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ANALYSIS OF A MIMETIC FINITE DIFFERENCE

APPROXIMATION OF FLOWS IN FRACTURED POROUS MEDIA

Luca Formaggia, Anna Scotti* and Federica Sottocasa

Abstract. We consider the mixed formulation for Darcy’s flow in fractured media. We give a well-
posedness result that does not rely on the imposition of pressure in part of the boundary of the fracture
network, thus including a fully immersed fracture network. We present and analyze a mimetic finite
difference formulation for the problem, providing convergence results and numerical tests.
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1. Introduction

It is well known that flow in porous media, in particular in the case of geophysical applications, is often
characterized by very strong heterogeneities. In particular fractures, interfaces between different materials and
faults have a major impact on the flow at all spatial scales. Indeed, due to the strong permeability contrasts,
fractures and faults can act either as preferential paths for the flow, or as barriers forming pressure compartments.

In the past decades flow through fractured porous media has typically been simulated by means of dual
porosity models [11]. However, this approach has some important limitations [33], in particular it is not adequate
in the case of disconnected networks, or in the case of a small number of large fractures. For these reasons discrete
fracture models, which represent fractures explicitly, are developing more and more.

Since fractures typically have a small aperture compared to their characteristic length, it is a common choice
in the modelling of discrete fracture models to represent fractures as d − 1-dimensional entities immersed in
a d-dimensional domain, for instance, surfaces in three dimensional domains of lines in the two dimensional
case. From the mathematical point of view a suitable geometrically reduced model should be then solved on
such manifolds. Following the existing literature, we assume that fractures are filled by a porous medium with
different porosity and permeability than the surrounding porous matrix, and that flow can be described by
Darcy’s law both in the bulk porous medium and in the fractures. However, we point out that if we consider
fractures with porosity φ = 1, but with small aperture, thanks to the parallel plates approximation [1] we obtain
similar governing equations.

A reduced model for Darcy flow in fractures has been derived in [2] for the case of very permeable fractures,
and later generalized to fractures with low permeability in [35]. More recently it has been extended to describe
transport in fractured media [28], and two-phase flow, see [29, 32].
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Even if the use of a geometrically reduced model avoids the need for extremely refined or anisotropic grids
inside the fractures, the construction of a computational grid for realistic cases is a challenging task (see, for
instance, [22]): a fractured oil reservoir can be cut by several thousands of fractures, often intersecting or
very close together. A computational grid conforming to the fractures can thus be characterized by very small
elements and low quality, due to high aspect ratios and small angles. For most numerical methods the quality of
the grid has an impact on the accuracy of the solution. For this reasons methods have been proposed to simplify
fracture networks by means of local modifications of the fractures position and geometry, [34], since they are
in any case affected by uncertainty, see [14]. Another possible strategy is to avoid geometric conformity, i.e. to
allow fractures to cross the elements of a coarse and regular background grid. In this case, the presence of the
interfaces can be accounted for by suitable enrichments of the finite element spaces, exploiting the eXtended
Finite Element Method, see [21, 31]. We point out that some methods allow for partial nonconformity of the
grids, i.e. for grids whose faces must be aligned with the fractures, while the nodes can be independent on the
two sides: see for instance [16, 25].

The approach adopted in this work instead consists in adopting a numerical method that is robust even
with highly distorted computational grids: the Mimetic Finite Difference (MFD) Method. This method, as
well as the Virtual Element Method, which can be regarded as its evolution, is indeed known to preserve the
quality of the solution for very general computational grids, with polygonal or polyhedral elements and high
anisotropy. In recent years the use of MFD has grown considerably, thanks to their flexibility and ability to
preserve important properties of the physical and mathematical model. MDF has been employed to simulate
flow in networks of fractures, see [12, 13], and flows in fractured porous media [3, 10], with a primal and mixed
formulation, respectively. It has been used also for quasilinear elliptic problems [8], as well as non-linear and
control problems [5–7].

The present work can be considered in continuity with the strategy used in [10], but differs from the previous
literature because a dual mixed formulation, discretized with the MFD method, is employed in the bulk medium
as well as in the fractures. This requires a different splitting of the degrees of freedom for the fracture flux at
the intersection, and the enforcement of suitable coupling conditions.

Even if the reduced model for fractures adopted in this work, originally presented in [2, 35], has already
been extensively used with different discretization techniques [9, 18, 21, 25, 29, 30] some theoretical aspects are
still not completely understood. In this work we aim at providing a proof of the well posedness of the Darcy’s
problem in dual mixed form in the presence of a fully immersed network of fracture, i.e. without requiring
the imposition of pressure on part of the fracture network boundary. In this case the proof differs significantly
from existing results, since the role of the coupling terms becomes fundamental. Indeed, the well posedness for
the problem in mixed form has been established for the case of a single fracture crossing the domain in [35],
assuming pressure is imposed on part of the fracture boundary, while the case of a fully immersed fracture is
treated in [4], but using a primal formulation in the fracture. Finally, in [18] the authors analyze the case of a
network, with a well-posedness result that extends to the case of fully immersed fractures, but using the primal
formulation both in the bulk and in the network.

For the numerical discretization of the problem by means of mixed mimetic finite differences we will prove
for the first time well-posedness and convergence for this class of problems. Moreover, as concerns the discrete
problem, we will show how some hypothesis necessary for the well-posedness at continuous level can be relaxed
at discrete level, and we will verify this result by means of numerical experiments.

The paper is organized as follows: in Section 2 we present the governing equation for a single-phase flow in a
fractured porous medium introducing some useful notation. In Section 3 we introduce the weak formulation of
the problem and prove its well-posedness. Section 4 is dedicated to the presentation of the numerical method and
the proof of it stability and convergence. Some numerical experiments are shown in Section 5, while Section 6
is devoted to some concluding remarks.

2. The mathematical model

We describe the model we are considering for fluid flow in a fractured media.
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Figure 1. A two dimensional fracture network.

2.1. The definition of the computational domain

We consider a bounded domain Ω ⊂ Rd, with d = 2 or 3, composed by a fractured porous medium. The set
up of the mathematical model requires that Ω have a Lipschitz boundary, however we restrict the analysis to
polytopal convex domains.

The fractures will be described as a collection of one co-dimensional planar manifolds, as shown in Figure 1
for the two-dimensional case, following the model reduction strategy proposed in [2, 35].

With Γ ∈ Rd−1 and Γ ⊂ Ω we denote a network formed by the union of NΓ fractures γk, for k = 1, . . . , NΓ .
Each γk is an open, bounded, planar d− 1 dimensional manifold and we have

Γ =

NΓ⋃
k= 1

γk.

Fractures can intersect only at their endpoints, i.e.

∀ j 6= k, γk ∩ γj = ∂γk ∩ ∂γj = ikj ,

where ikj is either the empty set (no intersections), or a point (in the 2D case) or a straight segment (in the 3D
case). In particular, for the 3D setting we do not consider the case of fractures intersecting in a point.

We denote by I the set of all intersection points in the network, i.e. I = ∪ ikj . To complete the definition
of the network we follow the strategy proposed in [18]. We assume that, by suitably extending the fractures
γk, we can partition Ω into a set of Lipschitz subdomains ωα ⊂ ΩΓ , with α = 1, . . . , Nω so that Ω = ∪Nω1 ωα
and for each γk there are exactly two different values α+

k and α−k so that γk ⊂ ∂ωα+
k

and γk ⊂ ∂ωα−k
. This

decomposition, shown in Figure 2, allows us to identify the normal unitary vectors n−k and n+
k to γk as those

outwardly oriented with respect to ωα−k
and ωα+

k
, respectively. We define the (unique) normal to the fracture as

nk = n+
k = −n−k , while nα will be used to indicate the outward normal to ∂ωα. In the following nΓ indicates

the normal to Γ , i.e. nΓ = nk on γk, for all k. Analogous definition for n+
Γ and n−Γ . Finally, for each ωα we

indicate with ∂±ωα the portions of ∂ωα ∩ Γ such that nα · nΓ = ±1, respectively. We set ΩΓ = Ω \ Γ and we
assume that its boundary can be partitioned into two measurable subsets ∂Ωp and ∂Ωu, with |∂Ωp| > 0.

We can then subdivide the boundary of the fracture in different subsets (some of which may be empty). For
each γk we divide its boundary in ∂γpk and ∂γuk such that ∂γpk ∪ ∂γuk = ∂γk ∩ ∂Ω. We then set ∂γIk = ∂γk ∩ I
and ∂γFk = ∂γk \

⋃
s= p,u,I ∂γ

s
k. For the 3D setting, one assumes that whenever ∂γpk or ∂γuk are not empty sets

they have a strictly positive d− 2 measure (in 2D they are just points).

For s = p, u, F we define Is =
⋃NΓ
k= 1 ∂γ

s
k. Therefore, IF contains the part of the boundary of Γ that is fully

immersed in the domain Ω. If Ip = Iu = ∅ we have the case of a fully immersed network. Given an intersection
point i ∈ I we denote with Si the set of fractures γk that join in i.
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Figure 2. Decomposition of the domain.

In general, for given functions fk defined on each γk we define f =
∏NΓ
k= 1 f̂k. We can now generalize the

definition of average and jump of a function f ∈ ΩΓ as

{f} =
1

2
(f+ + f−) and JfK = f+ − f−,

where f± is the trace of f on Γ± =
⋃NΓ
k= 1 γ

±
k . With {f}k and JfKk we denote the average and jump operators

restricted to fracture γk.
Each γk is indeed an approximation of the actual fracture, which we assume can be described as

γ̃k =

{
y ∈ Rd : y = x+ dnk, x ∈ γk, d ∈

(
− lk(x)

2
,
lk(x)

2

)}
, (2.1)

where lk is the fracture aperture. We assume that lk is a C1 function and that there is a constant l∗ > 0 such
that lk > l∗, for all k. We denote with lΓ =

∏NΓ
k= 1 lk the aperture of the whole fracture network (note that it

is in general discontinuous at the intersections). It is assumed that lΓ be everywhere much smaller than the
diameter of Ω, which justifies the use of a reduced d− 1 dimensional model.

2.2. The model

We assume that the flow in the porous matrix and in the fractures be described by Darcy’s law and by
the mass conservation equation. We consider a single fluid with constant density and we neglect the effect of
gravity. We employ the model that has been derived for a single fracture in [2, 35], here extended to the case of
a network.

We will indicate with u and p the Darcy macroscopic velocity and fluid pressure in the bulk domain ΩΓ ,
while K is the permeability tensor in the bulk that, for the sake of simplicity, includes the dependence on the
viscosity µ. The reduced problem for flow in the fracture has been obtained by integration of the governing
equations across the fracture aperture, and by defining reduced variables for the flux û and the average pressure
p̂ in each fracture. More precisely, if ṽk : γk → Rd and p̃ : γk → R are the velocity and pressure in the actual
fracture defined in (2.1), and T k = I −nk ⊗nk the projector on the tangent plane of fracture γk, where I here
indicates the identity operator, we set

ûk =

∫ lk
2

− lk2
T kṽk, and p̂k =

1

lk

∫ lk
2

− lk2
p̃k,

and û =
∏NΓ
k= 1 ûk, while p̂ =

∏NΓ
k= 1 pk.

We assume that the permeability (scaled by viscosity) in each fracture can be represented by a diagonal
tensor in local (tangent and normal) coordinates. More precisely the permeability in the fractures can be

uniquely decomposed as K = K̂nnΓ ⊗ nΓ + K̂τ , where on each γk K̂τ is a tensor acting only on the planar
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manifold defined by γk, that is K̂τnΓ = 0. Note that in the 2D setting K̂τ = K̂τT , for a scalar function K̂τ

defined on Γ , and T =
∏NΓ
k= 1 T k.

We also define the following scaled quantities

K̂ = lΓ K̂τ and η =
lΓ

K̂n

. (2.2)

In fact, K̂ is an effective tangential permeability for the fracture, while η represents and effective conductivity.
It is understood that when we write an operator on quantities defined on Γ we mean in fact the product of the
corresponding operators on each γk. Additional assumptions on the parameters are reported in Section 3.2.

The complete coupled problem consists then of a Darcy problem in the bulk porous medium and a reduced
Darcy problem in the fracture network,


divu = f in ΩΓ

K−1u+∇p = 0 in ΩΓ

p = gp on ∂Ωp

u · n = gu on ∂Ωu

and



divτ û = f̂ + Ju · nΓ K in Γ

K̂
−1
û+∇τ p̂ = 0 in Γ

û · τ = ĝu on Iu

û · τ = 0 on IF

p̂ = ĝp on Ip

(2.3)

complemented with the coupling conditions

{
η {u · nΓ } = JpK on Γ

η ξ0 Ju · nΓ K = {p} − p̂ on Γ
and

p̂k = pi in i ∀ γk ∈ Si, ∀ i ∈ I∑
k: γk∈Si

ûk|i · τ k = 0 in i ∀ i ∈ I, (2.4)

where p̂k e ûk denote respectively pressure and flux in γk and pi the pressure at the intersection point i ∈ I.
While, τ k is the vector in the tangent plane of γk normal to ∂γk, and divτ and ∇τ indicate the tangent
divergence and gradient operators, respectively.

Note that coupling conditions in (2.4) depend on a closure parameter ξ0 that accounts for the assumption
made on the pressure profile across the fracture aperture when deriving the reduced model. The assumption
of a parabolic variation of pressure across the fracture leads to the optimal value ξ0 = 1/8. Its effect on the
properties of the problem, and in particular its well posedness, will be discussed in the next section. Note that
ξ0 is related to the closure parameter ξ used in [35]: in particular, ξ0 = (2ξ − 1)/4.

Remark 2.1. We have imposed, on the immersed fracture tips, homogeneous conditions for the flux. This is
quite standard in this type of problems. At the fracture intersection we have enforced pressure continuity and
flux conservation: other possible, more general, conditions can be found in [26] or in [36]. Moreover, in the 3D
setting, one may consider a more complex set of equations, accounting for flow along the intersection lines, as it
has been proposed in [27] in the context of discrete fracture network simulations. A hierarchical approach that
goes in that direction is also the one proposed in [16].

3. Weak formulation and main analytic results

In this section we will set up the weak formulation of the differential problem (2.3) with the coupling conditions
(2.4). We will the analyze its well-posedness, focusing on the case where Ip = ∅, which encompasses the situation
of a fully immersed network.
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3.1. Functional setting

We will use standard notation for Lesbegue and Sobolev spaces. In particular for p ∈ [1,∞),

Lp(ΩΓ ) = {f : ΩΓ → R : ‖f‖Lp(ΩΓ ) <∞},

with ‖f‖Lp(ΩΓ ) =
√∫

ΩΓ
|f |pdΩ, while

L∞(ΩΓ ) = {f : ΩΓ → R : f measurable, ‖f‖L∞(ΩΓ ) <∞},

with ‖f‖L∞(ΩΓ ) = supessx∈ΩΓ |f(x)|. We note that, being Γ a set of null d-measure, we can identify an element
Lp(ΩΓ ) with an element of Lp(Ω), for any p ∈ [1,∞].

We indicate with Hk(ΩΓ ), for an integer k > 0, the space of functions whose restriction to any open and
connected subset ω ⊂ ΩΓ is in Hk(ω). Indeed some configuration of the fracture network Γ can split Ω in
disconnected parts. In this case Hk(ΩΓ ) is in fact a broken space. However, we can still formally write norms
and inner products in the usual way. For instance, for any u and v in H1(ΩΓ )

‖v‖H1(ΩΓ ) =
(
‖v‖2L2(ΩΓ ) + ‖∇v‖2L2(ΩΓ )

)1/2

and (u, v)H1(ΩΓ ) =

∫
ΩΓ

(uv +∇u · ∇v) dΩ.

We define

Hdiv(ΩΓ ) = {v : ΩΓ → Rd : ‖v‖[L2(ΩΓ )]d + ‖ div v‖L2(ΩΓ ) <∞},

which is an Hilbert space equipped with the standard inner product

(u,v)Hdiv(ΩΓ ) =

∫
ΩΓ

(u · v + div(u) div(v)) dΩ.

For a full characterization of the spaces Hdiv(ΩΓ ) and H1(ΩΓ ) the reader may refer, for instance, to [4].

For p ∈ [1,∞], we define, Lp(Γ ) =
∏NΓ
k= 1 L

p(γk), with standard norm for product spaces (and inner product
in the case of L2).

We now specify in more details the functional spaces we are adopting for our problem. For the velocity and
pressure in the bulk we set the following spaces

V Ω = {v ∈ Hdiv(ΩΓ ) : Jv · nΓ K ∈ L2(Γ ), {v · nΓ } ∈ L2(Γ ),v · n|∂Ωu = 0},
MΩ = L2(Ω).

(3.1)

Here we have used the short-hand notation v ·n|∂Ωu to indicate the trace on ∂Ωu of the normal component of
the velocity. The space V Ω is a Hilbert space when equipped with the norm

‖v‖2V Ω = ‖v‖2L2(Ω) + ‖div v‖2L2(Ω) + ‖{v · nΓ }‖2L2(Γ ) + ‖Jv · nΓ K‖2L2(Γ ), (3.2)

and the corresponding inner product

(v,u)V Ω = (v,u)L2(Ω) + (div v,divu)L2(Ω) + ({v · nΓ }, {u · nΓ })L2(Γ ) + (Jv · nΓ K, Ju · nΓ K)L2(Γ ). (3.3)
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Remark 3.1. Our definition of the space for the velocity in the bulk V Ω differs from that used, for instance,
in [35], were the authors introduced the norm

|||v|||2V Ω = ‖v‖2L2(Ω) + ‖ div v‖2L2(Ω) + ‖v+ · nΓ ‖2L2(Γ ) + ‖v− · nΓ ‖2L2(Γ ).

However, it is immediate to verify that the two norms are equivalent. However, our definition turns out to
be more convenient for the following derivations.

As for the fractures, we first define the spaces

Hdiv(γk) = {v̂ ∈ L2(γk) : divτ v̂ ∈ L2(γk)},

with the corresponding canonical inner product and norm. Then,

V Γ =

v̂ ∈
NΓ∏
k= 1

Hdiv(γk) :
∑
γk∈Si

v̂k · τ k|i = 0, ∀i ∈ I, v̂k · τ k|Iu = 0


MΓ = L2(Γ ). (3.4)

We have adopted again the short hand notation of indicating with v̂k ·τ k|Iu and v̂k ·τ k|i the trace of the normal
components of the fracture velocity at the corresponding fracture boundary and intersection, respectively. More
precisely condition

∑
γk∈Si v̂k · τ k|i = 0 has to be interpreted as

∑
γk∈Si

∫
γk

qk
(
divτ v̂k + v̂k · ∇τ qk

)
= 0 ∀qk ∈ H1(γk) with qk = 0 on ∂γk ∩ I.

The norm for V Γ and MΓ are given by

‖v̂‖2V Γ =

NΓ∑
k= 1

‖v̂‖2L2(γk) +

NΓ∑
k= 1

‖divτ v̂‖2L2(γk), ‖q̂‖MΓ =

NΓ∑
k= 1

‖q̂‖2L2(γk).

Finally we define the global spaces for velocity and pressure as follows,

W = V Ω × V Γ , M = MΩ ×MΓ , (3.5)

and equip them with the canonical inner products and norms for product spaces. It is useful to introduce the
affine spaces

V Ωg = lg + V Ω , V Γg = l̂g + V Γ ,

where lg ∈ Hdiv(ΩΓ ) and l̂g ∈ Hdiv(Γ ) are suitable lifting of the velocity boundary data gu and ĝu. We then
set W g = V Ωg × V Γg .

Remark 3.2. For instance lg may be set as the restriction on ΩΓ of ∇φ where φ satisfies −∆φ = 0 in Ω,

with ∂φ
∂n = gu on ∂Ωu and φ = 0 on ∂Ωp, while l̂g may be set as

∏NΓ
k= 1∇τψk, where −∇τψk = 0 on γk, with

∂ψk
∂τ = ĝu on ∂γuk and ψk = 0 on ∂γk \ ∂γuk .

Moreover, in the following it is understood that Hk(Γ ) =
∏NΓ
k= 1H

k(γk), with standard inner product and
norm for product spaces.
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3.2. Conditions on the data

We make the following assumption on the data.

– K and K̂ are uniformly elliptic, i.e. there exists 0 < K∗ ≤ K∗ and 0 < K̂∗ ≤ K̂∗ so that, for all t ∈ Rd
and all t̂ ∈ Rd with t̂ · nΓ = 0

K∗‖t‖2 ≤ tTK(x)t ≤ K∗‖t‖2 a.e. in ΩΓ , K̂∗‖t̂‖2 ≤ t̂
T
K̂(x)t̂ ≤ K̂∗‖t̂‖2 a.e. in Γ. (3.6)

Here ‖ · ‖ denotes the Euclidean norm.
– There exist 0 < η∗ ≤ η∗, such that

η∗ ≤ η(x) ≤ η∗, a.e. in Γ. (3.7)

– f ∈ L2(ΩΓ ) and f̂ ∈ L2(Γ ), while , gp ∈ H1/2(∂Ωp), ĝp ∈ H1/2(Ip), gu ∈ H−1/2(∂Ωu) and ĝu ∈
H−1/2(Iu).

We also set γ∗ = mink |γk| and γ∗ = maxk |γk|. Clearly, we assume that γ∗ > 0 and this implies that the ratio
maxk(|γk|)
mink(|γk|) is bounded from above.

In general, we will use a∗ and a∗ to indicate upper and lower bounds of variable a.

3.3. Weak form

We are now in the position of writing the weak form of problem (2.3) and (2.4) and study its properties.
Find (u, û) ∈W g and (p, p̂) ∈M such that{

A
(
(u, û), (v, v̂)

)
+B

(
(v, v̂), (p, p̂)

)
= Fu

(
(v, v̂)

)
,

B
(
(u, û), (q, q̂)

)
= F p

(
(q, q̂)

)
,

(3.8)

for all (v, v̂) ∈W and (q, q̂) ∈M . Here,

A
(
(u, û), (v, v̂)

)
= a(u,v) + â(û, v̂), (3.9)

where

a(u,v) = m(u,v) + c(u,v) =

∫
ΩΓ

(K−1u) · v dΩ +

∫
Γ

η ({u · nΓ}{u · nΓ}+ ξ0Ju · nΓKJu · nΓK) dγ, (3.10)

â(û, v̂) =

∫
Γ

(K̂
−1
û) · v̂ dγ, (3.11)

and

B
(
(v, v̂), (q, q̂)

)
= b(v, q) + b̂(v̂, q̂) + d(v, q̂), (3.12)

where

b(v, q) = −
∫
Ω

div vq dΩ, b̂(v̂, q̂) = −
∫

Γ

divτ v̂q̂ dγ, d(v, q̂) =

∫
Γ

Jv · nΓKq̂ dγ. (3.13)
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The functionals at the right hand side collect the contributions of boundary and source terms, namely

Fu
(
(v, v̂)

)
= −

∫
∂Ωp

gpv · ndγ −
∫
Ip
ĝpv̂ · τ dγ, F p

(
(q, q̂)

)
= −

∫
Ω

fq dΩ −
∫
Γ

f̂ q̂ dγ. (3.14)

Here, n is the outward directed normal to Ω and τ represents the outward normal to the network, i.e. on each
γk, τ is the unit vector normal to ∂γk and laying on the plane defined by γk.

Remark 3.3. For generality, we are writing our formulation referring to the 3D case. However, the previous
expressions are valid also in the 2D setting provided some terms be interpreted correctly. For instance,

∫
Ip
ĝpv̂ ·

τ dγ in the 2D setting has to be interpreted as ĝp(x)v̂(x) · τ (x) for x ∈ Ip, since in the 2D setting elements of
Ip are points.

3.4. Well-posedness result

We state now the main result of this section.

Theorem 3.4. Under the given assumptions on the data, problem (3.8) is well-posed if Ω is a convex polytope
and under the condition ξ0 > 0.

In the proof we will consider only the case Ip = ∅, since it is the more complex to handle and with great
interest for applications. The extension to the case where pressure is imposed on part of the fracture boundary
is straightforward. This implies Fu

(
(v, v̂)

)
= −

∫
∂Ωp

gpv · n, and V Γg = V Γ .

We also consider the case of homogeneous condition for the normal component of velocity in the bulk, i.e.
V Ωg = V Ω , since the more general case is recovered by standard lifting techniques as explained in 3.2. In this
context the boundary data involves only gP . We wish to note that in following we indicate with a . b the
existence of a positive constant C so that a ≤ Cb. However, we will normally indicate explicitly constants that
depend on the physical parameters of the problem.

The proof of Theorem 3.4 relies on a series of lemmas.

Lemma 3.5. Forms A and B are bilinear and continuous on W ×W and W ×M , respectively. Fu and F p

are linear and continuous functionals on W and M , respectively.

Proof. Linearity is an immediate consequence of the definition. Moreover, using Cauchy-Schwarz inequalities
we can show that

|A
(
(u, û), (v, v̂)

)
| ≤ max(K−1

∗ , K̂−1
∗ , η∗, ξ0η

∗)‖(u, û)‖W ‖(v, v̂)‖W
|B
(
(v, v̂), (q, q̂)

)
| ≤ ‖(v, v̂)‖W ‖(q, q̂)‖M ,

while, by standard application of the Cauchy-Schwarz inequality,

|Fu
(
(v, v̂)

)
| ≤ ‖gp‖L2(Ω)‖(v, v̂)‖W , |F p

(
(q, q̂)

)
| . (‖f‖L2(Ω) + ‖f̂‖L2(Γ ))‖(q, q̂)‖M .

Lemma 3.6. If ξ0 > 0 form A is coercive on the space W 0 = {(v, v̂) ∈W : B
(
(v, v̂), (q, q̂) = 0, ∀(q, q̂) ∈M}.

Proof. The proof follows the technique illustrated in [35]. First of all we note that for elements of W 0 we
have div v = 0 in L2(Ω) and divτ v̂ = Jv · nΓ K in L2(Γ ). Consequently, ‖(v, v̂)‖W is equivalent to ‖v‖L2(Ω) +
‖v̂‖L2(Γ ) + ‖{v ·nΓ }‖L2(Γ ) + ‖Jv ·nΓ K‖L2(Γ ). Thus, by exploiting the properties of the problem parameters, we
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immediately have

A
(
(v, v̂), (v, v̂)

)
& min

(
1

K∗
,

1

K̂∗
, η∗, ξ0η∗

)
‖(v, v̂)‖2W , ∀ (v, v̂) ∈W 0 (3.15)

Remark 3.7. It may be proved that the condition ξ0 > 0 is in fact also necessary for coercivity.

Lemma 3.8. Form B is inf-sup stable. In particular, there exist a constant β > 0 such that

inf
(q,q̂)∈M

sup
(v,v̂)∈W

B
(
(v, v̂), (q, q̂)

)
≥ β‖(v, v̂)‖W ‖(q, q̂)‖M

It is here where the demonstration for the case of a fully immersed fracture (or in general Ip = ∅) differs
substantially from that provided, for instance in [35] for a fracture with pressure imposed at the boundary.
Indeed, here the role of the coupling term d is fundamental.

Proof. The inf-sup stability is equivalent to establish that there is a constant β so that, for any (q, q̂) ∈M it is
possible to find (v, v̂) ∈W so that

B
(
(v, v̂), (q, q̂)

)
= ‖(q, q̂)‖2M ,

‖(v, v̂)‖W ≤
1

β
‖(q, q̂)‖M ,

(3.16)

Given (q, q̂) ∈M the proof consists of three steps.

Step 1. We look for ψ ∈ H2(Ω) weak solution of
−∆ψ = q in Ω,

ψ = 0 on ∂Ωp,
∂ψ
∂n = 0 on ∂Ωu.

(3.17)

The existence of the solution is guaranteed by the assumption of regularity on the domain Ω.
We set v1 = ∇ψ and v̂ = 0. Now, the restriction of v1 in ΩΓ is clearly in V Ω with Jv1 ·nK = 0 on Γ and we

have

B
(
(v1,0), (q, q̂)

)
= ‖q‖2L2(Ω), (3.18)

while

‖(v1,0)‖2W = ‖∇ψ‖2L2(Ω) + ‖∆ψ‖2L2(Ω) + ‖{v1 · nΓ }‖2L2(Γ ).

Now, ‖∇ψ‖2L2(Ω) . ‖q‖L2(Ω) because of standard regularity result, ‖∆ψ‖2L2(Ω) = ‖q‖L2(Ω) by construction, while

elliptic regularity and trace inequality for functions in H2(Ω) allow us to state that ‖{v1 ·nΓ }‖L2(Γ ) . ‖q‖L2(Ω).
In conclusion,

‖(v1,0)‖W . ‖q‖L2(ΩΓ ). (3.19)
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Step 2. For each fracture in the network we look of the function φ̂k ∈ H1(γk) \ R that solves
−∆τ φ̂k = q̂k − qk in γk,

∂φ̂k
∂τγk

= 0 on ∂γk,
(3.20)

where qk = |γk|−1
∫
γk
q̂k and

∂φ̂k
∂τγk

= ∇τ φ̂k · τ k, where we recall that τ k is the vector in the tangent plane of

γk normal to ∂γk. We take v̂k = ∇τ φk. We note that, thanks to standard regularity results,

‖v̂k‖2Hdiv(γk) = ‖∇τφk‖2L2(γk
+ ‖∆τφk‖2L2(γk) . ‖q̂k − qk‖

2
L2(γk) ≤ ‖q̂k‖

2
L2(γk) + |γk|q2

k.

Since |γk|q2
k = |γk|−1(

∫
γk
q̂k)2 ≤ ‖q̂k‖2L2(γk), we conclude that

‖v̂k‖Hdiv(γk) . ‖q̂k‖L2(γk) (3.21)

We now set v̂ =
∏NΓ
k= 1 v̂k, it is immediate to verify that it belongs to V Γ and that ‖v̂‖V Γ . ‖q̂‖MΓ , and

thus

‖(0, v̂)‖W . ‖(q, q̂)‖M . (3.22)

Furthermore, we have

B
(
(0, v̂), (q, q̂)

)
= ‖q̂‖2L2(Γ ) −

NΓ∑
k= 1

|γk|q2
k. (3.23)

Step 3. We define on each fracture γk two “flux carriers” z+
k and z−k (see Fig. 3) so that

JzkKk = z+
k − z

−
k = qk, (3.24)

while the averages {zk} =
z+k +z−k

2 minimize

J =

NΓ∑
k= 1

|γk|2{zk}2

under the condition that for all ωα such that ∂ωα ∩ ∂Ωp = ∅ we have∑
γk⊂∂+ωα

|γk|z+
k −

∑
γk⊂∂−ωα

|γk|z−k = 0. (3.25)

We note that the problem admits a solution, because of the Euler formula connecting the number of faces in
a polyhedral mesh, and the fact that there is at least a ωα such that ∂ωα ∩ ∂Ωp 6= ∅. Furthermore, since

z+
k = {zk}k +

1

2
JzkKk, and z−k = {zk}k −

1

2
JzkKk, (3.26)
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Figure 3. Definition of the flux carriers.

equation (3.25) may be rewritten as

∑
γk⊂∂+ωα

|γk|{zk}k −
∑

γk⊂∂−ωα

|γk|{zk}k = −1

2

∑
γk⊂∂ωα

|γk|JzkKk,

and, as we are looking for the minimum of J , the solution satisfies

NΓ∑
k= 1

|γk|2{zk}2k .
NΓ∑
k= 1

|γk|2JzkK2
k =

NΓ∑
k= 1

|γk|2q2 ≤
NΓ∑
k= 1

|γk|‖q̂k‖2L2(γk) ≤ max
k

(|γk|)‖q̂‖2L2(Γ ),

and, consequently,

NΓ∑
k= 1

|γk|{zk}2 .
maxk(|γk|)
mink(|γk|)

‖q̂‖2L2(Γ ). (3.27)

Condition (3.25) is necessary to equilibrate the fluxes in the ωα that do not have part pressure is imposed
on the part of the boundary. Indeed, we now define the spaces

Vα =

{
H1(ωα) if ∂ωα ∩ ∂Ωp 6= ∅,
H1(ωα) \ R if ∂ωα ∩ ∂Ωp = ∅,

and consider the following problems: For each ωα find ψα ∈ Vα solution of

−∆ψα = 0 in ωα,

∂ψα
∂n

= z+
k on ∂+ωα ∩ γk,

∂ψα
∂n

= −z−k on ∂−ωα ∩ γk,
∂ψα
∂n

= 0 on ∂ωα \ ∂Ωp,

ψα = 0 on ∂ωα ∩ ∂Ωp.

(3.28)

Note that some of the boundary sets may be empty. We then set vα = ∇ψα and v2 =
∏Nω
α=1 vα. We have that

on each γk

Jv2 · nΓ Kk = ∇ψα+
k
|γk · nΓ −∇ψα+

k
|γk · nΓ = ∇ψα+

k
|γk · nα+

k
+∇ψα+

k
|γk · nα−k = JzkK = qk,
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because of the definition of ω±αk and of z±k . While, {v2 · nΓ }k = {zk}k. Thus,

‖Jv2 · nΓ K‖2L2(Γ ) =

NΓ∑
k= 1

|γk|Jv2 · nΓ K2
k =

NΓ∑
k= 1

|γk|q2
k ≤ ‖q̂‖2L2(Γ ) (3.29)

while, by exploiting (3.27), we have

‖{v2 · nΓ }‖2L2(Γ ) =

NΓ∑
k= 1

|γk|{v2 · nΓ }2k =

NΓ∑
k= 1

|γk|{zk}2k =.
maxk(|γk|)
mink(|γk|)

‖q̂‖2L2(Γ ). (3.30)

A standard regularity result for problems (3.28) allows us to write

‖∇ψα‖2L2(ωα) .
∑

γk⊂∂+ωα

|γk|(z+
k )2 +

∑
γk⊂∂−ωα

|γk|(z−k )2,

and by summing over all α, using (3.26) and (3.27) as well the results implied in (3.29) and (3.30) we obtain

Nω∑
α=1

‖∇ψα‖2L2(ωα) .
maxk(|γk|)
mink(|γk|)

‖q̂‖2L2(Γ )

and therefore we can conclude that

B
(
(v2,0), (q, q̂)

)
=

NΓ∑
k= 1

|γk|q2
k,

‖(v2,0)‖2W = ‖v2‖2V Ω =

Nω∑
α=1

‖∇ψα‖2L2(ωα) +

Nω∑
α=1

‖∆ψα‖2L2(ωα)

+

NΓ∑
k= 1

|γk|{zk}2k +

NΓ∑
k= 1

|γk|JzkK2
k . ‖q̂‖2L2(Γ ), (3.31)

where the hidden constant in the inequality depends also on the ratio of the maximum and minimum fracture
measure.

The proof is concluded by taking (v, v̂) = (v1 +v2, v̂) and noting that by collecting (3.18),(3.19),(3.22),(3.23)
and (3.31), using the bilinearity of B and the subadditive property of norms, we obtain (3.16), where the positive
constant β depends on the ratio mink(|γk|)/maxk(|γk|).

Proof of Theorem 3.4. Thanks to Lemmas 3.5, 3.6 and 3.8, the proof is a standard result of saddle point
problems, see for instance [15].

Remark 3.9. Note that the construction of the flux carriers is not necessary if pressure is imposed on part of
the fracture boundary, since it is possible to construct a coercive Poisson problem in the fracture network where
the right hand side consists only of q̂, using the strategy illustrated, for instance, in [26]. Yet, the given proof
can be readily extended also to cover this case.

4. Mimetic discretization

We present the mimetic discretization of problem (3.8). As done in the continuous setting, for generality we
present for the case of Ω ⊂ Rd, d being equal to 3 or 2, even if the numerical experiments in this work have
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been carried out only for the 2D case. The terminology is that of the three-dimensional setting both in the bulk
and in the fracture. For instance, in 3D a face of the bulk mesh is a two dimensional planar surface, while a face
in the mesh for the fracture network is a 1D segment. In the two dimensional setting, the term face indicates
a particular line segment in the bulk mesh and a point in the fracture mesh. Some of the terms used in the
following have to be “reinterpreted” in the 2D case, where the fracture network is in fact one-dimensional.

4.1. Mesh entities

We consider a partition of ΩΓ into a grid of d-dimensional polytopal cells CΩ = {c1, . . . , cNΩ} while Γ is
partitioned into a mesh of d−1-dimensional polytopal cells, CΓ = {ĉ1, . . . , ĉNΓ }. We assume that the two meshes
are conforming. More precisely each fracture cell ĉ if geometrically congruent with the face of two bulk cells
in CΩ , each at the two opposite side of the fracture. This requirement is not a major limitation thanks to the
flexibility offered by polyhedral grids.

We assume that both meshes satisfy the requirements stated in [24], which we recall for completeness.
First of all we define hc = diam(c) and h = maxc∈CΩ hc, while, hĉ = diam(ĉ). Since the fracture mesh conforms

to that in the bulk, we have hc ≤ h and hĉ ≤ h, for all c ∈ CΩ and ĉ ∈ CΓ .
We assume that CΩ and CΓ belong to a family of meshes Mh parametrized with h. Any couple of meshes

(CΩ , CΓ ) ∈Mh admits conforming sub-partitions TΩh and TΓh composed by d-dimensional and d− 1 dimensional
simplexes, respectively, and their cells c ∈ CΩ and ĉ ∈ CΓ have the following properties:

A1 they may be decomposed into regular meshes TΩc and TΓĉ made of at most Ns simplexes that contain all
vertices of the respective cells, where Ns is independent of h. We also assume that all elements of those
sub-meshes are uniformly shape regular, i.e. the ratio of their diameter and the the ration of the maximal
inscribed ball is bounded from above by a positive constant independent of h;

A2 they are star shaped with respect to a point in their interior and each face at their boundary is also star
shaped with respect to a point in its interior.

As a consequence of A1 we have that

hc max
f∈∂c

|f | . |c| and hĉ max
f̂∈∂ĉ

|f̂ | . |ĉ| (4.1)

The set of faces at the boundary of cells in CΩ may be subdivided into the following subsets:

– The set of internal faces FΩI , i.e. faces whose interior is contained in ΩΓ . As customary, we assume that
each f ∈ FΩI is shared by exactly two cells of CΩ , indicated in the following by c+(f) and c−(f). Each
face f has a unique orientation, defined by the unit normal vector nf . The outward normal of face f at
the boundary of cell c is indicated by nc,f . We set αc,f = nc,f · nf and, by convention αc±(f),f = ±1.

– The set of faces of cells in CΩ whose interior lay on Γ , here indicated by FΩΓ . Since we are using a mesh
conforming on Γ , the set FΩΓ is formed by pairs of faces f+ and f− geometrically identical but with
opposite orientation. By convention, we assume that f+ is oriented in accordance with the normal to the
fracture nΓ .

– The set of faces at the boundary, subdivided into F∂Ωu and F∂Ωp , such that ∪f∈F∂Ωu f = ∂Ωu and
∪f∈F∂Ωp f = ∂Ωp. By convention, those faces are oriented conforming to the orientation of ∂Ω, i.e. for
those faces nf is directed outwards w.r.t Ω.

As for the fracture network Γ we have adopted a discretization conforming to that of the bulk, thus for each
ĉ ∈ CΓ there are exactly two faces, f+(ĉ) and f−(ĉ), of FΩΓ geometrically identical to ĉ, but with opposite
orientation. These faces are at the boundary of two cells of the bulk mesh, which we indicate with c+(ĉ) and
c−(ĉ), respectively. Furthermore, for each f ∈ FΩΓ there is one and only one corresponding ĉ = ĉ(f) ∈ CΓ .

The set FΓ is built as the union of the faces at the boundary of the cells in CΓ . The faces on the fracture
intersection are repeated, one for each fracture γk meeting at the intersection. We can then subdivide FΓ into
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– internal faces FΓI , shared exactly by two cells, which are indicated by ĉ+(f̂) and ĉ−(f̂);
– intersection faces, i.e. those laying at the intersection among fractures, which, to implement the interface

condition correctly, are grouped as follows. We define the set F#
Γ = {F1, F2, . . .} whose generic element Fi

represents the set of faces of FΓ that are geometrically identical and belong to the boundary of different
fracture cells of the network meeting at an intersection. For any F ∈ F#

Γ and for each f̂ ∈ F we indicate

with ĉ(f̂) the cell such that f̂ ∈ ∂ĉ,
– boundary faces, further subdivided into FIu = {f̂ ∈ FΓ : f̂ ∈ Iu}, FIp = {f̂ ∈ FΓ : f̂ ∈ Ip} and FIF =

{f̂ ∈ FΓ : f̂ ∈ IF }. It is understood that some of these sets may be empty, and that ∪f̂∈FIu f̂ = Iu, while

∪f̂∈FIp f̂ = Ip.

In the case of immersed fractures, FIu = FIp = ∅ and ∪FIF = ∂Γ .
In the following we use the pedix c, or ĉ to indicate cell values, and f , or f̂ for face values. We also make the

following simplifying assumption on the data and on the mesh. We assume that Kc K̂ ĉ and ηĉ are piecewise
constant on a partition of the relative domain of definition, and that CΩ and CΓ are conformal with the partition.
This means that K K̂ and η are constant on each c (or ĉ). This assumption is made to simplify the exposition
and the analysis, in a more general setting one may approximate those parameters with cell-wise constant
functions Kc K̂ ĉ and ηĉ by taking, for instance, the average value.

Finally, for the sake of notation, we will omit to indicate the Lesbegue measure in the integrals, e.g.
∫
ΩΓ

fdΩ

will be simply written
∫
ΩΓ

f , unless ambiguity may arise.

4.2. Mimetic degrees of freedom and projection operators

As usual in mimetic formulation of differential problems, we need to locate the degrees of freedom for velocity
and pressure in an appropriate way. Since we are planning to adopt a low order discretization method we will
consider for the pressure in the bulk and in the fractures one degree of freedom for each element in CΩ and CΓ ,
respectively, While, one degree of freedom is associated to each element of FΩ and FΓ to approximate velocity
in the bulk and in the fracture network.

More precisely, we define the following discrete spaces for the velocities

V Ωh = {vf , f ∈ FΩ} ,
V Ωh,g = {vf ∈ V Ωh : vf = gu,f ∀f ∈ F∂Ω

u

} ,

V Ωh 0 = {vf ∈ V Ωh : vf = 0∀f ∈ F∂Ω
u

} ,

V Γh = {v̂f̂ , f̂ ∈ F
Γ , :

∑
f̂∈F

v̂f̂αĉ(f̂),f̂ = 0, ∀F ∈ F#
Γ } ,

V Γh,g = {vf̂ ∈ V
Γ
h : vf̂ = ĝû,f̂ ∀f̂ ∈ F

Iu , vf̂ = 0∀f̂ ∈ FI
F

} ,

V Γh 0 = {vf̂ ∈ V
Γ
h : vf̂ = 0∀f̂ ∈ FI

u

, vf̂ = 0∀f̂ ∈ FI
F

} , (4.2)

where gu,f ∈ R and ĝû,f̂ ∈ R are approximation of the velocity boundary data, as detailed later on. Note that
for the velocity in the bulk the degrees of freedom represent the average normal velocity on the faces, while in
the fracure we consider the average velocity normal to the faces integrated across the fracture aperture. For the
pressure in the bulk and in the fracture, we have

MΩ
h = {vc, c ∈ CΩ}, and MΓ

h = {vĉ, ĉ ∈ CΓ }. (4.3)

Remark 4.1. The condition
∑
f̂∈F v̂f̂αĉ(f̂),f̂ = 0 enforces the balance of fluxes at the intersections, and has

been introduced in an essential way in the definition of the discrete space for velocity in the fracture network.
However, its implementation in practice is cumbersome and in the numerical code the balance of fluxes has



610 L. FORMAGGIA ET AL.

been implemented by a Lagrange multiplier technique, which in fact approximates the value of pressure at the
intersection. Moreover, the use of Lagrange multipliers may allow to implement more general coupling conditions
among fractures, like the one proposed in [26].

We introduce the following global discrete spaces

W h = V Ωh × V Γh and Mh = MΩ
h ×MΓ

h , (4.4)

and the corresponding W h0 and W hg. The jump and average of discrete bulk velocity across the fracture are
defined as

JvhKh = (JvhKĉ, ĉ ∈ CΓ ), {vh}h = ({vh}ĉ, ĉ ∈ CΓ ) ,

where, because of the chosen convention about orientation, we have

JvhKĉ = vf+(ĉ) − vf−(ĉ) and {vh}ĉ =
1

2

(
vf+(ĉ) + vf−(ĉ)

)
.

We equip the given discrete spaces for velocity with the following norms,

‖vh‖2V Ωh =
∑
c∈CΩ

|c|
∑
f∈∂c

v2
f +

∑
ĉ∈CΓ

|ĉ|
(
JvhK2

ĉ + {vh}2ĉ
)
, ‖v̂h‖2V Γh =

∑
ĉ∈CΓ

|ĉ|
∑
f̂∈∂ĉ

v̂2
f̂
, (4.5)

and

‖(vh, v̂h)‖2W h
= ‖vh‖2V Ωh + ‖v̂h‖2V Γh . (4.6)

Note that we have “strengthened” the norm on V Ωh by adding the contribution of the jump and average of velocity
across the fracture to the standard definition. This choice is motivated by the analogy with the continuous case
and is convenient for the following analysis. The standard choice would indeed be [24]

|||vh|||2V Ωh =
∑
c∈CΩ

|||vh|||2c =
∑
c∈CΩ

|c|
∑
f∈∂c

v2
f , (4.7)

where with the c suffix we have indicated the norm operating on the velocity degrees of freedom of cell c.
However, we have the following

Lemma 4.2. The discrete norms |||·|||V Ωh and ‖ · ‖V Ωh are equivalent. More precisely,

|||vh|||V Ωh ≤ ‖vh‖V Ωh ≤
√

1 +
C

h
|||vh|||V Ωh ∀vh ∈ V Ωh , (4.8)

for a C > 0.

Proof. Evidently, |||vh|||V Ωh ≤ ‖vh‖V Ωh . Because of the stated property of the polygonal mesh we have

that there exists a C > 0 such that |ĉ| ≤ Ch−1|c+(ĉ)| and |ĉ| ≤ Ch−1|c−(ĉ)|, for all ĉ ∈ CΓ . Moreover

JvhK2
ĉ + {vh}2ĉ ≤ 2(v2

f+(ĉ) + v2
f−(ĉ)). Thus, there exists a C > 0 so that (1 + C

h )|||vh|||2V Ωh ≥ ‖vh‖
2
V Ωh

.

For the spaces for pressure we have,

‖qh‖2MΩ
h

=
∑
c∈CΩ

|c|q2
c , ‖q̂h‖2MΓ

h
=
∑
ĉ∈CΓ

|ĉ|q̂2
ĉ , (4.9)
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and

‖(qh, q̂h)‖2Mh
= ‖qh‖2MΩ

h
+ ‖q̂h‖2MΓ

h
. (4.10)

As customary in mimetic finite differences we define projectors on the discrete spaces. For the pressure spaces

we define ΠMΩ
h : MΩ →MΩ

h and ΠMΓ
h : MΓ →MΓ

h as

ΠMΩ
h q =

{
1

|c|

∫
c

q, c ∈ CΩ
}

and ΠMΓ
h q̂ =

{
1

|ĉ|

∫
ĉ

q̂, ĉ ∈ CΓ
}
. (4.11)

As for velocity, the projectors are defined on subspaces of V Ω and V Γ such that the normal component of the
velocity is integrable on each mesh face for the bulk and the fracture, respectively. More precisely, we define

V Ω+ =
{
v ∈ V Ω : v ∈ [Ls(Ω)]d

}
, V Γ+ =

{
v̂ ∈ V Γ : v̂ ∈ [Ls(Γ )]d−1

}
(4.12)

for s > 2. We define then ΠV Ωh : V Ω+ → V Ωh and ΠV Γh : V Γ+ → V Γh as

ΠV Ωh v =
{
Π
V Ωh
f v, f ∈ FΩ

}
=

{
1

|f |

∫
f

v · nf , f ∈ FΩ
}
,

ΠV Γh v̂ =
{
Π
V Γh
f̂
v̂ =, f̂ ∈ FΓ

}
=

{
1

|f̂ |

∫
f̂

v̂ · nf̂ , f̂ ∈ F
Γ

}
, (4.13)

where Π
V Ωh
f and Π

V Γh
f̂

are the local projectors on the degree of freedom of face f and f̂ , respectively.

Note that in the 2-dimensional case the fracture is one-dimensional so the fracture mesh faces reduce to
points, and

ΠV Γh v̂ =
{
v̂(f̂) · nf̂ , f̂ ∈ F

Γ
}
,

which is well defined since in 1D elements of V Γ have a continuous representative on each fracture γk. We will
also use the notation

ΠMh = ΠMΩ
h ×ΠMΓ

h and ΠW h = ΠV Ωh ×ΠV Γh .

The definition of the projectors allows us to better specify the terms gu,f and ĝû,f̂ in (4.2) as the face
projection of the corresponding continuous terms, namely

gu,f =
1

|f |

∫
f

gu and ĝû,f̂ =
1

|f̂ |

∫
f̂

ĝû.

4.3. Mimetic inner products in Mh and Wh

Since Mh and W h are product spaces it is convenient to separate the contribution of the bulk to that of the
fracture. For MΩ

h and MΓ
h , the inner products are simply

(ph, qh)MΩ
h

=
∑
c∈CΩ

|c|pcqc and (p̂h, q̂h)MΓ
h

=
∑
ĉ∈CΓ

|ĉ|p̂ĉq̂ĉ (4.14)
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and we set (
(ph, p̂h), (qh, q̂h)

)
Mh

= (ph, qh)MΩ
h

+ (p̂h, q̂h)MΓ
h
.

The inner products may be written in matrix form, by identifying the matrices MMΩ
h , MMΓ

h and MMh , as
follows (

(ph, p̂h), (qh, q̂h)
)
Mh

= pTh ,M
MΩ
h qh + p̂ThMMΓ

h q̂h = (ph, p̂h)TMMh(qh, q̂h).

The matrices can be assembled by summing the contributions coming from each bulk and fracture cell, as
standard in mimetic finite difference schemes. It can be noted that the space Mh and W h are already endowed
with scalar products that induce the norms introduced in (4.10) and (4.6), respectively.

Yet, for the discrete velocity space we need to construct a different inner product, called mimetic inner
product, Ah

(
(uh, ûh), (vh, v̂h)

)
, which is in fact the discrete counterpart of the form A

(
(u, û), (v,v)

)
in (3.8).

The presence of the coupling terms makes the structure of the mimetic inner product more complex than in

the usual mimetic setting. Let MV Ωh and MV Γh be two standard MFD matrices that defines the mimetic inner
product on CΩ and CΓ , respectively. They are built by cell-wise contributions,

MV Ωh =
∑
c

M
V Ωh
c and MV Γh =

∑
ĉ

M
V Γh
ĉ ,

whose expression will be detailed later on. In our case we have an additional contribution due to the presence
of the fractures. Let CΓ be the matrix for the coupling term expressed as

CΓ =
∑
ĉ∈CΓ

CΓĉ ,

where the cell contribution CΓĉ is such that

wThCΓĉ vh = ηĉ|ĉ| ({vh}ĉ{wh}ĉ + ξ0JvhKĉJwhKĉ) .

The mimetic inner product for the discrete velocity space is then defined for any (vh, v̂h) and (wh, ŵh) in
W h as

Ah
(
(vh, v̂h), (wh, ŵh)

)
= ah(vh, wh)V Ωh + âh(v̂h, ŵh), (4.15)

where

ah(vh, wh) = mh(vh.wh) + ch(vh, wh) = vThMV Ωh wh + vThCΓwh = vThAV Ωh wh, (4.16)

and

âh(v̂h, ŵh) = v̂ThMV Ωh ŵh.

Here,

mh(vh.wh) = vThMV Ωh wh, ch(vh, wh) = vThCΓwh, (4.17)
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and, clearly, AV Ωh = MV Ωh + CΓ . The choice of MV Ωh and MV Γh cannot be arbitrary. The corresponding
Ah
(
(uh, ûh), (vh, v̂h)

)
must satisfy some stability and consistency properties. Yet, we prefer to describe first

our discrete problem in a general way and leave the description of the actual construction of the mimetic
matrices and their properties to Section 4.6.

4.4. Discrete divergence

Formulation (3.8) allows us to identify a global divergence operator DIV : W →M as follows

DIV(v, v̂) = (div v,divτ v̂ − Jv · nΓ K), (4.18)

such that

B
(
(v, v̂), (q, q̂)

)
= −

(
DIV(v, v̂), (q, q̂)

)
M
.

We now define its discrete counterpart DIVh : W h →Mh as

DIVh(vh, v̂h) = (divh vh,divτ ,h v̂h − JvhKh) , (4.19)

where

divh vh =

 1

|c|
∑
f∈∂c

|f |vfαc,f , c ∈ CΩ
 , divτ ,h v̂h =

 1

|ĉ|
∑
f̂∈∂ĉ

|̂f̂ |vf̂αĉ,f̂ , ĉ ∈ C
Γ

 , (4.20)

We will approximate the term B
(
(v, v̂), (q, q̂)

)
with

Bh
(
(vh, v̂h), (qh, q̂h)

)
= −

(
DIVh(vh, v̂h), (qh, q̂h)

)
Mh

. (4.21)

Lemma 4.3. The divergence and projection operators commute. i.e. DIVhΠ
W h(v, v̂) = ΠMh DIV(v, v̂).

Proof. The existence of the following commuting diagrams

V Ω
div−−−−→ MΩyΠVΩh yΠMΩh

V Ωh
divh−−−−→ MΩ

h

and

V Γ
divτ−−−−→ MΓyΠV Γh yΠMΓh

V Γh
divτ,h−−−−→ MΓ

h

is a standard result of mimetic finite differences, see [24]. Moreover,

JΠV Ωh vKĉ =

(
1

|f+(ĉ)|

∫
f+(ĉ)

v+ · nf+(ĉ) −
1

|f−(ĉ)|

∫
f−(ĉ)

v− · nf−(ĉ)

)
=

1

|ĉ|

∫
ĉ

Jv · nΓ K = Π
MΓ
h

ĉ Jv · nΓ K,

since |f+(ĉ)| = |f−(ĉ)| = |ĉ| and nf+(ĉ) = −nf−(ĉ) = nΓ by construction.
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4.5. The discrete problem

The discrete problem is: find (uh, ûh) ∈W hg and (ph, p̂h) ∈Mh so that

{
Ah
(
(uh, ûh), (vh, v̂h)

)
+Bh

(
(vh, v̂h, (ph, p̂h)

)
= Fuh

(
(vh, v̂h)

)
,

Bh
(
(uh, ûh), (qh, q̂h)

)
= F ph

(
(qh, q̂h)

)
,

(4.22)

for all (vh, v̂h) ∈W h0 and (qh, q̂h) ∈Mh. Here, Fuh and F ph are functionals that account for the forcing and
boundary terms, namely

Fuh
(
(vh, v̂h)

)
= −

∑
f∈F∂Ωp

vf

∫
f

gP −
∑
f̂∈FIp

vf̂

∫
f̂

gp̂, (4.23)

F ph
(
(qh, q̂h)

)
= −

∑
c∈CΩ

qc

∫
c

f −
∑
ĉ∈CΓ

q̂ĉ

∫
ĉ

f̂ . (4.24)

4.6. Construction and properties of inner product operators

We will construct the elemental matrices M
V Ωh
c and M

V Γh
ĉ using the standard procedure for mimetic finite

differences that we recall for completeness.
Let xβ with β = c, ĉ, f, f̂ indicate the baricenter of the respective entity. For each c and ĉ we define the

matrices

Nc =


nTf1

...
nTf

N∂c

Kc and Nĉ =


nT
f̂1
...

nT
f̂
N∂
ĉ

 K̂c,

where {f1, . . . , fN∂c } and {f̂1, . . . , f̂N∂ĉ } denote the faces at the boundary of c and ĉ respectively. While,

Rc =

 αc,f1 |f1|(xf1 − xc)T
...

αc,f
N∂c
|fN∂c ||(xfN∂c − xc)

T

 and Rĉ =


|αĉ,f̂

N∂
ĉ

|f̂1|(xf̂1 − xĉ)
T

...

αĉ,f̂
N∂
ĉ

|f̂N∂ĉ |(xfN∂ĉ
− xĉ)T

 .

Then, we set

M
V Ωh
c = Rc(R

T
c Nc)

−1RT +
tr(RcK

−1
c RT

c )

|c|N∂
c

(Ic −Nc(N
T
c Nc)

−1NT
c ), (4.25)

M
V Γh
ĉ = Rĉ(R

T
ĉ Nĉ)

−1RT +
tr(RĉK̂

−1

ĉ RT
ĉ )

|ĉ|N∂
ĉ

(Iĉ −Nĉ(N
T
ĉ Nĉ)

−1NT
ĉ ). (4.26)

This is not the only possible construction but it is a quite common one and it allows us to state the following
lemma
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Lemma 4.4. Thank to hypothesis A1 and A2 made on the bulk and fracture mesh, we have that

1

K∗c
|c|
∑
f∈∂c

|vf |2 . vThM
V Ωh
c vh .

1

Kc,∗
|c|
∑
f∈∂c

|vf |2 (4.27)

and

1

K̂
∗
ĉ

|ĉ|
∑
f̂∈∂ĉ

|vf̂ |
2 . v̂ThM

V Γh
ĉ v̂h .

1

K̂ ĉ,∗
|ĉ|
∑
f̂∈∂ĉ

|vf̂ |
2, (4.28)

where the local matrix-vector products involve only the degrees of freedom on ∂c and ∂ĉ, respectively. As a
consequence,

1

K∗
|||vh|||2V Ωh . mh(vh, vh) .

1

K∗
|||vh|||2V Ωh (4.29)

and

1

K̂∗
‖v̂h‖2V Γh . âh(v̂h, v̂h) .

1

K̂∗
‖v̂h‖2V Γh . (4.30)

Proof. The proof is a standard result of mimetic inner products defined with the given matrices. We omit the
details that may be found, for instance, in [20, 24].

This result is sufficient to prove stability for the mimetic norm for the discrete velocity space in the fracture.
For the bulk, however, we have to handle the coupling terms properly. We have the following

Lemma 4.5. For ξ0 > 0 the form ah(·, ·) is stable with respect to the ‖ · ‖V Ωh norm. More precisely,

min(K∗−1, η∗min(1, ξ0)
)
‖vh‖2V Ωh . ah(vh, vh) . max(K−1

∗ , η∗max(1, ξ0)
)
‖vh‖2V Ωh , ∀vh ∈ V Ωh . (4.31)

Moreover, Ah(·, ·) is stable with respect to the ‖ · ‖W h
norm: ∀(vh, v̂h) ∈W h we have

ζ∗‖(vh, v̂h)‖2W h
. Ah

(
(vh, v̂h), (vh, v̂h)

)
. ζ∗‖(vh, v̂h)‖2W h

, (4.32)

where

ζ∗ = min
(
K̂∗−1,K∗−1, η∗min(1, ξ0)

)
, and ζ∗ = max

(
K̂−1
∗ ,K−1

∗ , η∗max(1, ξ0)
)
. (4.33)

Proof. Since ch(vh, vh) =
∑
ĉ∈CΓ |ĉ|ηĉ{vh}2ĉ + ξ0

∑
ĉ∈CΓ |ĉ|ηĉJvhK2

ĉ , we deduce that

min(1, ξ0)η∗
∑
ĉ∈CΓ

|ĉ|
(
{vh}2ĉ + JvhK2

ĉ

)
≤ ch(vh, vh) ≤ max(1, ξ0)η∗

∑
ĉ∈CΓ

|ĉ|
(
{vh}2ĉ + JvhK2

ĉ

)
, (4.34)

and (4.31) follows from (4.29) and the definition of ah in (4.16). The bounds on Ah are then a consequence of
the previous result, inequalities (4.30) and the definition of Ah in (4.15).
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4.6.1. The case ξ0 = 0

We have already mentioned that the case ξ0 = 0 is peculiar. Indeed, we will show in the following that the
discrete problem allows to take ξ0 = 0 and in the section devoted to numerical results we will show that for
that value we indeed obtain {ph}h = p̂h, as expected. We have the following

Lemma 4.6. There are two positive constants, here indicated by C∗ and C, so that for any h > 0 and

0 ≥ ξ0 > −
C∗h

2K∗η∗(1 + Ch)
(4.35)

there is a Cξ0(h) > 0 which depends on ξ0, the mesh size (as well as the problem parameters) with
limh→0+ Cξ0(h) = 0 and such that

Ah
(
(vh, v̂h), (vh, v̂h)

)
≥ Cξ0(h)‖(vh, v̂h)‖2W h

.

Consequently, Ah is stable also for ξ0 = 0, for all h > 0.

Proof. To extend the previous stability result we need only to examine the lower bound of (4.32) for the case
ξ0 < 0. Thanks to (4.8) we have that there exists a constant C∗ > 0 so that

mh(vh, vh) ≥ 1

2

C∗
K∗
|||vh|||2V Ωh +

C∗h

2K∗(1 + Ch)
‖vh‖2V Ωh ≥

1

2

C∗
K∗
|||vh|||2V Ωh +

C∗h

2K∗(1 + Ch)

∑
ĉ∈CΓ

|ĉ|({vh}2ĉ + JvhK2
ĉ).

If ξ0 ≤ 0 we have that ch(vh, vh) ≥ ξ0η∗
∑
ĉ∈CΓ |ĉ|

(
{vh}2ĉ + JvhK2

ĉ

)
, and thus

ah(vh, vh) ≥ 1

2

C∗
K∗
|||vh|||2V Ωh + (

C∗h

2K∗(1 + Ch)
+ ξ0η

∗)
∑
ĉ∈CΓ

|ĉ(|{vh}2ĉ + JvhK2
ĉ),

which allows us to get a positive lower bound for ah (and thus Ah) if C∗h
2K∗(1+Ch) + ξ0η

∗ > 0, that is if ξ0 >

− C∗h
2K∗η∗(1+Ch) . The upper bound for Ah remains that of (4.32).

4.7. Consistency of Ah

Because of the coupling terms we need to consider a more general definition of consistency than the standard
one used for instance in [24]. Let first define some spaces and state some known facts for readers’ convenience.

For some s > 2, for all c ∈ CΩ and for all ĉ ∈ CΓ let us consider the local cell-based spaces

SΩc = {vc ∈ [Ls(c)]d, div vc = const, vc · nf = const,∀ f ∈ ∂c},

and

SΓĉ = {v̂ĉ ∈ [Ls(ĉ)]d−1, div v̂ĉ = const, v̂ĉ · nf̂ = const,∀ f̂ ∈ ∂c}.

Remark 4.7. The condition s > 2 is a technical requirement needed to guarantee the stability of the projection
operator. However, in the 2D case s = 2 is sufficient for the velocity space in the fracture cells.

We also define the following cell-based test spaces

τΩc = {vτc = Kc∇qc, qc ∈ P1(c)} and τΓĉ = {v̂τĉ = K̂ ĉ∇τ q̂ĉ, q̂ĉ ∈ P1(ĉ)},
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It is immediate to verify that τΩc ⊂ SΩc . τΓĉ ⊂ SΓĉ We also define the following global spaces:

SΩh = {v ∈ V Ω : v|c ∈ SΩc ,v · nf = vf , ∀ c ∈ CΩ , ∀ f ∈ FΩ},
SΓh = {v̂ ∈ V Γ : v̂|ĉ ∈ SΓĉ , v̂ · nf̂ = v̂f̂ , ∀ ĉ ∈ C

Γ , ∀ f̂ ∈ FΓ }, (4.36)

where vf and v̂f̂ are constant values taken on the mesh faces. While,

τΩh = {vτ ∈ L2(ΩΓ ) : vτ |c ∈ τΩc } and τΓh = {v̂τ ∈ L2(Γ ) : v̂τ |ĉ ∈ τΩĉ }. (4.37)

We also define the global product spaces

Sh = SΩh × SΓh and τh = τΩh × τΓh . (4.38)

The projection operators ΠV Ωh and ΠV Γh are surjective from SΩh to V Ωh and from SΓh to V Γh , respectively.
Because of the coupling terms the consistency conditions cannot be written just cell-wise as usual in the

analysis of mimetic schemes. So we first note that the form A is well defined on the space L× [L2(Γ )]d−1 ⊃W ,
where L = {v ∈ L2(Ω) : v · nΓ ∈ [L2(Γ )]d−1}. We can also trivially extend Ah to a broken discrete velocity
space W̃ h where the degrees of freedom on the internal faces are duplicated to account for the (possibly
different) values in each cell. Analogously we could extend the velocity projection operators from τh onto W̃ h,
by computing the projections cell-wise.

However, to avoid making the notation heavier we will in the following use the symbols Ah, ΠW h etc. to
indicate also their extended counterparts, since the context will not leave ambiguity on that respect.

Lemma 4.8. We have the following consistency conditions.

– Local consistency conditions. For all c ∈ CΩ, ĉ ∈ CΓ and for all (vτ , v̂τ ) ∈ τΩc × τΓĉ and (w, ŵ) ∈ SΩc ×SΓĉ
we have

mh,c(Π
V Ωh
c vτ , Π

V Ωh
c w) =

∫
c

∇qc ·w, âĉ(Π
V Γh
ĉ v̂τ , Π

V Ωh
ĉ ŵ) =

∫
ĉ

∇τ q̂ĉ · ŵ, (4.39)

where mh,c and âĉ denotes restriction to the corresponding cell degrees of freedom of the forms mh and ah
defined in (4.16) and (4.17).

– Global consistency condition. For all (vτ , v̂τ ) ∈ τh and for all (w, ŵ) ∈ Sh we have

Ah(
(
ΠV Ωh vτ , ΠV Γh v̂τ ), (ΠV Ωh w, ΠV Γh ŵ)

)
= A

(
(vτ , v̂τ ), (w, ŵ)

)
=
∑
c∈CΩ

∫
c

∇q ·w +
∑
ĉ∈CΓ

∫
ĉ

∇τ q̂ · ŵ + c(vτ ,w). (4.40)

Proof. The local consistency conditions are standard results because of the given choice of mimetic matrices.
The global consistency is obtained by summing the local contributions and by noting that

ch(ΠV Ωh w, ΠV Ωh vτ ) =
∑
ĉ∈CΓ

ηĉ|ĉ|({ΠV Ωh w}ĉ{ΠV Ωh vτ}ĉ + ξ0JΠV Ωh wKĉJΠV Ωh vτ Kĉ) (4.41)

=

∫
Γ

η ({w · nΓ }{vτ · nΓ }+ ξ0Jw · nΓ KJvτ · nΓ K) = c(w,vτ ). (4.42)

We have exploited the fact that η is (by hypothesis) piecewise constant, while functions in SΩh and τΩh have
constant normal components on cell faces, and thus constant average and jump on each fracture cell.
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We also have the following

Corollary 4.9. For all (vτ , v̂τ ) ∈ τh and for all (w, ŵ) ∈ Sh we have

Ah((ΠV Ωh vτ , ΠV Γh v̂τ ), (ΠV Ωh w, ΠV Γh ŵ)
)

= −
∫
ΩΓ

q divw −
∫
Γ

q̂divτ w

+
∑
c∈CΩ

∑
f∈∂c

αc,fw
I
f

∫
f

q +
∑
ĉ∈CΓ

∑
f̂∈∂ĉ

αĉ,f̂ ŵ
I
f̂

∫
f̂

q̂ + c(vτ ,w),

where wIf = w · nf and ŵI
f̂

= ŵ · nf̂ indicate the constant normal components on the respective faces.

Consequently, by setting (qI , q̂I) = ΠMh(q, q̂), we have that

Ah((ΠV Ωh vτ , ΠV Γh v̂τ ), (wh, ŵh)
)

= −(divh wh, q
I)MΩ

h
− (divτ,h ŵh, q̂

I)MΓ
h

+
∑
c∈CΩ

∑
f∈∂c

αc,fwf

∫
f

q

+
∑
ĉ∈CΓ

∑
f̂∈∂ĉ

αĉ,f̂ ŵf̂

∫
f̂

q̂ + ch(ΠV Ωh vτ , wh), (4.43)

for any (wh, ŵh) ∈W h.

Proof. This result is an extension of a classical result for mimetic finite differences, which may be found in
the cited references, and is obtained by integrating by parts the terms in (4.40) and treating the terms on the
fracture cells separately.

Corollary 4.10. Let (u, û) and (p, p̂) be solution of (3.8). Let furthermore assume that (p, p̂) ∈
H1(ΩΓ ) × H1(Γ ). Let us take (vτ , v̂τ ) ∈ τh, (qI , q̂I) = ΠMΩ

h q × ΠMΓ
h q̂, where q and q̂ are the functions

defining elements of τh, and (uIh, û
I
h) = ΠV Ωh (u, û). We further set (vτh, v̂

τ
h) = ΠW h(vτ , v̂τ ). Then,

c(u,vτ ) = ch(uIh, Π
V Ωh vτ ) =

∑
ĉ∈CΓ

∫
ĉ

({p}ĉ − p̂)Jvτ · nΓ Kĉ +

∫
ĉ

JpKĉ{vτ · nΓ }ĉ. (4.44)

Proof. The first equality in (4.44) is obtained by noting that in the derivation of (4.41) it is not necessary that
w ∈ SΩh , but it is sufficient that w ∈ V Ω . So I can use (4.41) with w = u and obtain the desided result.

Thanks to the regularity assumptions on p and p̂ we can counter-integrate by parts the terms in the first
equation in (3.8), and deduce by standard means that for any v ∈W 0

c(u,v) =

∫
Γ

Jpv · nΓ K−
∫
Γ

p̂Jv · nΓ K =

∫
Γ

({p} − p̂)Jv · nΓ K +

∫
Γ

JpK{v · nΓ }, (4.45)

which effectively enforces the coupling conditions. We now note that vτ · nΓ is piecewise constant on Γ and
thus in L2(Γ ). As a consequence, there is a w ∈ V Ω0 so that w · nΓ = vτ · nΓ on Γ . If we set v = w in (4.45)
we easily obtain the second equality in (4.44).

4.8. Inf-sup condition for the discrete spaces

We state the following Lemma.

Lemma 4.11. The form Bh : W h ×Mh → R defined in (4.21) is inf-sup stable.

Proof. The inf-sup stability for Bh derives directly from the commuting property expressed in Lemma 4.3. Given
a (qh, q̂h) ∈Mh we construct problems (3.17), (3.20) and (3.28) with (q, q̂) ∈M taken such that q|c = qc and
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q̂|ĉ = q̂ĉ, for all cells in the bulk and the fractures. We indicate with (v, v̂) ∈W the corresponding velocities.

We recall that v = v1 + v2 where v1 is solution of (3.17), while v2 =
∏Nα
α=1 vα, each vα being the gradient of

the solution of (3.28).

We set (vh, v̂h) = (ΠV Γh v, ΠV Γh v̂), v1 = ΠV Γh v1, v2 = ΠV Γh v2 (clearly vh = v1 +v2). By construction, Jv ·nΓ K
is constant on each fracture γk and thus is constant on each cell ĉ ∈ CΓ , consequently Π

MΓ
h

ĉ (Jv · nΓ K) = JvhKĉ
and |ĉ|JvhKĉ =

∫
ĉ
Jv · nΓ K. Therefore, by using the commuting property of projectors,

Bh
(
(vh, v̂h), (qh, q̂h)

)
= −(DIVh(vh, v̂h), (qh, q̂h)

)
Mh

= −(ΠMh DIV(v, v̂), (qh, q̂h)
)
Mh

= −
∑
c∈CΩ

qc

∫
c

div v1 −
∑
ĉ∈CΓ

q̂ĉ

(∫
ĉ

divτ v̂ dΓ − |ĉ|JvhKĉ
)

= −
∫
ΩΓ

q div v −
∫
Γ

q̂ (divτ v̂ − Jv · nΓ K) dΓ

= B
(
(v, v̂), (q, q̂)

)
= ‖(qh, q̂h)

)
‖2Mh

,

where we have exploited the fact that ‖(q, q̂)‖M = ‖(qh, q̂h)‖Mh
.

We now recall (without giving the proof) some known results about mimetic projectors. We assume some
extra regularity on v̂ and the vα (we have already assumed that v1 ∈ H1(Ω)), and in particular that v̂ ∈ V Γ+
and vα ∈ Ls(Ωα) for a s > 2. This is sufficient to derive that

‖v̂h‖V Γh . ‖q̂h‖MΓ
h
, |||v1|||V Ωh . ‖qh‖MΩ

h
and |||v2|||V Ωh . ‖qh‖MΩ

h
,

see, for instance, [19, 24]. Therefore, we are left to show that∑
ĉ∈CΓ

|ĉ|
(
Jv2K2

ĉ + {v2}2ĉ
)

+
∑
ĉ∈CΓ

|ĉ|{v1}2ĉ . ‖qh‖2MΩ
h
,

where we used the fact that Jv1K = 0 by construction. Indeed, by using the properties of the flux carriers and
trace inequalities,∑

ĉ∈CΓ |ĉ|
(
Jv2K2

ĉ + {v2}2ĉ
)

=
∑
k

∑
ĉ∈CΓ k |ĉ|

(
JzkK2 + {zk}2

)
. ‖q‖2L2(Ω) = ‖qh‖2MΩ

h
,∑

ĉ∈CΓ |ĉ|{v1}2ĉ .
∑
ĉ∈CΓ ‖v1 · nΓ ‖2L2(ĉ) . ‖v1‖2H1(Ω) . ‖q‖

2
L2(Ω) = ‖qh‖2MΩ

h
.

We can then conclude that ‖(vh, v̂h)‖W h
. ‖(q, q̂)‖Mh

and, consequently, Bh is inf-sup stable.

4.9. Convergence results

In this section we give a convergence result of our mimetic discretization. To this purpose, we recall some
known results.

Let P be a polyedron in Rd for d = 2 or d = 3 of diameter hP .

Lemma 4.12. For any function q ∈ H2(P) there exists a linear polynomial q1
P ∈ P1(P) such that

‖q − q1
P‖L2(P) + hP‖∇(q − q1

P)‖L2(P) . h2
P |q|H2(P).

Lemma 4.13. For every q ∈ H1(P)∑
f∈∂P

‖q‖2L2(f) . h−1
P ‖q‖

2
L2(P) + hP |∇q|2L2(P).
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As a consequence, it may be shown that (see for instance [19]) that under the same hypothesis of Lemma 4.12,

‖q − q1
P‖2L2(f) + h2

P‖∇(q − q1
P)‖2L2(f) . h3

P |q|H2(P), ∀f ∈ ∂P. (4.46)

The previous Lemmas are direct consequence of standard results of approximation and mimetic finite differ-
ence theory, see Lemmas 5.1 and 5.2 [19], Lemma 5.2 [24] and Lemma 4.3.8 [17], and their proof is not reported
here.

Lemma 4.14. Let (q, q̂) ∈ H2(ΩΓ )×H2(Γ ) and (q1, q̂1) piecewise linear polynomials so that q1
c and q̂1

ĉ satisfy
the assumptions of Lemma 4.12. Then, for any (vh, v̂h) ∈W h we have that

|mh

(
ΠV Ωh (K∇(q − q1)

)
, vh)

)
|+ |âh

(
ΠV Γh (K̂∇τ (q̂ − q̂1)), v̂h)

)
| . Υh|(q, q̂)|H2(ΩΓ )×H2(Γ )‖(vh, v̂h)‖W h

, (4.47)

where Υ = max
(

maxc
K∗c
Kc,∗

,maxĉ
K∗ĉ
Kĉ,∗

)
.

Proof. We first consider a single cell c ∈ CΩ and we set gh = ΠV Ωh K∇(q− q1). We indicate with mc(gh, vh) the
restriction of mh to the given cell. Thanks to Cauchy-Schwarz inequality and (4.27)

(
mc(gh, vh)

)2 ≤ mc(gh, gh)mc(vh, vh) . (Kc,∗)
−1|c|

∑
f∈∂c

|gf |2mc(vh, vh).

By definition of the projector and (4.46),

|gf |2 =
1

|f |2

(∫
f

K∇(q − q1)

)2

≤ (K∗c )2

|f |
‖∇(q − q1)‖2L2(f) . hc

(K∗c )2

|f |
|q|2H2(c).

Since |c|/|f | . hc, we have

mc(gh, gh) . h2
c

(K∗c )2

Kc,∗
|q|2H2(f).

Using again (4.27) to bound mc(vh, vh), summing over all elements, and finally taking the square root we have

|mh

(
ΠV Ωh (K∇(q − q1)

)
, vh)

)
| . max

c

K∗c
Kc,∗

h|q|H2(ΩΓ )‖vh‖V Ωh .

We can repeat the same process for âh
(
ΠV Γh (K̂∇τ (q̂ − q̂1)), v̂h)

)
to obtain |âh

(
ΠV Γh (K̂∇τ (q̂ − q̂1)), v̂h)

)
| .

maxĉ
K∗ĉ
Kĉ,∗

h|q̂|2H2(Γ )‖v̂h‖V Γh , by which we get the final result.

Remark 4.15. We recall that in the following we consider homogeneous velocity flux conditions at the boundary
of the fracture network, which includes fully immersed fractures, we have assumed Ip = ∅. However, the following
convergence result can be generalized to the case of pressure imposed on part of the boundary of the fracture
network, as well as to the case of coefficients that vary within the elements, by making some additional hypotheses
on their regularity and following the techniques illustrated in [23, 24].

Theorem 4.16. Let U = (u, û) ∈ W and P = (p, p̂) ∈ M be solution of problem (3.8). Let assume that
P ∈ H2(ΩΓ )×H2(Γ ). Then, the numerical solution Uh = (uh, ûh) ∈W h of (4.22) satisfies

‖(u, û)−ΠW h(u, û)‖W h
. Υ

ζ∗
h‖(p, p̂)‖H2(ΩΓ )×H2(Γ ), (4.48)
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where Υ and ζ∗ have been defined in Lemma 4.14 and in (4.33), respectively, and the hidden constant does
depend neither on the problem parameters nor on h.

Proof. To simplify the notation we set U Ih = ΠW hU , and Eh = (eh, êh) = U Ih − Uh and P = (p, p̂). While,
Ph = (ph, p̂h) is solution of (4.22). Moreover, we indicate with P 1 = (p1, p̂1) ∈M the piecewise discontinuous
linear approximation of P whose restriction on each cell satisfy Lemma 4.12, and we set

V τ = {(vτ , v̂τ ) : vτc = −K∇p1|c, v̂τĉ = −K̂∇τ p̂1|ĉ}, (4.49)

while (vτh, v̂
τ
h) = V τh = ΠW hV τ . The stability of Ah stated in Lemma 4.5 allows us to write that

ζ∗‖Uh − U Ih‖2W h
= ζ∗‖Eh‖2W h

. Ah(Eh, Eh) = Ah(Uh, Eh)−Ah(U Ih , Eh).

Using the fact the Uh is our discrete solution and that Bh(Eh, Ph) = 0, we have

Ah(Uh, Eh) = −Bh(Eh, Ph) + Fuh (Eh) = Fuh (Eh),

while

Ah(U Ih , Eh) = Ah(U Ih − V τh , Eh) +Ah(V τh , Eh).

Thanks to (4.43), we may write

−Ah(V τh , Eh) = −(divh eh, p
1
h)MΩ

h
− (divτ,h êh, p̂

1
h)MΓ

h
+
∑
c∈CΩ

∑
f∈∂c

αc,fef

∫
f

p1

+
∑
ĉ∈CΓ

∑
f̂∈∂ĉ

αĉ,f̂ êf̂

∫
f̂

p̂1 − ch(vτh, eh)

= Bh(Eh, P
1
h ) +

∑
c∈CΩ

∑
f∈∂c

αc,fef

∫
f

p1 +
∑
ĉ∈CΓ

∑
f̂∈∂ĉ

αĉ,f̂ êf̂

+JeKf̂

∫
ĉ

p̂1 −
∑
ĉ∈CΓ

JeKĉ
∫
ĉ

p̂1 − ch(vτh, eh)

=
∑
c∈CΩ

∑
f∈∂c

αc,fef

∫
f

p1 +
∑
ĉ∈CΓ

∑
f̂∈∂ĉ

αĉ,f̂ êf̂

∫
ĉ

p̂1 −
∑
ĉ∈CΓ

JeKĉ
∫
ĉ

p̂1 − ch(vτh, eh),

since Bh(Eh, P
1
h ) = 0. Moreover, since eh ∈ V Ωh 0, and pressures (p, p̂) are continuous across internal bulk and

fracture mesh faces, respectively, we get

∑
c∈CΩ

∑
f∈∂c

αc,fef

∫
f

p1 =
∑
ĉ∈CΓ

Jeh
∫
ĉ

p1Kĉ +
∑
c∈CΩ

∑
f∈∂c\Γ

αc,fef

∫
f

p1

=
∑
ĉ∈CΓ

Jeh
∫
ĉ

p1Kĉ +
∑
f∈FΩI

ef J
∫
f

p1Kf +
∑

f∈F∂Ωp
ef

∫
f

p1

=
∑
ĉ∈CΓ

Jeh
∫
ĉ

p1Kĉ +
∑
f∈FΩI

ef J
∫
f

(p1 − p)Kf +
∑

f∈F∂Ωp
ef

∫
f

p1.



622 L. FORMAGGIA ET AL.

And, since we are treating here the case Ip = ∅,

∑
ĉ∈CΓ

∑
f̂∈∂ĉ

αĉ,f̂ êf̂

∫
f̂

p̂1 =
∑
f̂∈FΓI

êf̂ J
∫
f̂

p̂1Kf̂ +
∑
F∈F#

Γ

∑
f̂∈F

αĉ(f̂),f̂ êf̂

∫
f̂

p̂1,

=
∑
f̂∈FΓI

êf̂ J
∫
f̂

(p̂1 − p̂)Kf̂ +
∑
F∈F#

Γ

∑
f̂∈F

αĉ(f̂),f̂ êf̂

∫
f̂

(p̂1 − p̂),

where we have also exploited the fact that
∑
F∈F#

Γ

∑
f̂∈F αf̂ ,ĉ(f̂)êf̂ = 0 because of the coupling condition at the

interface.
We now note that, thanks to equation (4.44),

ch(vτh, eh) = ch(vτh − uIh, eh) + ch(uIh, eh) = ch(vτh − uIh, eh) +
∑
ĉ∈CΓ

(
Jeh
∫
ĉ

pKĉ − JehKĉ
∫
ĉ

p̂

)
.

Therefore, using the definition of Fuh (Eh), collecting and rearranging all previous results, we obtain

‖Eh‖2W h
=‖Uh − U Ih‖2W h

.−Ah(U Ih − V τh , Eh)+ch(uIh − vτh, eh)+
∑
ĉ∈CΓ

Jeh
∫
ĉ

(p1 − p)Kĉ+
∑
f∈FΩI

ef J
∫
f

(p1 − p)Kf

+
∑

f∈F∂Ωp
ef

∫
f

(p− p1) +
∑
f̂∈FΓI

êf̂ J
∫
f̂

(p̂1 − p̂)Kf̂ +
∑
F∈F#

Γ

∑
f̂∈F

αf̂ ,ĉ(f̂)êf̂

∫
f̂

(p̂− p̂1).

We have that

−Ah(U Ih − V τh , Eh) + ch(uIh − vτh, eh) = mh

(
ΠV Ωh (K∇(p− p1)

)
, eh)

)
+ âh

(
ΠV Γh (K̂∇τ (p̂− p̂1)), êh)

)
,

and we can use Lemma 4.14. All other terms are upper bounded by a term proportional to
h‖Eh‖W h

|P |H2(ΩΓ )×H2(Γ ), thanks to the application of Cauchy-Schwartz inequality and of Lemmas 4.12–4.14.
For instance,

∑
ĉ∈CΓ

Jeh
∫
ĉ

(p1 − p)Kĉ =
∑
ĉ∈CΓ

JehKĉ
∫
ĉ

{p1 − p}+ {eh}ĉ
∫
ĉ

Jp1 − pK

.
√∑
ĉ∈CΓ

|ĉ| (JehK2
ĉ + {eh}2ĉ)

√∑
ĉ∈CΓ

∫
ĉ

{p1 − p}2 + Jp1 − pK2]

≤ ‖Eh‖W h

√∑
ĉ∈CΓ

∫
ĉ

{p1 − p}2 + Jp1 − pK2.

Now, since ĉ is a boundary face of two bulk cells, I can use Lemma 4.13 to bound the integral over fracture cells
with bulk cell integrals, and the use Lemma 4.12 to get the wanted result.

We give now the details for the term
∑
f∈FΩI

ef J
∫
f
(p1 − p)Kf . We have,

∣∣∣∣∣∣
∑
f∈FΩI

ef J
∫
f

(p1 − p)Kf

∣∣∣∣∣∣ ≤
√∑
c∈CΩ

|c|
∑
f∈∂c

e2
f

√√√√∑
c∈CΩ

|c|−1
∑
f∈∂c

(∫
f

(p1 − p)
)2
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≤ ‖eh‖V Ωh

√√√√∑
c∈CΩ

|c|−1
∑
f∈∂c

(∫
f

(p1 − p)
)2

.

Now, thanks to (4.1) we have |f | . h−1
c |c| for all f ∈ ∂c, thus

∑
c∈CΩ

|c|−1
∑
f∈∂c

(∫
f

(p1 − p)
)2

.
∑
c∈CΩ

h−1
c

∑
f∈∂c

‖p1 − p‖2L2(f) .
∑
c∈CΩ

h−2
c

(
‖p1 − p‖2L2(c) + h2

c‖∇p1 −∇p‖2L2(c)

)
.
∑
c∈CΩ

h2
c |p1 − p|2H2(c) . h2|P |2H2(ΩΓ )×H2(Γ ),

and, consequently, ∣∣∣∣∣∣
∑
f∈FΩI

ef J
∫
f

(p1 − p)Kf

∣∣∣∣∣∣ . h‖eh‖W h
|P |2H2(ΩΓ )×H2(Γ ).

The other terms can be treated similarly and we are able to obtain the desired estimate for the error in
velocity.

Remark 4.17. We may note that the constant of estimate (4.48) depends not only on the value of bulk perme-
ability and the effective permeability in the fracture, but also on the level of “anisotropy” of the permeability
tensors through Υ .

Theorem 4.18. Under the same hypotheses of Theorem 4.16, the solution Ph = (ph, p̂h) ∈ Mh of (4.22)
satisfies

‖(ph, p̂h)−ΠMh(p, p̂)‖Mh
. Υζ∗

βζ∗
h‖(p, p̂)‖H2(ΩΓ )×H2(Γ ), (4.50)

where Υ and ζ∗ have been defined in Lemma 4.14 and in (4.33), respectively, while β is the constant in the
inf-sup inequality of Lemma 3.8. The hidden constant does depend neither on the problem parameters nor on h.

Proof. Given the result of the previous theorem, a possible proof is obtained by extending the steps illustrated
in [24], Section 5.2.4, to our case. We follow another route which requires to assume the existence of a sta-
ble reconstruction operator for the velocity (see the cited reference for a general discussion of reconstruction
operators in mimetic finite differences).

A stable reconstruction operator RW = RΩ ×RΓ : W h → Sh is such that ΠW h ◦ R = I, where I is the
identity operator, and

‖RW (vh, v̂h)‖W . ‖(vh, v̂h)‖W h
, ∀(vh, v̂h) ∈W h. (4.51)

We recall that the space Sh has been defined in (4.36) and (4.38).
We also define RP : (qh, q̂h) ∈Mh → (q, q̂) = RP (qh, q̂h) ∈M so that q|c = qc and q̂|ĉ = q̂ĉ, for all cells in

the bulk and the fracture. Obviously ΠMh ◦ RP = I.
We use the same definitions of U , Uh, P , Ph, V τ and P 1, while we set P Ih = (pIh, p̂

I
h) = ΠMh(p, p̂). We

construct V P = (vP , v̂P ) as the velocities that satisfy (3.17), (3.20) and (3.28) with (q, q̂) = RP (Ph − P Ih ),
which means that

B
(
V P ,RP (Ph − P Ih )

)
= ‖RP (Ph − P Ih )‖2L2(ΩΓ )×L2(Γ ) = ‖Ph − P Ih‖2Mh

.
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We then set V Ph (vPh , v̂
P
h ) = ΠW hV P and Sh 3 V PR = (vPR, v̂

P
R) = RV Ph . Clearly, ΠW hV PR = V Ph , and,

moreover, because of the definition of the projector and of Sh we have that for all c ∈ CΩ and ĉ ∈ CΓ∫
c

div vPR = |c|div vPR|c =

∫
c

div vP ,

∫
ĉ

div v̂PR = |ĉ|divτ v̂
P
R|ĉ =

∫
ĉ

divτ v̂
P and Jv · nΓ PRKĉ = Jv · nΓ P Kĉ.

(4.52)
By construction of V P , and since Rp(Ph − P Ih ) is cell-wise constant, we have

B(V PR ,RP (Ph − P Ih )) = −
(

DIV V P ,Rp(Ph − P Ih )
)
M

= −
∑
c∈CΩ

∫
c

(pc − p) div vP −
∑
ĉ∈CΓ

∫
ĉ

(p̂c − p̂)(divτ v̂
P − Jv · nΓ P Kĉ)

B(V P ,Rp(ph − pIh)) = ‖Ph − P Ih‖2Mh
,

where, as usual, the pedices c and ĉ indicate the corresponding cell values of ph and p̂h, respectively.
Furthermore, the commuting property of the global divergence operators and the previous result, allows us

to write

Bh(V Ph , Ph − P Ih ) = −(ΠMh DIV V P , Ph − P Ih )Mh
= B(V PR ,RP (Ph − P Ih )) = ‖Ph − P Ih‖2Mh

.

We also have the following equality

Bh(V Ph , Ph − P Ih ) = Bh(V Ph , Ph)−Bh(V Ph , P
I
h ) = −Bh(V Ph , P

I
h )−Ah(Uh, V

P
h ) + Fuh (V Ph ),

and, exploiting again the fact that P Ih is piecewise constant and the definition of the interpolation operators,
we deduce that

Bh(V Ph , P
I
h ) = B(V PR , P ) = −A(U, V PR ) + Fu(V PR ).

Since the normal component of vPR are piecewise constant on the boundary of ΩΓ , by the definition of Fu and
Fuh we infer that Fuh (V Ph )− Fu(V PR ) = 0 and, consequently

‖Ph − P Ih‖2Mh
= Bh(V Ph , Ph)−Bh(V Ph , P

I
h ) = A(U, V PR )−Ah(Uh, V

P
h ).

We now exploit the global consistency condition (4.40) with (ΠV Ωh vτ , ΠV Γh v̂τ ) = V τh = ΠW hV τ and

(ΠV Ωh w, ΠV Γh ŵ) = V Ph , where V τ is defined in (4.49), to obtain

Ah(Uh, V
P
h ) = Ah(Uh − V τh , V Ph ) +Ah(V τh , V

P
h ) = Ah(Uh − V τh , V Ph ) +A(V τ , V PR ),

and thus, by the continuity of Ah and A

‖Ph − P Ih‖2Mh
= Ah(V τh − Uh, V Ph ) +A(U − V τ , V PR ) . ζ∗‖Uh − V τh ‖W h

‖V Ph ‖W h
+ ζ∗‖U − V τ‖W ‖V PR ‖W .

(4.53)
We now note that, by using Theorem 4.16 and Lemmas 4.12 and 4.13 and the definition of V τ and V τh , we can
deduce that

‖Uh − V τh ‖W h
≤ ‖Eh‖W h

+ ‖U Ih − V τh ‖W h
.
Υ

ζ∗
h‖(p, p̂)‖H2(ΩΓ )×H2(Γ ),

while we also have ‖U − V τ‖W . 1
ζ∗
h‖(p, p̂)‖H2(ΩΓ )×H2(Γ ).
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Figure 4. Relative error for the pressure in Ω (left) and Γ (right) for triangular and polygonal
grids.

By construction of V Ph and V PR , as well as the stability of the reconstruction operator, we have

‖V Ph ‖W h
.

1

β
‖Ph − P Ih‖Mh

and ‖V PR ‖W .
1

β
‖Ph − P Ih‖Mh

.

We can then obtain the desired result thanks to (4.53).

Remark 4.19. We will see in the section dedicated to numerical results that one can obtain a super-optimal
convergence of the pressure. The study of super-convergence properties may be done following the techniques
presented in [24], but is beyond the scope of this work.

5. Numerical results

In this section we present some numerical tests to assess the theoretical results presented in the previous
sections and to illustrate the behavior of the numerical method on more complex cases.

5.1. Convergence test

To verify the theoretical order of convergence we consider a test case inspired by [10]. The domain is the
square Ω = [−1, 1]× [−1, 1], and in our case the geometry has been slightly modified to assess the behavior of
the numerical method in the presence of an immersed fracture, Γ = [−0.9, 0.9]× {0} of aperture lΓ = 0.01. We
consider a constant and isotropic permeability, equal to one in the fracture and in the surrounding medium,
and we impose a volumetric source term only in the fracture, i.e. f(x, y) = 0 and f̂ = lΓ cos(x). On the whole
boundary ∂Ω we set Dirichlet boundary conditions with gP = cos(x) cosh(y), while at the tips of the fracture
we set non-homogeneous Neumann boundary conditions, ĝu = lΓ sin(x). The exact solution is then

p =

{
cos(x) cosh(y) in Ω

cos(x) in Γ.

We have performed this test both on unstructured triangular grids and general polygonal grids with dif-
ferent resolutions. Polygonal grids have been generated from triangular grids by means of random merging of
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Figure 5. Relative error for the velocity in Ω for triangular and polygonal grids.

Figure 6. Domain and boundary conditions for test case 5.2.

neighboring triangles. Since the contribution of the fracture to the absolute error in the pressure defined by
(4.50) is much smaller with respect to the contribution of the surrounding medium, it is presented separately
for the sake of clarity, see Figure 4. We can observe superconvergence of the pressure (order h2 instead of h)
both for the triangular and the polygonal grid case. As concerns the error in the velocity, defined as in (4.48), it
decreases with order h as expected (Fig. 5). In this case the experimental order is slightly higher for triangular
grids with respect to more general ones, in particular 1.3471 vs. 1.0662.

5.2. Test on the theoretical bound for ξ0

To perform meaningful experiments on the coupling conditions (2.4) we designed a test case such that
Ju · nK 6= 0 on Γ . In particular, we consider a square domain Ω = [0, 1] × [0, 1], cut by an horizontal fracture
Γ = [0, 1]× {0} of aperture lΓ = 0.01. The boundary conditions are depicted in Figure 6, and no source term is
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Figure 7. Pressure in the domain for ξ0 = −0.05 (left) and ξ0 = 0 (right).

Figure 8. Pressure in the fracture for ξ0 = 0, and pressure in Ω on the two sides of the fracture.
Here s denotes the curvilinear abscissa of the fracture.

considered in the fracture nor in the bulk: note that due to the asymmetric boundary conditions there is flow
along the fracture. We have set K = I, Kτ = 1, Kn = 0.01.

As discussed in Section 4.6.1, even if in the case ξ0 = 0 the continuous problem is not well posed, it can be
shown that this choice of the parameter is possible in the discrete case, and in particular ξ0 should be chosen
according to inequality (4.35). In practice, for any mesh size, ξ0 can be taken equal to zero, as proven by the
results in Figure 7: if ξ0 < 0 the pressure solution violates the maximum principle, while for ξ0 = 0 we obtain
the correct solution. Moreover, as shown in Figure 8, in this latter case the pressure in the fracture is exactly
the average of the pressure on the two sides of the fracture.
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Table 1. Minimum eigenvalue of Ah and corresponding extrema of pressure for two different
grid sizes.

ξ0 −0.5 −0.25 −0.05 −0.02 0 0.05 0.25 0.5

h = 0.1

minλA −2.98e−2 −1.42e−2 −1.70e−3 1.61e−4 1.40e−3 1.50e−3 1.50e−3 1.50e−3
minΩ∪Γ ph −1.02e−3 −2.29e0 1.01e−2 1.01e−2 1.01e−2 1.02e−2 1.02e−2 1.03e−2
maxΩ∪Γ ph 1.04e0 4.14e0 9.89e−1 9.89e−1 9.89e−1 9.89e−1 9.89e−1 9.89e−1

h = 0.05

minλA −1.53e−2 −7.50e−3 −1.20e−3 −2.89e−4 3.17e−4 3.30e−4 3.30e−4 3.30e−4
minΩ∪Γ ph −3.49e−2 −8.95e−1 −2.68e−1 −3.27e−3 3.15e−3 3.41e−3 3.41e−3 3.41e−3
maxΩ∪Γ ph 1.03e0 1.92e0 1.07e0 9.96e−1 9.96e−1 9.96e−1 9.96e−1 9.96e−1

Figure 9. Domain and boundary conditions for test case 5.3. The fractures highlighted in blue
are more permeable than the matrix, while the red one is locking. The injection and production
wells are located at two fracture tips.

We have computed the minimum eigenvalue of the matrix Ah for different values of ξ0 and different grid
resolutions to verify the inequality (4.35): negative eigenvalues indicate that Ah is not positive definite and may
correspond to solutions that violate the maximum principle as summarized in Table 1. Note that the minimum
acceptable ξ0 is smaller for coarse grid, while for more refined grids we approach the theoretical limits of the
continuous problem: however, for h > 0 ξ0 = 0 is always acceptable.

5.3. A completely immersed network

To conclude, we consider a more complex case where a network of six fractures of aperture lΓ = 0.01 is
completely immersed in the domain Ω. Homogeneous Dirichlet boundary conditions are imposed on ∂Ω, while
no flow is imposed at the fracture tips, except for the two, marked in Figure 9, where injection and production are
mimicked with Neumann boundary conditions of inflow/outflow respectively. Five fractures are more permeable
of the surrounding medium, with Kτ = Kn = ε, while the fracture at the center of the domain, marked in red
in Figure 9 is blocking, with Kτ = Kn = ε−1. We set K = I in the porous medium and consider two cases, with
ε = ε1 = 1.0e1 and ε = ε2 = 1.0e6. The results are shown in Figure 10. In both cases the effect of permeable and
blocking fractures is visible on the pressure isolines. In the case of lower contrast, ε = ε1, the matrix/fracture
system is overall less permeable and pressure reaches higher values. In the case ε = ε2 the injected fluid flow
preferably in the connected fractures and the pressure isolines are clearly stretched in the direction of the
fractures.
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Figure 10. Pressure fields for test case 5.3 for two values of the contrast ε: ε1 = 1.0e1 on the
left, ε2 = 1.0e6 on the right.

6. Conclusions

In this work we presented, for the first time at the best of our knowledge, a well-posedness results for Darcy’s
flow in fractured media in mixed form where pressure is not imposed on part of the boundary of the fracture
network. We have also given a full analysis of a mimetic finite difference approximation for the problem.

The theory has been set for a general 3D or 2D problem, even if the numerical experiments rely on the 2D
case. Work on implementing a full 3D code is under way.

Several extensions may be planned. For instance, one may consider time dependent problems and different
models for the flow in the fracture network (for instance Brinkman or Stokes models). The good approximation
of the flow field given by the mixed formulation could be useful for the coupling with an advection-diffusion
problem.

Moving to multi-phase flow opens the question of the proper interface conditions for the saturation equation
and how to implement them in the context of mimetic finite differences.

We mention that our analysis could be the basis for a more general study of polygonal discretization based
on virtual element methods, which could open a possibility of implementing higher order approximations.

In the numerical experiments the governing linear system has been solved using direct multi-frontal methods.
This will not be possible, in general, for 3D problems. The use of iterative schemes opens up the issue of finding
optimal preconditioners, particularly when the permeability is strongly heterogeneous.
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[2] C. Alboin, J. Jaffré, J.E. Roberts, X. Wang and C. Serres, Domain Decomposition for Some Transmission Problems in Flow
in Porous Media. Vol. 552 of Lecture Notes in Physics. Springer, Berlin (2000) 22–34.

[3] O. Al-Hinai, S. Srinivasan and M.F. Wheeler, Mimetic finite differences for flow in fractures from microseismic data, in SPE
Reservoir Simulation Symposium, 23–25 February, Houston, Texas, USA. Society of Petroleum Engineers (2015).

[4] P. Angot, F. Boyer and F. Hubert. Asymptotic and numerical modelling of flows in fractured porous media. ESAIM: M2AN
43 (2009) 239–275.

[5] P.F. Antonietti, L. Beirão da Veiga and M. Verani, A mimetic discretization of elliptic obstacle problems. Math. Comp. 82
(2013) 1379–1400.

[6] P.F. Antonietti, N. Bigoni and M. Verani, Mimetic discretizations of elliptic control problems. J. Sci. Comput. 56 (2013)
14–27.



630 L. FORMAGGIA ET AL.

[7] P. Antonietti, L. Beirão da Veiga, N. Bigoni and M. Verani, Mimetic finite differences for nonlinear and control problems.
Math. Model. Methods Appl. Sci. 24 (2014) 1457–1493.

[8] P.F. Antonietti, N. Bigoni and M. Verani, Mimetic finite difference approximation of quasilinear elliptic problems. Calcolo 52
(2015) 45–67.
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