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VALUE FUNCTION AND OPTIMAL TRAJECTORIES FOR A

MAXIMUM RUNNING COST CONTROL PROBLEM WITH STATE
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Abstract. The aim of this article is to study the Hamilton Jacobi Bellman (HJB) approach for
state-constrained control problems with maximum cost. In particular, we are interested in the charac-
terization of the value functions of such problems and the analysis of the associated optimal trajectories,
without assuming any controllability assumption. The rigorous theoretical results lead to several tra-
jectory reconstruction procedures for which convergence results are also investigated. An application to
a five-state aircraft abort landing problem is then considered, for which several numerical simulations
are performed to analyse the relevance of the theoretical approach.
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1. Introduction

Let T > 0 be a finite time horizon and consider the following dynamical system:

ẏ(s) = f(s,y(s),u(s)), a.e. s ∈ (t, T ), (1.1a)

y(t) = y, (1.1b)

where f : [0, T ]× Rd × U → Rd is a Lipschitz continuous function, U is a compact set, and u : [0, T ]→ U is a
measurable function. Denote yu

t,y the absolutely continuous solution of (1.1) associated to the control function

u and with the initial position y at initial time t ∈ [0, T ]. Let K ⊂ Rd be a given non-empty closed set and
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consider the following control problem and its associated value function:

ϑ(t, y) := min
u∈L∞((t,T ),U)

{
max
s∈[t,T ]

Φ(s,yu
t,y(s))

∨
ϕ(yu

t,y(T ))

∣∣∣∣ yu
t,y(s) ∈ K ∀s ∈ [t, T ]

}
,

with the convention that inf ∅ = +∞ and where the notation a
∨
b stands for max(a, b). The cost functions

Φ : [0, T ]× Rd → R and ϕ : Rd → R are given Lipschitz continuous functions.
In the case when K = Rd, control problems with maximum cost have been already studied in the literature,

for instance in [6, 7] where the control problem with maximum cost is approximated by a sequence of control
problems with Lp-cost. Then the value function is characterized as the unique solution of a Hamilton-Jacobi-
Bellman (HJB) equation. In [24], the case of lower semi-continuous cost function has been considered and the
epigraph of the value function is characterized as a viability kernel for a specific dynamics.

In the general case where the set of state constraints K is a non-empty closed subset of Rd (K ( Rd), the value
function is merely l.s.c. and its characterization as unique solution of a HJB equation requires some assumptions
that involve an interplay between the dynamics f and the set of constraints K. A most popular assumption,
called inward pointing condition, has been introduced in [26] and requires, at each point of the boundary of K,
the existence of a control variable that lets the dynamics points in the interior of the set K. This assumption,
when it is satisfied, provides a nice framework for analysing the value function and also the optimal trajectories.
However, in many applications the inward pointing condition is not satisfied and then the characterization of
the value function as solution of a HJB equation becomes much more delicate, see for instance [1, 19].

Here we shall follow an idea introduced in [1] (in the context of Bolza problems) and that consists in character-
izing the epigraph of ϑ by means of a Lipschitz continuous value function solution of an adequate unconstrained
control problem. Actually, it is known that when the value function is only l.s.c., the characterization of its
epigraph becomes much more relevant than the characterization of the graph (see for instance [4, 13, 14]). In the
present work we consider a running cost problem, and we show that the epigraph of ϑ can be described by using
a Lipschitz continuous value function of an auxiliary control problem free of state constraints. Furthermore, the
auxiliary value function can be characterized as the unique Lipschitz continuous viscosity solution of a HJB
equation. This HJB equation is posed on a neighborhood Kη of K with precise and rigorous Dirichlet boundary
conditions. This new result turns out to be very useful for numerical purposes.

Another new contribution of the paper focuses on the analysis of the optimal trajectories associated with
the state constrained optimal control problem with maximum cost. Several procedures for reconstruction of
optimal trajectories are discussed. The auxiliary value function w being a Lipschitz continuous function, we
show that the approximation procedures based on w provide a convergent sequence of sub-optimal trajectories
for the original control problem. More precisely, we extend the result of [25] to the optimal control problem with
maximum criterion and with state constraints (without imposing any controllability assumption on the set of
constraints K).

The theoretical study of this paper is then applied to an aircraft landing problem in presence of windshear.
This meteorological phenomenon is defined as a difference in wind speed and/or direction over a relatively short
distance in the atmosphere. This change of the wind affects the aircraft motion relative to the ground and it has
more significant effects during the landing case. When landing, windshear is a hazard as it affects the aircraft
motion relative to the ground, particularly when the winds are strong [11]. In a high altitude, the abort landing
is probably the best strategy to avoid the failed landing. This procedure consists in steering the aircraft to the
maximum altitude that can be reached in order to prevent a crash on the ground. In the references [21, 22] the
authors propose a Chebyshev-type optimal control for which an approximate solution for the problem is derived
along with the associated feedback control. This solution was improved in [11, 12] by considering the switching
structure of the problem that has bang-bang subarcs and singular arcs.

Here, we consider the same problem formulation as in [11, 12, 21, 22]. The Hamilton Jacobi approach
is used in order to characterize the value function and compute its numerical approximations. Next, we will
reconstruct the associated optimal trajectories and feedback control using different algorithms of reconstruction.
Let us mention some recent works [2, 10] where numerical analysis of the abort landing problem has been also
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investigated with a simplified model involving four-dimensional controlled systems. Here we consider the full
five-dimensional control problem as in [11, 12]. Many simulations will be included in this paper involving data
of a Boeing 727 aircraft model, see [11].

Notations. Throughout this paper, | · | is the Euclidean norm and 〈·, ·〉 is the Euclidean inner product on
RN (for any N ≥ 1). Let E be a Banach space, we denote by BE the unit closed ball {x ∈ E : ‖x‖E ≤ 1} of E.

For any set K ⊆ Rd, K, cK and
◦
K denote its closure, complement in Rd and interior, respectively. The

distance function to K is dist(x,K) = inf{|x − y| : y ∈ K}. We will also use the notation dK for the signed
distance to K (i.e., dK(x) = −dist(x,cK) if x ∈ K otherwise dK(x) = dist(x,K)).

For any a, b ∈ R, the notation a
∨
b stands for the max(a, b) while a

∧
b stands for min(a, b). Finally, the

notation W 1,1([a, b]) is used for the usual Sobolev space of functions {f ∈ L1(a, b), f ′ ∈ L1(a, b)}.

2. Setting and formulation of the problem

Let T > 0 be a fixed time horizon and consider the differential system obeying{
ẏ(s) := f(s,y(s),u(s)), a.e s ∈ (t, T ),

y(t) := y,
(2.1)

where u(·) is a measurable function and the dynamics f satisfies:

(H1) f : [0, T ]×Rd×U → Rd is continuous. For any R > 0, ∃LR ≥ 0 such that for every u ∈ U and s ∈ [0, T ]:

|f(s, y1, u)− f(s, y2, u)| ≤ LR(|y1 − y2|) ∀y1, y2 ∈ Rd with |y1| ≤ R, |y2| ≤ R.

A measurable function u : [0, T ]→ Rm is said admissible if u(s) ∈ U , where U is a given compact subset of
Rm. The set of all admissible controls will be denoted by U :

U :=
{

u : (0, T )→ Rm measurable, u(s) ∈ U a.e.
}
.

Under assumption (H1), for any control u ∈ U , the differential equation (2.1) admits a unique absolutely
continuous solution in W 1,1([t, T ]). The set of all absolutely continuous solutions of (2.1) on [t, T ], starting from
the position y at initial time t and associated to control functions in U , is defined by:

S[t,T ](y) := {yu
t,y ∈W 1,1([t, T ]), yu

t,y solution of (2.1) associated to u ∈ U}.

Let K ⊂ Rd be a closed subset of Rd. For any y ∈ Rd and t ∈ [0, T ], a trajectory y ∈ S[t,T ](y) will be said
admissible on [t, T ] if and only if:

∀ s ∈ [t, T ], y(s) ∈ K.

The set of all admissible trajectories on [t, T ] starting from the position y will be denoted by SK[t,T ](y):

SK[t,T ](y) := {y ∈ S[t,T ](y), s.t. ∀ s ∈ [t, T ], y(s) ∈ K}.

This set may be empty if no trajectory can remain in the set K during the time interval [t, T ]. Let us recall (see
[3]) that under assumption (H1), the set-valued map y  S[t,T ](y) is locally Lipschitz continuous in the sense

that for any R > 0, there exists some L > 0, S[t,T ](y1) ⊂ S[t,T ](y2) + L|y1 − y2|BW 1,1([0,T ]) for all y1, y2 ∈ Rd
with |y1| ≤ R and |y2| ≤ R. This is no longer the case for the set-valued map y  SK[t,T ](y) even for simple sets
K and linear dynamics f . Moreover, if we assume that:
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(H2) for every s ∈ [0, T ] and y ∈ Rd, the set f(s, y, U) = {f(s, y, u), u ∈ U} is a convex set

then, by Filippov’s Theorem, for every y ∈ Rd, the set of trajectories S[t,T ](y) is a compact subset of W 1,1([t, T ])
endowed with the C0-topology.

Now, consider cost functions Φ : [0, T ]× Rd → R and ϕ : Rd → R satisfying:

(H3) Φ is a Lipschitz continuous function on [0, T ]× Rd and ϕ is Lipschitz continuous on Rd:

∃LΦ ≥ 0, |Φ(s, y)− Φ(s′, y′)| ≤ LΦ(|s− s′|+ |y − y′|) ∀s, s′ ∈ [0, T ], ∀y, y′ ∈ Rd;
∃Lϕ ≥ 0, |ϕ(y)− ϕ(y′)| ≤ Lϕ|y − y′| ∀y, y′ ∈ Rd.

In this paper, we are interested in the following control problem with supremum cost:

ϑ(t, y) := inf

{
max
s∈[t,T ]

Φ(s,yu
t,y(s))

∨
ϕ(yu

t,y(T ))
∣∣∣ yu

t,y ∈ SK[t,T ](y)

}
, (2.2)

where ϑ : [0, T ]× Rd → R is the value function, and with the classical convention that inf{∅} := +∞. The aim
of this paper is to use Hamilton-Jacobi-Bellman (HJB) approach in order to describe the value function ϑ and
to analyze some algorithms for reconstruction of optimal trajectories. Note that, in general (when K 6= Rd),
the value function ϑ is discontinuous and its characterization as unique solution of a HJB equation may not be
possible without further controllability assumptions, see [9, 18–20, 24–26]. In the present work, we shall follow
an idea introduced in [1] to describe the epigraph of ϑ by using an auxiliary optimal control problem free of
constraints whose value function is continuous.

3. Main results: characterization of the value function ϑ

This section is devoted to the characterization of the value function ϑ. For this, following [1], we shall first
consider (in Sect. 3.1) an auxiliary control problem free of state constraints and whose value function can provide
the value of ϑ. In this new control problem the state space is increased by one more component. We shall then
characterize the auxiliary value function as the unique solution of a HJB equation posed on [0, T ] × Rd × R.
This characterization is similar to a result already proved in [1].

Furthermore, in the next Section 3.2, we shall prove that the auxiliary control problem can be adequately
defined to get a characterization of the auxiliary value function by a HJB equation on [0, T ]× Kη × R, where
Kη is a neighbourhood of K. This new HJB equation admits a Dirichlet condition on the boundary of Kη. It is
worth-noting that the Dirichlet condition is very useful for numerical approximation purposes.

In Section 3.3, we will also investigate the link between the auxiliary control problem and the “reachability
time” problem that consists of maximizing the length of time interval during which a trajectory remains in the
set of constraints K before leaving it. The reachability time function will be precisely defined in Section 3.3 and
the link with the auxiliary value function will be investigated in the case of autonomous control problems.

Later, in Section 4, we shall study some new results for trajectory reconstruction using the auxiliary value
function.

3.1. Auxiliary control problem free of state-constraints

First, consider the following augmented dynamics f̂ for s ∈ [0, T ], u ∈ U and ŷ := (y, z) ∈ Rd × R:

f̂(s, ŷ, u) =

(
f(s, y, u)

0

)
.
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Let ŷ(·) := (yu
t,y(·), zut,y,z(·)) (where zut,y,z(·) ≡ z) be the associated augmented solution of:

˙̂y(s) = f̂(s, ŷ(s),u(s)), s ∈ (t, T ), (3.1a)

ŷ(t) = (y, z)T . (3.1b)

Define the corresponding set of feasible trajectories, for ŷ = (y, z) ∈ Rd × R, by:

Ŝ[t,T ](ŷ) := {ŷ = (yu
t,y, z

u
t,y,z), ŷ satisfies (3.1) for some u ∈ U}. (3.2)

Remark 3.1. Under the assumptions (H1) and (H2), for every ŷ ∈ Rd × R, the set Ŝ[0,T ](ŷ) is a compact

subset of W 1,1([0, T ]) for the topology of C([0, T ];Rd+1) (see [3]).

By adapting an idea introduced in [1], we define an auxiliary optimal control problem without state constraints
whose value function can help to compute ϑ in an efficient manner. For this, we consider g : Rd → R a Lipschitz
continuous function characterizing the constraints set K as follows:

∀y ∈ Rd, g(y) ≤ 0⇔ y ∈ K. (3.3)

In the sequel, we denote by Lg > 0 the Lipschitz constant of g. Note that a Lipschitz function g satisfying
(3.3) always exists since K is a closed set (for instance the signed distance dK(·) to K is a Lipschitz function
that satisfies the condition (3.3)). Therefore, for u ∈ U , the following equivalence holds:

yu
t,y(s) ∈ K,∀s ∈ [t, T ] ⇔ max

s∈[t,T ]
g(yu

t,y(s)) ≤ 0. (3.4)

Now, consider the auxiliary control problem and its value function w:

w(t, y, z) := inf

{
max
s∈[t,T ]

Ψ(s,y(s), z(s))
∨(

ϕ(y(T ))− z(T )
) ∣∣ ŷ = (y, z) ∈ Ŝ[t,T ]((y, z))

}
, (3.5)

where for (y, z) ∈ Rd × R, we define the function Ψ as:

Ψ(s, y, z) := (Φ(s, y)− z)
∨
g(y). (3.6)

By definition, the function Ψ is Lipschitz continuous under assumption (H3). In the sequel, we shall denote by
LΨ a bound of the Lipschitz constant for Ψ . The following proposition shows that the level sets of this new
value function w characterize the epigraph of ϑ.

Proposition 3.2. Assume (H1), (H2) and (H3). The value function w is related to ϑ by the following relations,
for every (t, y, z) ∈ [0, T ]× Rd × R:

(i) ϑ(t, y)− z ≤ 0⇔ w(t, y, z) ≤ 0,

(ii) ϑ(t, y) = min

{
z ∈ R , w(t, y, z) ≤ 0

}
.

Proof. (i) Assume ϑ(t, y) ≤ z. This implies first that SK[t,T ](y) is not empty and, by (H1)–(H2), it is a compact

subset of W 1,1(0, T ) (endowed with the C0-topology). Thus there exists an admissible trajectory y ∈ SK[0,T ](y)
such that

max
t≤s≤T

(
Φ(s,y(s))− z

)∨(
ϕ(y(T ))− z

)
= ϑ(t, y)− z ≤ 0.
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By using (3.4), we obtain:

w(t, y, z) ≤ max
t≤s≤T

(
Φ(s,y(s))− z

)∨
max
t≤s≤T

g(y(s))
∨(

ϕ(y(T ))− z
)
≤ 0.

Conversely, assume w(t, y, z) ≤ 0. By Remark 3.1, there exists a trajectory ŷ = (y, z) ∈ Ŝ[t,T ](y, z) starting from
ŷ = (y, z) such that

0 ≥ w(t, y, z) = max
t≤s≤T

Ψ(s,y(s), z)
∨

(ϕ(y(T ))) ,

which gives: (
max
t≤s≤T

Φ(s,y(s))
∨
ϕ(y(T ))

)
≤ z, and max

t≤s≤T
g(y(s)) ≤ 0.

It follows that y is admissible on [t, T ] and ϑ(t, y) ≤ z. This ends the proof of (i). Assertion (ii) follows directly
from (i).

Remark 3.3. Note that the value function ϑ(t, .) is l.s.c. and then its epigraph is a closed set. Moreover, from
Proposition 3.2, for every t ∈ [0, T ]:

Epi
(
ϑ(t, .)

)
=

{
(y, z) ∈ K × R | w(t, y, z) ≤ 0

}
.

The value function w enjoys more regularity properties. It is then more interesting to characterize first w
and then to recover the values of ϑ from those of w.

Proposition 3.4. Assume (H1) and (H3) hold.
(i) The value function w is locally Lipschitz continuous on [0, T ]× Rd × R.
(ii) For any t ∈ [0, T ], h ≥ 0, such that t+ h ≤ T ,

w(t, y, z) = inf
ŷ:=(y,z)∈Ŝ[t,t+h](y,z)

{
w(t+ h,y(t+ h), z)

∨
max

s∈[t,t+h]
Ψ(s,y(s), z)

}
.

(iii) Furthermore, the function w is the unique continuous viscosity solution of the following HJ equation:

min

(
− ∂tw(t, y, z) +H(t, y,∇yw) , w(t, y, z)− Ψ(t, y, z)

)
= 0 in [0, T [×Rd × R, (3.7a)

w(T, y, z) = Ψ(T, y, z)
∨(

ϕ(y)− z
)

in Rd × R, (3.7b)

where the Hamiltonian H is defined, for y, p ∈ Rd and t ∈ [0, T ] by:

H(t, y, p) := sup
u∈U

(
− f(t, y, u) · p

)
, (3.8)

and the notations ∂tw and ∇yw stand for the partial derivatives of w with respect to the variable t and y,
respectively.

Proof. The proof of the local Lipschitz continuity can be obtained as in Proposition 3.3 from [1].
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The dynamic programming principle (stated in (ii)) is a classical result and its proof can be found in [1, 7]
where a HJB equation is also derived for the value function associated to a control problem with maximum
cost. Besides, the uniqueness result is shown in Appendix A from [1].

Finally, note that the characterization of the function w does not require assumption (H2) to be satisfied. If

(H2) happens to be fulfilled, then Ŝ[t,t+h](y, z) is a compact subset of W 1,1([t, t+h]) and therefore the minimum
in the dynamic Programming principle, stated in Proposition 3.4 (ii), is achieved.

3.2. A particular choice of g

The main feature of the auxiliary control problem consists on that it is free of state constraints. However, the
new control problem involves one more state component, and the HJB equation that characterizes w is defined
on Rd×R. To restrict the domain of interest for w to a neighbourhood of K×R, it is possible to define w with a
more specific function g so that the auxiliary value function w keeps a constant value outside a neighbourhood
of K × R.

Indeed, in all the sequel, let η > 0 be a fixed parameter and define a neighbourhood Kη of K by:

Kη := K + ηBRd . (3.9)

Consider a Lipschitz continuous function gη satisfying, for y ∈ Rd:

gη(y) ≤ 0⇔ y ∈ K, gη(y) ≤ η ∀y ∈ Rd and gη(y) = η ∀y /∈ Kη. (3.10)

Such a Lipschitz function always exists since K is a closed set. For instance, gη can be defined as:

gη(y) := dK(y)
∧
η, for any y ∈ Rd.

Now, we consider also a truncation of Ψ given by

Ψη(s, y, z); =
(

(Φ(s, y)− z)
∧
η
)∨

gη(y). (3.11)

Clearly, by definition of Ψη and with (3.6), we have: Ψη(s, y, z) = Ψ(s, y, z)
∧
η.

Furthermore, we introduce a truncated final cost ϕη by:

ϕη(y, z) :=
(
ϕ(y)− z

)∧
η. (3.12)

Finally, we define the value function wη, for ŷ = (y, z) ∈ Rd × R, as:

wη(t, y, z) := inf
(y,z)∈Ŝ[t,T ](ŷ)

[
max
s∈[t,T ]

Ψη(s,y(s), z(s))
∨
ϕη(y(T ), z(T ))

]
. (3.13)

Note that with the above definitions and if gη(y) := g(y)
∧
η where g is defined as in (3.3), then the new value

function wη satisfies:

wη(t, y, z) = w(t, y, z)
∧
η, ∀(t, y, z) ∈ [0, T ]× Rd × R.

The epigraph of ϑ can be also characterized by the function wη, and under assumptions (H1), (H2) and (H3),
all statements of Proposition 3.2 are still valid with wη defined as in (3.13).
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Now, let us emphasize that the function wη has been defined in such a way it takes a constant value outside
Kη. This information can be used as a Dirichlet boundary condition in the HJB equation satisfied by wη.

Theorem 3.5. Assume (H1), (H3) hold. Let gη, Ψη, ϕη and wη defined as in (3.10), (3.11), (3.12) and (3.13)
respectively.

The value function wη is the unique continuous viscosity solution of the following Hamilton Jacobi equation:

min

(
− ∂twη(t, y, z) +H(t, y,∇ywη) , wη(t, y, z)− Ψη(t, y, z)

)
= 0, in [0, T [×

◦
Kη ×R, (3.14a)

wη(T, y, z) = Ψη(T, y, z)
∨
ϕη(y, z), in

◦
Kη ×R, (3.14b)

wη(t, y, z) = η, for all t ∈ [0, T ], y /∈
◦
Kη and z ∈ R. (3.14c)

Proof. Equations (3.14a) and (3.14b) are obtained as in Proposition 3.4 (iii). Let us prove assertion (3.14c).
First, notice that:

η ≥ wη(t, y, z) ≥ Ψη(t, y, z) ≥ gη(y) ∀t ∈ [0, T ], y ∈ Rd, z ∈ R.

Moreover, by definition of gη, for any y /∈
◦
Kη, we have gη(y) = η. It follows that

wη(t, y, z) = η ∀y /∈
◦
Kη .

This concludes the proof.

Remark 3.6. If the cost function Φ is bounded and satisfies:

Φ(y) ∈ [m,M ], ∀y ∈ Kη,

then, it suffices to consider the variable z in the interval [m,M ]. Indeed, in this case, we still have the relation:

ϑ(t, y) = inf
{
z ∈ [m,M ] | wη(t, y, z) ≤ 0

}
.

In addition, the function wη is the unique continuous viscosity solution of the following HJ equation:

min

(
− ∂twη(t, y, z) +H(t, y,∇ywη), wη(t, y, z)− Ψη(t, y, z)

)
= 0 in [0, T [×

◦
Kη ×[m,M ], (3.15a)

wη(T, y, z) = Ψη(T, y, z)
∨
ϕη(y, z) in

◦
Kη ×[m,M ], (3.15b)

wη(t, y, z) = η for all t ∈ [0, T ], y /∈
◦
Kη and z ∈ [m,M ]. (3.15c)

Let us point on that there is no need for any boundary condition on the z-axis because the dynamics is zero
ż(t) = 0.

Remark 3.7. The function wη depends on the choice of the parameter η. However, the region of interest ({wη ≤
0}) is always the same, for any η > 0, and the characterization of the original value ϑ(t, x) = min{z, wη(t, x, z) ≤
0} holds for any η > 0. In the sequel, we will denote by w any auxiliary value function corresponding to an
adequate function g (or gη).
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3.3. Case of autonomous control problems: link with the reachability time function

The aim of this subsection is to make a link between the control problem discussed in the previous subsection
and an optimal reachability time that we will define correctly in the following. This link can be established in a
general case, however it turns out to be of a particular interest when the control problem is autonomous. This
interest will be clarified throughout this section. Here, we consider that all the functions involved in the control
problem (2.2) are time independent (i.e., f(t, x, u) = f(x, u) and Φ(t, x) = Φ(x)), and introduce the sets:

D :=

{
ŷ = (y, z) ∈ Rd+1

∣∣ y ∈ K and ŷ ∈ Epi(Φ)

}
= Epi(Φ) ∩ (K × R),

C := Epi(ϕ).

Let us define also the reachability time function T : Rd+1 → [0, T ], which associates to each initial position

ŷ = (y, z) ∈ Rd+1, the first time t ∈ [0, T ] such that there exists an admissible trajectory ŷ ∈ Ŝ[t,T ](ŷ) remaining
in Epi(Φ)

⋂
K and that reaches Epi(ϕ) at time T :

T (y, z) := inf

{
t ∈ [0, T ]

∣∣∣∣ ∃ŷ ∈ Ŝ[t,T ](ŷ) s.t. ŷ(s) ∈ D, ∀s ∈ [t, T ], and ŷ(T ) ∈ C
}
. (3.16)

Remark 3.8. Let us point out that, from the definition of D, one can easily check that the two following
assertions are equivalent.

(a) there exists ŷ = (y, z) ∈ Ŝ[t,T ](ŷ) such that: ŷ(s) ∈ D for every s ∈ [t, T ] and ŷ(T ) ∈ C;
(b) there exists ŷ = (y, z) ∈ Ŝ[t,T ](ŷ) such that: max

s∈[t,T ]
Φ(s,y(s))

∨
ϕ(y(T )) ≤ z and y(s) ∈ K ∀s ∈ [t, T ].

The following theorem gives a link between the value functions w, ϑ and the reachability time function T .

Theorem 3.9. Assume (H1), (H2) and (H3) hold. Then we have:

(i) T (y, z) = inf
{
t ∈ [0, T ]

∣∣ w(t, y, z) ≤ 0
}
,

(ii) T (y, z) = t⇒ w(t, y, z) = 0,

(iii) ϑ(t, y) = inf
{
z
∣∣ T (y, z) ≤ t

}
.

Proof. Let ŷ = (y, z) be in Rd×R. Let t ∈ [0, T ] such that w(t, y, z) ≤ 0. Then there exists ŷ = (y, z) ∈ Ŝ[t,T ](ŷ)
such that: max

s∈[t,T ]
Φ(y(s)) ≤ z and y(s) ∈ K for every s ∈ [t, T ]. This implies that there exists ŷ = (y, z) ∈

Ŝ[t,T ](ŷ) such that:

ŷ(s) ∈ D, ∀s ∈ [t, T ],

which proves that T (y, z) ≤ t. Therefore, T (y, z) ≤ inf
{
t ∈ [0, T ]

∣∣ w(t, y, z) ≤ 0
}

.
Now, let t := T (y, z) and assume that t <∞. By definition of T and Remark 3.8, there exists an admissible

trajectory ŷŷ = (y, z) ∈ Ŝ[t,T ](ŷ) such that

max
s∈[t,T ]

Φ(y(s))− z ≤ 0, ϕ(y(T ))− z ≤ 0, and max
s∈[t,T ]

g(y(s)) ≤ 0.

This implies that w(t, y, z) ≤ 0, and then the proof of (i) is completed. Furthermore, for any τ < t we have
w(τ, y, z) > 0 (since otherwise we would have t = T (x, z) ≤ τ). Then by continuity of w, we conclude that
w(t, y, z) = 0.
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It remains to prove claim (iii). For this, note that in the autonomous case the value function w(·, y, z) is
decreasing in time. This property along with assertion (i) yield to:

T (y, z) ≤ t⇐⇒ w(t, y, z) ≤ 0. (3.17)

Thus, statement (iii) follows from the fact that:

ϑ(t, y) = inf
{
z
∣∣ w(t, y, z) ≤ 0

}
.

Remark 3.10. Statement (iii) of Theorem 3.9 is no more valid if the problem is non-autonomous. Actually, in
this case the equivalence (3.17) would not be true and only the implication:

w(t, y, z) ≤ 0 =⇒ T (y, z) ≤ t (3.18)

is fulfilled. Indeed, the reverse implication of (3.18) may fail to be true in the non-autonomous case since the
function w(·, y, z) can change signs several times over the time interval (while in the autonomous case the
function w(·, y, z) can only change sign from positive to negative once during the time interval [0, T ]).

Remark 3.11. For numerical purposes, the function T presents a major feature as it allows to recover the
values of the original function ϑ. There is no need to store the function w on a grid of d+ 2 dimensions (d for
the state components y + variable z and the time variable). Indeed, it is sufficient to store the values of the
reachability time function on a grid of d+ 1 dimensions.

In the following, a link is established between an optimal trajectory associated with the original state-
constrained control problem, an optimal trajectory for the auxiliary control problem, and an optimal trajectory
of the optimal reachability time function.

Proposition 3.12. Assume (H1), (H2) and (H3) hold. Let y ∈ K and t ∈ [0, T ] such that ϑ(t, y) <∞. Define
z := ϑ(t, y).

(i) Let ŷ∗ = (y∗, z∗) be an optimal trajectory for the auxiliary control problem (3.5) on [t, T ] associated with
the initial point (y, z). Then, z∗(s) ≡ z on [t, T ], and the trajectory y∗ is optimal for the control problem (2.2)
on [t, T ] associated to the initial position y.

(ii) Assume that t = T (y, z). Let ŷ∗ = (y∗, z∗) be an optimal trajectory for the reachability problem (3.16)
associated with the initial point (y, z) ∈ K×R. Then, ŷ∗ is also optimal for the auxiliary control problem (3.5).

Proof. Let (y, z) ∈ K × R such that ϑ(t, y) = z.
(i) Let ŷ∗ = (y∗, z∗) be an optimal trajectory for the auxiliary control problem (3.5) associated with the

initial point (y, z) ∈ K × R. Using Proposition 3.2, we have that

ϑ(t, y) = z ⇒ w(t, y, z) ≤ 0.

It follows that

w(t, y, z) = max
s∈[t,T ]

Ψ(y∗(s), z)
∨

(ϕ(y∗(T ))− z) ≤ 0.

Using the definition of Ψ , we get,

max
s∈[t,T ]

Φ(y∗(s)) ≤ z, ϕ(y∗(T )) ≤ z and max
s∈[t,T ]

g(y∗(s)) ≤ 0.
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Since ϑ(t, y) = z, it follows that:

max
s∈[t,T ]

Φ(y∗(s))
∨
ϕ(y∗(T )) ≤ ϑ(t, x) and y∗(s) ∈ K, ∀s ∈ [t, T ].

By definition of ϑ one can conclude that

ϑ(t, x) = max
s∈[t,T ]

Φ(y∗(s))
∨
ϕ(y∗(T )) and y∗(s) ∈ K, ∀s ∈ [t, T ].

Therefore, y∗ is an optimal trajectory for (2.2) with the initial position y and the proof of assertion (i) is
achieved.

(ii) Assume that t = T (y, z) and let ŷ∗ = (y∗, z∗) be an optimal trajectory for problem (3.16) associated
with the initial point (y, z). It follows from the definition of T that,

ŷ∗(s) := (y∗(s), z∗(s)) ∈ D, ∀s ∈ [t, T ], and y∗(T ) ∈ C.

Then, we have,

max
s∈[t,T ]

Φ(y∗(s))
∨
ϕ(y∗(T )) ≤ z, and max

s∈[t,T ]
g(y∗(s)) ≤ 0.

Since ϑ(t, y) = z and by definition of g, we obtain that

max
s∈[t,T ]

Φ(y∗(s))
∨
ϕ(y∗(T )) ≤ ϑ(t, x) and y∗(s) ∈ K, ∀s ∈ [t, T ].

We conclude that y∗ is an optimal trajectory for (2.2) on the time interval [t, T ] with the initial position y.

Remark 3.13. For the sake of clarity, we have chosen to state Proposition 3.12 under the assumption that the
value of ϑ(t, y) is known. By Proposition 3.2, Remark (3.6) and Theorem 3.9, we know that this value can be
obtained from the auxiliary function w or by the reachability time function T .

Assertion (i) of Proposition 3.12 states that each optimal trajectory for the auxiliary control problem cor-
responds to an optimal solution of the original problem. The converse is also true. More precisely, let y∗ be
an optimal trajectory for the control problem (2.2) on [t, T ] associated to the initial position y. Then by set-
ting z∗(s) ≡ z on [t, T ], the augmented trajectory ŷ∗ = (y∗, z∗) is an optimal trajectory for the auxiliary control
problem (3.5), on the time interval [t, T ], with the initial point (y, z).

4. Reconstruction procedure based on the value function

In the case of Bolza or Mayer optimal control problems, reconstruction algorithms were proposed for instance
in Appendix A from [5] or in [25]. In our setting, the control problem involves a maximum cost function, we shall
discuss a reconstruction procedure based on the knowledge of the auxiliary value function w or an approximation
of it. For simplicity, we consider the trajectory reconstruction on the time interval [0, T ]. However, all the results
remain valid for a reconstruction on any subinterval [t, T ].

Consider a numerical approximation fh of the dynamics f such that, for every R > 0, we have:

|fh(t, x, u)− f(t, x, u)| ≤ CRh, ∀t ∈ [0, T ], |x| ≤ R, u ∈ U, (4.1)
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where the constant CR is independent of h ∈ [0, 1]. Hence, an approximation scheme for the differential equation
ẏ(t) = f(t,y(t), u) (for a constant control u, discrete times sk and time step hk = sk+1 − sk) can be written

yk+1 = yk + hkfhk
(sk, yk, u), k ≥ 0. (4.2)

The case of the Euler forward scheme corresponds to the choice

fh := f.

Higher order Runge Kutta schemes can also be written as (4.2) and with a function fh satisfying (4.1). For
instance, the Heun scheme corresponds to the choice

fh(t, y, u) :=
1

2
(f(t, y, u) + f(t+ h, y + hf(t, y, u), u)).

Now, consider also, for each h > 0, a function wh being an approximation of the value function w, and define
Eh as a uniform bound on the error:

|wh(t, y, z)− w(t, y, z)| ≤ Eh, ∀t ∈ [0, T ], |y| ≤ R, |z| ≤ R,

with R > 0 large enough. The function wh could be a numerical approximation obtained by solving a discretized
form of the HJB equation.

Algorithm 4.1. Fix y ∈ Rd and z ∈ R. For h > 0 we consider an integer nh ∈ N, a partition s0 = 0 < s1 <
· · · < snh

= T of [0, T ], denote hk := sk+1 − sk and assume that

max
k

hk ≤ h.

We define the positions (yhk )k=0,...,nh
, and control values (uhk)k=0,...,nh−1, by recursion as follows. First we set

yh0 := y. Then for k = 0, . . . , nh − 1, knowing the state yhk we define

(i) an optimal control value uhk ∈ U such that

uhk ∈ argmin
u∈U

wh
(
sk, y

h
k + hk fh(sk, y

h
k , u), z

)∨
Ψ(sk, y

h
k , z) (4.3)

(ii) a new state position yhk+1

yhk+1 := yhk + hkfh(sk, y
h
k , u

h
k). (4.4)

Note that in (4.3) the value of uhk can also be defined as a minimizer of u → wh
(
sk, y

h
k + hk fh(sk, y

h
k , u), z

)
,

since this will imply in turn to be a minimizer of (4.3).
We also associate to this sequence of controls a piecewise constant control uh(s) := uhk on s ∈ [sk, sk+1[, and

an approximate trajectory yh such that

ẏh(s) = fh(sk, y
h
k , u

h
k) a.e s ∈ (sk, sk+1), (4.5a)

yh(sk) = yhk . (4.5b)

In particular the value of yh(sk+1) obtained by (4.5a) and (4.5b) does correspond to yhk+1 as defined in (4.4)

(notice that in general yuh 6= yh).
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We shall show that any cluster point ȳ of (yh)h>0 is an optimal trajectory that realizes a minimum in the
definition of w(0, x, z). This claim is based on some arguments introduced in [25]. The precise statement and
proof are given in Theorem 4.2 below.

Theorem 4.2. Assume (H1), (H2) and (H3) hold true. Assume also that the approximation (4.1) is valid and
the error estimate Eh := ‖w − wh‖ satisfies:

Eh/h→ 0 as h→ 0. (4.6)

Let (y, z) be in Rd × R and let (yhk ) be the sequence generated by Algorithm 4.1.
(i) The approximate trajectories (yhk )k=0,...,nh

constitute a minimizing sequence in the following sense:

w(0, y, z) = lim
h→0

(
max

0≤k≤nh

Ψ(sk, y
h
k , z)

)∨
ϕ(yhnh

, z). (4.7)

(ii) Moreover, the family (yh)h>0 admits cluster points, for the L∞ norm, when h→ 0. For any such cluster
point ȳ, we have ȳ ∈ S[0,T ](y) and (ȳ, z) is an optimal trajectory for w(0, y, z).

Proof. First, by using similar arguments as in [25], one can prove that assertion (ii) is a consequence of (i). So,
we shall focus on assertion (i) whose proof will be splitted in several steps.

For simplicity of the presentation, we shall consider only the case of uniform time partition

s0 = 0 ≤ s1 ≤ · · · ≤ snh
= T,

with step size h = T
nh

. Throughout the proof, we shall use the simple notation n instead of nh.

Let (y, z) be in Rd × R and consider, for every h > 0, the discrete trajectory yh = (yh0 , . . . , y
h
n) and discrete

control input uh := (uh0 , . . . , u
h
n−1) given by Algorithm 4.1. In the sequel of the proof, and for simplicity of

notations, we shall denote yk (resp. uk) instead of yhk (resp. uhk).
Assumption (H1) and (4.1) imply that there exists R > 0 such that for any h > 0 and any k ≤ n, we have

|yhk | ≤ R. This constant R can be chosen large enough such that every trajectory on a time interval I ⊂ [0, T ],
starting from an initial position yhk would still remain in a ball of Rd centred at 0 and with radius R. We set
MR > 0 a constant such that

|f(s, y, u)| ≤MR for every s ∈ [0, T ], y ∈ BR and u ∈ U.

Step 1. Let us first establish that there exists εh > 0 such that lim
h→0

εh = 0, and

w(s0, y0, z) ≥ w(s1, y0 + hfh(s0, y0, u0), z)
∨
Ψ(s0, y0, z) + hεh − 2Eh. (4.8)

The dynamic programming principle for w gives (recall that s0 = 0 and y0 = y):

w(s0, y0, z) = min
u∈U

w(s1,y
u
s0,y0(s1), z)

∨
max

θ∈(s0,s1)
Ψ(θ,yu

s0,y0(θ), z)

≥ min
u∈U

w(s1,y
u
s0,y0(s1), z)

∨
Ψ(s0, y0, z). (4.9)
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Consider u∗0 ∈ U a minimizer of the term (4.9). By using the convexity of the set f(s0, y0, U) (assumption (H2)),
there exists u∗0 ∈ U such that

∫ s1
s0
f(s0, y0,u

∗
0(s))ds = hf(s0, y0, u

∗
0), and therefore

y0 +

∫ s1

s0

f(s0, y0,u
∗
0(s))ds = y0 + hf(s0, y0, u

∗
0).

Consider the trajectory y
u∗0
s0,y0 solution of (2.1) corresponding to the control u∗0 and starting at time s0 from y0.

Hence, |yu∗0
s0,y0 − y0| ≤MRh, for s ∈ [s0, s1], and

|yu∗0
s0,y0(s1)− y0 + hf(s0, y0, u

∗
0)| ≤

∫ s1

s0

|f(s,y
u∗0
s0,y0(s),u∗0(s))− f(s0, y0,u

∗
0(s))|ds.

On the other hand, by (H1), there exists δ(h) > 0 the modulus of continuity of f defined as:

δ(h) := max{|f(s, ξ, u)− f(s′, ξ, u)|, for ξ ∈ BR, u ∈ U and s, s′ ∈ [0, T ] with |s− s′| ≤ h}.

We get (Lf being the Lipschitz constant of f as in (H1)):

|yu∗0
s0,y0(s1)− y0 + hf(s0, y0, u

∗
0)| ≤

∫ s1

s0

hδ(h) + Lf |y
u∗0
s0,y0 − y0|ds ≤ hδ(h) + LfMRh

2.

By using Assumption (4.1), it also holds:

|yu∗0
s0,y0(s1)− y0 + hfh(s0, y0, u

∗
0)| ≤

∫ s1

s0

hδ(h) + Lf |y
u∗0
s0,y0 − y0|ds ≤ hδ(h) + (LfMR + CR)h2.

This estimate along with (4.9), and by using the Lipschitz continuity of w, yield:

w(0, y, z) ≥ w(s1,y
u∗0
s0,y0(s1), z)

∨
Ψ(s0, y0, z)

≥ w(s1, y0 + hfh(s0, y0, u
∗
0), z)

∨
Ψ(s0, y0, z)− hLw

(
δ(h) + (LfMR + CR)h

)
. (4.10)

Then, by the definition of the minimizer u0 we finally obtain

w(s0, y0, z) ≥ w(s1, y0 + hfh(s0, y0, u0), z)
∨
Ψ(s0, y0, z)− hεh, (4.11)

where εh := Lw
(
δ(h) + (LfMR + CR)h

)
. Knowing that y1 = y0 + hfh(s0, y0, u0) and that ‖w − wh‖ ≤ Eh, we

finally get the desired result:

wh(s0, y0, z) ≥
(
wh(s1, y1, z)

∨
Ψ(s0, y0, z)

)
− hεh − 2Eh.

With exactly the same arguments, for all k = 0, . . . , n− 1, we obtain:

wh(sk, yk, z) ≥
(
w(sk+1, yk+1, z)

∨
Ψ(sk, yk, z)

)
− hεh − 2Eh. (4.12)
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Step 2. From (4.12), we get:

wh(0, y, z) = wh(s0, y0, z) ≥
(
wh(s1, y1, z)

∨
Ψ(s0, y0, z)

)
− hεh − 2Eh

≥
(((

wh(s2, y2, z)
∨
Ψ(s1, y1, z)

)
− hεh − 2Eh

)∨
Ψ(s0, y0, z)

)
− hεh − 2Eh.

Now, notice that for any a, b ∈ R and c ≥ 0, we have: (a− c) ∨ b ≥ a ∨ b− c. Therefore:

wh(0, y, z) ≥
(
wh(s2, y2, z)

∨
Ψ(s0, y0, z)

∨
Ψ(s1, y1, z)

)
− 2hεh − 4Eh.

By induction, we finally get:

wh(0, y, z) ≥
(
wh(sn, yn, z)

∨
Ψ(s0, y0, z)

∨
· · ·
∨
Ψ(sn−1, yn−1, z)

)
− nhεh − 2nEh. (4.13)

Step 3. Since sn = T and w(T, yn, z) = Ψ(T, yn, z)
∨

(ϕ(yn)− z), we deduce from (4.13) that:

wh(0, y, z) ≥ (w(sn, yn, z)− Eh)
∨( n−1∨

k=0

Ψ(yk, z)

)
− nhεh − 2nEh

≥
( n∨
k=0

Ψ(skyk, z)

)∨
ϕ(yn, z)− Tεh − (

2T

h
+ 1)Eh.

By passing to the limit when h→ 0, and using (4.6) it follows that:

w(0, y, z) ≥ lim sup
h→0

( n∨
k=0

Ψ(sk, yk, z)

)∨
ϕ(yn, z). (4.14)

Step 4. Let yuh

(s) denote the trajectory obtained with piecewise constant controls u0, . . . , un−1 (i.e., uh(s) :=

uk for all s ∈ [sk, sk+1[) and solution of yuh

(0) = x and ẏuh

(s) = f(s,y(s),uh(s)) a.e. s ≥ 0. Consider also
yh(.) as the approximate trajectory, satisfying y(0) = x and ẏ(s) = fh(sk, yk, uk) for all s ∈ [sk, sk+1[. By using
the same arguments as in Step 1, we obtain the following estimate:

max
θ∈[0,T ]

|yuh

(θ)− yh(θ)| ≤ δ(h) + (LfMR + CR)h. (4.15)

Step 5. Now, we claim that the following bound holds:

∣∣∣∣ n−1∨
k=0

Ψ(sk, yk, z)− max
θ∈[0,T ]

Ψ(sk,y
uh

(θ), z)

∣∣∣∣ ≤ O(max(δ(h), h)). (4.16)

In order to prove this claim, let us first remark that, by using the Lipschitz regularity of t→ yuh

(t), there exists
MR > 0 such that:

max
θ∈[sk,sk+1]

|yuh

(θ)− yuh

(sk)| ≤MRh. (4.17)
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Then, by straightforward calculations, we obtain:∣∣∣∣ n−1∨
k=0

Ψ(sk, yk, z)− max
θ∈[0,T ]

Ψ(θ,yuh

(θ), z)

∣∣∣∣ =

∣∣∣∣ n−1∨
k=0

Ψ(sk, yk, z)−
n−1∨
k=0

max
θ∈[sk,sk+1]

Ψ(θ,yu(θ), z)

∣∣∣∣
≤
∣∣∣∣ n−1∨
k=0

Ψ(sk, yk, z)−
n−1∨
k=0

Ψ(sk,y
uh

(sk), z)

∣∣∣∣+

∣∣∣∣ n−1∨
k=0

Ψ(sk,y
uh

(sk), z)−
n−1∨
k=0

max
θ∈[sk,sk+1]

Ψ(θ,yuh

(θ), z)

∣∣∣∣
≤ max

k=0,..,n−1
|Ψ(sk, yk, z)− Ψ(sk,y

uh

(sk), z)|+ max
k=0,..,n−1

|Ψ(sk,y
uh

(sk), z)− max
θ∈[sk,sk+1]

Ψ(θ,yuh

(θ), z)|

≤ max
k=0,..,n−1

LΨ |yk − yuh

(sk)|+ max
k=0,..,n−1

LΨ max
θ∈[sk,sk+1]

|yuh

(sk)− yuh

(θ)|

≤ LΨδ(h) + LΨ (LfMR + CR +MR)h,

which proves (4.16). In the same way, we have also:∣∣∣∣
[

n∨
k=0

Ψ(sk, yk, z)
∨

(ϕ(yn)− z)

]
−
[

max
θ∈[0,T ]

Ψ(θ,yu(θ), z)
∨

(ϕ(yuh

(T ))− z)
] ∣∣∣∣ ≤ O(max(δ(h), h)). (4.18)

Step 6. Combining the previous estimates (4.14) and (4.18), we obtain

w(0, y, z) ≥ lim sup
h→0

max
θ∈[0,T ]

Ψ(θ,yuh

(θ), z)
∨

(ϕ(yuh

(T ))− z). (4.19)

On the other hand, by definition of w the following reverse inequality holds :

w(0, y, z) ≤ lim inf
h→0

max
θ∈[0,T ]

Ψ(θ,yuh

(θ), z)
∨

(ϕ(yuh

(T ))− z). (4.20)

Hence the right-hand side term has a limit and

w(0, y, z) = lim
h→0

max
θ∈[0,T ]

Ψ(θ,yuh

(θ), z)
∨

(ϕ(yuh

(T ))− z). (4.21)

Also the discrete constructed trajectory reaches the same value:

w(0, y, z) = lim
h→0

n∨
k=0

Ψ(sk, yk, z)
∨

(ϕ(yn)− z)). (4.22)

This concludes to the desired result.

In a second algorithm we consider a trajectory reconstruction procedure with a perturbation term in the
definition of the optimal control value. This perturbation takes the form of a penalization term on the variation
of the control with respect to the previously computed control values. To this end, for every k ≥ 1, we introduce
a function qk : R × Rk → R+ that represents a penalization term for the control value. For instance, if Uk :=
(u0, ..., uk−1) is a vector in Rk, we may choose

qk(u,Uk) := ‖u− uk−1‖, or qk(u,Uk) := ‖u− 1

p

p∑
i=1

uk−i‖ for some p ≥ 1. (4.23)

Let (λh)h>0 be a family of positive constants.
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Algorithm 4.3. Let y ∈ Rd and z ∈ R. For h > 0 we consider an integer nh ∈ N, a partition s0 = 0 < s1 <
· · · < snh

= T of [0, T ], denote hk := sk+1 − sk and assume that

max
k

hk ≤ h.

We define positions (yhk )k=0,...,nh
and controls (uhk)k=0,...,nh−1 by recursion as follows. First we set yh0 := y.

For k = 0, we compute uh0 and yh0 as in Algorithm 4.1. Then, for k ≥ 1 we define Uk := (uh0 , · · · , uhk−1) and
compute:

(i) an optimal control value uhk ∈ U such that

uhk ∈ argmin
u∈U

[(
wh
(
sk, y

h
k + hk fh(sk, y

h
k , u), zh

)∨
Ψ(sk, y

h
k , z

h)

)
+ λhqk(u,Uk)

]
; (4.24)

(ii) a new state position yhk+1 as follows

yhk+1 := yhk + hkfh(sk, y
h
k , u

h
k).

We shall prove that this second algorithm provides also a minimizing sequence (yh,uh, zh)h>0 as soon as λh
decreases sufficiently fast as h→ 0.

In the reconstruction process (Algorithm 4.1), the formula (4.3) suggests that the control input is a value

that minimizes the function u 7−→
(
wh
(
sk, y

h
k +hk fh(sk, y

h
k , u), zh

)∨
Ψ(sk, y

h
k , z

h)

)
. Such a function may admit

several minimizers and the reconstruction procedure does not give any further information on which minimizer to
choose. Adding the term λhqk(u,Uk) can be seen as a penalization term. For example, by choosing qk(u,Uk) :=
uk−1, we force the value uk to stay as close as possible to uk−1. Here we address the convergence result of
Algorithm 4.3 with a penalization term qk. However, the choice of a relevant function qk is not a trivial task
and depends on the control problem under study.

Theorem 4.4. Assume (H1), (H2) and (H3) hold true, and (4.1) and and (4.6) are fulfilled. Let (yhk ) be
the family generated by Algorithm 4.3. Assume furthermore that the penalization term is bounded: there exists
Mq > 0 such that |qk(u,U)| ≤Mq for every u ∈ U and every U ∈ Uk, and

λh/h→ 0.

(i) The approximate trajectories (yhk )k=0,...,n are minimizing sequences in the following sense:

w(0, y, z) = lim
h→0

(
max

0≤k≤nh

Ψ(sk, y
h
k , z)

)∨
ϕ(yhnh

, z). (4.25)

(ii) There exist cluster points for the sequence (yh)h>0 as h → 0, for the L∞ norm. Moreover, any such
cluster point ȳ is an admissible trajectory belonging to S[0,T ](y) and ȳ is an optimal trajectory for w(0, y, z).

Proof. The arguments of the proof are similar to the ones used in the proof of Theorem 4.2. The only change
is in the estimate derived in Step 1, where instead of (4.12), we get now:

wh(sk, yk, z) ≥
(
w(sk+1, yk+1, z)

∨
Ψ(sk, yk, z)

)
− hεh − 2Eh −Mqλh. (4.26)

The rest of the proof remains unchanged.
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Before we end this section, we introduce a third algorithm that will be tested in the numerical section. This
algorithm uses the reachability time function as defined in Section 3.3. We assume that the control problem is
autonomous (all the involved functions in the control problem do not depend in the time variable). We assume
that an approximation T h of the reachability time function is computed. The reconstruction algorithm reads
as follows.

Algorithm 4.5. Fix y ∈ Rd and z ∈ R. For h > 0 we consider an integer nh ∈ N, a partition s0 = 0 < s1 <
· · · < snh

= T of [0, T ], denote hk := sk+1 − sk and assume that

max
k

hk ≤ h.

We define the positions (yhk )k=0,...,nh
, and control values (uhk)k=0,...,nh−1, by recursion as follows. First we set

yh0 := y. Then for k = 0, . . . , nh − 1, knowing the state yhk we define

(i) an optimal control value uhk ∈ U such that

uhk ∈ argmin
u∈U

T h
(
yhk + hk fh(yhk , u), z

)
(4.27)

(ii) a new state position yhk+1

yhk+1 := yhk + hkfh(yhk , u
h
k). (4.28)

Without further assumption on the control problem, the reachability time function may be discontinuous and
we do not have any convergence proof for Algorithm 4.5. However, there is an obvious numerical advantage of
using Algorithm 4.5 rather than Algorithm 4.1 or 4.3. Indeed, while the two first algorithms require the auxiliary
function wh to be stored on a grid of dimension d+ 1, at every time sk, the third algorithm requires T h to be
stored only once on a grid of dimension d+ 1.

5. The aircraft landing abort problem: model

5.1. The flight aerodynamics

Consider the flight of an aircraft in a vertical plane over a flat earth where the thrust force, the aerodynamic
force and the weight force act on the center of gravity G of the aircraft and lie in the same plane of symmetry.
Let V be the velocity vector of the aircraft relative to the atmosphere. In order to obtain the equations of
motion, the following system of coordinates is considered:

(i) the ground axes system Exeyeze, fixed to the surface of earth at mean sea level.
(ii) the wind axes system denoted by Oxwywzw moving with the aircraft and the xw axis coincides with the

velocity vector.
The path angle γ defines the wing axes orientation with respect to the ground horizon axes. Let G be the

center of the gravity.
We write Newton’s law as F = mdVG

dt , where where VG = V + w is the resultant velocity of the aircraft
relative to the ground axis system, and w denotes the velocity of the atmosphere relative to the ground axis
system. The different forces are the following:

• the thrust force FT is directed along the aircraft. The modulus of the thrust force is of the form FT (t, v) :=
β(t)FT (v) where v = |V| is the modulus of the velocity and β(t) ∈ [0, 1] is the power setting of the engine.
In the present study

FT (v) := A0 +A1 v +A2 v
2.
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• the lift and drag forces FL, FD. The norm of these forces are supposed to satisfy the following relations:

FL(v, α)=
1

2
ρSv2c`(α), FD(v, α)=

1

2
ρSv2cd(α), (5.1)

where ρ is the air density on altitude, S is the wing area. The coefficients cd(α) and c`(α) depend on the
angle of attack α and the nature of the aircraft. As in [11, 12] we consider here:

cd(α) = B0 +B1α+B2α
2 (5.2)

c`(α) =

{
C0 + C1α α ≤ α∗,
C0 + C1α+ C2(α− α∗)2 α∗ ≤ α,

(The coefficient c` depends linearly on the angle α until a swiching point α∗ where the dependency becomes
polynomial.)

• the weight force FP: its modulus satisfies |FP| = mg where m is the aircraft mass and g the gravitational
constant.

The constants ρ, S, α∗, (Ai)i=0,1,2, (Bi)i=0,1,2, (Ci)i=0,1,2, m, g are given in Table A.1 of Appendix A. We
assume that the motion of the aircraft can be controlled by the angular velocity u(t) := α̇(t).

By using Newton’s law, the equation of motion are [11]:

ẋ = v cos γ + wx (5.3a)

ḣ = v sin γ + wh (5.3b)

v̇ =
βFT (v)

m
cos(α+ δ)− FD

m
− g sin γ − ẇx cos γ − ẇh sin γ (5.3c)

γ̇ =
1

v

(
βFT (v)

m
sin(α+ δ) +

FL
m
− g cos γ + ẇx sin γ − ẇh cos γ

)
(5.3d)

α̇ = u

where δ > 0 is also a parameter of the model, given in Table A.1, and where wx and wh are respectively the
horizontal and the vertical components of the wind velocity vector w, and

ẇx :=
∂wx
∂x

(v cos γ + wx) +
∂wx
∂h

(v sin γ + wh).

ẇh :=
∂wh
∂x

(v cos γ + wx) +
∂wh
∂h

(v sin γ + wh).

The precise model is of the form wx ≡ wx(x), wh ≡ wh(x, h), as shown in Figure 1, and is provided in
Appendix A.

In the more general setting, one can consider the variables u and β as controls of the dynamical system
associated with the motion equations (5.3). In this work different scenarios of the dynamical system are be
considered, in accordance with the role that plays the power factor β. They are described in detail in the
following section.

In the sequel, the state variables are represented by a vector of R5:

y(·) = (x(·), h(·), v(·), γ(·), α(·))T .

Therefore the differential system (5.3) will be also denoted as follows:

ẏ(t) = f(y(t),u(t)) (5.4)
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Figure 1. Wind components wx(x) and wh(x, h) as functions of x (h = 1000 ft). (Color online.)

where the dynamics f stands for the right-hand-side of (5.3), and the control is u = (u, β).
The state is subject to the constraints y(t) ∈ K with

K :=
[
xmin, xmax

]
×
[
hmin, hmax

]
×
[
vmin, vmax

]
×
[
γmin, γmax

]
×
[
αmin, αmax

]
, (5.5)

where hmin defines the lower altitude below which the abort landing is very difficult, hmax is a reference altitude
(the cruise altitude for instance), vmax is given by the aircraft constructor, vmin > 0 is the desired minimum
velocity value, [γmin, γmax] ⊂ [−π2 ,

π
2 ]. All the numerical values for the boundary constraints are given in Table 1

in Section 6.2.
The constraints on the control u is of the type umin ≤ u ≤ umax with constants umin, umax as in Table 1.

Moreover, the control β(t) ∈ [0, 1] will be also subject to different type of restrictions as made precise in each
test of Section 6.3.

5.2. Optimality criterion

In the case of windshear, the Airport Traffic Control Tower has to choose between two options. The first one
is to penetrate inside the windshear area and try to make a successful landing. If the altitude is high enough, it
is safer to choose another option : the abort landing, in order to avoid any unexpected instability of the aircraft.
In this article we focus on this second option.

Starting from an initial point y ∈ Rd, the optimal control problem is to maximize the lower altitude over a
given time interval, that is,

maximize

(
min
θ∈[0,T ]

h(θ)

)
where h(θ) is the altitude at time θ corresponding to the second component of the vector yu

y (θ) solution of (5.4)
at time θ and such that yu

y (0) = y. For commodity, the problem is recasted into a minimization problem as
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follows. Let Hr > 0 be a given reference altitude, and set

Φ(y) := Hr − h, (5.6)

where h is the second component of the vector y.
The state constrained control problem with a maximum running cost associated to Φ, denoted (P∞), is the

following:

inf
y∈SK

[0,T ]

max
θ∈[0,T ]

Φ(yu
y (θ)). (P∞)

Note that in the above formulation of the abort landing problem, we do not impose a minimum altitude
constraint because the value of the threshold to impose for this minimum altitude is not supposed to be known.
Actually, problem (P∞) aims at computing an optimal trajectory that realizes a safe abort landing and with
the highest minimal altitude, see [11, 12, 21, 22].

6. The abort landing problem: numerical results

6.1. The finite difference scheme

It is well known, since the work of Crandall and Lions [15], that the Hamilton Jacobi equation (3.7) can be
approximated by using finite difference (FD) schemes. In our case we consider a slightly more precise scheme;
namely an Essentially Non Oscillatory (ENO) scheme of second order, see [23]. Such a scheme has been numer-
ically observed to be efficient. Notice that we could have also considered other discretization methods such as
Semi-Lagrangian methods (see [16, 17]). For the present application we prefer to use the ENO scheme because
there is no need of a control discretization in the definition of the numerical Hamiltonian function (see H below).

For given non-negative mesh steps h, ∆y = (dyi)1≤i≤d, and ∆z, for a given multi-index i = (i1, . . . , id), let
yi := ymin + i∆x ≡ (yk,min + ik∆yk)1≤k≤d, zj := zmin + j∆z and tn = nh. Let us define the following grid of
Kη × [zmin, zmax]:

G :=
{

(yi, zj), i ∈ Zd, j ∈ Z, (yi, zj) ∈ Kη × [zmin, zmax]
}
.

Let us furthermore denote ψi,j := Ψ(yi, zj). In the following, wni,j will denote an approximation of the solution
w(tn, yi, zj).

Given a numerical Hamiltonian H: Rd × Rd × Rd → R (see Rems. 6.1–6.2 below) the following “explicit”
scheme is considered, as in [8]. First, the numerical approximation is initialized with

wNi,j = ψi,j , (yi, zj) ∈ G. (6.1a)

Then, for n ∈ {N − 1, N − 2, . . . , 1, 0} we compute recursively

wni,j = max

(
wn+1
i,j −∆tH(yi, D

−wn+1
i,j , D+wn+1

i,j ), ψi,j

)
, (yi, zj) ∈ G (6.1b)

(where H is made precise later on).
A monotone (first order) finite difference approximation is obtained using D±wni,j = (D±k w

n
i,j)1≤k≤d with

D±k w
n
i,j := ±

wni±ek,j − w
n
i,j

∆yk
,
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Table 1. Constants for the domain K and control constraints.

State variable x (ft) h (ft) v (ft s−1) γ (◦) α (◦) Control variable u (◦)

min −100 450 160 −7.0 4.0 umin −3.0
max 9900 1000 260 15.0 17.2 umax 3.0

and where {ek}k=1,...,d is the canonical basis of Rd ((ek)k = 1 and (ek)j = 0 if j 6= k). In this paper, we use a
second order ENO scheme in order to estimate more precisely the terms D±k w

n
ik,j

, see [23]:

D±k w
n
i,j := ±

wni±ek,j − w
n
i,j

∆yk
∓ 1

2
∆yk m

(
D2
k,0w

n
i,j , D

2
k,±1w

n
i,j

)
with D2

k,εw
n
i,j := (−wni+(−1+ε)ek,j

+ 2wni+εek,j − w
n
i+(1+ε)ek,j

)/(∆yk)2, and where m(a, b) := a if ab > 0 and

|a| ≤ |b|, m(a, b) = b if ab > 0 and |a| > |b|, and m(a, b) = 0 if ab ≤ 0.

Remark 6.1. If the numerical Hamiltonian H is Lipschitz continuous on all its arguments, consistent with H
(H(y, p, p) = H(y, p)) and monotone (i.e. ∂H

∂p−k
(y, p−, p+) ≥ 0, ∂H

∂p+k
(y, p−, p+) ≤ 0) together with the following

Courant-Friedrich-Levy (CFL) condition

∆t

d∑
k=1

1

∆yk

{∣∣∣∣ ∂H∂p−k (y, p−, p+)

∣∣∣∣+

∣∣∣∣ ∂H∂p+k (y, p−, p+)

∣∣∣∣} ≤ 1, (6.2)

then the numerical solution (wni,j) converges to the desired solution (see [8] for more details).

Remark 6.2. Since the control variable u enters linearly and only in the 5th component of the dynamics f in
(5.4), the Hamiltonian H(y, p) takes the following simple analytic form (here in the case of umax = −umin ≥ 0):

H(y, p) :=

4∑
i=1

−fi(y)pi + umax|p5|

where (pi)1≤i≤d are the components of p and (f1(y), . . . , f4(y)) are the first four components of f .
For this particular situation we will use the following numerical Hamiltonian:

H(y, p−, p+) =

4∑
i=1

(
max(−fi(y), 0) p−i + min(−fi(y), 0) p+

i

)
+ umax max(p−5 , −p

+
5 , 0).

It satisfies all the required conditions of Remark 6.1 for a sufficiently small time step h satisfying the CFL
condition (6.2), which can be written here :

∆t

( ∑
1≤i≤4

|fi(y)|
∆yi

+
umax

∆y5

)
≤ 1.

6.2. Computational domain, control constraints

To solve the control problem (P∞), we will use the HJB approach as introduced in Section 3. Let us mention
other recent works [2, 10] where an approximated control problem of (P∞), involving a 4-dimensional model, is
also considered by using HJB approach.

In all our computations, the boundary of the domain K is defined as in Table 1.
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The computational domain is slightly extended in all directions Kη := K + ηB∞, where B∞ := [−1, 1]d is
the unit ball centered in the origin for the `∞ norm. The parameter η is fixed to a stricly positive, small value
(η = 0.05 in our computations).

6.3. Numerical experiments and analysis

In this section, we will perform different tests to investigate numerical aspects for computing an approximation
of the optimal value ϑ(0, y0) of (P∞) through the use of the auxiliary value function w. The computations are
performed as follows1:

– We first consider a grid Gh on Kη (the grid’s size will be made precise for each test). Then solve numerically
the HJB equation (3.15) and get an approximation wh of the auxiliary value function corresponding to
(P∞).

– Let y0 ∈ K be a given initial state of the dynamical system (5.3). Following Proposition 3.2, an
approximation of the minimum value of (P∞) can be then defined as:

z∗h := min{z ∈ [0, 550ft] | wh(0, y0, z) ≤ 0}.

– By using Algorithm 4.1 or 4.3 on a time partition 0 = s0 ≤ s1 ≤ · · · snh
= T , we get a suboptimal trajectory

for wh(0, y0, z
∗
h) that we shall denote as yh,w.

– In the sequel, we shall also use Algorithm 4.5 to reconstruct a trajectory yh,T corresponding to the initial
condition (y0, z

∗
h), by using the reachability time function (here we don’t have any theoretical basis to

guarantee that yh,T is a approximation of an optimal trajectory, but numerical experiments will show
that yh,T is as good an approximation as yh,w).

– Then, we will define

Jh,w := max
0≤k≤nh

Φ(yh,w(sk)), (6.3)

Jh,T := max
0≤k≤nh

Φ(yh,T (sk)). (6.4)

By combining Proposition 3.12 and Theorem 4.2, we know that a subsequence of (yh,w)h>0 converges to
an optimal trajectory of (P∞), when h goes to 0. Moreover,

lim
h→0

Jh,w = ϑ(0, y0).

6.3.1. Test 1: Running cost problem. Comparison of different methods for computing the optimal value

In this first test, we assume that the power thrust is maximal, i.e., β(t) ≡ 1 which implies that the corre-
sponding dynamical system is autonomous, controlled only by the function u(.). The initial state used is chosen
as in [11] and [12]:

y0 := (0.0, 600.0, 239.7,−2.249◦, 7.373◦). (6.5)

First, we choose a uniform grid on Kη (for the variable y) with 40× 20× 16× 8× 24 nodes. The auxiliary
variable interval (for variable z) is fixed to [0, Hr − hmin] = [0, 550 ft]. The aim is to have a good approximation
of the optimal value z∗h when the computational grid of the variable z is refined. Recall that the dynamics of
the z variable is zero. In order to keep a reasonable number of grid points, we will rather fix the number of
grid points to 5 in the z variable, and refine the z interval by a dichotomy approach. Therefore, the whole
computation grid contains 40× 20× 16× 8× 24× 5 nodes.

1All the computations are performed by using our software ROC-HJ available at https://uma.ensta-paristech.fr/soft/ROC-HJ.

https://uma.ensta-paristech.fr/soft/ROC-HJ
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Table 2. (Test 1) Dichotomy on the interval of z variable.

z interval z∗h Jh,w Jh,T

[0, 550] 542.30 506.16 500.03
[275, 550] 525.65 487.60 482.41
[412.5, 550] 519.72 482.22 476.14
[481.25, 550] 518.98 481.95 473.18

Table 3. (Test 1) Convergence with space grid refinements for the y variable only.

Grid z∗ Jh,w Jh,T

40× 20× 16× 8× 24× 5 518.98 481.95 473.18
60× 30× 24× 12× 36× 5 487.72 482.94 480.45
80× 40× 32× 16× 48× 5 485.30 487.77 490.13

100× 50× 40× 20× 60× 5 486.10 487.91 489.36

Remark 6.3. The computation grid is defined in such a way the mesh size in each direction give similar CFL
ratios, i.e., when the values of µi := ∆t

∆yi
‖fi‖∞ are approximately equal for i = 1, . . . , 5.

The numerical results are shown in Table 2, using 4 successive reductions of the z interval, giving in particular
the estimated optimal z∗h in the second column. The values of Jh,w and Jh,T are reported respectively in the
third and fourth columns. Recall that here we do not refine the computation grid with respect to the state
variable y. The aim of these (first) calculations is not to observe a convergence result but rather to locate a
narrow set where we can find the optimal value z∗h.

In a next step, we fix the last interval for the auxiliary z variable (i.e., z ∈ [481.25, 550]) and refine the space
grid in the y variable. Table 3 shows the numerical results obtained when the number of grid points is increased
by a factor of 1.55, 25 and then 2.55. By this calculation, we notice that the values of z∗h, Jh,w and Jh,T become
closer and closer as the grid size is refined.

It should be noted that the computation performed on the grid 100× 50× 40× 20× 60× 5 requires a huge
calculation effort. It would be difficult to consider a much finer grid without resorting to parallel computing.
We prefer in the sequel not to address this issue and rather focus on the optimal trajectories reconstruction on
a reasonable grid 80× 40× 32× 16× 48× 5.

In Figure 2, we compare the reconstructed trajectories yh,w and yh,T . We notice that these trajectories are
very similar and their performances (Jh,w and Jh,T ) are close enough.

Several remarks should be made here. First, the reconstruction by the reachability time function is less
CPU time consuming because it requires to store the function T only on a six-dimensional grid, whereas the
reconstruction by using the auxiliary value function requires to store w on a six-dimensional grid for each time
step. Secondly, the trajectories in Figure 2 are very similar on the time interval [0, 30], and then they differ on
the time interval [30, 40]. This can be explained by the fact that the minimum running cost is reached at a time
less than t = 30. The rest of the trajectory after that time is not relevant anymore for the running cost.

Remark 6.4. We observe in Figure 2 that the constraint on the angle α is saturated during some period of
time, which justify the careful treatment of the state constraints for this example.

It is worth to mention that once the value function wh is computed, it is possible to obtain more information
on the original control problem than simply the reconstruction of an optimal trajectory corresponding to a
single initial position. Indeed, from the function wh one can obtain an approximation of the whole feasibility
set, i.e., the set of initial conditions of the system for which there exists at least one trajectory satisfying all
state constraints until the given time horizon T . For the landing abort problem that means to know all initial
flight configurations for which it is possible to abort the landing without danger, when the local dominant wind
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Figure 2. (Test 1) Optimal trajectories obtained using value function (red line) and the exit
time (black line). (Color online.)

profile is known. Indeed, from the definition of the value function w (see also [8]), the feasibility set is given by:

Ω := {y ∈ R5, ∃z ∈ [0, 550], w(0, y, z) ≤ 0}.

Therefore, an approximation of the feasibility set is given by:

Ωh = {y ∈ R5, ∃z ∈ [0, 550], wh(0, y, z) ≤ 0}.

As an illustration, Figure 3 shows two slices of the feasibility set. The left figure shows the feasible slice
obtained in the (v, h) plane, with fixed value x = 0 ft, α = 7.373◦ and γ = −2.249◦; the right figure shows the
feasible slice obtained in the (v, γ) plane with fixed value x = 0 ft, α = 7.373◦ and h = 600 ft. Both slices where
extracted from the value function wh computed with the grid 80× 40× 32× 16× 48× 5.

Figure 4 shows, for illustration purposes, different optimal trajectories corresponding to different initial
positions:

• y0 = (0.0, 600.0, 239.7,−2.249◦, 7.373◦) (in black);
• y1 = (0.0, 550.0, 250.0,−2.249◦, 7.373◦) (in red);
• y2 = (0.0, 600.0, 230.0,−1.500◦, 7.373◦) (in blue);
• y3 = (0.0, 650.0, 239.7,−3.400◦, 7.373◦) (in green).

The optimal trajectories starting from different initial positions (as shown in Fig. 4) are obtained by using
the same approximation of the value function wh and without requiring any additional numerical efforts.

6.3.2. Test 2: Comparison of different strategies for control β for the maximum running cost problem

In test 1, we have fixed the power factor β ≡ 1 during the whole time interval [0, T ]. A more realistic model
for β, introduced in [11, 12], considers that at the initial time, when the aircraft begins its landing maneuver,
the power factor is equal to a value β0 < 1, then the pilot may increase the power until its maximum value,
with a constant variation rate, β1, and then keep it at the maximum level until the end of the maneuver.
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Figure 3. (Test 1) Two slices of the negative level set of the value function w. (Color online.)

Figure 4. (Test 1) Optimal trajectories for different initial conditions. (Color online.)

In this section the following cases are studied and compared (the second case will correspond to the one of
[11, 12]):

• Case 1. The factor β is fixed to the maximum level : β(t) = 1. In this case the system is controlled by u,
the angular velocity of the trust force orientation angle α:

u(t) := u(t) ∈ U ≡ [umin, umax] ⊂ R. (6.6)
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Figure 5. (Test 2) Optimal trajectories for different control strategies. (Color online.)

Table 4. (Test 2) Higher minimal value h for different control strategies β(·).

β strategy minh(.)

β := 1 maximum power (case 1) 512.23
β := min(1, β0 + βdt) a prescribed profile (case 2) 478.46
β ∈ [0, 1] controlled power (case 3) 515.90

• Case 2. This is the same setting as in Pesch et al. [11, 12], where the factor β(t) is a known function of
time:

β(t) :=

{
β0 + βdt if t ∈ [0, t0]
1 otherwise

(6.7)

where β0 = 0.3825, βd = 0.2 and t0 = (1−β0)/βd. In this case the system is again controlled by u(·) = u(·)
as in (6.6).

• Case 3. The factor power β(t) is considered as a control input. In this case, we have:

u(t) := (u(t), β(t)) ∈ U ≡ [umin, umax]× [βmin, βmax] ⊂ R2. (6.8)

(with βmin = 0 and βmax = 1, umin and umax defined in Tab. 1).

Let us point out that in cases 1 and 3, the dynamical system (5.3) is autonomous. However, in case 2 where the
dynamics depends on a given time-dependent function β (which is not considered as a control input anymore),
the control problem becomes non-autonomous. In this case, the link between the reachability time function and
the value function does not hold and the reconstruction of optimal trajectories can be performed only by using
Algorithm 4.1 or 4.3.

Figure 5 shows the optimal trajectories obtained for the three different cases. From this test, it appears that
the strategy of case 2 is not the optimal choice. Indeed, we report in Table 4 the higher minimal values of the
altitude h(·) computed by the three different cases presented in this subsection. The computations are done on
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Figure 6. (Test 3) Optimal trajectories (left) and corresponding control u (right), obtained
using different reconstruction procedures. (Color online.)
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a grid of 80 × 40 × 32 × 16 × 48 × 5 nodes. The results in Table 4 and Figure 5 confirm that optimizing the
control β as in case 3 leads to a higher minimal value of h(.).

6.3.3. Test 3: penalisation and post-processing procedures for optimal trajectory reconstruction

In the previous tests, we focused on the reconstruction of optimal trajectories and the corresponding optimal
values. However, for an optimal control problem, it is also important to determine a control law associated with
the optimal trajectory. An approximation of this law can be obtained by Algorithm 4.1, 4.3 or 4.5. In these
algorithms the control value (at each time step) is obtained by a minimization of a simple scalar criterion. It
may happen that this criterion admits several minimizers. However, the reconstruction algorithm just requires
to take one of these minimizers and can therefore lead to a control function with large oscillations. In order to
limit this oscillation phenomenon, it is possible to add a penalisation term in the optimization problems that
give the control values (as in the Algorithm 4.3). Another possibility is to perform a reconstruction algorithm
to get a (first) control function and then use a posterior filtering process to regularize this function.

We compare different reconstruction procedures here using the exit time function. The aim is to reduce the
shattering of the control law. The computational grid used is 60 × 30 × 24 × 12 × 36 × 5 and the same initial
point y0 as in (6.5).

In Figure 6 we show the results obtained with different reconstruction procedures: the fifth state component
that is the angle of attack α(·) (on the left) and the control u(.) that represents the angular velocity (on the
right).

The figures on the top line correspond to Algorithm 4.5 (no penalisation term). Here the control function
presents large oscillations.

In the he second line of Figure 6, we represent the results obtained by Algorithm 4.5 (but with a penalization
term as in Algorithm 4.3). Here, we test two values for λ and we observe that with a quite strong penalization
(λ = 0.5) it is possible to regularize the control function without deteriorating the quality of the trajectory and
without significantly modifying the optimum value.

Finally, in the bottom of Figure 6 we have tested a filtering process: we replace the optimal numerical control
found by Algorithm 4.5, (uhk)k, by an average over a small symmetric window in time

ūk :=
1

2p+ 1

∑
j=−p,...,p

uk+j .

We numerically observe a smoothing effect on the control while the trajectory is almost unchanged with respect
to the unfiltered solution (p = 0).

Appendix A. Numerical data

The data corresponding to a Boeing B 727 aircraft is considered. The wind velocity components relative to
the winshear model are satisfying the following relations:

wx(x) = kA(x), wh(x, h) = k
h

h∗
B(x), (A.1)

where A(x) and B(x) are functions depending only on the x axis given by,

A(x) =


−50 + ax3 + bx4, 0 ≤ x ≤ 500,
1
40 (x− 2300), 500 ≤ x ≤ 4100,

50− a(4600− x)3 − b(4600− x)4, 4100 ≤ x ≤ 4600,

50, 4600 ≤ x,
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Table A.1. Boeing 727 aircraft model and wind data.

Value Unit

ρ 2.203× 10−3 Ib s2ft−4

S 1.56× 103 ft2

g 32.172 ft s−2

mg 1.5× 105 Ib
δ 3.49× 10−2 rad
A0 4.456× 104 Ib
A1 −23.98 Ib s ft−1

A2 1.42× 10−2 Ib s2ft−2

B0 0.1552
B1 0.1237 rad−1

B2 2.4203 rad−2

C0 0.7125
C1 6.0877 rad−1

C2 − 9.0277 rad−2

α∗ 0.2094 rad
k ∈ [0, 1]
h∗ 1000 ft
a 6× 10−8 s−1 ft−2

b −4× 10−11 s−1 ft−3

c − ln( 25
30.6 )× 10−12 ft−4

d −8.02881× 10−8 sec−1 ft−2

e 6.28083× 10−11 sec−1 ft−3

B(x) =


dx3 + ex4, 0 ≤ x ≤ 500,

−51 exp(−c(x− 2300),4 ), 500 ≤ x ≤ 4100,

d(4600− x)3 + e(4600− x)4, 4100 ≤ x ≤ 4600,

0, 4600 ≤ x.

(A.2)

The constants appearing in the above relations and for the forces and the wind are given in Table A.1.
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