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ENTROPY-STABLE SPACE–TIME DG SCHEMES FOR
NON-CONSERVATIVE HYPERBOLIC SYSTEMS

Andreas Hiltebrand1, Siddhartha Mishra2,3 and Carlos Parés4,*

Abstract. We propose a space–time discontinuous Galerkin (DG) method to approximate multi-
dimensional non-conservative hyperbolic systems. The scheme is based on a particular choice of interface
fluctuations. The key difference with existing space–time DG methods lies in the fact that our scheme
is formulated in entropy variables, allowing us to prove entropy stability for the method. Additional
numerical stabilization in the form of streamline diffusion and shock-capturing terms are added. The
resulting method is entropy stable, arbitrary high-order accurate, fully discrete, and able to han-
dle complex domain geometries discretized with unstructured grids. We illustrate the method with
representative numerical examples.
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1. Introduction

1.1. The model

We consider multi-dimensional systems of hyperbolic partial differential equations (PDEs) of the non-
conservative form,

Ut +
d∑
k=1

Ak(U)Uxk = 0. (1.1)

Here, the unknown vector U = U(x1, . . . , xd, t) ∈ RN , (x1, . . . , xd) and t take values in a domain Ω ⊂ Rd and
[0, T ], respectively, and Ak(U) ∈ RN×N , k = 1, . . . , d, are smooth matrix-valued functions.

If there exist d flux functions F1, . . . ,Fd satifsying:

Ak(U) = FkU, k = 1, . . . , d, (1.2)
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where the subscript U denotes the Jacobian of a vector function or the gradient of a scalar function, then the
system can be written in conservative form

Ut +
d∑
k=1

Fk(U)xk = 0, (1.3)

resulting in the well-known systems of conservation laws [11]. We are specifically interested in the case in which
these flux functions do not exist and one has to consider the general non-conservative form (1.1).

Many problems of interest in physics and engineering are modeled by the non-conservative hyperbolic system
(1.1). Prototypical examples include the multi-layer shallow water equations and the governing equations of
compressible multi-phase flow.

In light of the above prototypical examples, it is reasonable to assume that the system (1.1) is equipped with
an entropy–entropy flux pair (S,Q) where S : RN → R is a strictly convex function and Q = (Q1, . . . , QN ) is a
function from RN to RN whose components satisfy the compatibility conditions,

QkU(U) = VT ·Ak(U), (1.4)

where

V = SU(U),

are the so-called entropy variables.
On account of the strict convexity of S, the mapping U → V is one-to-one. Consequently, one can rewrite

the system (1.1) in terms of the entropy variables as

U(V)t +
d∑
k=1

Ãk(V)Vxk = 0, (1.5)

where

Ãk(V) = Ak(U(V))UV(V). (1.6)

For notational simplicity, the tilde in (1.5) is dropped subsequently and the equations in the entropy variables
are written as

U(V)t +
d∑
k=1

Ak(V)Vxk = 0. (1.7)

We are interested in approximating entropy solutions of (1.1) or (1.7), i.e. weak solutions that satisfy the entropy
inequality

S(V)t +
d∑
k=1

Qk(V)xk ≤ 0, (1.8)

in the sense of distributions.
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1.2. Mathematical framework

As is well-known, solutions to the system (1.1) develop discontinuities in the form of shock waves (and contact
discontinuities), even when the initial data is smooth. Hence, one needs to interpret the solutions of (1.1) in
a weak sense. However, the non-conservative products of the form Ak(U)Uxk cannot be defined in the sense
of distributions at the discontinuities of the solution U. A possible solution to this difficulty was proposed in
[12], where the authors define these non-conservative products as Borel measures. This theory allows one to
define the nonconservative products as bounded measures for functions U with bounded variation, provided a
family of Lipschitz continuous paths Φ : [0, 1]×RN ×RN → RN are prescribed. This family must satisfy certain
regularity and compatibility conditions, in particular

Φ(0; U−,U+) = U−, Φ(1; U−,U+) = U+, Φ(s; U,U) = U.

Once the nonconservative product has been defined, one can define the weak solutions of (1.1). In particular,
across a discontinuity, a weak solution in the sense of [12], has to satisfy the generalized Rankine–Hugoniot
condition

σ(U+ −U−) =
∫ 1

0

d∑
k=1

Ak(Φ(s; U−,U+))∂sΦ(s; U−,U+)νkds, (1.9)

where σ is the speed of propagation of the discontinuity, U− and U+ are the left and right limits of the solution
at the discontinuity, along the normal direction to the shock given by the vector ~ν = (ν1, . . . , νd). We note
that (1.9) reduces to the usual Rankine–Hugoniot condition when (1.2) is satisfied and the system (1.1) can be
written in the conservation form (1.3).

Unfortunately, the concept of weak solutions as outlined above depends on the chosen family of paths.
Different families of paths lead to different jump conditions, and result in different weak solutions. A priori, the
choice of paths is arbitrary. Thus, a crucial question is how to choose the correct family of paths in order to
recover the physically relevant solution.

In practice, a hyperbolic system such as (1.1) is obtained as the limit of a regularized problem when the
high-order terms (corresponding to small-scale effects) are neglected. For instance, it may be the vanishing
viscosity (ε→ 0) limit of the following parabolic system,

Ut +
d∑
k=1

Ak(U)Uxk = ε

d∑
k,l=1

(Rlk(U)Uxk)xl , (1.10)

with an elliptic second-order viscous term. In this case, the correct jump conditions (corresponding to the
physically relevant solutions) should be consistent with the viscous profile, i.e. with the traveling wave solutions
of the regularized problem (1.10): see [24, 25].

1.3. Numerical schemes

A large number of numerical methods have been proposed to approximate the non-conservative hyperbolic
system (1.1), see [25] and references therein. A particularly attractive framework is provided by the path-
conservative schemes, first proposed in [26]. These schemes are designed to be formally consistent with any
particular choice of path for the definition of the non-conservative product and the weak solution for the system
(1.1). This framework allows to extend to nonconservative systems well-known families of conservative numerical
methods. Moreover, they can be easily extended to high-order of accuracy by using reconstructions operators
[6], central schemes [8], discontinuous Galerkin methods [27], ADER methods [13, 14]. A review of the latest
developments on path-conservative schemes is provided in [10].
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However, path-conservative numerical schemes for approximating (1.1) may not converge to the physically
relevant weak solution when the mesh is refined. As alluded to in [20] and first demonstrated in [7] (see also
[1]), this lack of convergence can be observed even when a path that corresponds to the small-scale limit of
the regularized problem (1.10) is chosen (via the viscous profiles of (1.10)) and a path-conservative scheme,
consistent with this correct path, is designed. This lack of convergence has been explained in terms of the
equivalent (modified) equation, corresponding to the underlying finite difference scheme [3, 7, 23, 25] and
references therein. Briefly, the second-order terms of this equivalent equation are determined by the numerical
viscosity of the underlying method and do not necessarily match with the physical viscosity in (1.10). Hence,
one observes convergence of the resulting scheme towards a different weak solution.

One promising solution to this vexing problem of lack of convergence of path-conservative schemes was
provided in [9]. In this article, the authors designed path-conservative finite-difference schemes that were also
entropy stable, i.e. they satisfied a discrete version of the entropy inequality (1.8). The construction of these
entropy-stable path-conservative schemes was based on the design of path-conservative fluctuations that resulted
in a discrete entropy identity and adding suitable amount of numerical viscosity, for instance modeled on the
physical viscosity of (1.10). In [9], the authors chose a simple path, corresponding to straight line segments of
the form,

Φ(s; U−,U+) = U− + s(U+ −U−). (1.11)

Numerical experiments showed that this approach was quite successful in providing stability and in approxi-
mating the physically relevant weak solution for several prototypical non-conservative systems.

On the other hand, these entropy stable path-conservative schemes of [9] had several limitations namely,

– They were (formally) first-order accurate.
– They were only defined on Cartesian grids in several space dimensions.
– These schemes were semi-discrete. Using standard SSP Runge–Kutta methods to solve the resulting ODEs

destroyed the entropy stability properties of the scheme.

1.4. Aims and scope of the current paper

Given the above limitations of the entropy-stable path-conservative schemes for approximating the non-
conservative hyperbolic system (1.1), our main aim in this paper is to develop a fully discrete, arbitrarily
high-order, entropy-stable scheme for approximating multi-dimensional non-conservative hyperbolic systems.
We would require that this scheme can also be defined on unstructured grids in-order to be able to handle
problems on domains with complex geometry.

To meet these objectives, we propose a shock-capturing streamline-diffusion space–time discontinuous Galer-
kin (DG) finite element method for approximating (1.1). Such methods were proposed in the context of systems
of conservation laws (and convection–diffusion equations) in [2, 21, 22] and references therein. Recent results
on this discretization framework, in the context of conservation laws, were obtained in [17–19] and references
therein.

Space–time DG methods for systems of conservation laws (1.3) consisted of the following design ingredients:

– The numerical method is based on the formulation of the system in entropy variables (1.7).
– An entropy-stable numerical flux is used to deal with the discontinuities appearing at the element

boundaries, see for instance [2, 28].
– Streamline diffusion and shock-capturing terms are added inside each element to prevent the appearance

of unphysical oscillations.

A very similar philosophy is followed in this article. The main difference with the corresponding formulation
for systems of conservation laws lies in replacing numerical fluxes across element boundaries, with suitable
fluctuations, that correspond to entropy-stable path-conservative formulations of [9]. Hence, these schemes
can be considered as generalizations of the entropy-stable path-conservative schemes to arbitrary high-order,
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unstructured grids, and temporal discretizations. We will design suitable fluctuations, streamline diffusion, and
shock-capturing operators and prove that the resulting space–time DG method is entropy stable. Numerical
examples, illustrating the stability of the method and its ability to converge towards the physically relevant
weak solution will also be demonstrated.

As mentioned above, space–time DG methods, based on underlying path-conservative schemes to account
for discontinuities of the test functions at spatial element boundaries, have been developed for non-conservative
hyperbolic systems, see [13, 14, 27]. There are many similarities between these methods and the one proposed
here. However, the key novelty in our method lies in its formulation in terms of entropy variables and the con-
sequent use of entropy stable path-conservative fluctuations. These ingredients are crucial in proving entropy
stability for the method. In contrast and to the best of our knowledge, entropy stability cannot be rigor-
ously established for previously developed space–time DG methods, even when entropy-stable path-conservative
fluctuations are chosen to take spatial discontinuities into account.

The outline of the paper is as follows: first, the general form of the space–time entropy stable discontinuous
Galerkin methods for solving (1.1) is described. Next, the discrete entropy inequality is proved. In Sect. 4 these
methods are applied to the 1D and 2D two-layer shallow water equations and the accuracy and the convergence
properties of the scheme are investigated. Finally, some conclusions are drawn.

2. The space–time DG scheme

In the following, we specify how the space–time DG formulation of [17, 18] for conservation laws can be
adapted to non-conservative systems. We start with the definition of the space–time mesh.

2.1. The mesh

At the nth time level tn, we denote the time step as ∆tn = tn+1 − tn and the update time interval as
In = [tn, tn+1). For simplicity, we assume that the spatial domain Ω ⊂ Rd is polyhedral and divide it into a
triangulation T , i.e. a set of open convex polyhedra K ⊂ Rd with plane faces. Furthermore, we assume mesh
regularity [21]. For a generic element (cell) K, we denote

∆xK = diam(K),

N (K) = {K ′ ∈ T : K ′ 6= K ∧measd−1(K ∩K ′) > 0}.

The mesh width of the triangulation is ∆x(T ) = maxK ∆xK . A generic space–time element is the prism:

K × In.

We also assume that there exists a constant C > 0 such that (1/C)∆x ≤ ∆tn ≤ C∆x for all time levels n.

2.2. Variational formulation

Following [2, 17, 18, 28], we approximate the equivalent representation of the non-conservative system (1.7)
by a DG method. On a given triangulation T with mesh width ∆x, we seek entropy variables

V∆x ∈ Vp = (Pp(Ω× [0, T ]))m

= {W ∈
(
L1(Ω× [0, T ])

)m
: W|K×In is a polynomial of degree p in each component}, (2.1)

such that the following quasilinear variational form is satisfied for each W∆x ∈ Vp:

B(V∆x,W∆x) := BDG(V∆x,W∆x) + BSD(V∆x,W∆x) + BSC(V∆x,W∆x) = 0. (2.2)
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It consists of three parts, which we will describe in the following.

2.3. The DG quasilinear form

Following [9], the DG form for non-conservative systems is based on fluctuations rather than on numerical
fluxes: a first-order path-conservative method for (1.1) is given by

Un+1
K = Un

K −
∆tn

|K|
∑

K′∈N (K)

|∂K,K′ |D−(Un
K ,U

n
K′ ; νKK′). (2.3)

Here Un
K is an approximation of the average of the solution at the element K at time tn, |K| and |∂K,K′ |

represent the Lebesgue measures of the element K in Rd and of its intersection with K ′ in Rd−1. The so-called
fluctuations D− satisfy

D−(U,U; ν) = 0, (2.4)

and the path consistency condition

D−(U−,U+; ν) + D+(U−,U+; ν) =
∫ 1

0

d∑
k=1

Ak(Φ(s; U−,U+))∂sΦ(s; U−,U+)νkds, (2.5)

where Φ : [0, 1]× Rm × Rm → Rm is the chosen family of paths, with the definition

D+(U−,U+; ν) = D−(U+,U−;−ν). (2.6)

Notice that (2.5) is a formal consistency condition related to the chosen family of paths.
The fluctuations are assumed to be functions of the entropy variables and to satisfy:

〈V−,D−(V−,V+; ν)〉+ 〈V+,D+(V−,V+; ν)〉 =
d∑
k=1

(Qk(V+)−Qk(V−))νk, (2.7)

where the notation

D±(V−,V+; ν) = D±(U(V−),U(V+); ν), Qk(V±) = Qk(U(V±)), (2.8)

has been used for simplicity. This is the key requirement on the form of the fluctuations that will enable us to
prove the entropy stability. In [9] the existence of fluctuations satisfying (2.7) for any family of paths has been
shown.

The condition (2.7) will not lead to a sufficient amount of numerical diffusion. Therefore, the fluctuations are
supplemented with a diffusion operator

D(V−,V+; ν) = D−(V−,V+; ν)− 1
2
R(V−,V+; ν)(V+ −V−), (2.9)

where the numerical viscosity matrix R(V−,V+; ν) is assumed to be positive and to satisfy the symmetry
property

R(V−,V+; ν) = R(V+,V−;−ν). (2.10)
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For instance, a Rusanov type diffusion term can be used, which is given by

R(V−,V+; ν) = εmax{|λmax(V−; ν)| , |λmax(V+; ν)|}UV
(
V
)
, (2.11)

where λmax(U; ν) is the maximal wave speed in the direction of ν, i.e. the largest (in amplitude) eigenvector of
the matrix:

A(U, ν) =
d∑
k=1

νkA
k(U).

The form BDG is then given by

BDG(V∆x,W∆x) =
∑
n,K

∫
In

∫
K

(
−
〈
U(V∆x),W∆x

t

〉
+

d∑
k=1

〈
Ak(V∆x)V∆x

xk
,W∆x

〉)
dxdt

+
∑
n,K

∫
K

〈
U(V∆x

n+1,−,V
∆x
n+1,+),W∆x

n+1,−
〉

dx−
∑
n,K

∫
K

〈
U(V∆x

n,−,V
∆x
n,+),W∆x

n,+

〉
dx

+
∑
n,K

∑
K′∈N (K)

∫
In

∫
∂KK′

〈
D(V∆x

K,−,V
∆x
K,+; νKK′),W∆x

K,−
〉

dσ(x) dt. (2.12)

It can be obtained as follows: multiply the non-conservative system (1.1) with a test function, integrate over
space and time, and perform an integration by parts in the temporal direction. The fluxes at the temporal
element boundary are replaced by numerical fluxes U, and at the spatial element boundaries, the fluctuations
D are introduced to take into account the discontinuities of the test functions: notice that, according to (2.4),
they vanish when the functions are continuous at the edge of an element.

Upwind fluxes are used for the temporal numerical fluxes

U(V−,V+) = U(V−). (2.13)

This ensures causality and allows us to march in time.
Inserting the numerical fluxes and the fluctuations into the form BDG (2.12), we obtain

BDG(V∆x,W∆x) =
∑
n,K

∫
In

∫
K

(
−
〈
U(V∆x),W∆x

t

〉
+

d∑
k=1

〈
Ak(V∆x)V∆x

xk
,W∆x

〉)
dxdt

+
∑
n,K

∫
K

〈
U(V∆x

n+1,−),W∆x
n+1,−

〉
dx−

∑
n,K

∫
K

〈
U(V∆x

n,−),W∆x
n,+

〉
dx

+
∑
n,K

∑
K′∈N (K)

∫
In

∫
∂KK′

(〈
D−(V∆x

K,−,V
∆x
K,+; νkKK′),W

∆x
K,−

〉)
dσ(x) dt

− 1
2

∑
n,K

∑
K′∈N (K)

∫
In

∫
∂KK′

〈
R̂(V∆x

K,+ −V∆x
K,−),W∆x

K,−

〉
dσ(x) dt, (2.14)

where

R̂ = R(V−,V+; ν).



1002 A. HILTEBRAND ET AL.

Remark 2.1. If this method is applied to a system which is actually conservative, i.e. Ak(V) = FkV(V), the
DG form reduces to the one presented in [17, 18] for conservation laws (with a potentially different entropy-
conservative flux). Indeed, the consistency condition (2.5) leads to the equality

D−(U−,U+; ν) + D+(U−,U+; ν) = Fν(U+)− Fν(U−),

where

Fν(U) =
d∑
k=1

Fk(U)νk.

Then, if we define

F∗(U−,U+; ν) = Fν(U+)−D+(U−,U+; ν), (2.15)

or, equivalently,

F∗(U−,U+; ν) = D−(U−,U+; ν) + Fν(U−), (2.16)

then F∗ is a consistent numerical flux due to condition (2.4). Moreover, condition (2.7) implies that this is an
entropy-conservative numerical flux (see [9]). Using (2.16) and integration by parts in (2.14), the form BDG can
be written in the conservative form

BDG(V∆x,W∆x) =−
∑
n,K

∫
In

∫
K

(〈
U(V∆x),W∆x

t

〉
+

d∑
k=1

〈
Fk(V∆x),W∆x

xk

〉)
dxdt

+
∑
n,K

∫
K

〈
U(V∆x

n+1,−),W∆x
n+1,−

〉
dx−

∑
n,K

∫
K

〈
U(V∆x

n,−),W∆x
n,+

〉
dx

+
∑
n,K

∑
K′∈N (K)

∫
In

∫
∂KK′

〈
F∗(V∆x

K,−,V
∆x
K,+; νKK′),W∆x

K,−
〉

dσ(x) dt

− 1
2

∑
n,K

∑
K′∈N (K)

∫
In

∫
∂KK′

〈
R̂(V∆x

K,+ −V∆x
K,−),W∆x

K,−

〉
dσ(x) dt,

where notation (2.8) and

Fk(V) = Fk(U(V)), F∗(V−,V+; ν) = F∗(U(V−),U(V+); ν),

have been used.

2.4. Streamline diffusion operator

The DG formulation so far only adds diffusion across the boundary of each space–time element. There is
yet no stabilizing diffusion inside each element in order to damp down unphysical intra-element oscillations.
Therefore, a streamline diffusion operator is added in [17], which can easily be adapted to non-conservative
systems. The equation residual (or intra-element residual) is now

Res := U(V∆x)t +
d∑
k=1

Ak(V∆x)V∆x
xk
. (2.17)
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The streamline diffusion operator is then given by

BSD(V∆x,W∆x) =
∑
n,K

∫
In

∫
K

〈(
UV(V∆x)W∆x

t +
d∑
k=1

Ak(V∆x)W∆x
xk

)
,DSDRes

〉
dxdt. (2.18)

The only difference with the conservative case is that, here, the flux Jacobians are replaced by the matrices Ak.
The scaling matrix

DSD := CSD∆tnU−1
V (V∆x), (2.19)

with a positive constant CSD remains unchanged.

2.5. Shock-capturing operator

The experience in the case of equations in the conservation form (1.3) shows that streamline diffusion does
not suffice in controlling intra-cell oscillations: see [17] and references therein. Therefore, an additional shock
capturing operator is employed, which is similar to the one in [2], and can be easily adapted from the one in
[17]. It is given by

BSC(V∆x,W∆x) =
∑
n,K

∫
In

∫
K

DSC
n,K

(〈
W∆x

t , ŨVV∆x
t

〉
+

d∑
k=1

∆xK2

(∆tn)2

〈
W∆x

xk
, ŨVV∆x

xk

〉)
dxdt, (2.20a)

with ŨV = UV(Ṽn,K) for brevity and

Ṽn,K =
1

meas(In ×K)

∫
In

∫
K

V∆x(x, t)dxdt,

being the cell average. The scaling factor is

DSC
n,K =

∆tnCSCResn,K + (∆tn)
1
2 C̄SCBResn,K√∫

In

∫
K

(〈
V∆x
t , ŨVV∆x

t

〉
+

d∑
k=1

∆xK2

(∆tn)2

〈
V∆x
xk
, ŨVV∆x

xk

〉)
dxdt+ ε̄

,
(2.20b)

with ε̄ := |K| 12 (∆tn)
−1
2

(
∆x

diam(Ω)

)θ
and θ ≥ 1/2 (chosen as 1). It relies on the integrated intra-element residual

Resn,K :=

√∫
In

∫
K

〈
Res,U−1

V (V∆x)Res
〉

dxdt, (2.20c)

and on the integrated boundary residual

BResn,K :=

(∫
K

‖U(V∆x
n,−)−U(V∆x

n,+)‖2
U−1
V (V∆x

n,+)
dx

+
∑
K′

∫
In

∫
∂KK′

∆tn

∆xK

∥∥D(V∆x
K,−,V

∆x
K,+; νKK′)

∥∥2

U−1
V (V∆x

K,−)
dσ dt

) 1
2

. (2.20d)
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3. Entropy stability

We consider the entropy stability of the shock-capturing streamline diffusion space–time DG scheme below.
Although the proof follows the steps of the corresponding results for systems of conservation laws in [18], it is
fully developed here for the sake of completeness.

Theorem 3.1. Consider the non-conservative system (1.1) with a uniformly convex entropy function S and
entropy flux functions Qk (1 ≤ k ≤ d). For simplicity, assume that the exact and approximate solutions have
compact support inside the spatial domain Ω. Let the final time be denoted by tN . Then, the streamline diffusion
shock-capturing discontinuous Galerkin scheme (2.2) approximating (1.1) is entropy-stable, i.e. the approximate
solutions U∆x = U(V∆x) satisfy∫

Ω

S(U∆x(x, tN− ))dx ≤
∫

Ω

S(U∆x(x, t0−))dx. (3.1)

Proof. To prove entropy stability, we proceed to show a series of claims.
Claim 1: The streamline diffusion operator (2.18) is positive, i.e.

BSD(V∆x,V∆x) ≥ 0. (3.2)

Setting W∆x = V∆x in (2.18) (notice that V∆x ∈ Vp and thus it is an admissible test function) we obtain

BSD(V∆x,V∆x) =
∑
n,K

∫
In

∫
K

〈(
UV(V∆x)V∆x

t +
d∑
k=1

Ak(V∆x)V∆x
xk

)
,DSDRes

〉
dx dt

=
∑
n,K

∫
In

∫
K

〈(
U(V∆x)t +

d∑
k=1

Ak(V∆x)V∆x
xk

)
,DSDRes

〉
dxdt

=
∑
n,K

∫
In

∫
K

〈
Res,DSDRes

〉
dxdt (from (2.17)),

≥CCSD∆x
∑
n,K

∫
In

∫
K

‖Res‖2dx dt

≥0. (3.3)

Claim 2: The shock-capturing operator (2.20) is positive, i.e.:

BSC(V∆x,V∆x) ≥ 0. (3.4)

First, we observe that the uniform convexity of the entropy function S implies that the matrices UV and U−1
V

are positive definite. This implies that the term DSC
n,K is real and positive.

We set as test function W∆x = V∆x in (2.20a) and obtain

BSC(V∆x,V∆x) =
∑
n,K

∫
In

∫
K

DSC
n,K

(〈
V∆x
t , ŨVV∆x

t

〉
+

d∑
k=1

∆x2
K

(∆tn)2

〈
V∆x
xk
, ŨVV∆x

xk

〉)
dxdt

≥
∑
n,K

λ1D
SC
n,K

∫
In

∫
K

‖∇xtV∆x‖2dx dt

≥ 0. (3.5)
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Here, λ1 is the smallest eigenvalue of the positive definite matrix UV. If UV is uniformly positive definite, one
obtains λ1 > 0.
Claim 3: Define the spatial part of the DG form BDG (2.14) as

BsDG(V∆x,W∆x) =
∑
n,K

∫
In

∫
K

d∑
k=1

〈
Ak(V∆x)V∆x

xk
,W∆x

〉
dx dt

+
∑

n,K,K′

∫
In

∫
∂KK′

〈
D−(V∆x

K,−,V
∆x
K,+; νKK′),W∆x

K,−
〉

dσ dt

− 1
2

∑
n,K,K′

∫
In

∫
∂KK′

〈
W∆x

K,−, R̂(V∆x
K,+ −V∆x

K,−)
〉

dσ dt. (3.6)

We claim that

BsDG(V∆x,V∆x) ≥ 0. (3.7)

From the compatibility of the entropy flux (1.4), we obtain〈
Ak(V)Vxk ,V

〉
= Qk(V)VVxk = Qk(V)xk , k = 1, . . . , d.

Therefore,

∑
n,K

∫
In

∫
K

d∑
k=1

〈
Ak(V∆x)V∆x

xk
,V∆x

〉
dxdt =

∑
n,K

∫
In

∫
K

d∑
k=1

Qk(V∆x)xkdxdt

=
∑

n,K,K′

∫
In

∫
∂KK′

d∑
k=1

Qk(V∆x
K,−)νkKK′dσ dt.

Using the above identities, we obtain

BsDG(V∆x,V∆x) =
∑
n,K

∫
In

∫
K

d∑
k=1

〈
Ak(V∆x)V∆x

xk
,V∆x

〉
dx dt

+
∑

n,K,K′

∫
In

∫
∂KK′

〈
D−(V∆x

K,−,V
∆x
K,+; νKK′),V∆x

K,−
〉

dσ dt.

− 1
2

∑
n,K,K′

∫
In

∫
∂KK′

〈
V∆x
K,−, R̂(V∆x

K,+ −V∆x
K,−)

〉
dσ dt

=
∑

n,K,K′

∫
In

∫
∂KK′

(〈
D−(V∆x

K,−,V
∆x
K,+; νKK′),V∆x

K,−
〉

+
d∑
k=1

Qk(V∆x
K,−)νkKK′

)
dσ dt

− 1
2

∑
n,K,K′

∫
In

∫
∂KK′

〈
V∆x
K,−, R̂(V∆x

K,+ −V∆x
K,−)

〉
dσ dt

=
1
2

∑
n,K,K′

∫
In

∫
∂KK′

(〈
D−(V∆x

K,−,V
∆x
K,+; νKK′),V∆x

K,−
〉

+
d∑
k=1

Qk(V∆x
K,−)νkKK′

)
dσ dt
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+
1
2

∑
n,K,K′

∫
In

∫
∂KK′

(〈
D−(V∆x

K,−,V
∆x
K,+; νKK′),V∆x

K,−
〉

+
d∑
k=1

Qk(V∆x
K,−)νkKK′

)
dσ dt

− 1
4

∑
n,K,K′

∫
In

∫
∂KK′

〈
V∆x
K,−, R̂(V∆x

K,+ −V∆x
K,−)

〉
dσ dt

− 1
4

∑
n,K,K′

∫
In

∫
∂KK′

〈
V∆x
K,−, R̂(V∆x

K,+ −V∆x
K,−)

〉
dσ dt. (3.8)

Changing the roles of K and K ′ in the second and fourth summands and rewriting the arguments of the sums,
the above expression reduces to

BsDG(V∆x,V∆x)

=
1
2

∑
n,K,K′

∫
In

∫
∂KK′

(〈
D−(V∆x

K,−,V
∆x
K,+; νKK′),V∆x

K,−
〉

+
〈
D+(V∆x

K,−,V
∆x
K,+; νKK′),V∆x

K,+

〉
−

d∑
k=1

(Qk(V∆x
K,+)−Qk(V∆x

K,−))νkKK′
)

︸ ︷︷ ︸
=0 from (2.7)

dσ dt

+
1
4

∑
n,K,K′

∫
In

∫
∂KK′

〈
V∆x
K,+ −V∆x

K,−, R̂(V∆x
K,+ −V∆x

K,−)
〉

dσ dt

=
1
4

∑
n,K,K′

∫
In

∫
∂KK′

〈
V∆x
K,+ −V∆x

K,−, R̂(V∆x
K,+ −V∆x

K,−)
〉

dσ dt

≥ 0 (as R̂ is positive). (3.9)

Claim 4: Define the temporal part of the DG form BDG (2.14) as

BtDG(V∆x,W∆x) =−
∑
n,K

∫
In

∫
K

〈
U(V∆x),W∆x

t

〉
dxdt

+
∑
n,K

∫
K

〈
U(V∆x

n+1,−),W∆x
n+1,−

〉
dx−

∑
n,K

∫
K

〈
U(V∆x

n,−),W∆x
n,+

〉
dx. (3.10)

We claim that

BtDG(V∆x,V∆x) ≥
∫

Ω

S(U(V∆x(x, tN− )))dx−
∫

Ω

S(U(V∆x(x, t0−)))dx. (3.11)

Setting W∆x = V∆x in (3.10), we obtain

BtDG(V∆x,V∆x) =−
∑
n,K

∫
In

∫
K

〈
U(V∆x),V∆x

t

〉
dxdt

+
∑
n,K

∫
K

〈
U(V∆x

n+1,−),V∆x
n+1,−

〉
dx−

∑
n,K

∫
K

〈
U(V∆x

n,−),V∆x
n,+

〉
dx

=
∑
n,K

∫
In

∫
K

〈
U(V∆x)t,V∆x

〉
dxdt (integrating by parts)
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−
∑
n,K

∫
K

〈
U(V∆x

n+1,−),V∆x
n+1,−

〉
dx+

∑
n,K

∫
K

〈
U(V∆x

n,+),V∆x
n,+

〉
dx

+
∑
n,K

∫
K

〈
U(V∆x

n+1,−),V∆x
n+1,−

〉
dx−

∑
n,K

∫
K

〈
U(V∆x

n,−),V∆x
n,+

〉
dx

=
∑
n,K

∫
In

∫
K

S(U(V∆x))tdx dt (definition of entropy variables)

−
∑
n,K

∫
K

〈(
U(V∆x

n,−)−U(V∆x
n,+)

)
,V∆x

n,+

〉
dx

=
∑
n,K

∫
K

(
S(U(V∆x

n+1,−))− S(U(V∆x
n,−))

)
dx

+
∑
n,K

∫
K

(
S(U(V∆x

n,−))− S(U(V∆x
n,+))

)
dx

−
∑
n,K

∫
K

〈(
U(V∆x

n,−)−U(V∆x
n,+)

)
,V∆x

n,+

〉
dx.

Following [2, 28], we define V(θ) = V∆x
n,+ + θ(V∆x

n,− −V∆x
n,+) = θV∆x

n,− + (1− θ)V∆x
n,+ and compute

S(U(V∆x
n,−))− S(U(V∆x

n,+))

=
∫ 1

0

d

dθ

(
S(U(V(θ)))

)
dθ

=
∫ 1

0

〈SU(U(V(θ)))︸ ︷︷ ︸
V(θ)

,UV(θ) Vθ(θ)︸ ︷︷ ︸
V∆x
n,−−V∆x

n,+

〉dθ

=
∫ 1

0

〈V∆x
n,+,UV(θ)Vθ(θ)〉dθ +

∫ 1

0

θ〈(V∆x
n,− −V∆x

n,+),UV(θ)(V∆x
n,− −V∆x

n,+)〉dθ

= 〈V∆x
n,+,U(V∆x

n,−)−U(V∆x
n,+)〉+

∫ 1

0

θ〈(V∆x
n,− −V∆x

n,+),UV(θ)(V∆x
n,− −V∆x

n,+)〉dθ. (3.12)

Thus, we obtain

BtDG(V∆x,V∆x) =
∫

Ω

S(U(V∆x(x, tN− )))dx−
∫

Ω

S(U(V∆x(x, t0−)))dx

+
∑
n,K

∫
K

∫ 1

0

θ
〈
(V∆x

n,− −V∆x
n,+),UV(θ)(V∆x

n,− −V∆x
n,+)

〉
dθdx

≥
∫

Ω

S(U(V∆x(x, tN− )))dx−
∫

Ω

S(U(V∆x(x, t0−)))dx

+
∑
n,K

λ1

2

∫
K

‖V∆x
n,− −V∆x

n,+‖2dx

≥
∫

Ω

S(U(V∆x(x, tN− )))dx−
∫

Ω

S(U(V∆x(x, t0−)))dx. (3.13)
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The proof is finished by combining the four claims:

BDG(V∆x,V∆x) + BSD(V∆x,V∆x) + BSC(V∆x,V∆x) = 0

⇒ BtDG(V∆x,V∆x) + BsDG(V∆x,V∆x) + BSD(V∆x,V∆x) + BSC(V∆x,V∆x) = 0

⇒
∫

Ω

S(U(V∆x(x, tN− )))dx−
∫

Ω

S(U(V∆x(x, t0−)))dx ≤ 0

⇒
∫

Ω

S(U(V∆x(x, tN− )))dx ≤
∫

Ω

S(U(V∆x(x, t0−)))dx. �

Remark 3.2. Observe that Theorem 3.1 implies the stability of the total entropy only for the specific entropy
pair chosen to design the entropy stable fluctuations.

4. Numerical experiments

In this section, the method (2.2) is applied to several test problems. We will approximate the two-layer
shallow water equations as a prototypical example of non-conservative hyperbolic systems. We start with one-
dimensional problems and, for simplicity, the notational reference to the dimension is suppressed, e.g. we will
write A instead of A1. The parameters in the scheme are set to CSD = 10, CSC = 1, and C̄SC = 0 and a CFL
number of 0.5 is applied. The shock-capturing streamline diffusion space–time DG method leads to a system of
nonlinear algebraic equations at each time step. These equations are solved with a damped Newton method as
described in [17, 18].

4.1. Two-layer shallow water equations

As a first example, we consider the two-layer shallow water equations that model the flow of two superposed
immiscible fluid layers (see [9]):

(h1)t + (h1u1)x = 0,
(h2)t + (h2u2)x = 0,

(h1u1)t +
(

1
2gh

2
1 + h1u

2
1

)
x

= −gh1(h2)x,

(h2u2)t +
(

1
2gh

2
2 + h2u

2
2

)
x

= −gh2(rh1)x. (4.1)

Here, h1 and h2 represent the thickness of the layers, while u1 and u2 represent their depth-averaged velocities,
g is the gravitational constant, and r is the ratio of the layer densities ρ1 and ρ2.

In order to write (4.1) in the nonconservative form (1.1), we define

U =


h1

h2

h1u1

h2u2

 , A(U) =


0 0 1 0
0 0 0 1

gh1 − u2
1 gh1 2u1 0

rgh2 gh2 − u2
2 0 2u2

 . (4.2)

An entropy pair for the two-layer shallow water equations is given by

S(U) =
2∑
j=1

ρj
(

1
2hju

2
j + 1

2gh
2
j

)
+ gρ1h1h2,
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Q(U) =
2∑
j=1

ρj
(

1
2hju

2
j + gh2

j

)
uj + gρ1h1h2(u1 + u2). (4.3)

Thus, we reformulate (4.1) for the computation in terms of the entropy variables

V =


ρ1(− 1

2u
2
1 + g(h1 + h2))

ρ2(− 1
2u

2
2 + gh2) + ρ1gh1

ρ1u1

ρ2u2

 . (4.4)

We use fluctuations that are based on the scheme presented in [9]. They are given by

D−(V−,V+; ν) = (F∗(V−,V+)− F(V−) + B(V−,V+))ν, (4.5)

where ν = ±1 and

F∗(V−,V+) =


h1u1

h2u2
1
2gh

2
1 + h1u1

2

1
2gh

2
2 + h2u2

2

 , F(V) =


h1u1

h2u2
1
2gh

2
1 + h1u

2
1

1
2gh

2
2 + h2u

2
2

 , B(V−,V+) =


0
0

g
2h1[[h2]]
gr
2 h2[[h1]]

 , (4.6)

where

w =
w− + w+

2
, [[w]] = w+ − w−,

for any variable w. These fluctuations satisfy the consistency conditions (2.4) and (2.5) for the family of straight
segments (1.11), as well as the entropy conservative condition (2.7). Moreover, the Rusanov-type diffusion (2.11)
is added to the fluctuations.

4.1.1. Smooth solution

We start with a smooth solution to test the high-order accuracy of the schemes. For this problem, we set
g = 1/2 and r = 0.9. The initial data is

h1 = 1 + 0.5 exp(−(5x)2), u1 = 0,

h2 = 1 + 0.5 exp(−(5x)2), u2 = 0, (4.7)

and we compute on the domain [−1, 1] up to the time T = 0.2 so that the solution remains smooth. The reference
solution was computed on a grid with 320 000 cells using centered finite differences and SSP RK2.

Figure 1 depicts the convergence for various polynomial degrees p for scheme (2.2). A convergence rate
of almost p + 1 is observed, demonstrating the high order of accuracy of the scheme. Moreover, even on the
coarsest meshes, the amplitude of the error is much smaller for higher polynomial degrees, clearly indicating
the advantage of using high order methods over lower order methods, at least in this smooth test case.

4.1.2. Riemann problem

Next, we investigate the numerical approximation of weak solutions of the two-layer shallow water equations.
As discussed in the introduction, the definition of weak solutions depends explicitly on the choice of the family
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Figure 1. Order of convergence of the scheme for the two-layer shallow water model with a
smooth solution.

of paths that connects the left and right states across a discontinuity. A particularly good choice of path will
correspond to a (reparametrization of) the viscous profile for the underlying parabolic system.

Following [9] and references therein, we consider (4.1) as the vanishing-viscosity limit of the system:

(h1)t + (h1u1)x = 0,
(h2)t + (h2u2)x = 0,

(h1u1)t +
(

1
2gh

2
1 + h1u

2
1

)
x

= −gh1(h2)x + ε(h1(u1)x)x,

(h2u2)t +
(

1
2gh

2
2 + h2u

2
2

)
x

= −gh2(rh1)x + ε(h2(u2)x)x. (4.8)

To write (4.8) in the viscous form (1.10) we must define

R(U) =


0 0 0 0
0 0 0 0
−u1 0 1 0

0 −u2 0 1

 . (4.9)

Let us consider the Riemann problem with initial data given by

Ul =


1.376
0.6035
0.04019
−0.04906

 , Ur =


0.37
1.593
−0.1868
0.1742

 . (4.10)

As in [9], we consider g = 9.81 and r = 0.98. The spatial domain is the interval [0, 1] with the initial discontinuity
located at x = 0.5. The flow is evolved up to the time T = 1. The reference solution was computed by discretising
the equation for the viscous profiles corresponding to the regularization in (4.8): see Appendix A for details.
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Figure 2 shows the numerical approximation of h2 (that corresponds to the interface between the two layers)
for different values of p and number of cells. These approximations are compared against the reference solution.
Notice that, for p = 0 (piecewise constant basis functions), the Rusanov diffusion operator leads to very smeared
profiles. This is due to the fact that, for the chosen values of the constants, the system possess two different
pair of eigenvalues: the so-called external ones that correspond to barotropic waves, and the internal ones, that
correspond to baroclinic waves. The external eigenvalues are much larger in amplitude than the internal ones,
thus the slower baroclinic waves are more smeared by the numerical viscosity. The waves shown in Figure 2 are
internal: the external waves have exited the domain before t = 1. We observe that, for p = 1 and p = 2, the
intermediate state is approximated quite well, albeit with some oscillations in the case p = 2. In the zooms shown
in figures (d), (e), and (f) the convergence error can be clearly observed in the intermediate state. However, this
error decreases with the order of the numerical method.

We remark that the oscillations appearing in Figure 2 are small (they are hardly visible on the non-zoomed
image). Similar oscillations appear in the case of systems of conservation laws (see [18]) although they are of
slightly lower amplitude in that case.

4.2. Two-layer shallow water equations in 2D

The two-layer shallow-water equations in two space dimensions are

(h1)t + (h1u1)x + (h1v1)y = 0,
(h2)t + (h2u2)x + (h2v2)y = 0,

(h1u1)t +
(

1
2gh

2
1 + h1u

2
1

)
x

+ (h1u1v1)y = −gh1(h2)x,

(h2u2)t +
(

1
2gh

2
2 + h2u

2
2

)
x

+ (h2u2v2)y = −gh2(rh1)x,

(h1v1)t + (h1u1v1)x +
(

1
2gh

2
1 + h1v

2
1

)
y

= −gh1(h2)y,

(h2v2)t + (h2u2v2)x +
(

1
2gh

2
2 + h2v

2
2

)
y

= −gh2(rh1)y. (4.11)

Here again, h1 and h2 represent the thicknesses of the upper and lower layer, respectively; ui and vi are the
velocities of the ith layer in x and y direction, respectively; g is the gravitational constant; and r = ρ1/ρ2 the
density ratio of the layers.

In order to write (4.11) in the nonconservative form (1.1), we define

U =
(
h1, h2, h1u1, h2u2, h1v1, h2v2

)T
,

A1(U) =


0 0 1 0 0 0
0 0 0 1 0 0

gh1 − u2
1 gh1 2u1 0 0 0

rgh2 gh2 − u2
2 0 2u2 0 0

−u1u2 0 v1 0 u1 0
0 −u2v2 0 v2 0 u2

 , A2(U) =


0 0 0 0 1 0
0 0 0 0 0 1

−u1u2 0 v1 0 u1 0
0 −u2v2 0 v2 0 u2

gh1 − v2
1 gh1 0 0 2v1 0

rgh2 gh2 − v2
2 0 0 0 2v2

 .

(4.12)

An entropy pair for the two-layer shallow water equations is given by

S(U) =
∑2
j=1 ρj

(
1
2hju

2
j + 1

2hjv
2
j + 1

2gh
2
j

)
+ gρ1h1h2,

Q1(U) =
∑2
j=1 ρj

(
1
2hju

2
j + 1

2hjv
2
j + gh2

j

)
uj + gρ1h1h2(u1 + u2),

Q2(U) =
∑2
j=1 ρj

(
1
2hju

2
j + 1

2hjv
2
j + gh2

j

)
vj + gρ1h1h2(v1 + v2). (4.13)
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Figure 2. Approximation of h2 for the two-layer shallow water equation with initial conditions
(4.10) at time t = 1 obtained with the DG+SD+SC scheme using different degrees of polynomial
p and number of cells Nc.
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Thus, system (4.11) is written in terms of the entropy variables

V =
(
ρ1(− 1

2u
2
1 − 1

2v
2
1 + g(h1 + h2)), ρ2(− 1

2u
2
2 − 1

2v
2
2 + gh2) + ρ1gh1, ρ1u1, ρ2u2, ρ1v1, ρ2v2

)T
. (4.14)

The entropy-conservative fluctuations are given now by

D−(V−,V+; ν) =
2∑
k=1

(Fk,∗(V−,V+)− Fk(V−) + Bk(V−,V+))νk, (4.15)

where

F1,∗(V−,V+) =



h1u1

h2u2
1
2gh

2
1 + h1u1

2

1
2gh

2
2 + h2u2

2

h1u1 v1

h2u2 v2


, F1(V) =


h1u1

h2u2
1
2gh

2
1 + h1u

2
1

1
2gh

2
2 + h2u

2
2

h1u1v1

h2u2v2

 , B1(V−,V+) =


0
0

g
2h1[[h2]]
gr
2 h2[[h1]]

0
0

 ,

F2,∗(V−,V+) =



h1v1

h2v2

h1u1 v1

h2u2 v2
1
2gh

2
1 + h1v1

2

1
2gh

2
2 + h2v2

2


, F2(V) =


h1v1

h2v2

h1u1v1

h2u2v2
1
2gh

2
1 + h1v

2
1

1
2gh

2
2 + h2v

2
2

 , B2(V−,V+) =


0
0
0
0

g
2h1[[h2]]
gr
2 h2[[h1]]

 . (4.16)

4.3. Vortex advection

We consider the following smooth solution introduced in [13] to study the convergence properties:

h1 =
v2

10s2 exp(2s1)(1− exp(−2s1r
2))− v2

20s1 exp(2s2)(1− exp(−2s2r
2)) + 4h10gs1s2(1− ρ)

4g(1− ρ)s1s2
,

h2 =
v2

20s1 exp(2s2)(1− exp(−2s2r
2))− ρv2

10s2 exp(2s1)(1− exp(−2s1r
2)) + 4h20gs1s2(1− ρ)

4g(1− ρ)s1s2
,

u1 = ū− vθ1 sin θ, v1 = v̄ + vθ1 cos θ,

u2 = ū− vθ2 sin θ, v2 = v̄ + vθ2 cos θ, (4.17)

where

vθ1 = rv10 exp(s1(1− r2)), vθ2 = rv20 exp(s2(1− r2)),

r =
√

(x− ūt− xc)2 + (y − v̄t− yc)2,

cos θ = (x− ūt− xc)/r, sin θ = (y − v̄t− yc)/r. (4.18)

The parameters are given by:

xc = 5, yc = 5, ū = 5, v̄ = 5, s1 = 1
2 , s2 = 1,

v10 = 3
4 , v20 = 1

10 , h10 = 1, h20 = 1, g = 10, ρ = ρ1
ρ2

= 0.9. (4.19)
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Figure 3. Unstructured mesh used for the vortex advection problem. Left: 828 spatial cells
and right: 3312 spatial cells.

Figure 4. Convergence of the scheme for the vortex advection problem.

The solutions represents the advection of a vortex, whose initial position is given by (xc, yc), with velocity (ū, v̄).
h10 and h20 are the heights of the layer at the vortex, and v10 and v20 is the angular velocity around the vortex.
We consider the domain [0, 10]2 and compute up to the time T = 0.5.

We run the DG+SD+SC scheme on a sequence of unstructured grids of the form shown in Figure 3. Figure 4
shows the convergence for various polynomial degrees p for scheme (2.2). We can observe that the schemes
achieve the order of accuracy of p+ 1, even on these unstructured grids. In addition, a higher polynomial degree
p leads also to a lower amplitude of error, even on coarse meshes.
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Figure 5. Approximate solutions for the radial dam break problem with p = 1 andNc = 53 760.

Figure 6. Approximate solutions for the radial dam break problem with p = 2 andNc = 13 440.

4.4. Radial dam break problem

We consider the following radial dam break problem, which leads only to small fast external waves, but large
amplitude yet slow moving internal waves. The domain is [−1, 1]2. The initial data is as follows:

h1 =

{
1.376, r ≤ r0,

0.37, r > r0,
h2 =

{
0.6035, r ≤ r0,

1.593, r > r0,
(4.20)

where r =
√
x2 + y2 and r0 = 0.4. All the initial velocities are zero: u1 = u2 = v1 = v2 = 0. We compute up to

the time T = 0.4, by which the external waves have left the domain.
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Figure 7. Slices in x direction of the approximate solutions for the radial dam break problem
with p = 1 and Nc = 53 760 as well as p = 2 and Nc = 13 440.

Figures 5 and 6 show the approximate heights of both layers for p = 1 and p = 2, respectively, obtained with
the DG+SD+SC scheme using an unstructured triangular mesh, similar in form to the grids shown in Figure 3.
In addition, Figure 7 shows slices of these solutions in the x direction. We can observe that the structure of
the solution is nicely approximated even though the discontinuities are slightly smeared as the meshes are not
very fine. In particular, the solutions are radially symmetric, i.e. no distortion due to the unstructured mesh is
visible. Furthermore, we can see the advantage of a higher polynomial degree as the results are very comparable
even though only 13 440 cells are used for p = 2, where as the p = 1 results are based on a finer grid with 53 760
cells.

5. Conclusion

This paper deals with the extension to multidimensional nonconservative hyperbolic systems (1.1) of the
space–time discontinuous Galerkin streamline diffusion shock capturing method introduced in [17, 18]. In this
method, the equation was formulated in entropy variables and an entropy stable numerical flux was used to deal
with the discontinuities of the test functions at the boundaries of the elements: those are the main ingredients to
prove that a discrete entropy inequality is satisfied. In order to adapt the method to nonconservative systems,
the path-conservative entropy-stable fluctuations introduced in [9] are used to replace the role played by the
entropy-stable numerical flux. The discrete entropy inequality stands for the resulting method. Moreover, the
method has order p+ 1 of accuracy for smooth solutions, where p is the polynomial degree of the test functions
in the elements, as it has been shown in the numerical experiments.

The accurate approximation of the physically correct solutions of a nonconservative systems is a challeng-
ing problem. This is due to the fact that their weak solutions depend explicitly on the underlying small-scale
mechanisms like diffusion or dispersion. This dependency affects even to the very definition of weak solu-
tion, which is not unique: in order to fix the concept of weak solution the small-scale effects have to be
introduced, either by means of the choice of a family of paths, as it is done in the theory of [12] or,
equivalently, by considering the hyperbolic system as the vanishing-viscosity limit of a family of regularized
problems. In this latter case, the correct family of paths is given by the viscous profiles of the regularized
problems.
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Once the notion of weak solution has been set, the design of methods verifying that the limits of the numerical
solutions are weak solutions according to the prescribed definition is difficult, due to the small-scale effects
implicitly introduced at the numerical level which may be in disagreement with the physical ones. Due to this,
numerical methods in which this small-scale effects are not controlled may fail in converging to the correct weak
solutions, even if a formal consistency with their definition is imposed: see [7].

In [9] it has been shown that entropy stable numerical methods reduce in a significant way this lack of conver-
gence phenomenon, even if they are not consistent with the correct family of paths but with an approximated
one (as the straight-segments family) provided that the numerical viscosity is in good agreement with the viscous
terms of the regularized equations. Therefore, the numerical method presented here, which can be considered as
a high-order generalization of entropy-stable path-conservative methods were expected to inherit this property
and, moreover, to reduce the convergence error with the increasing accuracy. The numerical experiments shown
here confirm expectations.

Last but not least, we have proposed and checked an ansatz for computing reference solutions for Rie-
mann problems related to 1D nonconservative systems by numerically approaching the viscous profiles of the
regularized systems. This ansatz has been applied to the two-layer shallow-water system.

Appendix A. Computation of Riemann solutions for
non-conservative systems

We describe here the ansatz followed to find reference solutions for Riemann problems related to the one-
dimensional two-layer shallow water system. This ansatz can be applied to any nonconservative hyperbolic
system:

Ut +A(U)Ux = 0, (A.1)

with initial conditions

U(x, 0) =

{
Ul, x < 0,
Ur, x ≥ 0.

(A.2)

The system is supposed to be strictly hyperbolic and the characteristic fields are assumed to be either genuinely
nonlinear or linearly degenerate, so that the solution of the Riemann problems consists of N simple waves
(shocks, rarefactions, or contact discontinuities).

To fix the ideas, let us consider the case N = 2, i.e. U ∈ R2, and a Riemann problem whose solution is
composed by two shocks:

U(x, t) =


Ul, x < σ1t,

U∗, σ1t ≤ x < σ2t,

Ur, σ2t ≤ x,
(A.3)

where the shock speeds σ1 and σ2 as well as the intermediate state U∗ are unknown. If the system was
conservative, the following 4× 4 nonlinear system would have to be solved to find these unknowns:

σ1(U∗ −Ul) = F(U∗)− F(Ul),
σ2(Ur −U∗) = F(Ur)− F(U∗). (A.4)
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Now for the non-conservative case, (A.4) needs to be replaced by the generalized Rankine–Hugoniot conditions

σ1(U∗ −Ul) =
∫ 1

0

A(Φ(s; Ul,U∗))∂sΦ(s; Ul,U∗)ds,

σ2(Ur −U∗) =
∫ 1

0

A(Φ(s; U∗,Ur))∂sΦ(s; U∗,Ur)ds. (A.5)

If the family of paths is explicitly known, we have again a nonlinear system to solve. Nevertheless, if the family
of paths is implicitly given by the vanishing-viscosity limit of a regularized problem

Ut +A(U)Ux = ε(R(U)Ux)x, (A.6)

they are given by the viscous profiles as follows: recall that a travelling wave is a solution of (A.6) of the form

U(x, t) = ϕ

(
x− σt
ε

)
, (A.7)

satisfying the conditions:

lim
ξ→−∞

ϕ(ξ) = U−, lim
ξ→∞

ϕ(ξ) = U+, lim
ξ→−±∞

ϕ′(ξ) = 0. (A.8)

The viscous profile ϕ is thus the solution of the ODE system:

−σϕ′ +A(ϕ)ϕ′ − (R(ϕ)ϕ′)′ = 0, (A.9)

with the boundary conditions (A.8). By integrating (A.9) and taking into account (A.8) we obtain

σ(U+ −U−) =
∫ ∞
−∞

A(ϕ(ξ))ϕ′(ξ) dξ, (A.10)

which is the jump condition consistent with the viscous regularization of the problem. In other words, a pair of
states (U−,U+) can be linked by an admissible shock if there exists a viscous profile satisfying (A.9) and (A.8)
and, in this case, the path connecting them is, after a reparameterization, the viscous profile ϕ.

In most cases, the ODE system (A.9) cannot be explicitly computed and thus its solution has to be numerically
approximated. We consider here the centered second-order finite difference method:

− σϕj+1 − ϕj−1

2∆ξ
+A(ϕj)

ϕj+1 − ϕj−1

2∆ξ
−
Rj+1/2(ϕj+1 − ϕj)−Rj−1/2(ϕj − ϕj−1)

∆ξ2
= 0, j = 1, . . . , N − 1,

ϕ0 = U−, ϕN = U+, (A.11)

with

Rj+1/2 = R(ϕj+1/2).

The computational domain is [−L/2, L/2] and ∆ξ = L/N . ϕj is thus the approximation of the viscous profiles
at ξj = −L/2 + j∆ξ. Once the viscous profile has been approached, the integral in (A.10) is computed using
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the composite trapezodial rule

N−1∑
j=1

A(ϕj)
ϕj+1 − ϕj−1

2
. (A.12)

To approximate the solution of the Riemann problem (A.3), we solve the 4N × 4N system given by:

σ1(U∗ −Ul) =
N−1∑
j=1

A(ϕ1
j )
ϕ1
j+1 − ϕ1

j−1

2
,

σ2(Ur −U∗) =
N−1∑
j=1

A(ϕ2
j )
ϕ2
j+1 − ϕ2

j−1

2
, (A.13)

where ϕ1
j , j = 0, . . . , N satisfy (A.11) with σ = σ1, U− = Ul, and U+ = U∗, and ϕ2

j , j = 0, . . . , N satisfy (A.11)
with σ = σ2, U− = U∗, and U+ = Ur.

This system is solved by an iterative algorithm. A good initial guess can be obtained by computing first an
approximated solution of the Riemann problem using a standard path-conservative method based, for instance,
on the family of straight segments. This solution will provide an initial guess of the shock speeds and the inter-
mediate states. Moreover, it will also provide relevant information about the structure of the Riemann solution.

In the general case, a viscous profile per shock needs to be approximated. In addition, the Riemann invariants
are used for rarefactions or contact discontinuities, either exactly of approximately. In the latter case, the
nonlinear system to be solved is much larger but still feasible.

Observe that the approximation of the viscous profiles involves two errors: first the domain is truncated
to a finite length and second, the differential equation is discretized by finite differences. In order to test the
convergence of the procedure, it is necessary to apply it to a nonconservative system for which the exact solutions
of the Riemann problems (once the family of paths has been chosen) can be computed. This is not the case for the
two-layer shallow water system. Hence, we consider the nonconservative coupled Burgers system proposed in [5]:

ut + u(u+ v)x = 0,
vt + v(u+ v)x = 0. (A.14)

To fix the concept of weak solution, we consider the system as the vanishing-viscosity limit of the regularized
system:

ut + u(u+ v)x = εuxx,

vt + v(u+ v)x = εvxx. (A.15)

See [4] for a notion of weak solution based on a different regularization.
Note that adding the two equations leads to the viscous Burgers equation for w = u + v. This fact allows

us to exactly compute the viscous profiles of this system: given a pair of states (ul, vl), (ur, vr) such that
wl := ul + vl > wr := ur + vr, first the viscous profile of the viscous Burgers equations for (wl, wr) is computed
by solving

−σϕ′ + ϕϕ′ − ϕ′′ = 0,

with

σ =
wl + wr

2
.
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Next, the equations

−σϕ′u + ϕuϕ
′ − ϕ′′u = 0 (A.16)

and

−σϕ′v + ϕvϕ
′ − ϕ′′v = 0 (A.17)

with initial conditions

ϕu(−∞) = ul, ϕv(−∞) = vl,

respectively, are solved. The pair (ul, vl) can be linked to

(u∗ = ϕu(∞), v∗ = ϕv(∞)),

by an admissible shock and after a reparameterization, the path connecting them is (ϕu, ϕv).

Remark A.1. If ul 6= 0, it can be easily checked that ϕu solves (A.16) with initial condition ϕu(−∞) = ul if,
and only if

ϕv :=
vl
ul
ϕu,

solves (A.17) with initial condition ϕv(−∞) = vl. Therefore, the following equality holds:

v∗ =
vl
ul
u∗. (A.18)

Moreover, the integral appearing at the right-hand side of the first generalized Rankine–Hugoniot condition is
given by ∫ ∞

−∞
ϕv(ξ)ϕ′u(ξ) dξ =

vl
ul

(u∗)2 − u2
l

2
=
vl + v∗

2
(u∗ − ul),

where (A.18) has been used. Analogously, the integral appearing in the second jump condition is given by∫ ∞
−∞

ϕu(ξ)ϕ′v(ξ) dξ =
ul + u∗

2
(v∗ − vl).

Observe that the jump conditions are identical to the ones obtained if the family of straight segments is used.
Therefore, in this case the family of straight segments also leads to the correct jump conditions.

Let us consider the initial data Ul = (7.99, 11.01), Ur = (0.25, 0.75). The solution of the Riemann problem
(A.3) consists of a stationary contact discontinuity (σ1 = 0), a shock with speed σ2 = 10, and the intermediate
state U∗ = (4.75, 14.25). The viscous profiles for the shock are given (up to a translation) by

ϕu(ξ) =
4.75
19

(
10− 9 tanh

9
2ξ

)
, ϕv(ξ) =

14.25
19

(
10− 9 tanh

9
2ξ

)
. (A.19)
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Figure A.1. Approximate and exact viscous profiles for the coupled Burgers equations.

We apply now the above described ansatz to approximate this solution. In this case, instead of two shocks,
there is a stationary contact discontinuity (σ1 = 0) and a shock. Through the contact discontinuity the Riemann
invariance

ul + vl = u∗ + v∗, (A.20)

is satisfied. Therefore, the nonlinear system to be solved is now

ul + vl = u∗ + v∗,

σ2(Ur −U∗) =
N−1∑
j=1

A(ϕ2
j )
ϕ2
j+1 − ϕ2

j−1

2
, (A.21)

where ϕ2
j , j = 0, . . . , N satisfy (A.11) with σ = σ2, U− = U∗, U+ = Ur, and R = Id.

In Figure A.1, a convergence study is shown. ∆ξ is decreased and L increased at the same time such that
both errors are reduced, while their product remains constant. Observe that both the errors in the intermediate
state and the shock speed are of order of machine precision for L = 10. The approximated viscous profile and
the exact viscous profile are also plotted: they match pretty well up to a shift in ξ direction. In summary, the
shock relations and intermediate states are approximated quite well for a sufficiently large L and a sufficiently
small ∆ξ, showing that this approach can be used to construct reference solutions to Riemann problems.

Although system (A.15) admits the entropy pair

S =
(u+ v)2

2
, Q =

(u+ v)3

6
,

the entropy function is not strictly convex and thus the method introduced here cannot be applied to this
system.
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