize
that the result in Lemma 3.11 implies that the cost does not depend on the high dimension N . Therefore if we
assume that T , M , L and R� S, then it is possible to compute the K scalar products, with an offline/online
procedure with a small cost (with respect to S). A bound for the cost in the particular case where ϕαl(vl) = vαll
is provided in Remark A.1 in Appendix A.2.

Remark 3.14. Obtaining such a sparse representation for the {Qk,j(v1, . . . , vN )}1≤j≤N ,1≤k≤Tj is not an obvi-
ous task and requires the use or development of a high-dimensional approximation tool. Assuming that the
interaction order is bounded by L may also be questionable for some applications. Note that, in case these
assumptions are not satisfied, it is still possible to work with the K scalar products themselves, without any
approximation. In that case, the cost of the online phase is O (S), which is still better than the full problem,
whose complexity is O (Sα) with α ≥ 2 in most cases.

In the context of nonlinear partial differential equations, DEIM, a discrete variant of EIM, was suggested
and analyzed in [4], allowing to reduce the computational complexity of the reduced order model due to its
dependence on the nonlinear full dimension model N . Contrarily to DEIM, our approach is not specific to
projection-based metamodels.

3.5.3. Approximation of T2(K,Φ).

A Monte-Carlo estimator of T2(K,Φ) is used:

T̂2(K,Φ) =
1

2#Ξ

∑
µ∈Ξ

∣∣∣∣∣s̃(µ)− s(µ)−
K∑
i=1

〈r(µ), φi〉Y 〈w(µ), φi〉Y

∣∣∣∣∣ ,
where Ξ is a sample of P.
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As this quantity is µ-independent, it can be computed for once during the offline phase. Of course this
computation is a numerical estimation, as such it can induce approximation errors. Such error analysis, which
is related to the central limit theorem, is discussed in Section A in [9].

3.5.4. Computable error bound

We now rely on Theorem 3.4 and set:

ε̂(µ;α) = T1(µ,K,Φ) +
T̂2(K,Φ)

α
.

It is an estimator for the error bound ε(µ;α) in Theorem 3.4. As before, the error associated to the
approximation is analyzed and discussed in [9], Section A.

4. Numerical experiments

4.1. First experiments with a toy model

We now apply our error bound on a non-homogeneous linear transport equation with a nonlinear output.
We use the results of Section 3.3.

4.1.1. Toy model

Let ue = ue(t, x) be the solution of the linear transport equation:

∂ue
∂t

(t, x) + µ
∂ue
∂x

(t, x) = sin(x) exp(−x),

for all (t, x) ∈ (0, 1)× (0, 1), satisfying the initial condition:

ue(t = 0, x) = x(1− x), ∀x ∈ [0, 1],

and boundary condition:

ue(t, x = 0) = 0, ∀t ∈ [0, 1].

The parameter µ is chosen in P = [0.5, 1] and P is endowed with the uniform measure.
We choose a number of timesteps Nt and a number of space points Nx, we set ∆t = 1/Nt and ∆x = 1/Nx and

we introduce the discrete unknown vector u = (uni )i=0,...,Nx;n=0,...,Nt . We note here that the considered PDE is
an hyperbolic evolution equation, and that we perform the reduction on the space-time unknown u, of dimension
N = (Nx + 1) · (Nt + 1). This is different from reducing the space-discretized equation at each time step.

The u vector satisfies the discretized initial-boundary conditions:

∀i, u0
i = i∆x(1− i∆x), (4.1)

∀n, un0 = 0, (4.2)

and the first-order upwind scheme implicit relation:

∀i, n,
un+1
i+1 − uni+1

∆t
+ µ

un+1
i+1 − u

n+1
i

∆x
= sin(i∆x) exp(−i∆x). (4.3)
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Let B(µ) (resp. φ) be the matrix (resp. the vector) so that (4.1), (4.2) and (4.3) are equivalent to:

B(µ)u = φ ∈ RN with N = Nx ×Nt. (4.4)

We consider the different outputs of interest of Example 3.10 in Section 3.3:

• Square output: s(µ) =
(
uNtNx

)2

• Exponential output: s(µ) = exp
(
uNtNx

)
• Triple exponential output: s(µ) = exp

(
3uNtNx

)
In the following, we take ∆t = 0.02 and ∆x = 0.05.

4.1.2. Reduction

The approximation ũ of u is computed by using a “reduced basis” approach [16]. To be more specific, ũ is
the solution of:

ZtB(µ)Zũ = Ztφ,

where Z is an appropriate matrix found by Proper Orthogonal Decomposition (POD) (see [22] for instance).
The Z matrix is the matrix of an orthogonal set of N vectors in X = RN , endowed with the Euclidian scalar
product. The N number is called the reduced basis size.

The Z matrix is computed using a POD snapshot of size 70, and K = 20 retained φ̂Gi vectors. We took a
very low risk level α = 0.0001.

4.1.3. Results

In the following, the true error for a given parameter µ is defined as |s(µ) − s̃(µ)|, and the error bound as
ε̂(µ;α).

Let us underline that in the present study the error is given with respect to the full discretized solution (and
not to the theoretical solution of the partial differential equation).

In Figure 1, we plotted, as functions of the reduced basis size, the averaged effectivity, that is defined by

EffNtest
=

1

Ntest

Ntest∑
i=1

ε̂(µi;α)

|s(µi)− s̃(µi)|
,

as far as the standard deviation of the effectivity (SEff,Ntest
), that is defined by

S2
Eff,Ntest

=
1

Ntest

Ntest∑
i=1

(
ε̂(µi;α)

|s(µi)− s̃(µi)|
− EffNtest

)2

,

with Ntest = 200 the size of the random sample of parameter values µ1, . . . , µNtest
, for three different output

cases (square, exponential and triple exponential).
The graphs show that the averaged effectivity decreases at the logarithmic scale almost linearly as the size

of the reduced basis increases. We see that our error bound becomes sharp (close to one) as the size of the
reduced basis increases, despite the highly-nonlinear output functions that have been chosen (yet, it seems
almost unaffected by the degree of nonlinearity in the output). The standard deviation also decreases almost
linearly at the logarithmic scale.
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Figure 1. We plot (on a logarithmic scale) (top) the averaged effectivity EffNtest
with

Ntest = 200 in the square (top left), the exponential (top middle) and the triple exponential (top
right) output case, as functions of the reduced basis size; (down) the standard deviation of the
effectivity SEff,Ntest with Ntest = 200 in the square (down left), the exponential (down middle)
and the triple exponential (down right) output case, as functions of the reduced basis size.

4.2. Nonlinear models

In this section, we illustrate the results of Section 3.2 on the discretized non-viscous Burgers equation, as an
example of nonlinear model. There exist various results for the application of the certified reduced basis method
to nonlinear problems (see, e.g., [8, 17, 24, 27, 28]). In these papers, the authors study error bounds specifically
designed for (linearized or not) (viscous) Burgers equation, and linear or quadratic outputs. We apply here a
space-time reduction procedure. We then show numerical results obtained for our probabilistic error bound,
with a linear output.

4.2.1. Description of the model and output of interest

We are looking for u = u(t, x) satisfying:
∂u

∂t
+

1

2

∂(u2)

∂x
= 0, ∀(t, x) ∈ (0, 1)× (0, 1),

u(t, x = 0) = 1, ∀t ∈ [0, 1],
u(t = 0, x) = cos2(αx) + βx, ∀x ∈ [0, 1],

where the parameter vector µ = (α, β) belongs to [0, 1]× [0, 1] and follows an uniform law.
We discretize the above equation by using an upwind scheme. We choose a number of timesteps Nt and

a number of space points Nx, and we set ∆t = 1/Nt and ∆x = 1/Nx, and we look for (uni )i,n, where
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i = 0, . . . , Nx − 1 and n = 0, . . . , Nt − 1 so that:


un+1
i − uni

∆t
+

1

2

(
un+1
i

)2 − (un+1
i−1

)2
∆x

= 0, ∀(i, n) ∈ {1, . . . , Nx − 1} × {0, . . . , Nt − 2},
un0 = 1, ∀n ∈ {0, . . . , Nt − 1},
u0
i = cos2(αi∆x) + βi∆x, ∀i ∈ {0, . . . , Nx − 1}.

The output functional of interest is given by the ` vector defined by:

`ni =


1

Nx
, if n = Nt − 1, ∀i ∈ {0, . . . , Nx − 1},

0, else.

In other words, the output of interest is the spatial average at final time.

4.2.2. Reduction

As for the toy model, the reduction is performed on the full space-time state vector (uni )i,n. We also choose
a Z matrix by a POD procedure, then define the reduced state vector (ũni )i,n as:

(ũni )i,n(µ) = argminv∈Range(Z)||M(µ, v)||2,

where Range(Z) is the column space of Z, and || · ||2 denotes the Euclidean norm.
We note here that we do not claim that this reduction is the state-of-the-art for Burgers equation, as model

reduction by itself is not the goal of this paper.

4.2.3. Numerical experiments

Table 1 gives the name and description of the various parameters used in the numerical code. Table 2 describes
the various experiments that have been performed and provides references to the associated figures.

Let us define the averaged true error and the averaged error bound as

eNtest
=

1

Ntest

Ntest∑
i=1

|s(µi)− s̃(µi)| and ε̂Ntest
=

1

Ntest

Ntest∑
i=1

ε̂(µi;α),

Table 1. Descriptions of the numerical parameters.

Parameter Description Usual range

Nx Number of space discretization points 40–80
Nt Number of time steps 10–20
Ntest Monte-Carlo sample size 100
Nsnap Size of the POD training sample set 70
Nφ Index K for the estimation of T1 using basis φG 8
Nbasis Size of the POD basis 3–10
∆t Time step ∆t = 1/Nt
∆x Space step ∆x = 1/Nx
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Figure 2. We plot (on a logarithmic scale) (left) the averaged true error eNtest (dashed line)
and the error bound ε̂Ntest

(plain line) with Ntest = 100 for experiments (a) t10 × x40 (top)
and (b) t20 × x40 (bottom), as functions of the size of the POD basis; (right) the standard
deviation of the true error Se,Ntest

(dashed line) and of the error bound Sε̂,Ntest
(plain line) with

Ntest = 100 for experiments (a) t10× x40 (top) and (b) t20× x40 (bottom), as functions of the
size of the POD basis.

as far as the standard deviation of the true error (Se,Ntest) and the standard deviation of the error bound
(Sε̂,Ntest), that means

S2
e,Ntest

=
1

Ntest

Ntest∑
i=1

(|s(µi)− s̃(µi)| − eNtest
)
2
,

and

S2
ε̂,Ntest

=
1

Ntest

Ntest∑
i=1

(
ε̂(µi;α)− ε̂Ntest

)2
,
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Figure 3. We plot (on a logarithmic scale) (left) the averaged true error eNtest (dashed line)
and the error bound ε̂Ntest

(plain line) with Ntest = 100 for experiments (c) t10× x80 (top left)
and (d) t20 × x80 (bottom left), as functions of the size of the POD basis; (right) standard
deviation of the true error Se,Ntest

(dashed line) and of the error bound Sε̂,Ntest
(plain line)

with Ntest = 100 for experiments (c) t10× x80 (top right) and (d) t20× x80 (bottom right), as
functions of the size of the POD basis.

with Ntest = 100 the size of the random sample of parameter values µ1, . . . , µNtest
.

These quantities are plotted in Figure 2 (resp. 3), for a size of the POD truncated basis varying from 3 to
10, with Nt = 10, 20, Nx = 40 (resp. Nx = 80) and other parameters described in Table 2 (as before, the error
is given with respect to the full discretized solution). Note that the averaged true error and the averaged error
bound (at the logarithmic scale) decrease with the same slope as the size of the POD basis increases. Also the
standard deviation of the true error and the one of the error bound (at the logarithmic scale) decrease with the
same slope as the size of the POD increases. Moreover, the standard deviation has the same order of magnitude
as the mean, both decreasing linearly with the size of the POD basis.
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Table 2. Numerical setup of the different experiments.

Experiment label Nt Nx Ntest Nsnap Nφ Figure

(a) t10× x40 10 40 100 70 8 2
(b) t20× x40 20 40 100 70 8 2
(c) t10× x80 10 80 100 70 8 3
(d) t20× x80 20 80 100 70 8 3

Table 3. Table of costs using Matlab cputime function, for a size of the truncated POD equal
to 8.

Experiment name (a) (b) (c) (d)
t10× x40 t20× x40 t10× x80 t20× x80

Full pb computing time 168.2 863.0 976.5 16430.0
Online computing time 14.1 16.1 15.5 19.3
Offline computing time 931.9 4314.0 4713.4 77817.0
Speed-up ratio r1 11.9 53.5 63.1 849.1
Speed-up ratio r2 11.2 42.2 48.4 169.1
Figure 2 2 3 3

To quantify the computing gain we define and compute the following speed-up ratios. The first ratio r1 is
suitable to study real-time problems computing gain:

r1 =
full pb computing time

online computing time
.

Indeed for real-time problem the offline cost is not an issue, and one is really interested in the online acceleration.
On the contrary, for many-query problems, the total computing time is the quantity of interest, and we shall

therefore define and compute the second speed-up ratio r2:

r2 =
K × full pb computing time

offline +K × online computing time
,

with K = 1000.
The larger the speed-up ratios, the more efficient the use of a reduction procedure is. In our experiments, the

computing time were computed using Matlab cputime function. We summarize in Table 3 the full, online and
offline costs, as well as the speed-up ratios, for the various experiments described in Table 2. Note that the full
problem is solved by an implicit nonlinear scheme, which probably explains that the time required to solve the
full problem depends not only on Nx and Nt but on the interaction between both. Contrary to the full problem
computation time, the online computation time remains low as the number of time and space discretization
points increase, ranging from 14 to 19. Thus the speed-up ratio r1 increases with Nx and Nt, starting around
12 and up to 850. The offline computation time seems to be around five times larger than the full problem
computation time. Although it becomes non negligible as Nx and Nt increase, even higher than the full problem
computation time, the increase of the speed-up ratio r2 still proves the efficiency of the reduction for solving
many-query problems.

5. Conclusion

A class of nonlinear problems depending on a probabilistic vector has been considered, and a numerically
efficient method has been designed to compute the error estimation, when approximating the output error. This
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method is based on two phases. The offline phase requires to compute the solution of a high-dimensional problem,
and the online phase is based on the computation of the solution of a reduced-order problem. This approach
has been applied to a toy model and to a nonlinear partial differential equation, namely the Burgers equation
parametrized by two probabilistic coefficients. An application of this numerical method to other mathematical
problems is under investigation, more precisely, it could be fruitful to investigate the impact of this new result
in control theory (as done in [10] for a linear problem). Perspectives in environmental modeling, among other
domains where the sensitivity analysis is crucial, are also worth considering. Also other infinite dimensional
nonlinear problems could be considered, as those described by a nonlinear partial differentiable equation, where
shocks may appear (it was not the case for the Burgers equation studied here.)

Appendix A. Postponed proofs

A.1 Proof of Proposition 3.2

Proof. For all µ ∈ P, x, y ∈ X, z ∈ Y we have:

〈x− y,M?(µ, x, y, z)〉X = 〈x− y,
∫ 1

0

dM?(y + s(x− y))(z) ds〉X

=

∫ 1

0

〈dM(y + s(x− y))(x− y), z〉Y ds

= 〈
∫ 1

0

dM(y + s(x− y))(x− y) ds, z〉Y

= 〈M(x)−M(y), z〉Y .

A.2 Proof of Lemma 3.11

Proof. Let us recall the formula for the residual:

r(µ) =M(µ, ũ(µ)), (A.1)

so that the scalar products we need to compute are, for all i:

〈r(µ), φi〉 = 〈M(µ, ũ(µ)), φi〉Y . (A.2)

Here we describe the online/offline procedure to compute

〈M(µ, v), φi〉Y , (A.3)

where v ∈ X̃ and µ ∈ P are given. We also make all the asumptions of Lemma 3.11 regarding the decomposition
of M and mj . Using the decomposition (3.12) we have

〈M(µ, v), φi〉Y =

S∑
j=1

mj(µ, v)〈yj , φi〉Y . (A.4)
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We replace (3.13) and (3.14) in (A.4):

〈M(µ, v), φi〉Y =
∑S
j=1

∑Tj
k=0Qk,j(v)hk(µ)〈yj , φi〉Y

=
∑S
j=1

∑Tj
k=0

∑
α∈Ij,k qj,k,α

(∏
l∈Vα ϕαl(vl)

)
hk(µ)〈yj , φi〉Y .

Now we set:

qj,k,α = 0, if α ∈ I \ Ij,k or if k > Tj ,

to get

〈M(µ, v), φi〉Y =
∑S
j=1

∑T
k=0

∑
α∈I qj,k,α

(∏
l∈Vα ϕαl(vl)

)
hk(µ)〈yj , φi〉Y

=
∑T
k=0 hk(µ)

∑
α∈I

(∏
l∈Vα ϕαl(vl)

)∑S
j=1 qj,k,α〈yj , φi〉Y .

During the online phase we are given µ and v. The following quantities are independent of µ and v, therefore
can be computed during the offline phase:

Gα,k,i =

S∑
j=1

qj,k,α〈yj , φi〉Y for all k ∈ {0, . . . , T}, i ∈ {1, . . . ,S}, α ∈ Vα, (A.5)

and the online computation then writes:

〈M(µ, v), φi〉Y =

T∑
k=0

hk(µ)
∑
α∈I

(∏
l∈Vα

ϕαl(vl)

)
Gα,k,i. (A.6)

Looking back to (A.6) and using notations (3.15), the total operation count for the online phase is given by:

T ×M × L×R .

This concludes the proof of Lemma 3.11.

Remark A.1. Let us consider the particular case (polynomial case) where for any α ∈ I and any l ∈ Vα,

ϕαl(vl) = vαll . Let us decompose v onto a basis {f1, . . . , fN} of X̃ ⊂ X. First we write each fk in the basis
{x1, . . . , xN } of X:

fk =

N∑
i=1

fk,ixi.

Then we write v:

v =

N∑
k=1

v′kfk =

N∑
k=1

N∑
i=1

fk,iv
′
kxi (A.7)

so that we can write:

v =

N∑
i=1

vixi, with vi =

N∑
k=1

fk,iv
′
k. (A.8)
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Formula (3.14) requires vl to the power αl, so we use the multinomial formula to get:

vαll =

(
N∑
k=1

fk,αlv
′
k

)αl
=

∑
β∈B(N,αl)

(
αl
β

) N∏
k=1

(v′kfk,l)
βk , (A.9)

using the multinomial indices and coefficients:

B(N,αl) = {β = (β1, . . . , βN ) ∈ NN ,
N∑
k=1

βk = αl}
(
αl
β

)
=

αl!

β1! . . . βN !
. (A.10)

For the study of the complexity of the online computation (A.6), we first consider the cost for the computation
of vαll . Using equation (A.9), we get:

vαll =
∑

β∈B(N,αl)

(
αl
β

) N∏
k=1

(v′kfk,l)
βk .

The product

N∏
k=1

(v′kfk,l)
βk costs (up to a multiplicative constant) β1 + . . . + βN = αl multiplications, so that

the computation of vαll costs (up to a multiplicative constant) #B(N,αl)× αl operations. We know that

#B(N,αl) =

(
αl +N − 1
N − 1

)
,

so if we set

R′ = max
α∈I

max
l∈Vα

αl

(
αl +N − 1
N − 1

)
,

then the cost of computating vαll is (up to a multiplicative constant) bounded by R′. Looking back to (A.6) and
using notations (3.15), the total operation count for the online phase is bounded by:

const.× T ×M × L×R′.
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