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ON ASSESSING THE ACCURACY OF DEFECT FREE ENERGY
COMPUTATIONS

Matthew Dobson1, Manh Hong Duong2,∗ and Christoph Ortner2

Abstract. We develop a rigorous error analysis for coarse-graining of defect-formation free energy. For
a one-dimensional constrained atomistic system, we establish the thermodynamic limit of the defect-
formation free energy and obtain explicitly the rate of convergence. We then construct a sequence of
coarse-grained energies with the same rate but significantly reduced computational cost. We illustrate
our analytical results through explicit computations for the case of harmonic potentials and through
numerical simulations.
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1. Introduction

Crystalline materials contain a variety of defects, such as vacancies, interstitials and dislocations. Macroscopic
properties of materials are strongly dependent on the distribution of defects, in particular through the interaction
between dislocations and other defects [4]. Meso-scopic models for defect interaction (e.g., dislocation dynamics,
point defect diffusion) usually take as input an atomistic simulation of a single, or few defects, from which the
meso-scopic model parameters can be extracted. A prototypical example is the defect formation energy, which
we discuss in more detail below. A great number of numerical schemes on spatial coarse-graining of the free
energy have been developed in the literature, see for instance in [8,15] and references therein. However, a rigorous
analysis on the accuracy of these schemes is still underdeveloped; we are only aware of the references [1, 18].

In this paper, we provide such a rigorous analysis for the computations of the defect-formation free energy. We
consider one-dimensional constrained atomistic systems, which model perfect and defect materials respectively,
with degrees of freedom u ∈ RN . The system can be either influenced by external forces or not. In the case
without external forces, free energies are respectively defined by

FN (A) = −β−1 log
∫

RN−1
exp

[
− βV (u)

]
du1 . . . duN−1, (1.1)

FPN (A) = −β−1 log
∫

RN−1
exp

[
− βV P (u))

]
du1 . . . duN−1, (1.2)
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where

V (u) =
N∑
i=1

ψ(ui − ui−1), V P (u) = V (u) + P (u) (1.3)

are the energies associated to the perfect and defect materials, V is the sum of bond energies ψ(ui − ui−1);
P : RN → R models the defect. For simplicity, we assume that P is a localised function and depends only on
the first bond P (u) = P (u1−u0); the analysis may be easily adapted to the case of a defect in the bulk. Finally,
β > 0 is the inverse of the temperature.

In the case with external forces, the perfect free energy is unchanged, but the deformed free energy is influenced
by the external forces

FPN (A) = −β−1 log
∫

RN−1
exp

[
−β

N∑
i=1

ψi(ui − ui−1)− βP (u1)

]
du1 . . . duN−1, (1.4)

where ψi(y) = ψ(y) + hiy with {hi}Ni=1 representing the external forces. The forces are included only in the
defective energy in order to model a slowly decaying stress field surrounding a defect which is present in higher
dimensions but not naturally present in the one dimensional case where elastic fields decay exponentially fast.

Note that the integrals (1.1), (1.2) and (1.4) are subjected to the boundary constraints

u0 = 0, uN = NA (1.5)

so that the free energies depend on N and A as shown, and P (u) = P (u1).
The main quantity of interest in this paper is the defect-formation free energy defined as the difference of the

free energies

GN (A) := FPN (A)− FN (A) = − 1
β

log

∫
RN−1 exp(−βV P (u)) du∫
RN−1 exp(−βV (u)) du

· (1.6)

This quantity is used to obtain the equilibrium defect concentration [16,20] or to analyse defect clustering [12,17].
A direct computation ofGN (A) is practically impossible due to the curse of dimensionality: one needs to compute
integrals over RN−1, which is an extremely high-dimensional space.

As a matter of fact, N itself is an approximation parameter, the exact defect formation free energy is given
by the thermodynamic limit, letting N → ∞. Establishing this limit, and thus making precise what we mean
by the “exact model” is the first result of our paper. Once we have established this, we search for an alternative
scheme by which to approximate it, which yields an improved accuracy/computational cost ratio.

The computation of limN GN is a problem that is interesting in its own right, but at the same time it serves
as a natural benchmark problem for exploring the relative accuracy/cost of coarse-graining methods at finite
temperature. We introduce and analyze a coarse-graining approach based on the use of a finite temperature
Cauchy-Born energy density.

The work [1] considers a similar model as ours, but this work is focused on the scaling limit of the free energy,
not the free energy difference, which is a different scale. Furthermore, it does not take defects into account.
The work [18] is in spirit much closer to ours and in particular does take defects into account. The main
difference to our work is that [18] considers “low” temperature via an asymptotic series expansion. Moreover,
our coarse-grained model has some close similarities with common quasicontinuum-type models.

Technically, to prove our main results, we will link the defect–formation free energy to a ratio of the densities
of certain random variables and employ techniques from statistical mechanics. The latter have been used in the
literature, for example in [11, 14]. There is also a close relationship between our thermodynamic limit results
and the Gibbs conditioning principle [7, 9]. We comment on this in Section 4. The connections to the defect–
formation free energy, to the best of our knowledge, is new and moreover, some technical modifications of the
mentioned papers were required.
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1.1. Assumptions and main results

For simplicity of notation we set β = 1 throughout the paper. Moreover, we make the following standing
assumptions on the bond energy ψ, the defect P and the external forces {hi}Ni= 1.

Assumption 1.1. ψ, P ∈ C2(R) and there exist positive constants κ1 ≤ κ2 and ς1 ≤ ς2 such that

κ1 ≤ ψ′′ ≤ κ2, ς1 ≤ (ψ + P )′′ ≤ ς2. (1.7)

Assumption 1.2. h := (h1, h2 . . .) ∈ l1; we can then define H :=
∑∞
i= 2 hi.

Step 1. Thermodynamic limit: Our first result concerns the rate of convergence of defect formation free
energy. Its proof is given in Theorems 2.1 and 3.2.

Theorem 1.3. There exists G∞ ∈ C∞(R), such that, for all A ∈ R

|GN (A)−G∞(A)| . N−1.

Step 2. Coarse-graining: To motivate and put our work in the context of coarse-graining of thermodynamic
quantities, we first recall its general set up. Let X = RN+M be a (microscopic) phase space endowed with a
probability (Boltzmann-Gibbs) measure

µ(dx) = Z−1 exp(−E(x)) dx.

We want to compute the average

A :=
∫
X

Φ(x)µ(dx)

of an observable Φ : X → R. Observables of interest are often functions of only part of the variable: for x = (y, z)
with y ∈ RN , z ∈ RM then Φ(x) = Φ(y, z) = Φ(y). In this case the average above can be computed as an integral
over a lower dimensional space, RN instead of RN+M using a coarse-grained energy Ecg : RN → R,

A =
∫

RN+M
Φ(y)µ(dy,dz) =

∫
RN

Φ(y)
∫

RM
Z−1 exp(−E(y, z)) dz

=
∫

RN
Φ(y)Z̃−1 exp(−Ecg(y)) dy,

where the coarse-grained energy Ecg is defined via

Z̃−1 exp(−Ecg(y)) =
∫

RM
Z−1 exp(−E(y, z)) dz.

However, it is often computationally intractable using the above definition. Instead, to compute Ecg in practice,
one views the problem as minimizing the Helmholtz free energy of the system with y fixed, and approxi-
mating E(y, z) above. For example, in [8, 19] the authors use a local harmonic approximation along with a
quasicontinuum-coarse grained mesh to compute an approximate free energy Ecb(y, z)

Ecg(y) = inf
z∈RM

Ecb(y, z), (1.8)

for some Ecb : RN+M → R. This paper introduces a localized Cauchy-Born approximation in the chain and
justifies its use for the defect computation.
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In our setting, the defect–formation free energy (1.6) can be written as an observable average as follows

GN (A) = − log
∫

RN−1
exp(−P )µN (du),

where µN (du) = Z−1 exp(−V (u))du. Since the defect P is a localised function (in this paper, P (u) = P (u1−u0)),
we can apply the strategy described above to effectively compute GN (A). Theorem 1.4 indeed shows that the
ansatz (1.8) becomes rigorous in the thermodynamic limit N → ∞ with explicit Ecb, and Theorem 1.5 computes
the approximation errors. To state these Theorems, we need to recall the Cauchy-Born strain energy which will
appear throughout the rest of the paper.

The (finite-temperature) Cauchy–Born strain energy function is given by [2]

W (A) = sup
σ∈R

{
σA− log

∫
R

exp(−ψ(y) + σy) dy
}
. (1.9)

Taking a continuum model
∫

[W (u′) + hu′]dx outside the defect core {0, 1} and then discretising it with the
atomistic grid {1, 2, . . . N} we obtain

Ecb
N (u) :=

N∑
i=2

[
W (u′i)−W (A) + hiu

′
i

]
, where u′i = ui − ui−1, (1.10)

with admissible displacements u : {0, . . . , N} → R satisfying u0 = 0, uN = AN . After replacing ui = Ai + vi,
summation by parts, and taking the formal limit N →∞, yields

Ecb(u) = W ′(A)(A− u1) +AH +
∞∑
i=2

[
W (A+ v′i)−W (A)−W ′(A)v′i + hiv

′
i

]
. (1.11)

It is important to note here that Ecb is formulated in a way that ensures it is well-defined for arguments with
v′ ∈ `2.

We obtain the following characterisation of G∞(A) in terms of Ecb.

Theorem 1.4. Let Ecg(A, y) := infu∈RN,u1=y E
cb(u), then

G∞(A) = − log

∫
R exp

(
− P (y)− ψ1(y)− Ecg(A, y)

)
dy∫

R exp
(
− ψ(y)− Ecg

h=0(A, y)
)
dy

· (1.12)

where Ecg
h=0 denotes the coarse-grained energy with hj ≡ 0.

In the absence of external forces, Theorem 1.4 can be derived from the Gibbs conditioning principle [7, 9].
However, it is not clear how to do so when there are external forces. We compare the technique we employ with
the Gibbs conditioning principle in more details in Section 4.

Step 3. Approximation: Thus, we have replaced a limit of high-dimensional integrals by a one-dimensional
integral over a coarse-grained energy functional whose evaluation requires the solution of an infinite-dimensional
variational problem. In our next step, we replace Ecg(A, y) with a finite-dimensional approximation.

Let
Ecg
N (A, y) := inf

u∈RN
u1=y,uN=NA

Ecb
N (u)

and

Gcg
N (A) := − log

∫
R exp

(
− P (y)− ψ1(y)− Ecg

N (A, y)
)
dy∫

R exp
(
− ψ(y)− Ecg

N,h=0(A, y)
)
dy

·

Here we have chosen Ecg
N as the most basic approximation scheme to Ecg, but far more sophisticated choices

could be explored. With this definition we obtain the following result.
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Theorem 1.5.
(i) Gcg

N (A) is well-defined for all A ∈ R.
(ii) For all A ∈ R we have the estimate ∣∣Gcg

N (A)−G∞(A)
∣∣ . N−1.

The sharpness of the results of Theorems 1.3 and 1.4 are demonstrated through explicit computations in the
harmonic case ψ(y) = α|y|2 and P (y) = β|y|2 in Section 5 and in numerical simulations in Section 6.

Interpretation: Statements (ii) of Theorems 1.4 and 1.5 imply that G∞(A) can be computed from two
one-dimensional integrals, but this extreme reduction of computational complexity is only due to the special
one-dimensional structure of our model problem and cannot in general be reproduced.

The structure in our construction that can be expected more generally though is that G∞(A) can be approx-
imated by a low-dimensional canonical average with respect to a coarse-grained energy that is obtained by a
variational problem in the exterior of the computational domain.

In our case the coarse-grained measure is one–dimensional but in general one may still expect it to be relatively
low–dimensional. A Langevin or other type of Markov–Chain type algorithm can now be employed to compute
G∞(A); cf. Section 6.

Of course, the evaluation of Ecg(y) is in general impossible, and an approximation needs to be performed.
For example, Ecg

N (A, y) (and its derivatives) is computable with a reasonably low O(N) cost. Note that W itself
may be costly to evaluate, but it could be easily precomputed to high accuracy e.g. via Taylor expansions or
spline techniques. The O(N) cost could be reduced further if we employ a quasi-continuum style coarse-graining
of Ecg

N .

1.2. Organisation of the paper

The rest of the paper is structured as follows. In Section 2 we study the case without external forces. Extension
to the case with external forces is shown in Section 3. In Section 4 we compare our work with Gibbs conditioning
principle. In Section 5, we provide explicit computations for the harmonic case. Finally, in Section 6, we present
some numerical simulations.

2. The case without external forces

In this section, we analyse the case without external forces.

2.1. Thermodynamic limit

In this section, we prove Theorem 1.3 for the case without external forces by establishing the existence of the
thermodynamic limit G∞ and the rate of convergence of GN to G∞. We give an expression for G∞ in terms
of the Cauchy-Born strain energy (1.9), which arises here as in the Gibbs conditioning principle, see Section 4.
The main result of this section is the following theorem.

Theorem 2.1. Suppose that Assumption 1.1 is satisfied. Then the thermodynamic limit is given by

G∞(A) = − log

∫
R exp [−(ψ + P )(y) +W ′(A)y] dy∫

R exp [−ψ(y) +W ′(A)y] dy
· (2.1)

Moreover, for all A ∈ R, we have the estimate

|GN (A)−G∞(A)| . N−1. (2.2)

Proof. The proof is split into three steps that are Proposition 2.3, Proposition 2.7 and Proposition 2.10
below. �
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We start with the following auxiliary lemma that links the free energy to the density of an average of
independent random variables. This lemma will be applied in Proposition 2.3 and Theorem 3.2 later on.

Lemma 2.2. Suppose that ψ̃i ∈ C2(R) and 0 < κ1 ≤ ψ̃′′i ≤ κ2 for i = 1, . . . , N . We define

W̃N (A) = sup
σ∈R

{
σA− 1

N

N∑
i=1

log
∫

R
exp(−ψ̃i(y) + σy) dy

}
, (2.3)

F̃N (A) = − log
∫

RN−1
exp

[
−

N∑
i=1

ψ̃i(ui − ui−1)

]
du1 . . . duN−1, (2.4)

with u0 = 0, uN = NA.
Let σ∗ be the maximizer in (2.3). We define the one dimensional probability measures

µ̃σ
∗

i (dy) = Z−1
i exp(σ∗y − ψ̃i(y)) dy, (2.5)

where Zi is the normalising constant. Let X̃i be independent random variables distributed according to µ̃σ∗i and

let m̃i be the mean of X̃i. Let g̃N,A be the density of 1√
N

N∑
i=1

(X̃i − m̃i). Then it holds that

F̃N (A) =
1
2

logN +NW̃N (A)− log g̃N,A(0). (2.6)

Proof. This proof is adapted from Lemma 8 of [14] (see also [11], Eq. (125)). By change of variables yi = ui−ui−1,
for i = 1, . . . , N − 1, we can re-write F̃N (A) as

F̃N (A) = − log
∫

RN−1
exp

[
−
N−1∑
i=1

ψ̃i(yi)− ψ̃N
(
NA−

N−1∑
i=1

yi

)]
dy1 . . . dyN−1. (2.7)

We define

ϕ̃N,i(σ) = log
∫

R
exp[−ψ̃i(y) + σy] dy,

ϕ̃N (σ) : =
1
N

log
∫

RN
exp

[
−

N∑
i=1

ψ̃i(yi) + σ

N∑
i=1

yi

]
dy1 . . . dyN

then W̃N (A) = σ∗A− ϕ̃N (σ∗),

A =
d

dσ
ϕ̃N (σ)

∣∣∣
σ=σ∗

.
(2.8)

We have

ϕ̃N (σ) =
1
N

log
∫

RN
exp

[
−

N∑
i=1

ψ̃i(yi) + σ

N∑
i=1

yi

]
dy1 . . . dyN

=
1
N

N∑
i=1

log
∫

R
exp

[
− ψ̃i(yi) + σyi

]
dyi

=
1
N

N∑
i=1

ϕ̃N,i(σ). (2.9)
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A straightforward calculation gives

m̃i =
∫

R
yiµ̃

σ∗

i (dyi) =
d

dσ
ϕ̃N,i(σ)

∣∣∣
σ=σ∗

. (2.10)

Substituting (2.9) and (2.10) into (2.8), we obtain

A =
d

dσ
ϕ̃N (σ)

∣∣∣∣∣
σ=σ∗

=
1
N

N∑
i=1

d
dσ
ϕ̃N,i(σ)

∣∣∣∣∣
σ=σ∗

=
1
N

N∑
i=1

m̃i. (2.11)

Since X̃i are independent, the density of the sum
∑N
i=1 X̃i is given by the convolution

f̃∑N
i=1Xi

(ξ) = (µ̃σ
∗

1 ∗ . . . ∗ µ̃σ
∗

N )(ξ).

Using the definition of convolution, we can compute the above density explicitly as follows

f̃∑N
i=1 X̃i

(ξ) =
∫

RN−1
exp

[
−

N∑
i=1

ϕ̃N,i(σ∗) + σ∗ξ − ψ̃N (ξ −
N−1∑
i=1

yi)−
N−1∑
i=1

ψ̃i(yi)

]
dy1 . . . dyN−1.

We recall that if Y has density f(y)dy then, for α > 0, β ∈ R, αY + β has density 1
αf(y−βα ). Hence, we obtain

g̃N,A(ξ) = f 1√
N

∑N
i=1(X̃i−mi)

(ξ)

=
√
N

∫
RN−1

exp

[
−

N∑
i=1

ϕ̃N,i(σ∗) + σ∗

(
ξ
√
N +

N∑
i=1

m̃i

)

−ψ̃N

(
√
Nξ −

N−1∑
i=1

yi +
N∑
i=1

m̃i

)
−
N−1∑
i=1

ψ̃i(yi)

]
dy1 . . . dyN−1.

In particular, using (2.9), (2.7) and (2.11), we get

g̃N,A(0) =
√
N

∫
RN−1

exp

[
−

N∑
i=1

ϕ̃N,i(σ∗) + σ∗
N∑
i=1

m̃i − ψ̃N

(
−
N−1∑
i=1

yi +
N∑
i=1

m̃i

)
−
N−1∑
i=1

ψ̃i(yi)

]
dy1 . . . dyN−1

=
√
N

∫
RN−1

exp

[
−Nϕ̃N (σ∗) + σ∗NA− ψ̃N

(
NA−

N−1∑
i=1

yi

)
−
N−1∑
i=1

ψ̃i(yi)

]
dy1 . . . dyN−1

=
√
N exp[N(σ∗A− ϕ̃N (σ∗))]

∫
RN−1

exp

[
−ψ̃N

(
NA−

N−1∑
i=1

yi

)
−
N−1∑
i=1

ψ̃i(yi)

]
dy1 . . . dyN−1

=
√
N exp[N(σ∗A− ϕ̃N (σ∗))] exp[−F̃N (A)].

It follows from (2.8) and the above equality that

log g̃N,A(0) =
1
2

logN +NW̃N (A)− F̃N (A),

which is equivalent to (2.6) as claimed. �
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The following proposition provides an analytical expression of the defect–formation free energy in terms of
densities of averages of independent random variables.

Proposition 2.3. Recall that the Cauchy–Born energy is given by

W (A) = sup
σ∈R

{
σA− log

∫
R

exp(−ψ(y) + σy) dy
}
. (2.12)

We define an analogous function that is associated to the defect material

WP
N (A) = sup

σ∈R

{
σA− 1

N

(
log
∫

R
exp[−(ψ + P )(y) + σy] dy + (N − 1) log

∫
R

exp(−ψ(y) + σy) dy
)}

. (2.13)

Let σ0 and σNP be the maximisers in definitions of (2.12) and (2.13) respectively. We define the one-dimensional
probability measures

µσ0(dy) = Z−1
µ exp(σ0y − ψ(y)) dy, and (2.14)

νσ
N
P (dy) = Z−1

ν exp(σNP y − (ψ + P )(y)) dy, µσ
N
P (dy) = Z−1

µP exp(σNP y − ψ(y)) dy, (2.15)

where Zµ, Zν and ZµP are normalising constants. Let m,mP,1 and mP,2 be respectively the means of µσ0 , νσ
N
P (dy)

and µσ
N
P (dy).

Let {Xi}i=1,...,N and {Yi}i=1,...,N be independent random variables, where {Xi}i=1,...,N distributed according
to µσ0(dy), {Y1} distributed according to νσ

N
P (dy), and {Yi}i=2,...,N distributed according to µσ

N
P (dy). Let gN,A

and gPN,A be respectively the density of 1√
N

∑N
i=1(Xi −m) and 1√

N

∑N
i=1(Yi −mP,i) (with mP,2 = . . . = mP,N ).

Then it holds that

FPN (A)− FN (A) = N [WP
N (A)−W (A)] + log

gN,A(0)
gPN,A(0)

· (2.16)

Proof. Applying Lemma 2.2 for the cases ψ̃i = ψ (i = 1, . . . , N) and ψ̃1 = ψ + P, ψ̃i = ψ (i = 2, . . . , N), we
obtain the following relations respectively

FN (A) =
1
2

logN +NWN (A)− log gN,A(0),

FPN (A) =
1
2

logN +NWP
N (A)− log gPN,A(0).

The assertion (2.16) immediately follows from these two relations. �

The next step is to passing to the limit N →∞ for each term in the relation (2.16). We will need some auxiliary
lemmas. We define

Ψ(σ) : =

∫
R y exp(−ψ(y) + σy) dy∫
R exp(−ψ(y) + σy) dy

, (2.17)

Φ(σ) : =

∫
R y exp[−(ψ + P )(y) + σy] dy∫
R exp[−(ψ + P )(y) + σy] dy

−
∫

R y exp(−ψ(y) + σy) dy∫
R exp(−ψ(y) + σy) dy

·

The following lemma on boundedness of derivatives of Ψ and Φ will be used several times in the sequel.

Lemma 2.4. It holds that
1
κ2
≤ d

dσ
Ψ(σ) ≤ 1

κ1
and

∣∣∣ d
dσ
Φ(σ)

∣∣∣ ≤ C, (2.18)

for some positive constant C.
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Proof. We first prove the first part of (2.18). The following proof is simplified from Lemma 2.4 of [3]. In [3],
(Lem. 2.4) the author has actually proved a stronger result than we need here. We have

d
dσ
Ψ(σ) =

(∫
R y

2 exp(−ψ(y) + σy) dy
) (∫

R exp(−ψ(y) + σy) dy
)
−
(∫

R y exp(−ψ(y) + σy) dy
)2(∫

R exp(−ψ(y) + σy) dy
)2

=
∫

R

(
y −mσ

)2

µσ(dy), (2.19)

where

µσ(dy) :=
exp(−ψ(y) + σy)∫

R exp(−ψ(y) + σy) dy
dy ∈ P(R), and mσ =

∫
R
yµσ(dy).

Using this equality, we now estimate d
dσΨ(σ) using assumptions on ψ. For the upper bound: since ψ′′ ≥ κ1, µσ

satisfies the Poincare inequality with constant κ1 uniformly in σ. Therefore,

d
dσ
Ψ(σ) ≤ 1

κ1

∫ ∣∣∣ d
dy
y
∣∣∣2µσ(dy) =

1
κ1
·

For the lower bound: using the inequality g2 ≥ 2fg − f2 for all functions f and g, with g = y −mσ, we have

d
dσ
Ψ(σ) ≥

∫
[2f(y −mσ)− f2]µσ(dy).

By taking f = β(ψ′ − σ) for β ∈ R, and applying integration by parts, we obtain

d
dσ
Ψ(σ) ≥ 2β − β2

∫
ψ′′(y)µσ(dy).

Now maximizing over β, by choosing β = 1∫
ψ′′(y)µσ(dy)

, we get

d
dσ
Ψ(σ) ≥ 1∫

ψ′′(y)µσ(dy)
≥ 1
κ2
,

where we have used the assumption that ψ′′ ≤ κ2.
The second estimate in (2.18) is proved similarly. We have

d
dσ
Φ(σ) =

∫
R
(y −mP

σ )2 dµPσ (dx)−
∫

R
(y −mσ)2 dµσ(dx), where

µPσ =
exp[−(ψ + P )(y) + σy]∫

R exp[−(ψ + P )(y) + σy) dy
dy, and mP

σ =
∫

R
yµPσ (dy).

Since ψ + P satisfies a similar assumption as ψ, we obtain

1
ς2
≤
∫

R
(y −mP

σ )2 dµPσ (dx) ≤ 1
ς1
·

As a consequence, we get
1
ς2
− 1
κ1
≤ d

dσ
Φ(σ) ≤ 1

ς1
− 1
κ2
,

which implies the second estimate in (2.18). �

We recall that σ0 and σPN are respectively maximisers in (2.12) and (2.13). The following lemma provides an
estimate for |σPN − σ0|.
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Lemma 2.5. There exists a positive constant C such that, for N sufficiently large,

|σNP − σ0| ≤
C

N
· (2.20)

Proof. Set F := Ψ + 1
NΦ. Then we have

A = Ψ(σ0) = F (σNP ), and F ′(σ) = Ψ ′(σ) +
1
N
Φ′(σ).

This, together with Lemma 2.4, imply that for sufficiently large N and for all σ ∈ R

0.5
κ2
≤ |F ′(σ)| ≤ 2

κ1
·

By the mean value theorem, there exists θ ∈ R such that

F ′(θ)(σNP − σ0) = F (σNP )− FP (σ0) = F0(σ0)−
(
F0(σ0) +

1
N
Φ(σ0)

)
= − 1

N
Φ(σ0).

Hence

|σNP − σN0 | =
1
N

∣∣∣∣Φ(σ0)
F ′(θ)

∣∣∣∣ ≤ C

N
,

for some constant C > 0 and for N sufficiently large. �

The following estimate is elementary but will be used at various places later.

Lemma 2.6. For any z ∈ C, we have
|ez − 1|leq|z|e|z|. (2.21)

Proof. We have

|ez − 1| =
∣∣∣∣etz∣∣∣1

0

∣∣∣∣ =
∣∣∣∣∫ 1

0

zetz dt
∣∣∣∣ ≤ |z|∫ 1

0

|etz|dt = |z|
∫ 1

0

etRel(z) dt ≤ |z|
∫ 1

0

e|z| dt = |z|e|z|. �

The second ingredient of the proof of Theorem 2.1 is the following proposition.

Proposition 2.7. It holds that

lim
N→∞

N [WP
N (A)−W (A)] = − log

∫
exp[−(ψ + P )(y)−W ′(A)y] dy∫

exp[−ψ(y)−W ′(A)y] dy
· (2.22)

Moreover, it hods that∣∣∣∣∣N [WP
N (A)−W (A)] + log

∫
exp[−(ψ + P )(y)−W ′(A)y] dy∫

exp[−ψ(y)−W ′(A)y] dy

∣∣∣∣∣ ≤ C

N
·

Proof. We recall that σ0 and σNP are respectively the maximisers in the definitions of W (A) and WP
N (A), so

that

W (A) = sup
σ∈R

{
σA− log

∫
R

exp(−ψ(y) + σy) dy
}

(2.23)

= σ0A− log
∫

R
exp(−ψ(y) + σ0y) dy, (2.24)
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where σ0 satisfies

A =

∫
R y exp(−ψ(y) + σ0y) dy∫
R exp(−ψ(y) + σ0y) dy

= Ψ(σ0). (2.25)

By properties of the Legendre transform, we also have W ′(A) = σ0, which is explicitly shown in (2.53). Similarly

WP
N (A) = sup

σ∈R

{
σA− 1

N

(
log
∫

R
exp[−(ψ + P )(y) + σy] dy + (N − 1) log

∫
R

exp(−ψ(y) + σy) dy
)}

(2.26)

= σNP A− log
∫

R
exp[−ψ(y) + σNP y] dy − 1

N
log

∫
R exp[−(ψ + P )(y) + σNP y] dy∫

R exp(−ψ(y) + σNP y) dy
, (2.27)

where σNP solves

A =
1
N

∫
R y exp[−(ψ + P )(y) + σy] dy∫
R exp[−(ψ + P )(y) + σy] dy

+
N − 1
N

∫
R y exp(−ψ(y) + σy) dy∫
R exp(−ψ(y) + σy) dy

· (2.28)

Using these supremum representations we will estimate lower and upper bounds for N [WP
N (A)−W (A)]. For an

upper bound: it follows from (2.23) that

WN (A) ≥ σNP A− log
∫

R
exp(−ψ(y) + σNP y) dy.

This, together with (2.27), we get

N [WP
N (A)−W (A)] ≤ − log

∫
R exp[−(ψ + P )(y) + σNP y] dy∫

R exp(−ψ(y) + σNP y) dy
·

Similarly, using (2.26) and (2.24), we obtain

N [WP
N (A)−W (A)] ≥ − log

∫
R exp[−(ψ + P )(y) + σ0y] dy∫

R exp(−ψ(y) + σ0y) dy
·

Bringing these bounds together,

− log

∫
R exp[−(ψ + P )(y) + σ0y] dy∫

R exp(−ψ1(y) + σ0y) dy
≤ N [WP

N (A)−W (A)] ≤ − log

∫
R exp[−(ψ + P )(y) + σNP y] dy∫

R exp(−ψ(y) + σNP y) dy
· (2.29)

We now estimate the right-hand side of the last expression. We have∫
R exp[−(ψ + P )(y) + σNP y] dy∫

R exp(−ψ(y) + σNP y) dy

=

∫
R exp[−(ψ + P )(y) + σ0y + (σNP − σ0)y] dy∫

R exp[−(ψ + P )(y) + σ0y) dy
×
∫

R exp[−(ψ + P )(y) + σ0y] dy∫
R exp(−ψ(y) + σ0y) dy

×
∫

R exp[−ψ(y) + σ0y] dy∫
R exp[−ψ(y) + σNP y] dy

=

∫
R exp[−(ψ + P )(y) + σ0y] dy∫

R exp(−ψ1(y) + σ0y) dy
×
〈
exp[(σNP − σ0)y]

〉
νσ0
×
〈
exp[(σNP − σ0)y]

〉−1

µσ0
,
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where

νσ0(y)dy =
exp[−(ψ + P )(y) + σ0y]∫

R exp[−(ψ + P )(y) + σ0y)] dy
dy and µσ0(y)dy =

exp[−ψ(y) + σ0y]∫
R exp[−ψ(y) + σ0y] dy

·

Taking the logarithm of the above equality, we deduce

− log

∫
R exp[−(ψ + P )(y) + σNP y] dy∫

R exp(−ψ(y) + σNP y) dy

= − log

∫
R exp[−(ψ + P )(y) + σ0y] dy∫

R exp(−ψ(y) + σ0y) dy
+ log

〈
exp[(σNP − σ0)y]

〉
νσ0
− log

〈
exp[(σNP − σ0)y]

〉
µσ0

. (2.30)

We now show that the last two terms in the right-hand side of (2.30) are of order O(N−1). Using the estimate
|et − 1| ≤ |t|e|t| (Lem. 2.6) and Lemma 2.5, we have

| exp[(σNP − σ0)y]− 1| ≤ |(σNP − σ0)y| exp(|(σNP − σ0)y|) ≤ C

N
|y| exp(C|y|).

Therefore ∣∣〈exp[(σNP − σ0)y]
〉
νσ0
− 1
∣∣ =

∣∣〈exp[(σNP − σ0)y]− 1
〉
νσ0

∣∣ ≤ 〈| exp[(σNP − σ0)y]− 1|
〉
νσ0

≤ C

N
〈|y| exp(C|y|)〉νσ0 .

Since (ψ + P )(y) is bounded from below and above by a quadratic potential, it implies that the term

〈|y| exp(C|y|)〉νσ0 =
1∫

R exp[−(ψ + P )(y) + σ0y] dy

∫
|y| exp[−(ψ + P )(y) + σ0y + C|y|] dy.

is finite. Therefore
∣∣〈exp[(σNP − σ0)y]

〉
νσ0
− 1
∣∣ ≤ C

N , which implies that

∣∣log
〈
exp[(σNP − σ0)y]

〉
νσ0

∣∣ ≤ C

N
·

Similarly, we obtain the following estimate for the last term in (2.30)∣∣∣log
〈
exp[(σNP − σ0)y]

〉
µσ0

∣∣∣ ≤ C

N
·

Substituting these above estimates to (2.30), we achieve the following estimate for the upper bound in (2.29)∣∣∣∣∣− log

∫
R exp[−(ψ + P )(y) + σNP y] dy∫

R exp(−ψ(y) + σNP y) dy
+ log

∫
R exp[−(ψ + P )(y) + σ0y] dy∫

R exp(−ψ(y) + σ0y) dy

∣∣∣∣∣ ≤ C

N
·

Therefore, it follows from (2.29) that∣∣∣∣∣N [WP
N (A)−W (A)] + log

∫
exp[−(ψ + P )(y)− σ0y] dy∫

exp[−ψ(y)− σ0y] dy

∣∣∣∣∣ ≤ C

N
·

This completes the proof of the proposition.
Next, we estimate the last term in (2.16). We will need two auxiliary lemmas. �

Let h(m, ξ) := 〈exp(iξ(x−m))〉µσ , where µσ(x) dx = Z−1
σ exp(σx− ψ(x)) dx.
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Lemma 2.8. For any δ > 0, it holds that

|h(m, ξ)| ≤ 1− 1
2

√
Cσ

(
1− exp

(
− δ2

2κ2

))
for |ξ| ≥ δ, (2.31)

where Cσ = exp
(
σ2

4
κ1−κ2
κ1κ2

)√
κ1
κ2

Note that since 0 < κ1 < κ2, we have 0 < Cσ <
√

κ1
κ2
< 1, which is independent of σ.

Proof. The proof of this lemma is adapted from that of Lemma 39, (i) from [11]. Since κ1x
2 ≤ ψ(x) ≤ κ2x

2, we
have

µσ(x) ≥ exp(σx− κ2x
2)∫

R exp(σy − κ1y2) dy
=

exp(σx− κ2x
2)∫

R exp(σy − κ2y2) dy

∫
R exp(σy − κ2y

2) dy∫
R exp(σy − κ1y2) dy

= nσ(x)Cσ,

where

nσ(x) =
exp(σx− κ2x

2)∫
R exp(σy − κ2y2) dy

, Cσ =

∫
R exp(σy − κ2y

2) dy∫
R exp(σy − κ1y2) dy

= exp
(
σ2

4
κ1 − κ2

κ1κ2

)√
κ1

κ2
·

Note that 0 < Cσ < 1 for all σ. The following identity is the same as (157) of [11]

|h(m, ξ)|2 = 1−Var(cos(ξx))−Var(sin(ξx)). (2.32)

Next we estimate Var(cos(ξx)).

Var(cos(ξx)) =
∫

R

(
cos(ξx)−

∫
R

cos(ξy)µσ dy
)2

µσ dy

≥ Cσ
∫

R

(
cos(ξx)−

∫
R

cos(ξy)µσ dy
)2

nσ(x)

≥ Cσ

[∫
R

cos(ξx)2nσ(dx)−
(∫

R
cos(ξx)nσ(dx)

)2
]
. (2.33)

The second integral on the right-hand side can be computed explicitly as follows:(∫
R

cos(ξy)nσ(dy)
)2

=
1
4

(√
κ2

π
exp

(
− σ2

4κ2

)∫
R

[exp(iξx) + exp(−iξx)] exp(−κ2x
2 + σx) dx

)2

=
1
4

(√
κ2

π
exp

(
iσξ

2κ2

)∫
R

exp(iξy) exp(−κ2y
2) dy +

√
κ2

π
exp

(
− iσξ

2κ2

)∫
R

exp(−iξy) exp(−κ2y
2) dy

)2

=
1
4

(
exp

(
− ξ2

4κ2

)
exp

(
iσξ

2κ2

)
+ exp

(
− ξ2

4κ2

)
exp

(
− iσξ

2κ2

))2

=
1
4

exp
(
− ξ2

2κ2

)(
exp

(
iσξ

κ2

)
+ exp

(
− iσξ

κ2

)
+ 2
)

=
1
2

exp
(
− ξ2

2κ2

)(
1 + cos

(
σξ

κ2

))
·
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The first integral can be computed similarly:∫
R

cos2(ξx)nσ(dx) =
1
2

(
1 + cos

(
σξ

κ2

)
exp

(
− ξ

2

κ2

))
·

Therefore, ∫
R

cos(ξx)2nσ(dx)−
(∫

R
cos(ξx)nσ(dx)

)2

=
1
2

(
1− exp

(
− ξ2

2κ2

))(
1− cos

(
σξ

κ2

)
exp

(
− ξ2

2κ2

))

≥ 1
2

(
1− exp

(
−ξ2

2κ2

))2

·

Substituting these computations into (2.33) we obtain

Var(cos(ξx)) ≥ 1
2
Cσ

(
1− exp

(
− ξ2

2κ2

))2

·

By repeating the computation, we obtain that the same inequality holds for Var(sin(ξx)). Therefore,

|h(m, ξ)|2 ≤ 1− Cσ
(

1− exp
(
− ξ2

2κ2

))2

·

If |ξ| ≥ δ, then

|h(m, ξ)|2 ≤ 1− Cσ
(

1− exp
(
− δ2

2κ2

))2

·

Since
√

1− x ≤ 1− 1
2x, it follows that

|h(m, ξ)| ≤ 1− 1
2

√
Cσ

(
1− exp

(
− δ2

2κ2

))
for |ξ| ≥ δ.

This concludes the proof. �

Define Λ(σ) := Var(µσ) =
∫

R
(
x−

∫
R xµσ(dx)

)2
µσ(dx).

Lemma 2.9. There exists C > 0 such that, for any σ1, σ2 ∈ R,

|Λ(σ1)− Λ(σ2)| ≤ C|σ1 − σ2|.

Proof. It follows from (2.19) that Λ(σ) = Ψ ′(σ). According to [11], (Lem. 41) we have

|Ψ ′′(σ)| ≤ C,

for some constant C > 0. As a consequence, we obtain that

|Λ(σ1)− Λ(σ2)| = |Ψ ′(σ1)− Ψ ′(σ2)| ≤ C|σ1 − σ2|·

This finishes the proof.
We are now ready to estimate the last term in the right-hand side of (2.16). �
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Proposition 2.10. There exists C > 0 such that∣∣∣∣∣ log
gPN,A(0)
gN,A(0)

∣∣∣∣∣ ≤ C

N
. (2.34)

Proof. We recall the general setting in Lemma 2.2.

µ̃σ
∗

j (dy) = exp
[
− ϕ̃N,j(σ∗) + σ∗y − ψ̃j(y)

]
dy,

where
ϕ̃j(σ) = log

∫
R

exp[−ψ̃j(y) + σ y] dy

For each j = 1, . . . , N , let m̃j and ς̃2j be the mean and variance of µ̃σ
∗

j , i.e.,

m̃j =
∫

R
yµ̃σ

∗

j (dy) and ς̃2j =
∫

R
(y − m̃j)2 µ̃σ

∗

j (dy).

Then g̃N,A has been defined to be the density of 1√
N

∑N
j=1(X̃j−mj), where X̃j are independent random variables

distributed according to µ̃σ
∗

j .
Define ỹj = yj − m̃j . The value of g̃N,A at 0 can be expressed as (cf. e.g., [11], (Eq. (127)), [14], (Eq. (72)))

g̃N,A(0) =
1

2π

∫
R

N∏
j=1

〈
exp

(
i ỹj

1√
N
ξ
)〉

j

dξ,

where 〈·〉j denotes the average with respect to µ̃σ
∗

j . For some δ > 0 sufficiently small, we split the above integral
into two terms ∫

R

N∏
j=1

〈
exp

(
i ỹj

1√
N
ξ

)〉
j

dξ =
∫{∣∣ 1√

N
ξ
∣∣≤δ}

N∏
j=1

〈
exp

(
i ỹj

1√
N
ξ

)〉
j

dξ

+
∫{∣∣ 1√

N
ξ
∣∣≥δ}

N∏
j=1

〈
exp

(
i ỹj

1√
N
ξ

)〉
j

dξ

= I + II,

so that
g̃N,A(0) =

1
2π

(I + II). (2.35)

According to ([14], Proof of Thm. 4), the following estimates hold

0 < C1 ≤ |I| ≤ C2, and |II| ≤ C3 NλN−2, (2.36)

for some positive constants C1, C2, C3 and 0 < λ < 1 depending only on δ. The constant λ is the upper bound
of
∣∣〈exp(iỹjξ)〉j

∣∣. Moreover, there exists a complex-valued function hj(ξ) such that for 0 < |ξ| sufficiently small,

〈exp(iỹjξ)〉j = exp(−hj(ξ)) with
∣∣∣hj(ξ)− 1

2
ς̃2j ξ

2
∣∣∣ ≤ C|ξ|3. (2.37)

We are now ready to prove Proposition 2.10. Applying (2.35), (2.36) and (2.37) for the perfect material, we
have

gN,A(0) =
1

2π
(I1 + II1),
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where

I1 =
∫{∣∣ 1√

N
ξ
∣∣≤δ} exp

(
−Nh

(
ξ√
N

))
dξ, (2.38)

0 < C11 ≤ |I1| ≤ C12, and |II1| ≤ C13NλN−2
1 , (2.39)

for some 0 < λ1 < 1 and positive constants C11, C12, C13 and
∣∣∣h(ξ)− 1

2 ς
2ξ2
∣∣∣ ≤ C|ξ|3 for |ξ| � 1 with ς2 denotes

the variance of µσ0 . According to Lemma 2.8, the constant λ1 is given by

λ1 = 1− 1
2

√
Cσ0

(
1− exp

(
− δ2

2κ2

))
,

with 0 < Cσ0 < 1. Similarly,

gPN,A(0) =
1

2π
(I2 + II2), (2.40)

where

I2 =
∫{∣∣ 1√

N
ξ
∣∣≤δ} exp

(
−

N∑
j=1

h̃j

(
ξ√
N

))
dξ, (2.41)

0 < C21 ≤ |I2| ≤ C22, and |II2| ≤ C23NλN−2
2 , (2.42)

for some 0 < λ2 < 1 and positive constants C21, C22, C23 and∣∣∣h̃1(ξ)− 1
2
ς2P,1ξ

2
∣∣∣ ≤ C|ξ|3, for |ξ| sufficiently small,

h̃2 = . . . = h̃N , ςP,2 = . . . = ςP,N ,
∣∣∣h̃j(ξ)− 1

2
ς2P,jξ

2
∣∣∣ ≤ C|ξ|3, for |ξ| sufficiently small,

where ζ2
P,1 and ζ2

P,2 are respectively the variances of νσ
N
P and µσ

N
P .

The constant λ2 is given by

λ2 = max
{

1− 1
2

√
CσNP

(
1− exp

(
− δ2

κ2

))
, 1− 1

2

√
C̃σNP

(
1− exp

(
− δ2

κ2 + ς2

))}
,

with 0 < CσNP , C̃σNP < 1.
Hence we obtain

gPN,A(0)
gN,A(0)

− 1 =
I2 + II2
I1 + II1

− 1 =
I2 − I1
I1 + II1

+
II2 − II1
I1 + II1

· (2.43)

It follows from (2.39) that |I1 + II1| ≤ C for N sufficiently large, thus∣∣∣∣∣gPN,A(0)
gN,A(0)

− 1

∣∣∣∣∣ ≤ |I2 − I1|+ |II2 − II1|. (2.44)

The second term decays exponentially fast since, from (2.39) and (2.42)

|II2 − II1| ≤ |II1|+ |II2| ≤ CNλN−2, (2.45)

with λ = max{λ1, λ2}. It follows that λ = 1−O(δ2).
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It remains to estimate |I2 − I1|. By changing variable t := ξ√
N

, we have

I1 − I2 =
∫{∣∣ 1√

N
ξ
∣∣≤δ}

[
exp

(
−Nh

( ξ√
N

))
− exp

(
−

N∑
j=1

h̃j

( ξ√
N

))]
dξ

=
√
N

∫ δ

−δ

[
exp(−Nh(t))− exp

(
−

N∑
j=1

h̃j(t)
)]

dt

=
√
N

∫ δ

−δ
exp

(
−Nh(t)

)(
1− exp

( N∑
j=1

(h(t)− h̃j(t))
))

dt. (2.46)

Note that ∣∣∣h(t)− 1
2N

ζ2t2
∣∣∣ ≤ C t3

N
3
2
,
∣∣∣h̃1(t)− 1

2N
ζ2
P,1t

2
∣∣∣ ≤ C t3

N
3
2
,

h̃j(t) = . . . = h̃N (t), ζP,j = ζP,2 for j = 2, . . . , N, and
∣∣∣h̃j(t)− 1

2N
ζ2
P,2t

2
∣∣∣ ≤ C t3

N
3
2
,

where we recall that ζ2, ζ2
P,1 and ζ2

P,2 are, respectively, the variances of µσ0 , νσ
N
P and µσ

N
P . It follows that, for

t < 1, ∣∣∣ exp (−Nh(t))
∣∣∣ = exp

(
−1

2
ζ2t2

) ∣∣∣∣∣ exp
(
−N

(
h(t)− 1

2N
ζ2t2

)) ∣∣∣∣∣
≤ exp

(
−1

2
ζ2t2

)
exp

(
Ct3

N
1
2

)
≤ exp

(
Ct2

N
1
2

)
. (2.47)

Now we estimate∣∣∣∣∣
N∑
j=1

(h(t)− h̃j(t))

∣∣∣∣∣ =

∣∣∣∣∣
N∑
j=1

(
h(t)− 1

2N
ζ2t2 +

1
2N

ζ2t2 − 1
2N

ζ2
P,jt

2 +
1

2N
ζ2
P,jt

2 − h̃j(t)
) ∣∣∣∣∣

≤
N∑
j=1

[∣∣∣∣∣h(t)− 1
2N

ζ2t2

∣∣∣∣∣+

∣∣∣∣∣ 1
2N

ζ2t2 − 1
2N

ζ2
P,jt

2

∣∣∣∣∣+

∣∣∣∣∣ 1
2N

ζ2
P,jt

2 − h̃j(t)

∣∣∣∣∣
]

≤ Ct3

N
1
2

+
N − 1

2N

∣∣∣∣∣ζ2 − ζ2
P,2

∣∣∣∣∣t2 +
1

2N

∣∣∣∣∣ζ2 − ζ2
P,1

∣∣∣∣∣t2. (2.48)

From Lemma 2.5 and Lemma 2.9, we have∣∣ζ2 − ζ2
P,2

∣∣ =
∣∣Λ(σ0)− Λ(σNP )

∣∣ ≤ C|σ0 − σNP | ≤
C

N
, and

|ζ2 − ζ2
P,1| = |ΛP (σNP )− Λ(σ0)| ≤ |ΛP (σNP )− ΛP (σ0)|+ |ΛP (σ0)− Λ(σ0)| ≤ C

N
+ C,

where ΛP (σ) is the variance of the measure Z−1
∫

exp[−(ψ+P )(x) + σx] dx and the last inequality is obtained
similarly as in Lemma 2.9.
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Substituting these estimates into (2.48), we obtain that, for t < 1,∣∣∣ N∑
j=1

(h(t)− h̃j)(t)
∣∣∣ ≤ Ct3

N
1
2

+
Ct2

N
+
Ct2

N2
.
Ct2

N
1
2
.

Therefore by using the estimate |ez − 1| ≤ |z|e|z|, we obtain∣∣∣∣∣1− exp

 N∑
j=1

(h(t)− h̃j(t))

∣∣∣∣∣ ≤
∣∣∣∣ N∑
j=1

(h(t)− h̃j(t))
∣∣∣∣ exp

∣∣∣ N∑
j=1

(h(t)− h̃j(t))
∣∣∣


≤ Ct2√
N

exp
(
Ct2√
N

)
· (2.49)

Substituting the estimates (2.47)–(2.49) into (2.46), we obtain

|I1 − I2| ≤
√
N

∫ δ

−δ
exp

(
Ct2

N
1
2

)
Ct2√
N

exp
(
Ct2√
N

)
dt

≤ C exp
(
Cδ2

N
1
2

)∫ δ

−δ
t2 dt = O(δ3).

By choosing δ = N−α where 1
3 < α < 1

2 then

|II2 − II1| . NλN . N(1−N−2α)N . N
(

e−N
−2α
)N

= Ne−N
−2α+1

. N−1,

|I1 − I2| . N−3α . N−1.

Substituting these estimates into (2.44), we obtain∣∣∣∣∣gPN,A(0)
gN,A(0)

− 1

∣∣∣∣∣ . N−1,

implying that ∣∣∣∣∣log
gPN,A(0)
gN,A(0)

∣∣∣∣∣ . N−1.

This completes the proof of the proposition. �

2.2. Coarse-grained energy

In this section, we prove Theorem 1.4 for the case without external forces by deriving the formula for the
coarse-grained energy and the representation of the thermodynamic limit G∞(A).

We recall that the finite coarse-grained energy Ecg
N is defined as a minimization problem

Ecg
N (A, y) := inf

u∈RN
u1=y,uN=NA

N∑
i=2

[W (ui − ui−1)−W (A)]. (2.50)

Due to the separation of variables, which is a special property of the 1D model, the minimization is explicit (see
Thm. 2.11 below and Thm. 3.1 for the case with external forces). This simplicity explains why the Cauchy-Born
derivation from a continuum model leads to the correct coarse-grained energy in Theorem 1.4.

The main theorem of this section is the following.
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Theorem 2.11.
(i) The coarse-grained energy, Ecg(A, y) = lim

N→∞
Ecg
N (A, y), exists and is given by

Ecg(A, y) = W ′(A)(A− y). (2.51)

In addition, for all A, y ∈ R we have |Ecg
N (A, y)− Ecg(A, y)| . N−1.

(ii) The defect formation free energy G∞(A) can be represented in terms of Ecg as

G∞(A) = − log

∫
R exp(−P (y)− ψ(y)− Ecg(A, y)) dy∫

R exp(−ψ(y)− Ecg(A, y)) dy
· (2.52)

Proof. We first prove (2.51). The minimizer of the minimization problem (2.50) satisfies the following Euler-
Lagrange equation

−W ′(ui+1 − ui) +W ′(ui − ui−1) = 0,

which implies that W ′(ui − ui−1) = λ, i.e., uN − uN−1 = . . . = u2 − u1(= (W ′)−1(λ)). This implies that

ui − ui−1 =
1

N − 1

N∑
j=2

(uj − uj−1) =
NA− y
N − 1

= A+
A− y
N − 1

·

Thus, we obtain

Ecg
N (A, y) = (N − 1)

[
W
(
A+

A− y
N − 1

)
−W (A)

]
.

By applying the mean value theorem twice, there exist 0 ≤ θ, θ′ ≤ 1 such that

Ecg
N (A, y)− ecg(A, y) = (N − 1)

[
W

(
A+

A− y
N − 1

)
−W (A)

]
−W ′(A)(A− y)

= (N − 1)W ′
(
A+ θ

A− y
N − 1

)
A− y
N − 1

−W ′(A)(A− y)

=
[
W ′
(
A+ θ

A− y
N − 1

)
−W ′(A)

]
(A− y)

= W ′′
(
A+ θ′

A− y
N − 1

)
(A− y)2

N − 1
.

Let x ∈ R and let σx be the maximiser in the definition of W (x). Then we have

x = Ψ(σx) and W (x) = σxx− log
∫

R
exp[−ψ(y) + σxy] dy.

It follows that

W ′(x) = x
dσx
dx

+ σx − Ψ(σx)
dσx
dx

= σx and W ′′(x) =
dσx
dx

=
1

Ψ ′(σx)
· (2.53)

According to Lemma 2.4, we have
|W ′′(x)| ≤ C

for all x ∈ R. It implies that |W ′′(A+ θ′ A−yN−1 )| ≤ C and hence,

|Ecg
N (A, y)− Ecg(A, y)| ≤ C(A− y)2

N − 1
,

which gives (2.51).
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The representation (2.52) is a direct consequence of (2.1) and (2.51). Indeed,

G∞(A)
(2.1)
= − log

∫
R exp[−(ψ + P )(y) +W ′(A)y] dy∫

R exp[−ψ(y) +W ′(A)y] dy

= − log

∫
R exp[−(ψ + P )(y)−W ′(A)(A− y)] dy∫

R exp[−ψ(y)−W ′(A)(A− y)] dy

(2.51)
= − log

∫
R exp(−P (y)− ψ(y)− Ecg(A, y)) dy∫

R exp(−ψ(y)− Ecg(A, y)) dy
· �

2.3. Propagation of error

In this section, we prove Theorem 1.5 for the case without external forces.

Proof of Theorem 1.5 for the case without external forces.

For shortening of the notation, we define ψ̃ := ψ + P . We rewrite Gcg
N (A) as follows.

Gcg
N (A) = − log

∫
exp[−ψ̃(y)− Ecg

N (A, y)] dy∫
exp[−ψ(y)− Ecg

N (A, y)] dy

= − log
∫

exp[−ψ̃(y)− Ecg(A, y)] dy∫
exp[−ψ(y)− Ecg(A, y)] dy

− log
∫

exp[−ψ̃(y)− Ecg(A, y)− (Ecg
N (A, y)− Ecg(A, y))] dy∫

exp
[
−ψ̃(y)− Ecg(A, y)

]
dy

+ log
∫

exp[−ψ(y)− Ecg(A, y)− (Ecg
N (A, y)− Ecg(A, y))] dy∫

exp[−ψ(y)− Ecg(A, y)] dy

= − log
∫

exp[−ψ̃(y)− Ecg(A, y)] dy∫
exp[−ψ(y)− Ecg(A, y)] dy

− log
〈

exp[Ecg
N (A, y)− Ecg(A, y)]

〉
ζ1

+ log
〈

exp[Ecg
N (A, y)− Ecg(A, y)]

〉
ζ2
,

where ζ1 and ζ2 are two probability measures defined by

ζ1(y) dy =
exp[−ψ̃(y)− Ecg(y)] dy∫
exp[−ψ̃(y)− Ecg(y)] dy

and ζ2(y) dy =
exp[−ψ(y)− Ecg(y)] dy∫
exp[−ψ(y)− Ecg(y)] dy

·

We next show that the logarithmic terms are of order O(N−1). The argument will be similar to the paragraph
following (2.30) in the proof of Proposition 2.7. Applying the estimate |et − 1| ≤ |t|e|t| and using the estimate
in Theorem 2.11, we get

| exp[Ecg
N (A, y)− Ecg(A, y)]− 1| ≤ |Ecg

N (A, y)− Ecg(A, y)| exp[|Ecg
N (A, y)− Ecg(A, y)|]

≤ C

N
(A− y)2 exp

(C
N

(A− y)2
)

≤ C

N
(A− y)2 exp

(κ1 + ς1
2

(A− y)2
)
, for N sufficiently large.
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Therefore, ∣∣∣〈 exp[Ecg
N (A, y)− Ecg(A, y)]

〉
ζ1
− 1
∣∣∣ =

∣∣∣〈 exp[Ecg
N (A, y)− Ecg(A, y)]− 1

〉
ζ1

∣∣∣
≤
〈∣∣ exp[Ecg

N (A, y)− Ecg(A, y)]− 1
∣∣〉
ζ1

≤ C

N

〈
(A− y)2 exp

(κ1 + ς1
2

(A− y)2
)〉

ζ1
·

Thanks to Assumption 1.1, the last average term will be finite. Therefore,∣∣∣〈 exp[Ecg
N (A, y)− Ecg(A, y)]

〉
ζ1
− 1
∣∣∣ ≤ C

N
,

which implies that ∣∣∣∣log
〈

exp[Ecg
N (A, y)− Ecg(A, y)]

〉
ζ1

∣∣∣∣ ≤ C

N
·

Similarly we also have ∣∣∣∣log
〈

exp[Ecg
N (A, y)− Ecg(A, y)]

〉
ζ2

∣∣∣∣ ≤ C

N
·

Therefore, we obtain that∣∣∣∣∣− log
∫

exp[−ψ̃(y)− Ecg
N (y)] dy∫

exp[−ψ(y)− Ecg
N (y)] dy

+ log
∫

exp[−ψ̃(y)− Ecg(y)] dy∫
exp[−ψ(y)− Ecg(y)] dy

∣∣∣∣∣ ≤ C

N
·

This completes the proof. �

3. External forces case

In this section, we consider the case where the external forces are present. Recall that in this case, the perfect
free energy is unchanged as the external forces are used to model the decay rate of the defect away from the
core. The perfect material energy is given byFN (A) = −β−1 log

∫
RN−1 exp

[
− β

∑N
i=1 ψ(ui − ui−1)

]
du1 . . . duN−1

u0 = 0, uN = NA.
(3.1)

The deformed free energy is influenced by the external forcesFPN (A) = −β−1 log
∫

RN−1 exp
[
− β

∑N
i=1 ψi(ui − ui−1)− βP (u1)

]
du1 . . . duN−1

u0 = 0, uN = NA,
(3.2)

where ψi(y) = ψ(y) + hiy. The defect-formation free energy is defined as the free energy difference, G∞(A) :=
limN→∞GN (A), where

GN (A) = FPN (A)− FN (A). (3.3)

Finally, the finite-domain coarse-grained energy is given by

Ecg
N (A, y) := inf

u∈RN
u1=y,uN=NA

N∑
i=2

[
W (ui − ui−1)−W (A) + hi(ui − ui−1)

]
. (3.4)

Recall also that the external forces {hi}ni=1 satisfy Assumption 1.2 and H =
∑∞
i=2 hi.
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3.1. Coarse-grained energy

We now establish the formula for the coarse-grained energy, thus proving Theorem 1.4 for the case with
external forces.

Theorem 3.1. The coarse-grained energy, Ecg(A, y) := lim
N→∞

Ecg
N (A, y), is given by

Ecg(A, y) = (A− y)W ′(A) +AH + inf
v∈RN

v1=0

J∞(A; v), (3.5)

where

J∞(A; v) =
∞∑
i=2

[W (A+ v′i)−W (A)−W ′(A)v′i + hiv
′
i]. (3.6)

In addition, for all A, y ∈ R, we have the estimate

|Ecg
N (A, y)− Ecg(A, y)| . N−1 +A |

∞∑
i=N+1

hi|+
∞∑

i=N+1

|hi|2. (3.7)

Proof. By changing variables v′i = u′i −A and substituting to (3.4), we obtain

Ecg
N (A, y) = inf

v∈RN
v1=y−A,vN=0

IN (A; v), (3.8)

where

IN (A; v) =
N∑
i=2

[W (A+ v′i)−W (A) + hi(v′i +A)]

=
N∑
i=2

[W (A+ v′i)−W (A)−W ′(A)v′i + hiv
′
i] +A

N∑
i=2

hi + (A− y)W ′(A)

= JN (A; v) +A

N∑
i=2

hi + (A− y)W ′(A),

with

JN (A; v) =
N∑
i=2

[W (A+ v′i)−W (A)−W ′(A)v′i + hiv
′
i]. (3.9)

Therefore

Ecg
N (A, y) = A

N∑
i=2

hi + (A− y)W ′(A) + inf
v∈RN

v1=y−A,vN=0

JN (A; v). (3.10)

We now show that
lim
N→∞

inf
v∈RN

v1=y−A,vN=0

JN (A; v) = inf
v1=y−A

J∞(A; v), (3.11)

where

J∞(A; v) =
∞∑
i=2

[W (A+ v′i)−W (A)−W ′(A)v′i + hiv
′
i].
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In fact, since J∞(A; v) depends only on v′i, we have that

inf
v∈RN

v1=y−A

J∞(A; v) = inf
v∈RN

v1=0

J∞(A; v).

To shorten the notation, we define Θi(A, z) = W (A+ z)−W (A)−W ′(A)z + hiz so that

JN (A; v) =
N∑
i=2

Θ(A, v′i), and J∞(A; v) =
∞∑
i=2

Θi(A, v′i).

A minimizer of J∞(A; ) satisfies the following Euler-Langrange equation for i = 2, . . . , N

Θ′i(A; v′i) = 0,

together with the boundary condition v1 = y − A. In particular, since Θ′i(A, z) = W ′(A + z) −W ′(A) + hi =
W ′′(A+ θz)z + hi for some θ ∈ R, it follows that

|v′i| =
|hi|

|W ′′(A+ θv′i)|
≤ |hi|

κ1
·

We define an admissible sequence ṽi as follows

ṽ1 = y −A, ṽN = 0, ṽ′i = v′i + CN ,

for some CN . Since {v′i} ∈ l1, we have
∑N
i=2 v

′
i → a for some a ∈ R. By summing up the above equalities, it

follows that

|CN | .
|y −A|+ |a|

N
·

Since v′i minimizes Θi we have
0 ≤ Θi(ṽ′i)−Θi(vi) . C2

N . N
−2.

As a consequence, we obtain

inf
w∈RN

w1=y−A,wN=0

JN (A;w) ≤ JN (A; ṽ) = JN (A; v) +
N∑
i=2

[Θi(ṽ′i)−Θi(v′i)]

≤ J∞(A; v) + CN−1 +
∞∑

i=N+1

Θi(v′i)

≤ J∞(A; v) + CN−1 + C

∞∑
i=N+1

|hi|2. (3.12)

Note that in the estimation above we have used the fact that |Θi(v′i)| ≤ C(|hi|2 + |v′i|2)| ≤ C|hi|2.
On the other hand, using again the fact that v′i minimizes Θi for each i = 2, . . . , N , we have

inf
w∈RN

w1=y−A,wN=0

JN (A;w) ≥ JN (A; v) = J∞(A; v)−
∞∑

i=N+1

Θ(v′i) ≥ J∞(A; v)− C
∞∑
i=N

|hi|2. (3.13)

From (3.12) and (3.13), we obtain∣∣∣∣∣∣ inf
v∈RN

v1=y−A,vN=0

JN (A; v)− inf
v∈RN
v1=y−A

J∞(A; v)

∣∣∣∣∣∣ . N−1 +
∞∑

i=N+1

|hi|2, (3.14)
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from which (3.11) follows. Finally, from (3.10) and (3.14), we get

|Ecg
N (A, y)− lim

N→∞
Ecg
N (A, y)| . N−1 +A

∣∣∣∣∣
∞∑

i=N+1

hi

∣∣∣∣∣+
∞∑

i=N+1

|hi|2,

which is (3.7) (and hence (3.5)) as claimed. This finishes the proof of Theorem 3.1. �

3.2. Thermodynamic limit

The main result of this section is the following theorem on the representation of the defect formation free
energy.

Theorem 3.2. The thermodynamic limit is given by

G∞(A) = − log

∫
R exp[−(ψ1 + P )(y)− Ecg(A, y)] dy∫

R exp[−ψ(y)− Ecg
h=0(A, y)] dy

· (3.15)

where Ecg(A, y) is defined in (3.5).

Proof of Theorem 3.2. The proof is analogous to that of Theorem 2.1 which consists of three main steps.

Step (1). Express the defect-formation free energy in terms of the energy difference and a ratio of the densities
of random variables based on Lemma 2.2.

Step (2). Establish the limit of the energy difference.
Step (3). Show that the ratio of the densities of random variables are of order O(1/N).

We now only sketch out the main computations in Step (1) and Step (2). Applying Lemma 2.2 for the case
ψ̃1 = ψ1 + P, ψ̃2 = ψi, for i = 2, . . . , N to obtain

WP
N (A) = sup

σ∈A

{
σA− 1

N
log
∫

R
exp[−(ψ1(y) + P (y) + σy] dy − 1

N
log
∫

R

N∑
i=2

exp[−ψi(y) + σy] dy

}
,

= σNA−
1
N

log
∫

R
exp[−(ψ1(y) + P (y) + σNy] dy − 1

N
log
∫

R

N∑
i=2

exp[−ψi(y) + σNy] dy.

The optimal value σN solves

A =
1
N

∫
R y exp[−(ψ1(y) + P (y)) + σy] dy∫
R exp[−(ψ1(y) + P (y)) + σy] dy

+
1
N

N∑
i=2

∫
R y exp[−ψi(y) + σy] dy∫
R exp[−ψi(y) + σy] dy

=
1
N
ΨP (σ − h1) +

1
N

N∑
i=2

Ψ(σ − hi), (3.16)

where Ψ is defined in (2.17) and ΨP is given by

ΨP (σ) =

∫
R y exp[−(ψ1(y) + P (y)) + σy] dy∫
R exp[−(ψ1(y) + P (y)) + σy] dy

· (3.17)
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Since W (A) is unchanged, it is the same as in (2.23)–(2.24), so that

N [WP
N (A)−W (A)] = N(σN − σ0)A− log

∫
R exp[−(ψ1(y) + P (y)) + σNy] dy∫

R exp[−ψ(y) + σ0y] dy

−
N∑
i=2

log

∫
R exp[−ψi(y) + σNy] dy∫
R exp[−ψ(y) + σ0y] dy

= N(σN − σ0)A− log

∫
R exp[−(ψ1(y) + P (y)) + σNy] dy∫

R exp[−ψ(y) + σ0y] dy

−
N∑
i=2

[W ∗(−hi + σN )−W ∗(σ0)], (3.18)

where σ0 = W ′(A). We will need the following lemma whose proof is postponed after the proof of Theorem 3.2.

Lemma 3.3. It holds that
|σN − σ0| ≤

C

N
. (3.19)

To proceed, we will compare this free energy difference with the finite-domain coarse-grained energy. Recalling
that the latter is defined by (see (3.4)),

Ecg
N (y) := inf

u:{1,N}→R
u(1)=y,u(N)=NA

N∑
i=2

[
W (ui − ui−1)−W (A) + hi(ui − ui−1)

]

= A

N∑
i=2

hi + inf
u:{1,N}→R

u(1)=y,u(N)=NA

N∑
i=2

[
W (ui − ui−1) + hi(ui − ui−1)− (hiA+W (A))

]
. (3.20)

The Euler-Lagrange equation for a minimizer of Ecg
N is

−W ′(ui+1 − ui) +W ′(ui − ui−1)− (hi+1 − hi) = 0,

which implies that
W ′(ui − ui−1) = −hi + λ

for i = 2, . . . , N and for some λ ∈ R. We note that (W ′)−1(z) = (W ∗)′(z), where W ∗ is the Legendre transfor-
mation of W . It follows from the definition of W that

W ∗(x) = log
∫

exp[−ψ(z) + xz] dz,

and so

(W ∗)′(x) =
∫
x exp[−ψ(z) + xz] dz∫
exp[−ψ(z) + xz] dz

= Ψ(x).

Therefore, we obtain that

ui − ui−1 = (W ′)−1(−hi + λ) = (W ∗)′(−hi + λ) = Ψ(−hi + λ).

Summing up these equalities from i = 2 to N and using the boundary condition on u, we obtain the following
equation for λ = λN

NA− y =
N∑
i=2

Ψ(−hi + λN ). (3.21)
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Next, we use the following relations of the Legendre transform

W (x) = W ′(x)x−W ∗(W ′(x)), W ′((W ∗)′(x)) = x

to obtain W (A) = W ′(A)A−W ∗(W ′(A)) and

W (ui − ui−1) = W ((W ∗)′(−hi + λN ))

= W ′((W ∗)′(−hi + λN ))(W ∗)′(−hi + λN )−W ∗(W ′((W ∗)′(−hi + λN )))

= (−hi + λN )(W ∗)′(−hi + λN )−W ∗(−hi + λN ).

Therefore, the sum inside the inf in (3.20) can be re-written as (recalling that uN = NA, u1 = y)

N∑
i=2

[
W (ui − ui−1) + hi(ui − ui−1)− hiA−W (A)

]

=
N∑
i=2

[
(−hi + λN )(W ∗)′(−hi + λN )−W ∗(−hi + λN ) + hi(W ∗)′(−hi + λN )

− hiA−W ′(A)A+W ∗(W ′(A))
]

= λN

N∑
i=2

(W ∗)′(−hi + λN )−
N∑
i=2

[
W ∗(−hi + λN )−W ∗(W ′(A)) + hiA+W ′(A)A

]

= λN

N∑
i=2

(ui − ui−1)−
N∑
i=2

[
W ∗(−hi + λN )−W ∗(W ′(A)) + hiA+W ′(A)A

]

= λN (NA− y)−A
N∑
i=1

hi − (N − 1)W ′(A)A−
N∑
i=2

[
W ∗(−hi + λN )−W ∗(W ′(A))

]
.

Substituting this expression back into (3.20), we get

Ecg
N (y) = λN (NA− y)− (N − 1)W ′(A)A−

N∑
i=2

[W ∗(−hi + λN )−W ∗(W ′(A))]

= λN (A− y) + (N − 1)(λN −W ′(A))A−
N∑
i=2

[W ∗(−hi + λN )−W ∗(W ′(A))]· (3.22)

It follows from (3.18) and (3.22) that

N [WN (A)−W (A)]− Ecg
N (A) = (σN − σ0)A− log

∫
R exp[−(ψ1(y) + P (y)) + σNy] dy∫

R exp[−ψ(y) + σ0y] dy

+
N∑
i=2

([σNA−W ∗(−hi + σN )]− [λNA−W ∗(−hi + λN )])

= (σN − σ0)A− log

∫
R exp[−(ψ1(y) + P (y)) + σNy] dy∫

R exp[−ψ(y) + σ0y] dy

+ bN (σN )− bN (λN ), (3.23)
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where

bN (x) :=
N∑
i=2

[xA−W ∗(−hi + x)].

Then we have

b′N (x) = (N − 1)A−
N∑
i=2

(W ∗)′(−hi + x),

b′′N (x) = −
N∑
i=2

(W ∗)′′(−hi + x) = −
N∑
i=2

Ψ ′(−hi + x) ≤ 0,

where we have used (2.19) to obtain the last inequality. Therefore b′N (x) is a non-increasing function. Further-
more, from (3.21) and (3.16), we have

b′N (λN ) = (N − 1)A−
N∑
i=2

(W ∗)′(−hi + λN ) = y −A,

b′N (σN ) = (N − 1)A−
N∑
i=2

(W ∗)′(−hi + σN ) = ΨP (σN − h1)−A.

Since d
dσΨP (σ) ≤ 1

κ1+ς1
, we have

|ΨP (σN − h1)| ≤ |ΨP (0)|+ 1
κ1 + ς1

|σN − h1| ≤ |ΨP (0)|+ 1
κ1 + ς1

(|σ0 − h1|+ |σN − σ0|)

≤
(
|ΨP (0)|+ 1

κ1 + ς1
(|σ0 − h1|+ C)

)
.

Therefore both b′N (λN ) and b′N (σN ) are uniformly bounded. It follows that

|bN (σN )− bN (λN )| = |σN − λN ||b′N (θN )|

≤ |σN − λN |max{|b′N (σN ), b′N (λN )|}

≤ C|σN − λN |

≤ C[|σN −W ′(A)|+ |λN −W ′(A)|]

≤ C(N − 1)−1.

Substituting this estimate into (3.23), we obtain∣∣∣∣N [WN (A)−W (A)]−
(
Ecg
N (A) + (σN − σ0)A− log

∫
R exp[−(ψ1(y) + P (y)) + σNy] dy∫

R exp[−ψ(y) + σ0y] dy

)∣∣∣∣ ≤ C

N
· (3.24)

An analogous argument as in the proof of Proposition 2.7 we obtain∣∣∣∣log

∫
R exp[−(ψ1(y) + P (y)) + σNy] dy∫

R exp[−ψ(y) + σ0y] dy
− log

∫
R exp[−(ψ1(y) + P (y)) + σ0y] dy∫

R exp[−ψ(y) + σ0y] dy

∣∣∣∣ ≤ C

N
· (3.25)

The assertion (3.15) of Theorem 3.2 is then followed from (3.24), Theorem 3.1, Lemma 3.3 and (3.25). �
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We now prove Lemma 3.3.

Proof of Lemma 3.3. Define L(σ) := 1
N ΨP (σN ) + 1

N

∑N
i=2 Ψ(σN − hi). Then we have

A = Ψ(σ0) = L(σN ).

Hence,

L(σN )− L(σ0) = Ψ(σ0)− L(σ0) =
1
N

(Ψ(σ0)− ΨP (σ0 − h1)) +
1
N

N∑
i=2

(Ψ(σ0)− Ψ(σ0 − hi)).

By the mean value theorem, there exists θ such that

L(σN )− L(σ0) = L′(θ)(σN − σ0). (3.26)

We have

|L′(θ)||σN − σ0| = |L(σN )− L(σ0)| ≤ 1
N

[
|Ψ(σ0)− ΨP (σ0 − h1)|+

N∑
i=2

|Ψ(σ0)− Ψ(σ0 − hi)|

]

≤ 1
N

[
|Ψ(σ0)− ΨP (σ0 − h1)|+ 1

κ1

N∑
i=2

|hi|

]
·

Since 0 < |L′(θ)| ≤ C, it implies that

|σN − σ0| ≤
1

N |L′(θ)|

[
|Ψ(σ0)− ΨP (σ0 − h1)|+ 1

κ1

N∑
i=2

|hi|

]
≤ C

N
· �

4. Defect-formation free energy VERSUS Gibbs conditioning principle (GCP)

There is a close relationship between the thermodynamic limit studied in this paper with the Gibbs condi-
tioning principle (GCP) in probability theory and statistical mechanics [7, 9]. To make a comparison we first
review the result of [7]. Consider an exponential family of probability measures {Pλ : λ ∈ Λ = (α, β)} on the
fixed interval I = (a, b)

Pλ(dx) = eλxh(x) dx/c(λ) c(λ) =
∫
I

eλxh(x) dx.

Let X1, . . . , Xn be i.i.d. random variables with common distribution Pλ. For k < n, let Qnsk be the law of
X1, . . . , Xk given Sn = X1 + . . .+Xn = sn which can be computed explicitly by

Qnsk(x1, . . . , xk)(dx1, . . . , dxk) = h(x1) . . . h(xk)h∗(n−k)(s− x1 − . . .− xk)/h∗n(s),

where h∗j := h ∗ . . . ∗︸ ︷︷ ︸
j

h.

Theorem 4.1. [7], (Thm. 1.6 (a)). Under certain conditions (smoothness, boundedness of fourth moments,
growth condition and a maximal condition) and if k = o(n), then uniformly in s,

‖Qnsk − P⊗kλ∗ ‖ = γ
k

n
+ o

(
k

n

)
,

where ‖‖ is the total variation distance, γ = (2/πe)1/2 and λ∗ solves

mλ =
d

dλ
log c(λ) =

s

n
·
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We note that the GCP can also be found from the theory of large-deviation principle, see e.g., [10] for generalities
on large deviation theory and [5, 9] for its applications to the GCP. We discuss here a simplified case that is
relevant to this paper. Suppose as above that X1, . . . , Xn are i.i.d. random variables with common distribution
π(dx) (not necessary parameterized by λ as above) and X1 + . . . Xn = nA. The empirical measure associated
to these variables is defined by

πn(dx) =
1
n

n∑
i=1

δXi(dx).

The condition X1 + . . . Xn = nA can be written as 〈x, πn〉 :=
∫

R xπn(dx) = A. For any two probability measures
µ, ν on R, let H(µ||ν) be the relative entropy of of µ with respect to ν, i.e.,

H(µ||ν) =


∫

R log
(

dµ
dν

)
dµ, if dµ� dν,

+∞, otherwises.

Now the GCP states that the conditional distribution of a finite k number of variables becomes i.i.d. with new
condition µ∗ obtained by minimizing the relative entropy

inf
µ:〈x,µ〉=A

H(µ||π). (4.1)

The solution of this minimization problem satisfies the following Euler-Langrange equation

µ∗(dx) =
eσ∗xπ(dx)∫
R eσ∗xπ(dx)

,

where σ∗ satisfies

A =
∫

R
xµ∗(dx) =

∫
R xe

σ∗xπ(dx)∫
R e

σ∗xπ(dx)
·

In (4.1) the fact that the functional to be minimized is the relative entropy comes from Sanov’s theorem that
states that the empirical measure πN satisfies a large-deviation principle as N →∞ with a rate function given
by the relative entropy H(·||π), see e.g., [10].

Now we compare the computations of the defect-formation free energy with the GCP. In the case where
the external force is absent, the defect-formation free energy for the specific example that we consider can be
regarded as an application of Theorem 4.1. Indeed, using a change of variables yi = ui − ui−1, we obtain

GPN (A) : = FPN (A)− FN (A)

= − log
∫

R
exp(−P (y1))

exp(−ψ(y1))
∫

RN−2 exp(−
∑N−1
i=2 ψ(yi)− ψ(NA− y1 −

∑N−1
i=2 yi))dy2 . . . dyN−1∫

RN−1 exp(−
∑N−1
i=1 ψ(yi)− ψ(NA−

∑N−1
i=1 yi))dy1 . . . dyN−1

dy1.

(4.2)

Let Yi, i = 1, . . . , N be i.i.d. random variables with common distribution Pλ(y) ∝ eλyq(y) where q(y) =
exp(−ψ(y)). The conditional density of Y1 given S := Y1 + . . .+ YN = sN is given by

QNsN1 =
q(y1)q∗(N−1)(sN − y1)

q∗N (sN )

=
exp(−ψ(y1))

∫
RN−2 exp(−

∑N−1
i=2 ψ(yi)− ψ(sN − y1 −

∑N−1
i=2 yi)) dy2 . . . dyN−1∫

RN−1 exp(−
∑N−1
i=1 ψ(yi)− ψ(sN −

∑N−1
i=1 yi)) dy1 . . . dyN−1

. (4.3)
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Taking sN = NA in (4.3) and comparing with (4.2) we obtain that

GPN (A) = − log
∫

R
exp(−P (y1))QN(NA)1(dy1) = − log E

(
exp(−P (Y1))|Y1 + . . .+ YN = NA

)
.

According to Theorem 4.1,

‖QN(NA)1 − µ‖ =
γ

N
+ o
( 1
N

)
,

where µ is given by
µ(y1) ∝ eλ

∗y1−ψ(y1)

where λ∗ solves

A =

∫
R y1 exp(λy1 − ψ(y1)) dy1∫

R exp(λy1 − ψ(y1)) dy1
,

which implies that λ∗ = W ′(A) where

W (A) = sup
σ
{σA− log

∫
R

exp(σy − ψ(y)) dy}.

As a consequence, |GPN (A)−G∞(A)| . 1/N uniformly in A where

G∞(A) = − log

∫
R exp(−(ψ + P )(y) +W ′(A)y) dy∫

R exp(−ψ(y) +W ′(A)y) dy

as expected.
However, when there is external force, Theorem 4.1 can not be applied per se since the variables Yi are not

identically distributed. Instead, Yi has distribution ∝ exp(−ψi(y)) with ψi(y) = ψ(y) +hiy. The method in [14]
(and hence our Lem. 2.2) can be applied to non-identical distributions. The proof of the local Cramér theorem
in [14] is an extension of Proof of Theorem 1.6 from [7], to non-identical distributions.

5. Harmonic potentials

In this section, we provide explicit computations for the quadratic case,

ψ(y) = α|y|2, P (y) = β|y|2, for some α, β > 0. (5.1)

5.1. Harmonic potentials without forcing

We recall that

FN (A) = − log
∫

RN−1
exp

−αN−1∑
i=1

y2
i − α

(
NA−

N−1∑
i=1

yi

)2
 dy1 . . . dyN−1.

and

FPN (A) = − log
∫

RN−1
exp

−(α+ β) y2
1 − α

N−1∑
i=2

y2
i − α

(
NA−

N−1∑
i=1

yi

)2
 dy1 . . . dyN−1.

The main result of the present section is the following.
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Theorem 5.1. The defect-formation free energy is given by

GN (A) := FPN (A)− FN (A)

=
1
2

log
α+ β

α
+
αβA2

α+ β
− Nαβ2A2

(N(α+ β)− β)2
+
αβA2

α+ β

(
2β

N(α+ β)− β
+

β2

(N(α+ β)− β)2

)
+

1
2

log
(

1− β

N(α+ β)

)
·

The thermodynamic limit is given by

G∞(A) := lim
N→∞

GN (A) =
αβ A2

α+ β
+

1
2

log
α+ β

α
·

Moreover, the following error estimate holds for all A ∈ R and N ≥ 2 and for some positive constant C

|GN (A)−G∞(A)| ≤ C

N
.

Proof. The proof consists of lengthy and elementary computations. Hence, we omit it here and refer to the
preprint version [6] for detailed computations. �

5.2. Harmonic potentials with external forces

Now we consider the quadratic case with external forces. Recall that the perfect energy is{
FN (A) = −β−1 log

∫
RN−1 exp

[
− β

∑N
i=1 ψ(ui − ui−1)

]
du1 . . . duN−1

u0 = 0, uN = NA.
(5.2)

and the deformed energy is{
FPN (A) = −β−1 log

∫
RN−1 exp

[
− β

∑N
i=1 ψi(ui − ui−1)− βP (u1)

]
du1 . . . duN−1

u0 = 0, uN = NA,
(5.3)

where ψi(y) = ψ(y) + hiy = αy2 + hiy, where {hi} represent the external forces.
The finite coarse-grained energy is given by

Ecg
N (y) =

N∑
i=2

[
1

4α
(−hi + λ)2 +

1
2α
hi(−hi + λ)− αA2

]
.

In view of Assumption 1.2 we define

H :=
∞∑
i=2

hi and H̄ =
∞∑
i=2

h2
i .

The main result of this section is the following.

Theorem 5.2.
(1) The thermodynamic limit has the following explicit formula

G∞(A) =
1
2

log
α+ β

α
+
αβA2

α+ β
+
αAh1

α+ β
− h2

1

4(α+ β)
+AH − 1

4α
H̄.
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(2) The coarse-grained energy is given by

Ecg(y) = lim
N→∞

Ecg
N (y) = 2αA(A− y) +AH − 1

4α
H̄.

(3) The thermodynamic limit can be represented as

G∞ = − log
∫

exp[−(ψ(y) + P (y) + h1y)− Ecg(y)] dy∫
exp[−ψ(y)− Ecg

h=0(y)] dy
·

Proof. The proof is elementary and lengthy. Hence, we omit it here and refer to the preprint version [6] for
detailed computations. �

5.3. Harmonic coarse-graining

In this section, we provide a direct method to coarse-graining for the harmonic case. We consider as before
the potential energy

V (u) =
N∑
i=1

ψ(ui − ui−1), (5.4)

and the perturbed energy

V (u) + P (u1) =
N∑
i=1

ψ(ui − ui−1) + P (u1), (5.5)

where we consider the harmonic case ψ(r) = K1r
2 and P (r) = K2r

2. We are interested in the free energy
difference

FN (x, P )− FN (x, 0) = − log
∫

RN−1
exp(−V (u)− P (u)) + log

∫
RN−1

exp(−V (u)). (5.6)

As seen above, this can be analytically computed. However, we consider coarse-graining the potential energy
and using the free energy difference of the coarse-grained model to approximate the free energy difference for
the full model. We show that the free energy difference for the coarsened model is identical to that of the full
model.

Since our interactions are first-neighbor only and the defect potential is restricted to the first bond, we leave
the first bond fully resolved and use a uniform coarsening elsewhere. That is, associated to the displacement
w ∈ RM , we have the piecewise linear interpolation operator Ih : RM → RN where (Ihw)p(j−1)+1 = uj . In
particular, N = p(M − 1) + 1. The coarse-grained potential energy is then

Vcg(w) = ψ(w1 − w0) +
M∑
i=2

pψ(p−1(wj − wj−1)) = K1w
2
1 +

M∑
i=2

K1p
−1(wj − wj−1)2. (5.7)

The technique given here for computing the free energy will differ from that in the previous sections. Here, we
successively complete squares on the energy, starting from wM−1, and we define a recurrence for the coefficients



ON ASSESSING THE ACCURACY OF DEFECT FREE ENERGY COMPUTATIONS 1347

ci, di, and fi that are introduced in the expansion.

Vcg(w) = K1w
2
1 +

N∑
i=2

K1p
−1(wj − wj−1)2

= K1p
−1N2x2 − 2K1p

−1NxwM−1 +
M−1∑
i=2

K1p
−1 [2wj − 2wjwj−1] +K1(1 + p−1)w2

1

= K1p
−1

[
N2x2 + 2(wN−1 −

1
2

(Nx+ wN−2))2 − 1
2

(Nx+ wN−2)2

+
M−2∑
i=2

(2wj − 2wjwj−1)

]
+K1(1 + p−1)w2

1

= K1p
−1

[
fiN

2x2 +
M−1∑
i=m

ci(wi − c−1
i (wi−1 + diNx))2 − c−1

m (wm−1 + dmNx)2

+
m−1∑
i=2

(2wj − 2wjwj−1)

]
+K1(1 + p−1)w2

1,

where the coefficients satisfy the following recurrences:

ci−1 = 2− c−1
i cM−1 = 2

di−1 =
di
ci

dM−1 = 1

fi−1 = fi −
d2
i

ci
fM−1 = 1.

We then find for i = 2, . . . ,M − 1,

ci =
M − i+ 1
M − i

di =
1

M − i

fi =
1

M − i
.

So, for the coarse-grained energy, we compute:

Vcg(w) = K1p
−1

[
M−1∑
i=2

ci(wi − c−1
i (wi−1 + diNx))2

+
(

M

M − 1
+ p− 1

)(
w1 −

d1Nx

c1 + p− 1

)2

+
N2x2p

M + (p− 1)(M − 1)

]
,

where the lowest order terms do not satisfy the recursion because of the factor of p, but they are computed
manually. Using the same recursion, we can also transform the energy with the defect, taking care to modify
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the lowest-order term.

Vcg(w) + P (w1) = K1p
−1

[
M−1∑
i=2

ci(wi − c−1
i (wi−1 + diNx))2

]

+
(
K1

p

(
M

M − 1
+ p− 1

)
+K2

)(
w1 −

K1d1Nx

K1(c1 + p− 1) +K2p

)2

+
K1N

2x2(K1 +K2)
K1(M + (p− 1)(M − 1)) +K2p(M − 1)

·

When we take free energy differences, we can directly integrate starting from wM−1 downwards, and the only
differences in the two energies are in the lowest-order terms. Also, we note that M + (p− 1)(M − 1) = N, and
p(M − 1) = N − 1, so that the p will fall out. We have

F cg
M (x, P )− F cg

M (x, 0) =
K1N

2x2(K1 +K2)
K1N +K2(N − 1)

− N2x2

N
+

1
2

log
[
K1N +K2(N − 1)

K1N

]
·

We note that this is exactly the result arrived at in Section 5.1, and that there is no p or M dependence here.
That is, any uniform coarse-graining of the chain that leaves the first bond refined exactly computes the free
energy difference.

6. Numerical free energy

We present numerical experiments to illustrate the results of the paper using standard free energy computation
techniques as in [13]. We compare the finite chain energy GN , coarse grained energy Gcg

N , and G∞ computed
using numerical quadrature of the limit expression. We see the theoretically expected N−1 rate of convergence,
where the asymptotic rate is observed to be valid even for small N. An application of the triangle inequality
shows that GN −Gcg

N decays at least as fast as N−1, and we observe that N−1 is the asymptotic decay rate in
our experiments.

6.1. Free energy perturbation

A standard approach for computing free energy differences is called the free energy perturbation technique
which rewrites the free energy difference as an ensemble average of the energy perturbation with respect to the
invariant measure of the unperturbed system. To compute the free energy difference between V and V P , we
write

GN = FPN − FN = − log

∫
Γ

exp(−V P (z))dz∫
Γ

exp(−V (z))dz

= − log

∫
Γ

exp(−(V P (z)− V (z))) exp(−V (z))dz∫
Γ

exp(−V (z))dz

= − log〈exp(−P (u))〉µ0 .

Therefore, one samples exp(−P (u)) with respect to the invariant measure given by V.

6.2. Staging

Direct sampling to compute the free energy perturbation can be very slow to converge when V P − V is
large, particularly when the minima of V and V P are separated. Many samples are chosen near the global
minimum of V, which may not significantly contribute to the value of the integral. Instead, one can employ
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staging, where the free energy difference is broken into a telescopic sum. That is, we write Vλ = V + λP, and
Fλ = −β−1 log

∫
Γ
Vλ(z) dz. Then the free energy difference can be written

FPN − FN =
Nstages∑
i=1

Fλi − Fλi−1 ,

so that one must sample exp(−β(λi − λi−1)P ) with respect to the invariant measure corresponding to Vλi−1 .
Since the energies Vλi and Vλi−1 are closer than V and V P , this speeds convergence and reduces the overall
computed variance.

6.3. Metropolis adjusted langevin algorithm

In the following, we apply the Metropolis Adjusted Langevin Algorithm (MALA), which proceeds as a series
of overdamped Langevin steps followed by an accept/reject step:

q∗ = qn − h∇V (qn) +
√
hG where G ∼ N (0, Id).

Then we accept the new step and set qn+1 = q∗ with probability

r(qn, q∗) = min
(

1,
T (q∗,dqn)µ(dq∗)
T (qn,dq∗)µ(dqn)

)
,

where

T (q, dq′) =
(

1
4πh

)d/2
exp

(
−|q′ − q + h∇V |2

4h

)
·

Otherwise, we set qn+1 = qn. The accept/reject step assures that we are sampling the invariant measure µdq for
any stepsize h. The choice of h is driven by two competing interests: larger h speeds up convergence from the
initial condition to the invariant measure, whereas smaller h means that a step is more likely to be accepted.

6.4. Unforced nonlinear chain

We consider the nonlinear energy

ψ(r) =
1
2

(r − 1)4 +
1
2
r2, (6.1)

which was the test case used in [1]. Note that while this does not satisfy the upper bound of the growth condition
in (1.7), we do observe the expected rates of convergence. We take a harmonic defect perturbation P (y) = y2

and choose A = 2.
The free difference GN is sampled using the MALA algorithm with 100 staging steps and 100 independent

replicas to compute confidence intervals. In addition, the coarse-grained approximation Gcg
N is also computed.

Due to the 1D nature of the problem, the minimizer for the CG energy is given by an affine function, so that
the computations involved are low-dimensional integrals. First the energy density

W (A) = sup
σ∈R

{
σA− log

∫
R

exp(−ψ(y) + σy) dy
}

is computed by quadrature, giving coarse-grained energy

Ecg
N (y) = (N − 1)

[
W
(
A+

A− y
N − 1

)
−W (A)

]
·

Then we may compute

Gcg
N = − log

∫
exp(−P (y)− ψ(y)− Ecg

N (y) dy∫
exp(−ψ(y)− Ecg

N (y)) dy
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Figure 1. For the nonlinear potential, the free energy difference is sampled using staging,
and the result is compared to the coarse-grained approximation. The limiting free energy is
computed via numerical quadrature and plotted in green. On the right, we show the rate of
convergence to the limiting energy G∞, where both approximations show O(N−1) convergence.
The difference between GN and Gcg

N is also O(N−1).
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Figure 2. Convergence is studied under varying defect behavior. On the left, the strength of
the defect potential P (u) = K2u

2 is varied and the relative error in the free energy is plotted. In
each case we observe the expected N−1 error, and the error is much lower for a weaker external
potential. On the right, a nonlinear chain is sampled where the defect is modeled by decaying
forces fj = 0.1j−p, and we show the rate of convergence to the limiting energy G∞, where the
approximations seem to have p-dependent rates of convergence. Note that for exponents p = 4
and p = 4.5, the computed energy quickly approaches the limiting energy up to statistical noise.

using standard quadrature techniques. In Figure 1, the sampled free energy difference GN is compared to Gcg
N

as well as G∞. The O(N−1) convergence is seen throughout the chosen range of N. We observe through the
numerics that |GN −Gcg

N | is also O(N−1).

6.5. Varying defect properties

We consider the convergence properties as the defect is varied. We first examine the nonlinear chain as
above, with varying strengths for the defect potential, choosing P (u) = K2u

2 where K2 will vary over K2 =
0.1, 1, 10, 100. As a second example, we compute the free energy difference with external forces but no defect
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potential, P (u) = 0. The external forces are only present in the defective chain, and the forces impose effective
decay rates for the defect providing an analog for the slow decay in the elastic field that surrounds defects
in higher dimensional problems. The non-defective chain has nonlinear interaction potentials (6.1), and the
defective chain has external forces fj = 0.1j−p on each degree of freedom uj , or hi = −

∑N−1
j=i fj . The free

energy GN chain is sampled using MALA with 100 stages, and the limiting expression for G∞ (3.15) is computed
numerically, where it is noted that the minimization problem in the limit separates into single variable problems.
As the forces decay sufficiently fast, a Taylor series approximation is used for all but the first four terms in
Ecg(A).

In Figure 2, the differences GN − G∞ are plotted for various rates of decay in the external forces fj =
0.1j−p, p = 3, 3.5, 4, 4.5. The observed rates of convergence depend on the decay rate and are observed to be
faster than O(N−1).

7. Conclusion

We have provided a rigorous analysis of the defect-formation free energy (1.6) for a one-dimensional, nearest
neighbour chain with nonlinear local defect and external forces. The limiting energy is written in terms of a
coarse-grained energy that is based on the Cauchy-Born strain energy density. The form of the coarse-grained
energy was chosen because its variational structure is amenable to analysis and approximation by methods in
variational mechanics.

The analysis required many restrictions on the model. The nonlinear perturbation P could be extended to
a finite region rather than the first bond without additional difficulty. Including interactions beyond nearest
neighbour in V would entail extension of the arguments here, for example the bonds are no longer indepen-
dently distributed in Lemma 2.2, compare the work done for the free energy density in [1]. Moving beyond one
spatial dimension for the chain requires significant additional work; however, the inclusion of external forces
was motivated in part by the higher dimensional cases as a way to model slowly-decaying stress field around a
defect present in dimensions higher than one.

Acknowledgements. MHD and CO were supported by ERC Starting Grant 335120. MD was partially supported by the
DARPA EQUiPS program under the grant W911NF1520122

References

[1] X. Blanc, C.L. Bris, F. Legoll and C. Patz, Finite-temperature coarse-graining of one-dimensional models: Mathematical
analysis and computational approaches. J. Nonlin. Sci. 20 (2010) 241–275.

[2] X. Blanc and F. Legoll, A numerical strategy for coarse-graining two-dimensional atomistic models at finite temperature: The
membrane case. Comput. Mat. Sci. 66 (2013) 84–95.
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