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STABLE PERFECTLY MATCHED LAYERS FOR A CLASS OF ANISOTROPIC
DISPERSIVE MODELS. PART I: NECESSARY AND SUFFICIENT CONDITIONS
OF STABILITY *

ELIANE BECACHE! AND MARYNA KACHANOVSKA®

Abstract. In this work we consider the problem of modelling of 2D anisotropic dispersive wave propa-
gation in unbounded domains with the help of perfectly matched layers (PMLs). We study the Maxwell
equations in passive media with a frequency-dependent diagonal tensor of dielectric permittivity and
magnetic permeability. An application of the traditional PMLs to this kind of problems often results
in instabilities. We provide a recipe for the construction of new, stable PMLs. For a particular case of
non-dissipative materials, we show that a known necessary stability condition of the perfectly matched
layers is also sufficient. We illustrate our statements with theoretical and numerical arguments.
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1. INTRODUCTION

The problem of wave propagation in anisotropic dispersive media, e.g. in negative index metamaterials or plas-
mas, is both of theoretical and practical interest. For some applications it is necessary to model the time-domain
wave propagation in unbounded (or semi-bounded) domains. One of the ways to bound the computational do-
main is offered by the use of the perfectly matched layers (PMLs), a method introduced by Bérenger in [4,6]. For
an application of this technique to some dispersive materials, for example, plasmas, see [7,8,15,28,29], and for
the use of the method in isotropic metamaterials see the papers by Cummer [16] and Bécache et al. [9]. However,
it is well known that the PMLs often exhibits instabilities in the presence of dispersion and/or anisotropy [9,10].
Multiple attempts were made to overcome this problem [1], but, to our knowledge, no recipe to construct stable
PMLs for an arbitrary hyperbolic system exists.

Indeed, there are other ways to tackle the problem of the unboundedness of the domain; a non-exhaustive list
of those includes the FEM/BEM coupling [2, 3], methods based on pole condition [32,47] or various absorbing
boundary conditions [13,21,27,31,37].
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We concentrate on the construction of stable in the time domain PMLs for a class of anisotropic dispersive
models that can be described in the frequency domain as a wave equation with frequency-dependent coefficients

£1(w)t02u + eg(w)_l(?;u +wp(w)u =0, w € R, (1.1)

where €1, €2, ¢ have the meaning of dielectric permittivity and magnetic permeability. This class of models
generalizes isotropic materials considered in [9], where authors use €1(w) = £2(w). A notable example of such
models includes a uniaxial cold plasma model in two dimensions [8]. In this work we will limit ourselves to so-
called passive systems [51], i.e. systems for which €1 o(w), p(w) satisfy Im (we;(w)) >0, i =1,2, Im (wp(w)) > 0
for Imw > 0, and are analytic in the upper complex half-plane.

The new (to our knowledge) results obtained in this work include:

(1) a simple recipe of the construction of stable PMLs for passive anisotropic systems (1.1), even in the
case when the coefficients in (1.1) correspond to non-local in time operators, or when the model (1.1) is
dissipative. Our results extend the ideas of Bécache et al. [9] to a more general class of models;

(2) an easy to check constructive stability condition of the PML for a sub-class of problems (1.1) where
€i, © = 1,2 and p satisfy additional requirements. More precisely, we show that the necessary condition
of the stability of the PML formulated in [9] in terms of the directions of phase and group velocity can
be rewritten in an easy-to-check form. Moreover, it is also sufficient for the stability of the PMLs. This
extends the existing result [9] for isotropic materials.

An important difference between our work and [9] (as well as many other works on PMLs) is that we perform
the analysis by using the Laplace transform in time, rather than working with plane waves which come from
the Fourier analysis. This allows to avoid the discussion of the primary cause of the instabilities of the PMLs,
namely the presence of so-called backward propagating waves; an interested reader may consult [9] and [10]. To
our knowledge, in very few works the PML had been studied in the Laplace domain setting, see e.g. articles
for the well-posedness of non-dispersive systems by Halpern et al. [33] or for convergence of the radial PML by
Chen [17]. Such an analysis allows to obtain quite easily sufficient conditions of stability of the PML, while it
is easier to derive necessary stability conditions using plane wave techniques.

This article is organized as follows. In Section 2 we discuss in more detail a class of problems of interest,
providing some important examples. Next, in Section 3 we connect the passivity requirement to the stability
of the problem (1.1) in the time domain. In Section 4 we discuss the construction of stable PMLs for general
passive materials. In the second part of the article, we concentrate on a subclass of materials, considered in [9],
and characterized in Section 5. Based on the properties of these materials and the necessary stability condition
of [9], we provide a criterion of the stability of PMLs for (1.1) in Section 6.

We illustrate our results with the numerical experiments in Sections 4.1, 4.3 and 6.4.

2. PROBLEM SETTING

We consider a problem of the wave propagation in dispersive, anisotropic media, which is described by the
Maxwell equations. In particular, in the time domain (using the scaling eg = jig = ¢ = 1) in R? it reads

atDz = asza
8,D, = —0,H,, 2.1)
0,B. = —0,E, + 0,E,.

The relation between the fields D and E, and H, and B, is not necessarily explicitly known in the time domain,
but often is given in the Laplace domain. For simplicity, we will consider the above problem with nonvanishing
source terms, but zero initial conditions. We will denote by s the Laplace variable, by & = Lu the Laplace
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transform of w in time, and by C, the right complex half-plane: C; = {s € C: Res > 0}. Additionally, given
a function f(s): C; UiR — C, we will denote

flw) = f(—iw), Imw > 0. (2.2)

Then the following identities hold true: D = g(s)E, H, = pu(s)"'B.. In the time domain, we rewrite them

as the following convolutions (where £(0;) denotes a time-domain distribution with the symbol £(s)):

D= é(at)Ea B, = M(at)Hz~ (2'3)

In particular, we concentrate on the case when the tensor of dielectric permittivity is diagonal. In this case the
Maxwell’s equations are of the following form:

curl u(s) "' curl E 4 s2 (51(()8) 52(()5)) E=0,
or, alternatively, cf. (1.1),

s*pu(s)H. — e2(s) ' O2H. — e1(s) 0L H, = 0. (2.4)
Let us provide a few examples of such models, and comment on the state of the art of the PMLs for those:

(1) Isotropic Drude materials:

w? w2
61(8):52(3):1—1—8—;, u(s)zl—l—s—g’, We, Wm > 0. (2.5)

The corresponding system in the time domain reads, cf. [9],

OE —curl H, +w?J =0,
OiH, + curlE + w? K =0,
0:J = E,

oK =H,.

(2.6)

The construction of the stable PMLs for this class of models in the case w. = w,, was suggested in [16].
In [9] the authors have extended these ideas to more general cases.
(2) Uniaxial cold plasma model:

2
w
ei1(s) =1+ s—g, wp >0, e2(s) = p(s) = 1. (2.7)

In the time domain the corresponding system reads

Oy —O0yH, +j =0,
HEy +0,H. =0,

OH. + 0, B, — 9,E, =0,
Oj = wpEy.

This model was considered in [7,8]. The stable PMLs were constructed using an idea similar to [9].
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(3) Generalized Lorentz materials, which generalize the previous two cases:

Ng
9
61(8):1+Zﬁ, €xe > 0, wye € R, 0=0,...,ng,
£=0 zt
Ny
Eyt
sz(s):l—kZﬁ, eye > 0, wye € R, 0=0,...,ny, (2.8)
£=0 vt
ny
He
/,L(S):l—FZm, e >0, (UNKER, E:O,...,nu.
£=0 ne

The corresponding system of equations can be constructed similarly to (2.6). For the case €1(s) = e2(s),
the stable PMLs for this system have been constructed in [9], by extending and justifying mathematically
the idea of [16]. A major part of the present work will be devoted to extending the results of this work to
an anisotropic case €1 # 4. Moreover, the results of this article show how to construct the PML in a more
general case, for example, in the presence of losses, when e5(s) is defined as

Ty
_ 2: Eyt —
€2(8)—1+Z_0m, v > 0, 6—0,...,ny.

To our knowledge, stable PMLs for this case did not exist even for isotropic dispersive materials.

For other examples of passive materials we refer an interested reader to [18].

3. PROPERTIES OF THE MODEL. CONNECTION BETWEEN PASSIVITY AND STABILITY
In the physics literature, when considering the Maxwell equations (2.1) in so-called passive media, one assumes
that 1, €2 and p satisfy a certain property [38,51], which we will call passivity, see the definition below.
Definition 3.1. A function ¢ : C; — C is passive if it is analytic in C4 and satisfies Re (sc(s)) > 0 in C,.

From now on we will assume that €;, €9, p are passive.

Remark 3.2 (Passivity in the Fourier domain). Given a passive function ¢(s), notice that the function f.(z) :=
ze(—iz) with z satisfying Im z > 0 is a Herglotz function (i.e. it is holomorphic in the upper half-plane Im z > 0,
and Im f(z) > 0 there). This can be seen by setting z = is:

Im (zc(—iz)) = Re (—izc(—iz)) = Re (sc(s)) .

Remark 3.3. Although we concentrate our presentation on the wave propagation problems (2.1), the
model (2.4), which we will study in the present work, describes other phenomenas, for example, heat transfer
(with a formal choice &1(s) = ea(s) = 1, u(s) = s71).

We proceed as follows. First we recall some (partially known) properties of passive functions, and next show
that the passivity is sufficient for the well-posedness and stability of the problem (2.4).

3.1. Bounds on passive functions
Here we provide bounds on functions passive in the sense of Definition 3.1.

Lemma 3.4 (Bounds on passive functions).
Let c(s) be passive in the sense of Definition 3.1. Then

(1) there exists C1 > 0, s.t. for s € C, the function c(s) satisfies

le(s)] < C|s| (Res) ™" max (1, (Res)_Q) . (3.1)
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(2) there exists Co > 0, s.t. for all s € C4, it holds that
Re (sc(s)) > Cy|s| "> min(1, (Re s)?) Re s. (3.2)
Proof. See Appendix A. O

From the above we immediately obtain a similar result for a function b(s) which satisfies Re (5b(s)) > 0
in C,. Notice that given an analytic in C; function b(s)

Re(8b(s)) >0, s € C; < Re (@) >0, s€Cy < Re (b(s—s)> >0, s e Cy. (3.3)

The function b(s)~! is well-defined in C., since b(s) does not vanish there. With the help of the above, we
obtain the following simple result on the behaviour of such a function b(s).

Corollary 3.5. Let b(s) be analytic in C4 and Re (3b(s)) > 0 there. Then
(1) there exists C1 > 0, s.t. for s € C, it holds

Ib(s)| < C1|s|® (Re s)™" max (1, (Res)*z) . (3.4)

(2) there exists Co > 0, s.t. for s € Cy

Re (8b(s)) > Cymin (1, (Re s)2> Res. (3.5)
Proof. The upper and lower bounds can be obtained simply by noticing that g(s) := b(s)s™2 satisfies
Re (sgy(s)) = Re(5]s|™2b(s)) > 0 in Cy. Then both bounds (3.4, 3.5) follow immediately from (3.1, 3.2)
applied to gp(s). O

3.2. Passivity implies stability: Laplace domain analysis

The goal of this section is to investigate a connection between the passivity and the stability of the Maxwell
system (2.4). The main result of this section is Theorem 3.15 formulated in the end of the section.
For convenience, let us introduce a sesquilinear form A(u,v) : H'(R?) x H*(R?) — C:

A(u,v) = a(s)(0utt, 0pv) + b(s)(yu, yv) + s*c(s)(u,v), s € Cy, u, v € H(R?). (3.6)

Here
(u,v) = /u(m)ﬁ(w)dx, for u,v € L* (R?).
R2

Given f € H™Y(R?), u € H'(R?), we will denote by (f,u) the duality pairing induced by the above inner
product (where H~!(R?) is a space of antilinear functionals on H*(R?)).

Remark 3.6. The operator corresponding to (3.6) is defined as follows

A H'(R?) — H~Y(R?),
Asu = —a(s)07u — b(s)d7u + s%c(s)u.

Indeed, we recognize the problem (2.4) with
a(s) = ex(s)7", b(s) = e1(s)™", cls) = uls). (3-8)

Remark 3.7. The case a(s) = b(s) corresponds to an isotropic medium, see also [9].
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Remark 3.8. All the results of this section are valid for a bounded Lipschitz domain {2, with the corresponding
modification of the spaces for which the sesquilinear form A(u,v) is defined (e.g. HJ(£2) x H}(§2) for the
homogeneous Dirichlet problem).

An approach that we are going to adopt here is based on the Laplace transform, see e.g. [26]. It is possible
to obtain some of the results on the stability of the systems presented in the following sections with the help of
the plane-wave analysis ([39], Chap. 2), which is discussed in Section 3.3.

The results used here are based on the theory developed in ([43], Sect. 2.1), which was, under stronger
assumptions, made more precise in the following theorem of Dominguez and Sayas [22]. We present here a
less refined version of this theorem. Let us remark that by causal we mean distributions ¢ defined on R, s.t.
(¢, \) =0, for all X : supp A C (—o00,0).

Theorem 3.9 (Prop. 3.2.2 [48], Prop. 3.2.2 [49]). Let X,Y be Banach spaces, and f be an L(X,Y)-valued
causal distribution whose Laplace transform F(s) exists for all s € C4 and satisfies

IF($)lleixy) < Cr(Res)ls|, s € Cy, (3.9)

where v > 0 and Cr : (0, 00) — (0, 00) is a non-increasing function, s.t. Cp(\) < Co™™, C >0, m >0, for
o € (0,1]. Define k = |y +2] (where |k| denotes the integer part of k). Then for all causal C*~*(R) functions
g : R — X with integrable kth distributional derivative, the distribution f * g is a causal continuous function
R — Y which satisfies the following bound with oy, > 0 independent of t:

I(f*9)@)ly < aym max(t™, 1) / I(1+0:)"g(r)|xdr,  t=>0. (3.10)
0

Proof. See [48], Proposition 3.2.2 for the proof. Notice that in the derivation of the above bounds we use (1 +
t)~¢ < const for € > 0 (see [48], Prop. 3.2.2 for the notation), and the bound Cr(1/t) < Cmax(t™,1). O

Remark 3.10. First of all, as remarked in ([48], p. 45), the bounds in the above result are non-optimal.
However, provided e.g. a compactly supported right hand side data, the bound in (3.10) grows not faster than
a polynomial in the time domain, which implies the time-domain stability.

Now let us come back to the question of the well-posedness of the variational formulation with the sesquilinear
form (3.6). We will need the following assumption on coefficients of the sesquilinear form (3.6).

Definition 3.11. We will call the sesquilinear form (3.6) passive if the functions a(s)~!, b(s)~!, c(s) are
passive in the sense of Definition 3.1.

Our goal in this section is to show that passive sesquilinear forms define stable systems in the time domain.
This motivates the name ’passive’; since for the Maxwell system (2.1) the passivity requirement is connected to
stability [18]. First of all, a direct application of Theorem 3.9 provides the following result.

Proposition 3.12 (Properties of passive sesquilinear forms). Let the sesquilinear form A(u,v) given by (3.6)
be passive in the sense of Definition 3.11. Then:

(1) For some Cy, Cy > 0 independent of s, and for all s € C, it holds:
[A(u,v)] < Colsf®(Res) " max (1, (Re )~2) llullmi lollmn, w0 € H(R?), (3.11)
Re (e "A"85A(u,u)) > C; Re s|s| ™" min (1, (Res)z) |||, u € H*(R); (3.12)

(2) For all G € HY(R?), for all s € C,, there exists a unique solution U(s) € H'(R?) to the variational
formulation

A(U(s),v) = (G,v), veH" (R?). (3.13)
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Moreover, there exists C > 0, s.t. for s € C4,
JU(s)ll a2y < Clsl(Res) ™ max(l, (Res) 2)|G a1 as: (3.14)

(3) Let G(s) € H Y(R?) be the Laplace transform of a causal C?-function g(t) : R — H~1(R?), whose 3rd
derivative in the sense of distributions g® € LY(R, H~'(R?)). Then the solution U(s), s € Cy, of (3.13)
with G = G(s) is the Laplace transform of a causal continuous function u(t) : R — HY(R?), which can be
bounded as follows, with a > 0 independent of t:

t
(@) < amax(t3,1)/H(1 +aT)Sg(T)HH71 dr,  t>0.
0

Proof. First of all, let us show that A(u,v) is bounded and coercive. Indeed, given u,v € H'(R?), using (3.1)
and (3.4), we obtain, for some Cy > 0 independent of s and for all s € C:

| A(u,v)| < max (a(s)], [b(s)], le(s)l[s[*) lull o]l 2 < Cols|*(Re s) ™ max (1, (Re s)™) | [[v] 2.
To show the coercivity, consider u € H*(R?), and take A(u, su) = 5A(u,u), for s € Cy:

Re (5A(u,u)) = Re (3a(s)) | 0wull22 + Re (3b(s)) [8,ull2 + [sI? Re (se(s)) lull2
> min(Re (5a(s)), Re (5b(s)), |s|* Re (sc(s)))||ul|%: > Cy min(1, (Res)?) Re s||jul|%:, C1 > 0,

where the last inequality was obtained with the help of (3.2) and (3.5). The above coercivity estimate is obtained
for SA(u,u), hence, after the division by |s| both sides of the above inequality, we obtain the estimate (3.12).
The second statement is obtained by a direct application of the Lax—Milgram lemma.
To obtain the third statement, we use the invertibility of the operator (3.7). Let us take sg € Cy, and
define Ty = A; ' A, a bounded invertible operator from H'(R?) into H'(R?). Due to ([25], p. 592, Lem. 13),
T ' is analytic in C; as an operator-valued function, which implies, thanks to ([44], Props. 3.1, 3.2), that

S

T 1, and thus A !, is a Laplace transform of a causal distribution. Additionally, the bound ||A;!||g-1_m <

Cfl |s|(Re s)~! max (1, (Re s)*z) holds for s € C. Then the statement of the proposition follows by the appli-
cation of Theorem 3.9 to U(s) = A;1G(s):

[u®ll = (£ V) @0 < amax@ 1) [Ja+0)g)],an tz0. aso. O
0

Let us now apply the above results to the model (2.4) with source terms, more precisely,
0:D — curlH, = fp, OB, + curlE = f,,

D = £(&)E, B. = j(9))H.. (3.15)

Recall that the notation p(d¢)H, corresponds to the convolution

t

w(oH, = /M(t —1)H,(7)dr,
0

where M is the inverse Laplace transform of u(s), see [45].
We define the regularity for the right-hand side, for any &, m € Ny, as follows:
fp € COF (R; (L2(R2))2>’ fl()kJrl) c Il (R; (L2(R2))2)7

Rym
f. € O™ (R; L*(R?)), M) e L (R; L2(R?)). (ftin)
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Definition 3.13. We will call the problem (3.15) well-posed, if there exist k., m. € Ny, s.t. for any causal right-
hand side data satisfying (Rg,) for some k > k. and m > m,., the problem (3.15) with zero initial conditions
has a unique solution (E, H,, D, B,) € C%(R; L?(R?)), which satisfies

m
st
=0

where a > 0, C(t) is polynomial in ¢ (i.e. C(t) < ¢(1+¢™), for some n, c > 0). If, additionally, the above bound
holds with a@ = 0, we will call the problem (3.15) stable.

Lk
[E@]: + [H-Oll2 + DO + B0 < O [ (ZHfg)m\ f§‘><T>HL2> dr,  (3.16)
0 £=0

Remark 3.14. In our definition of the well-posedness, the couple (k., m.) corresponds to a minimal regularity
required on the data in order to be able to obtain estimates of the solution via the Laplace domain technique.
In general, this requirement is not optimal. The minimal regularity is related to the explicit form of £(s), u(s).
For the classical Maxwell equations, when e1(s) = e2(s) = u(s) = 1, one has k., = m, = 2.

While the regularity required by the Hille—Yosida theorem is lower, e.g. fp € C1(R; (L?(R?))?), the results
of this work allow to obtain the explicit bounds on the solutions in terms of the right hand side data, unlike the
result of Hille—Yosida.

Applying Proposition 3.12, we immediately obtain the following result.

Theorem 3.15 (Connection of the passivity and the stability). The problem (3.15) with passive diagonal di-
electric permittivity and magnetic permeability is well-posed and stable.

Remark 3.16. In many practical cases €1(s), 2(s) and p(s) are rational fractions, cf. Lorentz materials (2.8).
Then the convolutions in (3.15) can be computed by introducing auxiliary unknowns and coupling (3.15) with
an ODE system for the corresponding unknowns, see e.g. the system (5.4a)—(5.4e). In a more general setting,
this is explained in [18]. The result of Theorem 3.15 holds true in this case as well.

It would be natural to ask whether the passivity requirement is necessary for the stability of (3.15). This is
true [18] for a class of isotropic dispersive models.

3.3. Passivity implies stability: Plane-wave analysis

In this section we will briefly discuss a connection between the plane-wave analysis and the Laplace domain
analysis. A Fourier-based approach, see (e.g. [39], Chap. 2), had been used to study the stability of the PMLs in
isotropic dispersive media [9], or anisotropic non-dispersive media [10]. When applied to the system (2.4) without
the PML, such analysis consists in looking for the plane-wave solutions H,e ilwt-kx) L x e R2 weC,of (2.4)
rewritten in the time domain. This requires examining the corresponding dispersion relation, which, in general,
depends on the time domain formulation of the problem. However, some of its solutions satisfy

& (w) k2 + él(w)_lki —w?i(w) = 0. (3.17)
Definition 3.17. Continuous branches of solutions w(k) of the dispersion relation are called modes.
In the time domain the system (2.4) is stable if and only if all the modes w(k) satisfy
Imw(k) <0, for all k € R?. (3.18)
This holds true for passive sesquilinear forms.

Proposition 3.18 (Modal analysis for passive systems). Let the sesquilinear form (3.6) associated to a, b, ¢
given in (3.8) be passive. Then all the solutions w(k) of (3.17) satisfy (3.18), and therefore, correspond to stable
modes of (2.4).
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Proof. Setting s = —iw, (3.17) can be rewritten as
s2c(s) + b(s)kf/ +a(s)k2 =0, k € R?.
After multiplication by § this yields:
|s|?sc(s) + Eb(s)ki + 5a(s)k? =0, k € R?.

The passivity assumption implies that the real part of the LHS of this equation is strictly positive for s € C,..
Thus, the above equation has no solutions in C,, and hence all solutions of (3.17) satisfy (3.18). O

4. CONSTRUCTION OF STABLE PMLS FOR GENERAL PASSIVE MATERIALS

4.1. A brief introduction into PMLs for dispersive media. Instability of classical PMLs
for anisotropic dispersive models

4.1.1. Introduction into PMLs for dispersive media

In this section we will briefly present the technique of PMLs, with a particular application to dispersive media.
A detailed introduction into this technique can be found e.g. in [30] or [12]. There are at least two ways to apply
the perfectly matched layers to the system (2.1). The first one is to use splitting of the time-domain system, as
in seminal works by Bérenger [4,6]. The second way consists in the change of variables in the frequency domain,
as reinterpreted by Chew et al. in [19], see also [53]. Such PMLs are called unsplit PMLs. We will adopt here
the latter approach. More precisely, consider the following equation

a(s)dau + b(s)0;u — s*c(s)u = 0, s€Cy, (z,y) € R (4.1)

Let the perfectly matched layer be located in the region = > 0. We assume that the above equation is valid for
x =2 € C4, and introduce an analytic continuation of u that we denote U(Z,y). Naturally, U will satisfy the
above equation, however, for (Z,y) € C4 x R. Then choosing a parameterization of Z suggested in [9]
x
1 Nda! > o(x) >0,z >0,
T+ s w(s)/a(x )da', x>0, where o(z) = (4.2)

0 0 <0
x, x <0, ’ ’

‘i‘:

and 1(s) is an analytic in C4 function, we obtain the following system:
~1 ~1
a(s) (1 + M) Oy ((1 + M) 3IU> + b(s)@jU — s%c(s)U =0, (z,y) € R2. (4.3)

For 2 < 0, the above system coincides with (4.1). The original and the PML systems are coupled via transmission
conditions. Importantly, u(x,y) = U(z,y) for < 0 by analytic continuation. The resulting system needs to be
rewritten in the time domain, see Section 5.2.

Other PML directions can be treated similarly, and in the corners the change of multiple variables should be
used. To truncate the perfectly matched layer at some = = L > 0, since in practice it cannot be chosen infinitely
long, zero Dirichlet or Neumann boundary conditions are used on the exterior boundary of the PML.

Classical PMLs (split or unsplit) correspond to the choice 1(s) = 1. The function (s) was introduced
in [9,16] in order to take into account the dispersive character of the equations. Indeed, as demonstrated in [9],
for isotropic dispersive models classical PMLs can lead to instabilities in the time domain. We demonstrate that
this is also the case for anisotropic dispersive models with the help of the following simple numerical experiment.

Remark 4.1. Notice that in terms of stability (i.e. the absence of exponential blow-up), there is no difference
between split and unsplit PMLs, as they both correspond to the same change of variables.
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4.1.2. Numerical illustration: Instability of classical PMLs for anisotropic dispersive models

Before providing numerical data, let us introduce some auxiliary notation, which we will use in all the
numerical experiments in this section, as well as Sections 4.3, 6.4. First of all, we compute solutions to the
problem (2.1) inside rectangular domains. Their physical (i.e. without the PML) dimensions in the direction z
and y are L;, and L,. The width of the PML in z-direction is denoted by Lg, and in y-direction by Lg. The
absorption parameters in directions « and y are o, (x) and o, (y), ¢f. (4.2). On all outer boundaries (physical
boundary if no PML in one of the directions is used, or external boundary of the PML), we assume zero Dirichlet
boundary conditions for the field H,.

The time domain PML system has a structure similar to the system of equations (5.6)—(5.7), see Section 5.2.2
and Remark 5.8. We use zero initial conditions and a source f (¢, x, y) in the third equation of (5.6). The numerical
resolution is done with the help of the Yee scheme [52] for dispersive models, where the dispersive terms are
discretized by trapezoid rule, and non-dispersive part is computed with a leapfrog. In the scheme, we discretize
the field H, on integer time and spatial steps. The time step is denoted by At, and the space step is Ax = Ay.

In all the experiments where we show a solution at different time steps, or compare the stable and unstable
PMLs, we use the same color scale in all relevant figures.

Example 4.2 (Instability of classical PMLs for anisotropic Drude material). We model an anisotropic Drude
material, which extends the isotropic model (2.5), where

“p

2\ —! 2\ —1

a(s) = ea2(s) ™' = (1 + %) ) b(s) =e1(s)™' = (1 + 3_2) ) p(s) =1. (4.4)
In particular, we choose w, = 8, w, = 4. The passivity of the parameters can be checked by a direct calculation.
We use the classical PMLs in the direction z, i.e. ¢(s) = 1 in (4.2), and zero Dirichlet BCs in the direction
y, in order to show that the instability occurs not necessarily in the corner, but in a certain direction. The
rest of the parameters can be found in Table 1. We show the field H, computed with the help of the classical
PMLs in Figure 1. One can see the instability developing in this case. In the rightmost plot we demonstrate an

exponential blow-up of the L?-norm of the solution H,.

TABLE 1. Parameters for the experiment with dielectric permittivity and magnetic permeabil-
ity (4.4). The notation can be found in the beginning of Section 4.1.2.

Lz Ly Lg L'Z Jz(x) Oy (y) AZE At f(tv z, y)
24 2 0 2027 0 005 0025 10(t— 1.6)e 15(t=1:6)%¢=30027—300y>

4.2. Construction of stable PMLs

4.2.1. The well-posedness and the stability of the PMLs
Let us consider the PML system (4.3) in the Lipschitz domain 2. We associate with it the sesquilinear form

o= o0 (1 2280 00 (14 220 )
vt (1 729) 1), ey

Under mild technical assumptions on the coefficients of the above sesquilinear form (which covers in particular
the case when 9(s) = 1), and assuming o(x) € L°°(2), it is possible to show the well-posedness of the
corresponding time-domain model, in the sense similar to that of Definition 3.13, see [11]. This is not surprising
and extends existing results for the classical PMLs for non-dispersive models, see for example [14,33-35].
However, this well-posedness result is valid even for the problem with the parameters of Example 4.2 and the
classical PML, yet our experiments clearly indicate the instability. Therefore, in this work we concentrate on
the problem of the stability of the time-domain PML system. This question is somewhat more subtle than the

(4.5)
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[ H.(t)]]
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=~
T
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0 10 20 30

x x x t

FIGURE 1. From left to right: a solution H, of Example 4.2 computed with the classical PML
at t = 10, 20, 35; the dependence of the L?-norm of H, with respect to time. The boundary
between the PML and the physical domain is marked in black.

well-posedness. There exist very few works, which provide a full stability analysis of the PMLs for nonconstant

absorption parameters even for the case of the classical perfectly matched layers applied to nondispersive

anisotropic models. For example, in [23] the authors prove the stability and convergence result of the 2D

classical PML for isotropic nondispersive wave equation and extend it to stable PMLs for the advective wave

equation. In [17] some convergence estimates are provided for the radial PMLs for 2D acoustic wave equation.
Due to complexity of rigorous analysis, the construction of stable PMLs is often done in two stages:

e assuming that o(z) = 0 = const > 0 in R? in (4.5) and performing the analysis for the resulting problem.
This can be viewed as a very particular case of an arbitrary o(z) > 0. Such a simplification was used, for
example, in works [1,9,10,24,36]. It facilitates finding the right PML change of variables (in our case (s)),
which is potentially stable for variable o(z). And, as many numerical experiments show (including those in
the present work), this analysis often results in stable PMLs for o(z) # const.

e proving that the PML constructed with the help of the simplified analysis is stable for a more general class
of absorption parameters. This part is trickier, as we discussed before, and is an open question for most
existing stabilized PMLs.

In this work we will concentrate on the first part of the analysis. For the newly constructed PML the full rigorous
proof of the stability is the subject of future research, see, in particular, [40].

4.2.2. Stability analysis

Let us consider a simplified case, when the absorption function is a non-negative constant and is defined in
R. This amounts to taking o(z) = o = const in (4.3) and considering the corresponding sesquilinear form for
(7,y) € R?. Alternatively, this can be viewed as the following change of variables:

z—z(1+s "p(s)o), o >0, x €R. (4.6)

As shown before, the choice 9(s) = 1 may lead to time-domain instabilities. Our goal is to provide stable choices
of ¥(s) for an arbitrary passive material. The main results of this section are Theorems 4.8 and 4.11.
Upon the application of (4.6), the sesquilinear form (3.6) is transformed to
v(s)\

Ay (u,v) = a(s) (1 + %) (Oput, 0pv) + b(8)(Oyu, Dyv) + s%c(s)(u,v), s € Cy, u, v € HY(R?). (4.7)
We suggest that taking in the above 1(s) = a(s) produces a passive sesquilinear form. This result is generalized
in Lemma 4.3 and is explained in detail in Theorem 4.8. Although Lemma 4.3 does not provide an explicit way
to construct the function ) (s), it will play an important role in Section 6.
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Lemma 4.3 (Sufficient stability condition for the PML (4.6)). Let the sesquilinear form A(u,v) given by (3.6)
be passive in the sense of Definition 3.11. Let an analytic 1(s) : C4 — C satisfy for all s € Cy.:

(S1) Re(sy(s)) >0,
(S2) Re (5¢(s)a(s)~tb(s)) >0,
(S3) Re (sw(s)a(s)"'e(s)) > 0.
Then for all o > 0, the sesquilinear form
Ay (u,v) = (s)a(s) T Ay (u,v),  u,v € HY(R?), (4.8)
where Ay (u,v) is defined in (4.7), is passive.

Proof. Notice that since a(s) satisfies Re (3a(s)) > 0, s € C,, it never vanishes in C;. Let us verify the
conditions on the coefficients of the sesquilinear form (4.8) required by passivity. The first coefficient

Re <sw(s)_1 (1 + %(S)) ) =Re (s)(s)™") + 20 + Re (s ' (s)) >0,

for all s € C4, thanks to (3.3) and (S1). It is obviously analytic in C,. The passivity condition on the rest of
the coefficients is included explicitly into the conditions of the lemma. O

Combining the above with Theorem 3.9 and Proposition 3.12, we obtain the following simple result of the

time-domain stability of the PML system.

Corollary 4.4 (Stability bounds of the PML of Lemma 4.3). Let Ay (u,v) be defined by (4.7), and let 1(s)
satisfy the conditions of Lemma 4.3 Let, additionally,

< vy .
‘ ) [s] C'f(Res), s e Cy, (4 9)
with y > —1 and C’f()\) : (0,00) — (0,00) being non-increasing and satisfying Cf(/\) < CoA™™, Cp >0, m > 0.

Then the following holds true for the sesquilinear form (4.7):

(1) for all G € H™Y(R?), for all s € C, there exists a unique solution U(s) € H'(R?) to the variational
formulation

Ay (U(s),v) = (G,v), veH! (Rz) , (4.10)
which satisfies, for all s € C4,
U ()| 1 rey < Cls|" T (Re s) ' max(1, (Res) *)Cy(Re s)||G| -1 (r2), (4.11)

where C' > 0 is a constant independent of s;

(2) let k = |y +3], and £ = 3+ m. Let G(s) € H=Y(R?) be the Laplace transform of a causal function g(t) :
R — H1(R?), which belongs to C*~1(R; H~1(R?)) and has an integrable k—th distributional derivative.
Then the solution U(s), s € Cy, of (4.10) with G = G(s) is a Laplace transform of a causal continuous
function u(t) : R — H(R?), which can be bounded as follows, with o > 0 independent of t:

t
|w(t)|| g1 < amax(t,1) / I (1 + GT)kg) ()| gg—1dr, t>0. (4.12)
0
Proof. The first statement follows directly from Proposition 3.12, applied to the following variational formula-

tion, which is equivalent to (4.10):

A, (U(s),v) = ¥(s)a(s)"HG,v), ve HY(R?), seCy.
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Notice that A, (u,v) is passive, according to Lemma 4.3. The second statement is obtained as in the proof of
Proposition 3.12; it is important to notice that 1 (s)a(s)~! is analytic in C,. The bound in the time domain
follows by the application of Theorem 3.9. d
Remark 4.5. Indeed, if (4.9) holds with v < —1, we can always bound [s|7C¢(Res) = |s|7!|s|'T7Cf(Re s) <
|s| 72 (Res)" ™ C¢(Res), which satisfies the conditions of Corollary 4.4.

The time-domain bounds in Corollary 4.4 are non-optimal, since they are based on the extensive use of
Proposition 3.12 and non-optimal bounds of Theorem 3.9. Therefore this result cannot be used to compare the
bounds on the solution of the PML and non-PML system. Using a priori bounds on |a(s)t(s)~!| which can be
computed with the help of Corollary 3.5, we obtain the following simple result.

Corollary 4.6 (A priori bounds for Corollary 4.4). Let a(s)™t, 1(s)~! be passive. Then the estimate (4.9)
holds true with v < 4, m < 6. If additionally a(s)™', 1(s)~! are generalized Lorentz, i.e. have an expansion as
n (2.8), the estimate (4.9) holds true with v <1, m < 3.

Proof. See Appendix B. O

All the above can be summarized in the following theorem.
Theorem 4.7 (Stability of the time-domain PML of Lemma 4.3). Let the sesquilinear form Ag(u,v) satisfy
the conditions of Lemma 4.3. Then the system (3.15) with e1(s) = b(s)™"!, ea(s) = a(s)~* (1 + Us_lw(s))2 and
w(s) = c(s) is well-posed and stable.

The following direct corollary of Lemma 4.3 provides a simple way to construct a stable PML.

Theorem 4.8 (Construction of stable PMLs in the direction x). Let a sesquilinear form A(u,v) given by (3.6)
be passive in the sense of Definition 3.11. Then for all o > 0, the form

oa(s)

-2
Ay (u,v) = a(s) (1 + ) (Opu, 0,v) + b(8)(Oyu, Oyv) + s%c(s) (u, v), u,v € H'(R?),

s
obtained from (4.7) with a particular choice ¥(s) = a(s), is passive in the sense of Definition 3.11.

Proof. Setting 1(s) = a(s) shows that the assumptions of Lemma 4.3 are satisfied. O
Example 4.9 (Uniaxial cold plasma). Consider the plasma model (2.7), with the PML in y-direction chosen
as 1(s) = e1(s) 1. The stability of this PML was confirmed in [7,8]. In this case in Corollary 4.4 m = p = 0.

Theorem 4.8 applied to the isotropic Drude model (2.5) suggests that the choice ¢(s) = £(s)~! in the change
of variables (4.6) leads to a stable PML. This is confirmed by the analysis and numerical experiments in [9]. In
the same work it was demonstrated that a more general change of variables leads to a stable PML, more precisely,

P(s) =1+ ‘;’ij)*l, where wy € [min(we, wy,), max(we, wy,)]. We explain this in the following proposition.
Proposition 4.10 (Other stable PMLs for isotropic models). Let a sesquilinear form A(u,v) given by (3.6)
with a(s) = b(s) be passive in the sense of Definition 3.11. Let ¥(s) = (aa(s)™* + (1 — a)c(s))fl, 0<a<l.
Then for all o > 0, the form Aq(u,v) defined in (4.8) is passive.
Proof. Tt is sufficient to verify conditions of Lemma 4.3:
(1) thanks to (3.3), it is sufficient to check Re (s1(s)™!) = aRe (sa(s) ™) + (1 — a) Re (sc(s)) > 0.
(2) since b(s) = a(s), P¥(s)a(s)~1b(s) = ¥(s).
(3) to show the required bound for a(s) ™19 (s)c(s), we use (3.3):
Re (5¢(s) 'a(s)e(s) ') = aRe(sc(s)™") + (1 — a) Re(sa(s)) > 0. O
Finally, to construct a stable PML in corners, we extend the statement of Theorem 4.8. Recall that in a

corner we perform changes of several variables:

z—a(l+s u(s)on),  y—y(L+s y(s)oy). (4.13)
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Theorem 4.11 (PML stable in a corner). Let a sesquilinear form A(u,v) given by (3.6) be passive in the sense
of Definition 3.11. Then for all oy, oy > 0, the form

-2

Ag, 0, (u,v) = a(s) (1 + %ﬂg)) . (0, Oyv) + b(s) (1 + %(8)) (Oyu, Oyv) + szc(s)(u,v), u,ve H' (]RQ),

obtained from (3.6) by applying the PML (4.13) with ¢, = a, ¥, = b, is passive in the sense of Definition 3.11.
Proof. The proof of this result follows the same arguments as the proof of Lemma 4.3. O

The corresponding time-domain stability result can be formulated as in Theorem 4.7.

Remark 4.12. The stability of the PML as proved in this work implies the uniform stability of the PML as
defined in [9], see also Proposition 3.18.

While the changes of variables suggested in this section lead to stable systems, it is not obvious whether the
resulting layer is absorbing, i.e. that it leads to the energy decay. This question is addressed in [40].

4.3. Numerical verification of the results

Example 4.13 (The system of Example 4.2; verification of Thm. 4.8).

First of all, we apply the obtained results to the system described in Example 4.2. We use exactly the same
parameters, see (4.4) and Table 1, however, in this case we construct the PML system with the help of the
PML change of variables (4.2) with 1(s) = e2(s)~!. As before, in y-direction we use zero Dirichlet boundary
conditions.

The results of this experiment are shown in Figure 2. One clearly sees that the solution is stable. Interestingly,
in this case the norm of the solution decays very lightly inside the domain and the PML. This is partially due
to the dispersive, anisotropic nature of the problem (the solution remains non-zero inside a bounded domain
for a fairly long time), and partially because the PML was used only in one direction (cf. e.g. Figure 3, where
the PML was used in two directions). Notice that the oscillations in the norm of the solution are likely due to
the dispersive behaviour of the problem.

8e-3

2. (t)]]

le-3 I—
“20 20 40 60

x x x t

FIGURE 2. From left to right: A solution H, of Example 4.13 computed with the new PML
at t = 10, 20, 35; the dependence of the L?-norm of H, with respect to time. The boundary
between the domain and the layer is marked in black.
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FI1GURE 3. Top row: The experiment was done with the help of the classical PML. Bottom row:
The experiment is done with the new PML. From left to right: a solution H, of Example 4.14
at the times ¢ = 15, 30, 80, computed with the help of corresponding PMLs; The dependence
on time of the L2-norm of this solution measured in the whole domain. The boundary between
the physical domain and the PML is marked in black.

Example 4.14 (Anisotropic Lorentz material; verification of Thm. 4.11).
We consider an anisotropic Lorentz material (2.8) with the parameters

1 325 119 16 16 3
Al =115 <sz+4z * sz+sz)’ 2=t gyt are M=t (U
Notice that the corresponding time-domain system is stable, since a = €5 b= 51_1, ¢ = p satisfy conditions
of Definition 3.11, ¢f. Theorem 5.4. This time we apply the PML change of variables in both directions (4.13)
with ¢, = €5 L and Py = 8;1. The stability of such a PML is proven in Theorem 4.11.

The rest of the parameters for this experiment are provided in Table 2. The results of the experiment are
shown in Figure 3. Notice that the classical PMLs are unstable, whereas with the use of the new PMLs the
norm of the solution decays. Due to the anisotropy of the model, when using the classical PMLs, the instability
in the z-direction is more pronounced and occurs earlier than the instability in the y-direction.

TABLE 2. Parameters for the experiment with dielectric permittivity and magnetic permeabil-
ity (4.14). The notation can be found in the beginning of Section 4.1.2.

L. L, LI L] oua) o,y) Av Al f(t,2,9)
8 8 2 2 2022 20y 0.025 00125 10(t— 1.6)e 15(t=1.60)% 202720y

Example 4.15 (Verification of Thm. 4.8 for materials with losses).
Let us consider the problem (2.4) with the parameters:

2 25 3

=1 =14+ - — 4+ =
€1(s) , £2(s) + 3(s + 3) + 195 + 1512

u(s) = 1. (4.15)
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TABLE 3. Parameters for the experiment with dielectric permittivity and magnetic permeabil-
ity (4.15). The notation can be found in the beginning of Section 4.1.2.

L. L, L] L] oua) o,(y) Ac At f(t,2,y)
12 2 0 5022 0 005 0025 120e16(t=2)%g—3002%—800y”

T
104 - —(s) =1
—(s) = e2(s)7!
EN 101 |
—2 |
10 150 200

l
0 50 100
t

F1GURE 4. From left to right: A solution H, to the problem of Example 4.15 at ¢ = 200
computed with the classical PMLs; The same quantity computed with the new PMLs; The
comparison of L?-norms of the solution H,, computed with two different PMLs, measured in
the whole domain. The boundary between the physical domain and the PML is in black.

By a direct computation one can verify that the corresponding sesquilinear form is passive. Unlike the previ-
ous two examples, this problem does not fit the framework of Lorentz materials (2.8). Moreover, the existing
necessary PML stability condition [9] does not cover this class of models.

The parameters for this experiment are provided in Table 3. We use the PML only in the direction z. A
numerical comparison of the new PMLs (4.2) with t(s) = e2(s)~! with the classical perfectly matched layers is
shown in Figure 4. Contrary to the classical PMLs, the new change of variables leads to a stable system.

For other examples involving non-local materials we refer an interested reader to [11].

5. DISPERSIVE SYSTEMS WITH RATIONAL PARAMETERS. THEIR PROPERTIES.
TIME-DOMAIN FORMULATIONS

In the previous section we have shown how to construct a stable PML for a model described by a passive
sesquilinear form (3.6). In this section we will study a special case when the coefficients of the sesquilinear form
are rational even functions (however, most of the results can be generalized to meromorphic even functions).

In the first part of this section we will study the properties of these coefficients. Next, we will formulate the
time-domain systems that correspond to passive models with such parameters.

5.1. Properties of even rational functions that satisfy the passivity condition

We consider rational functions r(z) satisfying the following assumptions (they coincide with those of [9]).
Assumption 5.1. A function r(z) can be represented as 7(z) = 1+ zgjg, where p(z) and ¢(z) are polynomials
with real coefficients that have no common roots, s.t. degp < degq.

Recall that given r(z), z € C4, by 7#(w) we denote the restriction 7(w) = r(—iw), Imw > 0, see (2.2).
Remark 5.2 (Physical relevance). Later on we will assume that ¢;(s) for j = 1,2, and p(s) in (2.4) belong to
the above class. These requirements are indeed physically meaningful:

e requiring that €1, €9 and p are rational functions is equivalent to the fact that in the time domain the
system (2.4) can be written with the help of local (i.e. linear combinations of 8t(k), for k € Ny) operators;
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o ¢1(w), e2(w), p(w) — 1 as w — oo means that for high frequencies there is no dispersion ([42], Sect. 59);

e in a so-called transparency regime ([42], Sect. 64, p. 260) the rational functions &1(s), e2(s), p(s) are real
on the imaginary axis. Moreover, in this case &;, fi are even functions of w (see [42], p. 250). Since they
correspond to real in time operators, they should have real coefficients.

We can formulate the following a priori property of passive functions. For the proof see [18] or [11].
Lemma 5.3. Let r(s) be a passive function satisfying Assumption 5.1. Then all of its poles and zeros are real.
The result below provides a characterization of rational passive functions, (see [46], Cor. 10.1, [5], Thm. 5).

Theorem 5.4 (Characterization of passive functions). Let (s) be a rational function satisfying Assumption 5.1.
Then this function is passive, i.e. Re(sr(s)) > 0, s € C4, if and only if

- T
T(S):l—i_zm’ re >0, w €R, £=0,...,n. (5.1)
£=0

Moreover, in this case Re(sr(s)) > Res.

This result shows that under Assumption 5.1 the passivity requirement can be satisfied only by the Lorentz
materials (2.8). Another property of passive materials, which is exploited in [9], is a so-called growing property.
More precisely, a rational function r(s) satisfies the growing property if for all w € R except for poles of #(w), it
holds (w7 (w))" > 0. It is interesting that in physical literature ([42], p. 256) and [50] the above property is shown
to be crucial for the positivity of the energy density. In what follows we will implicitly rely on Lemma 5.3.

Lemma 5.5 (Properties of passive functions).

Let r(s) satisfy Assumption 5.1 and be passive. Let (w¢)}_, be non-negative poles of 7(w) ordered in ascending
order. If w = 0 is a pole, and its order is 2m (the order is necessarily even because of the evenness of r(s)),
this pole is counted m times (i.e. 0 = w1 = wa = ... = wy,), while the rest of the poles are counted with their
multiplicities 0 < wy < wa < ... < wy. Let (1)}_; be non-negative zeros of 7(w), ordered in ascending order
(counting multiplicities). Then

(M1) (wi(w))" >0 in all points but poles of 7(w);
(M2) 0<wi <1 <wa<Te<...<wy <"1y

Proof. See [18] or [11]. O
The next result characterizes reciprocals of rational passive functions.

Theorem 5.6. Let r(s) satisfy Assumption 5.1. Then Re(sr(s)) >0, s € C4, if and only if

n

T(S)=1—ZL re>0, w e R\{0}, £=0,...,n, 7(0)=1-—

> 0. 5.2
=0 $? +wj’ B (52)

&=

=0
Proof. The function r(s) satisfies Re(3r(s)) > 0 for s € C if and only if r(s) ™! is passive, see (3.3). Using (M1)

of Lemma 5.5, (wi(w)~1)" > 0. Therefore all the zeros of wi*(w)~! are simple, and so are the poles of w™17(w).
Additionally, since 7(w) is even with real coefficients and 7(w) — 1 as w — +00, its partial fraction expansion is

. Ty
r(w):1+zm, e € R, we € R\ {0}.
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It remains to check the condition on the signs of r,. To do so, we rewrite the above expansion

n n n
Ty Ty ’I“gw
=1+) moe ! Z Z 2t e O Y sy 63)
£=0 ¢ £=0 £=0 £=0 i
Then the condition Re(sr(s)) > 0 for s € C4 reads:

n 2 n 2.(32 2
_ _ P _ 3o [s|%s(5% + wp)
Re(sr(s)):r(O)Res—i—Rezzow—%m:T(O)Res+ReK=0w—%W>0, SECJr.

Let us show that r(0) > 0. Assume by contradiction that 7(0) < 0. In the vicinity of s = 0, the sign of Re(s7(s))
coincides with the sign of r(0) Re s, which is negative for Res > 0. Hence, necessarily, r(0) > 0. To see that
re > 0, notice that in the vicinity of s = tiwy, the sign of Re(sr(s)) coincides with the sign of the largest term
in the partial fraction expansion

re [sPs(s2+wf) _re sl 2, 2
= — sl 4+ wy) Res.
w; 2 +wil? W \s2+wg\2(‘ "+ wi)
For the above to be positive when Re s > 0, it is necessary that r, > 0. O

A result analogical to Lemma 5.5 can be formulated for functions r(s), which satisfy Re(sr(s)) > 0 in C,..

Lemma 5.7 (Properties of reciprocals of passive functions).

Let r(s) satisfy Assumption 5.1, and Re (5r(s)) > 0 for s € Cy. Let (wg)}_, be non-negative poles of 7(w)
ordered in ascending order, counted with their multiplicities. Let (r¢)}_, be non-negative zeros of 7(w), ordered
in ascending order. If w = 0 is a zero, and its order is 2m (the order is necessarily even because of the evenness
of 1(s)), this zero is counted m times (i.e. 0 =11 =19 = ... =1y ), while the rest of the zeros are counted with
their multiplicities: 0 <11 <ro < ...<7,. Then

(ﬂl) (w™ ' (w))" < 0 in all points but poles of w™'7(w);
(M2) 0<r; <w; <rg<wy <...<7rp < wp,.

Proof. The property (M1) follows by a direct computation, with the use of (5.3):

(Wl (w)) = _r0) _ Z T_K_w2 +wj )

w? w? (w? — w})?

The above expression is well-defined and strictly negative in all points except for poles of 7(w) and possibly
w = 0. If w='#(w) has no pole in w = 0 (i.e. r(0) = 0), the above expression is defined and negative in w = 0.

The property (M2) follows using the same arguments as in the proof of the growing property in [18]. More
precisely, we notice that w=17(w) is strictly decreasing, and all its zeros are simple. From this it follows that it
cannot have extrema, and thus between two zeros of w17 (w) there is always at least one pole.

Since 7(w) has the same number of poles as zeros, the number n, of zeros of w™17(w) is less by one than the
number of its poles. Moreover, all the poles of w ™17 (w) are simple. From these two arguments it follows that the
poles and the zeros of w™17(w) interlace. Since wErJIrloo 7(w) = 1, and this function decays (which can be verified

by a direct computation, see (5.2)), the largest by absolute value pole of w7 (w) is larger than all of the zeros
of w™7(w). From this we obtain the interlacing property (M2). O

5.2. PMLs for anisotropic Lorentz materials: Time-Domain formulation

In the previous section we showed that provided that the dielectric permittivity and magnetic permeability
satisfy the conditions of passivity and Assumption 5.1, the corresponding materials are Lorentz (2.8). This
class of models can be expressed in the time domain as a system of partial differential equations coupled with
ordinary differential equations. The goal of this section is to present the corresponding formulation, as well as
provide a PML system obtained after the change of variables (4.2), which can be used in practical calculations.
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5.2.1. Time-Domain system without the PML

Recall that the Lorentz dielectric permittivity and magnetic permeability are given by (2.8). To rewrite
the Maxwell system (2.1) in the time domain, we first notice that one of the ways to express the relation

sD, = se1(s)E, in the time domain is via the introduction of auxiliary unknowns:
N
ath = atEx + ngfjméa
=0

atjzf + wi(pzf = E:Jca atpzf = jzfa {= 07 ceey N

One can verify that in the frequency domain it holds sD, = sel(s)Ew, provided the initial conditions
D.|,_g = E|,_y, and zero initial conditions for the unknowns j,; and pys, £ = 0,...,n,. Similarly we deal
with sB, = su(s)H,. Then the Maxwell system (2.1) can be rewritten in the following form:

8tE3: + Z garﬁjxﬁ = 8yHZ7 (543)
=0

8tEy + Z‘gy@jyﬁ = _8$H27 (54b)
=0
ny

OH. + Y pujue = 0yEx — 0.y, (5.4c)
=0

atjmf + Wgwpmé = Ema atpm( = jmfa {= 07 sy M, M E {1'7 y}a (54d)

8tju£ + WZzpuE = HZ7 8tpu€ = juﬁv {= 07 sy Ty (546)

5.2.2. Time-Domain system with the PML

Our goal is to rewrite the system (5.4a)—(5.4e) in the time domain with the PML change of variables (4.2)
and non-constant o(z) > 0. Let us limit our discussion to the functions v(s) which satisfy Assumption 5.1.
Additionally, let us assume that (s)~! is of the following form (this is clarified in Thm. 6.7):

Ty
—1 Capt
Qb(s) =1+Zm, TszR,Cd,gGR,ezo,...,nw.
£=0 (24
Recall that (4.2) amounts to substituting all d, by (1 + %)_1835 in the frequency-domain formulation
of (5.4a)—(5.4¢). For example, consider the equation for E, of (5.4a)—(5.4e) in the Laplace domain, with
the PML (4.2):

. Ty o O'w(s) -1 _ s _ o ~
SEy + Z(:)é’fygjy[ = (1 + s ) 83:Hz = s+ 0"(/)8tz - (1 S(ﬁil + 0_) 833HZ (55)

Thus, let us define E; = (s ' +0)7 10, H.:

Moy
SE; 4+ ey, o+ o(@) By = —0.H.,
=0

A% 2 ax _ x A% o _
SJE,.¢ T TyePE, ¢ = Ey, SPE, ¢ = JE, b5 £=0,...,n4.
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Using the above strategy to derive all the remaining equations with the PML, the system (5.4a)—(5.4e) with
the change of variables (4.2) becomes in the time domain:

N
8tEx + Z garﬁjxﬁ = 8sza
£=0
Ny

8tEy + Z Eytdye = —0.H, — U(l‘)E;,
£=0

o (5.6)
8t}Iz + Z HeJue = 8yEac - 83:Ey - U(l‘)H:,
=0

at.jm( + Wgngpmf = FEpn, atpmf = Jme, £=0,.. <M, M E {wvy}a
atjMerisz:Hz, atpug :jug, EzO,...,nH,

coupled with the system for the auxiliary unknowns

Moy

HE, + ZZO Cpeip, o+ o(x)Ey = =0, H,

=k 2 * _ * * g% _
8t‘7E?/7€ + Twszva - Ey’ 8tpE /2 jEy,Z’ K - 07 ey nwv

Y

- (5.7)
OHY+ Y cyufiy. o +o(@)H = -0, B,
=0

atjjﬁ]zx + rizp}{zj =H;, 8tp}1z7€ =Jio0=0,...,ny.

Remark 5.8. There is no unique way to write the time-domain formulation depending on the choice of the
family of auxiliary unknowns. However, all these choices are equivalent in terms of stability, see e.g. [14].

6. NECESSARY AND SUFFICIENT CONDITIONS OF STABILITY OF PMLS FOR MODELS
WITH LORENTZ PARAMETERS

While Theorem 4.8 provides an explicit way to construct stable perfectly matched layers for anisotropic
systems of type (3.6) by choosing ¥ (s) = a(s), such a choice of the function ¥ (s) may appear to be non-optimal,
in a sense that it does not necessarily lead to the smallest number of unknowns in the resulting system in the
time domain. On the other hand, while Lemma 4.3 provides a sufficient condition which should be satisfied by
¥(s), it does not provide a constructive way of choosing such a function ¥ (s).

In the work [9], which is based on examining the behaviour of modes of the dispersion relation, a necessary
condition of the stability of perfectly matched layers is formulated. Such a condition is easier to analyze compared
to the conditions of Lemma 4.3, since instead of dealing with the right-half complex plane (as in Lem. 4.3), one
studies the behaviour of functions restricted to the imaginary axis. It is well-known [10] that such conditions are
not necessarily sufficient for the stability. For example, when applied to non-dispersive cases, they account only
for the behaviour in the high-frequency regimes. Nevertheless, in [9] the authors have demonstrated that for a
class of isotropic dispersive models (described by the sesquilinear form (3.6) with a(s) = b(s)) the necessary
condition becomes sufficient.

The goal of this section is to demonstrate that the necessary condition derived in [9] is sufficient for the
stability of the perfectly matched layers for a more general class of models of the form (3.6), which, unlike the
models considered in [9], are anisotropic. However, we restrict our considerations to passive materials only.

The results of this section will enable us to find a family of ¥(s) that would result in stable PMLs, among
which there is an optimal choice in terms of number of auxiliary unknowns in the resulting time-domain PML
system. Finding such an optimal v (s) is however not always trivial.

First of all, we recall the necessary stability condition derived in [9], and then formulate the main result
(Thm. 6.11) in Section 6.2. The proof of this result can be found in Section 6.3. An easy to use method
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to construct the function (s) can be deduced from [9], see also [11]. Finally, in Section 6.4 we show some
numerical experiments with the new PML confirming the main results of Theorem 6.11.

6.1. The necessary stability condition

In this section we limit ourselves to passive sesquilinear forms (3.6) whose coefficients satisfy Assumption 5.1.
This is summarized in the following assumption, see also (3.3).

Assumption 6.1. The coefficients of the sesquilinear form (3.6) a(s)™!, b(s)~!, c(s) are passive in the sense
of Definition 3.1 and satisfy Assumption 5.1.

Remark 6.2. Since a(s), b(s), c(s) satisfy Assumption 6.1, we know, thanks to Theorem 5.4, that they are
of the form (5.1) and therefore correspond to Lorentz materials. However, the results of this section can be
extended to the case when a(s)™!, b(s)~!, ¢(s) are of the form (5.1) with infinite number of terms (n = o),
cf. e.g. ([41], Thm. 1, p. 308). A numerical illustration to this statement can be found in [11].

Such systems can be written in the form (5.4a)—(5.4e), with a, b, ¢ given in (3.8). Thus, we can write the
dispersion relation for the time-domain system (5.4a)—(5.4e), see report [11]:

Ng ny Ne

Fw,k) = (wa(@)k? + o bk - wiw)) [J@? - w2) [[@? - o) [J@? - wi)e? =0 (61)

/=0 £=0 £=0

Here (war)p2o s (woe)pto, (wee)ys, are the poles of correspondingly a, b and .

Crucially, the analysis in [9] applies only to non-dissipative systems, as defined below.

Definition 6.3 [9]. A system is called non-dissipative if all modes w(k) of its dispersion relation are real for
all k = (ky, ky) € R%

Proposition 6.4 (Non-dissipativity of (5.4a)—(5.4e)). Under Assumption 6.1, all modes w(k) of (6.1) are real.
Proof. The solutions of the dispersion relation (6.1) are either poles of a, B, ¢, vanish, or are the solutions of
a(w)k2 + b(w)k? — w?é(w) = 0. (6.2)

Thanks to Lemma 5.3 and passivity of a=!, b~!, ¢, the poles of a, b, ¢ are real.
It remains to show that w(k) solving (6.2) are real. According to Proposition 3.18, all solutions of (6.2) satisfy
Imw(k) < 0. Additionally, since a, b, ¢ are even, if w solves (6.2), so does —w. Therefore, w(k) € R. d

The PML change of variables (4.6) leads to the system (5.6)—(5.7) with o(z) = o, with the dispersion rela-
tion [11]

- —2
Fy(o,w,k) = | wta(w) (1 - %{E}w)) k2 —I—w_lg(w)k;; —weé(w) | x H(w2 —w?)

4
(6.3)

< [T 2 [T ~ w20 TIw? w0 (1 4+ odw)(-iw) ) wt =0,

£ £ £

Here (ww)ZﬁO are the poles of ¥. As in Section 3.3, one studies the stability of the PML system by examining
the modes of the corresponding dispersion relation.

Definition 6.5 (Def. 3.6 in [9]). A PML system (5.6)—(5.7) obtained with the change of variables (4.6) is called
uniformly stable if all solutions w(k, o) of its dispersion relation (6.3) satisfy: Imw(k, o) < 0, for all k € R? and
o> 0.
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To formulate the necessary PML stability condition, let us recall the concepts of phase and group velocities.

Definition 6.6. A phase velocity of a mode w(k) is defined by v,(w(k)) = %ﬁ, and the group velocity by
vy(w(k)) = Viw(k), provided that this derivative is well-defined.

Finally, the choice of the function t in [9] is restricted to the class of functions ¢(w) = h(w), where

" h
h(w):HZ sz’ he € R, we € R\ {0}, (=0,...,n. (6.4)

In [9] the authors have classified the solutions of the dispersion relation (6.3) and provided the necessary
conditions of the uniform stability for each of the classes of the modes. We will discuss these classes afterwards.

- ny
Theorem 6.7 (Props. 3.10, 3.12 in [9]; necessary PML stability condition). Given ¢(w) = 1+ > %,
£=0 ve

with wye € R\ {0}, ¥y € R, £=0,...,ny, let a PML system corresponding to the dispersion relation (6.3) be
uniformly stable. Then

(N1) the coefficients of the expansion of ¥(w) satisfy e >0, £ =0, ... Ny Additionally, $(0) > 0.
(N2) for all the solutions w;(k), j=1,..., N, of the original dispersion relation (6.1), it holds that

(@i () Vg, (wj () vy (wj (k) >0, k € R?.
Here the subscript x indezes the x-component of a vector.

Let us re-interpret Theorem 6.7. All the modes of (6.3) belong to one of the following classes:

(1) they are non-propagating (i.e. independent of k). Such modes can be real w(k) = const € R or solve

1 — (iw) "(w)o = 0.

The stability of the modes that solve the above equation is ensured by the condition (N1), or, in our terms,
¢f. Theorem 5.6, by the condition that Re (51(s)) > 0, s € C.
(2) they are propagating, i.e. solve, for some k;, k, € R:

wta(w) (1 - m) k2 4 w_lz)(w)kj — wé(w) = 0. (6.5)

1w

A necessary condition of the stability of the propagating modes is given by the condition (N2).

Let us rewrite (N2) with the use of the implicit function theorem. Clearly, this condition is of interest for the
modes that depend on k non-trivially, i.e. modes that solve, cf. dispersion relation (6.1):

Flw, k) = w ta(w)k? + w_li)(w)k;j — wé(w) =0. (6.6)
We denote the set of the propagating modes of the original system by
2, ={weR: Fw,k) =0 for some k € R*} . (6.7)

Then, given F(w, k) as in (6.6), we deduce with the help of the implicit function theorem:

O, w(ky, ky) = — (Ok, F(w, k)) (0 F(w, k) = —2k,w ta(w) (ki(w‘ld(w))’ + (w_lb(w))’ki — (wé(w))’)71 )
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The condition (N2) in Theorem 6.7 can be rewritten in the form: for all w € (2,

— k2 (w)a(w) (/cg(wfla(w))/ + k2w (W) — (wé(w))')il >0, (6.8)

provided that the above expression is well-defined.
We will need to reformulate the above condition in a simpler form. First of all, we will simplify (6.7). Given a
rational function r(z) satisfying Assumption 5.1, let us introduce a set D, = {w € R: 7(w) =0 or 7(w)~! = 0}.

Lemma 6.8. Let a(s), b(s), c(s) satisfy Assumption 5.1. Then (2, defined in (6.7) can be represented as a
union of the following (possibly intersecting) sets:

2, = QIO Y Q<0 2,
Q2070 = {w e R\ (Do UD,) : a(w)é(w) >0}, (6.9)
leko _ {a) eR\ (D, UDy): d(w)l;(w) < 0} , (6.10)
Z, = {w €Dy UD,UD,: for some ky, ky € R, it holds w™ a(w)k? + w ™" b(w)k; — wé(w) = 0} '

Proof. First we show (2, C 26200 leko U Z,. Let w ¢ Z,. Then the modes w € {2, satisfy

-l
This equation has at least one real solution k, if and only if there exists k, € R s.t.
—B(w)d(w)_lki + w?é(w)a(w) ™t > 0. (6.11)
The above inequality has no real solutions &, if b(w)d(w) ™" > 0 and &(w)a(w) ™! < 0. Hence, the inequality (6.11)
has a real solution k, if and only if w ¢ Z,, satisfies at least one of the following conditions:

° l;(w)fl(w)_l <0,ie we QS,B<O;
° 5(00)&((4))_1 > O’ e wE _Qg(‘f>0.

The inclusion 0250 U ()gko U Z, C {2, can be proved similarly. a
With the above we can reformulate the necessary stability condition (N2).

Lemma 6.9 (Necessary stability condition (N2)). Let a(s), b(s), c¢(s) satisfy Assumption 6.1, and let 1(s)
satisfy Assumption 5.1 and Re (sy(s)) > 0, s € Cy. Let for w € (2, the stability condition (6.8) hold true,
provided that the latter expression is well-defined. Then for all w € 2520 U 23°<0 it holds

Y(w)i(w) > 0. (6.12)
Proof. Consider the denominator of the left-hand side of (6.8):
H o=k (w ' aw) + ki(w b(w)) — (we(w))'.

Thanks to Lemma 5.5 about the sign of the derivatives of passive functions (applied to ¢(s)) and the analogical
Lemma 5.7 for reciprocals of passive functions (applied to a(s), b(s)), for all w ¢ Z,, it holds

(W la(w)) <0, (W 'b(w)) <0,  (wi(w)) >0,
Therefore, the denominator H < 0 for all k;, k, € R and w ¢ Z,. We can thus rewrite the inequality (6.8) as

P(w)a(w) > 0. O



2422 E. BECACHE AND M. KACHANOVSKA

6.2. Equivalence of the necessary and sufficient stability conditions

In this section we show that the necessary stability condition of the PML in Lemma 6.9 is equivalent to the
sufficient stability condition of Lemma 4.3. To formulate it, we need the following assumption.

Assumption 6.10. The functions a(s), b(s), c(s) satisfy Assumption 6.1, and ) (s) satisfies Assumption 5.1
and Re (5¢(s)) > 0, s € C,..

Theorem 6.11 (Equivalence of the necessary and sufficient stability conditions).
Let a(s), b(s), c(s), ¥(s) satisfy Assumption 6.10 and let

A(u,v) = a(s)(0zu, Ozv) + b(s)(Dyu, dyv) + s*c(s)(u,v)
be the corresponding passive sesquilinear form. Then the following two conditions are equivalent:

(NSC1) for allw € ngo U 05520 (see (6.9, 6.10)), it holds that P(w)i(w) > 0.
(NSC2) for all o > 0, the sesquilinear form

/L,(u, v) = qﬁ((j))

is passive in the sense of Definition 3.11, and thus, bounded and coercive (due to Prop. 3.12).

(a(s) (1 + @) . (Ozu, Ozv) + b(s)(Oyu, Oyv) + s%(s)(u,v)) , se€Cyq,

Proof. The proof (NSC2) = (NSC1) follows from the results of [9]. Consider one of the factors of the dispersion
relation (6.3) given by (6.5). Thanks to Proposition 3.18, the passivity of the sesqulinear form /L,(u, v) implies
that all the solutions w(k), k € R? of (6.5) have a non-positive imaginary part, i.e. Imw(k) < 0. In [9],
Proposition 3.12, the following implication was shown:

all solutions w(k), k € R?, of (6.5) are s.t. Imw(k) <0 = for w € 2, (6.8) holds true.

Thanks to Lemma 6.9, from the above (NSC1) follows.

To show the implication (NSC1) = (NSC2), we use Lemma 4.3. It is sufficient to prove that for (s)
satisfying the sign conditions (NSC1), it holds

Re (sc(s)a(s) 'y(s)) >0, s € Cy, (NSC2)-(a)

Re (sb(s)a(s) "4 (s)) >0, s € C. (NSC2)-(b)

The proof of the above relies on several technical results, which we will formulate and prove in Section 6.3. [

We readily obtain the following corollary for a specific class of anisotropic systems (3.6) with c(s) = b(s)~ L.
A particular representative of this class is a uniaxial cold plasma model given in (2.7), with b(s) = 1.

Corollary 6.12. Let a(s),1(s),b(s) satisfy Assumption 6.10. Then the following two conditions are equivalent:

(1) for all 0 > 0, the sesquilinear form

Ay (u,v) = 15((5))

is passive in the sense of Definition 3.11.
(2) ¥(s) = a(s).

Proof. Notice that the above sesquilinear form is as in Theorem 6.11 with &w) = b(w)~!. Using Theorem 6.11,
we see that in points w € R s.t. a(w)é(w) = é(w)g(w)i1 > 0, the functions ¥ (w) and a(w) should be of the
same sign. The same should hold in points where a(w)b(w) < 0. Thus, the poles and zeros of ¥ (s) and a(s)
coincide (not necessarily with their multiplicity). Since all the poles and zeros of ¢(s) are simple (with a possible

exception of s = 0), see also (M2) in Lemma 5.7, the assertion follows immediately. O

—2
(a(s) <1 + @) (Ozu, 0zv) + b(s)(Oyu, Oyv) + szb(s)l(u,v)> , s €Cy,
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Remark 6.13. From Theorem 4.8, there always exists ¢ which satisfies (NSC1) of Theorem 6.11, namely
¥ (s) = a(s), and thus, results in a stable PML.

6.3. Proof of Theorem 6.11

To prove Theorem 6.11, we proceed as follows. First, let us notice that the condition (NSC1) of Theorem 6.11
is equivalent to the following two conditions:

For all w € 220 : Y (w)a(w)

a
For all w € ngo s P(w)a(w)

v

0, (NSC1)-(a)
0. (NSC1)-(b)

v

We will first demonstrate that (NSC1)-(a) implies the passivity condition (NSC2)-(a). This is done in two steps:

(1) rewrite the condition (NSC2)-(a) in terms of equivalent conditions on the signs of ¢ in poles (zeros) of
functions a, ¢ (Lem. 6.14);

(2) show that if 1) satisfies (NSC1)-(a), then above conditions on the signs of ¢ follows. This is explained in
Lemma 6.15, whose proof relies largely on Lemmas 6.17, 6.19 and Corollary 6.18.

To show that (NSC1)-(b) implies (NSC2)-(b), we will make use of a logical argument (Lem. 6.20).

6.3.1. Reformulation of the condition (NSC2)-(a)

In the following lemma we reformulate the passivity condition (NSC2)-(a) in a more convenient form.

Lemma 6.14. Let a(s), c(s), ¥(s) satisfy Assumption 6.10. Then (NSC2)-(a) holds if and only if the following
limits exist and satisfy:

(a) in all poles (wcj)?;'o of &w), it holds that lim a(w) '4(w) > 0.

w—we

(b) in all zeros (waj);zo of a(w), it holds that lim ) (w)é(w) > 0.

W—Wa;

(¢) in all poles (W%)?ﬁo of h(w), it holds that lim a(w) 'é(w) < O0.

W

Proof. By Theorem 5.4, the function ¢(s)a(s) 11 (s) is passive if and only if its partial fraction expansion reads:

N

6(“)&(“))_17#(”):1—2%, pe>0, weR, £=0,...,N.
£=0 ¢

Thus, (NSC2)-(a) is equivalent to the following. In each of the poles w = wy, k= 0,..., N, of a(s) te(s)i(s)
the following limit exists and satisfies

lim (w? — w?)é(w)a(w) (W) = —pr < 0. (6.13)
w—wy
Let us demonstrate that the above condition implies the inequalities (a) — (¢). Since (wk)gzo is a subset of poles

of & a~' and v, we separately consider (6.13) for the poles of each of these functions. Let w,, be a pole of ¢(w).
The function ¢(w), thanks to Theorem 5.4, is of the form
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FIGURE 5. In the left figure we depict #(w), s.t. Re(sr(s)) > 0, s € C; and in the right one
we plot p(w), s.t. Re (5p(s)) > 0, s € C4. The functions r(s), p(s) satisfy Assumption 5.1.

where ¢, > 0 for £ =0, ...,n.. Let us compute the limit (6.13) substituting wy by we,:

lim (w® - w? )é(w)a(w) 'P(w) = lim ((w2—w§j)é(w)) lim a(w) 'P(w) = —¢; lim a(w) "h(w) < 0.

w—We w—We wW—We wW—We
cj cj cj cj

The strict inequality holds if and only if w,; is a pole of caY, of. (6.13). The above limit vanishes if and only
if ¢a—'4) has no pole in we; - The other inequalities in the statement of the lemma are obtained similarly.
The proof of the implication (a) — (¢) = (6.13) is almost verbatim the same. O

6.3.2. Necessary stability condition (NSC1)-(a) implies passivity of c¢(s)a(s) " 4(s) (NSC2)-(a)
Let us first formulate the main result of this section, namely that (NSC1)-(a) implies (NSC2)-(a).

Lemma 6.15. Let a(s), ¥(s), c(s) satisfy Assumption 6.10. Assume that (NSC1)-(a) holds. Then (NSC2)-(a)
holds true as well.

Proof. We would like to show that (NSC1)-(a) implies inequalities (a)—(c) of Lemma 6.14, which, in turn,
implies (NSC2)-(a). Let us look at the corresponding cases:
e in poles w,; of ¢(w), we must show that the following limit exists and satisfies lim a(w) ") (w) > 0. This
follows by a direction application of Lemma 6.17, see below, with a@ = a, v = ¢ and ¢> = 1. ~

e Corollary 6.18 shows that in zeros w,,of a(w) the following limit exists and satisfies lim é(w)y(w) > 0.
N LU—>LUQJ

e Lemma 6.19 shows that in poles wy, of ¢ the following limit exists and satisfies lim &(w)a(w)™ ! < O

W Wy
Remark 6.16. The necessary condition in the above lemma is also sufficient, see Appendix C.

Before formulating the results mentioned in the proof of Lemma 6.15, let us recall the properties of passive
functions and their reciprocals crucial for proving the result of Theorem 6.11, see also Figure 5 for illustration.
For a passive rational function r(s) satisfying Assumption 5.1, it holds, thanks to Lemma 5.5 and Theorem 5.4:

(P1) if w =0 is a pole of 7, then 7(w) < 0 in a sufficiently small vicinity of w = 0. Otherwise 7#(0) > 0.
(P2) in a positive pole, the function 7 changes its sign from positive to negative.
(P3) in a positive zero, the function 7 changes its sign from negative to positive.
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Similarly, for a rational function p(s) satisfying Assumption 5.1, for which Re (sp(s)) > 0, s € C, it holds,
thanks to Lemma 5.7 and Theorem 5.6:

(El) if w =0 is a zero of p, then p(w) < 0 in a sufficiently small vicinity of w = 0. Otherwise p(0) > 0.

(52) in a positive pole, the function p changes its sign from negative to positive.

(P3) in a positive zero, the function p changes its sign from positive to negative.

Now let us state the auxiliary results used in the proof of Lemma 6.15.

Lemma 6.17. Let a(s), ¢(s), ~(s) satisfy Assumption 5.1, and Re(Sa(s)) > 0, Re(S¢(s)) > 0, and
Re (sv(s)) > 0, for all s € C. Assume that for allw € R\ (D, UD,) it holds

F(w)a(w) >0 = d(w)a(w) > 0. (6.14)

Then in all the poles (ww);zo of ¥(w) the following limit exists and satisfies

0< lim a(w) 'o(w) < +oo. (6.15)

w—>w,yj
Proof. Let w,, > 0 be a pole of J(w) (negative poles are treated similarly). Then the following cases are possible:
e w,, = 0. According to Theorem 5.6 applied to a(s), only one of the following can hold true:

(1) either @(0) = 0. Then, for sufficiently small w > 0:

— a(w)~! <0, see (P1),

- F(w) <0, see (P1).

Thus, in a small vicinity of zero, @y > 0, and with (6.14) it follows that there ¢(w) < 0, which is
possible only if ¢(0) = 0, see (P1). Thus, ¢, & both have a zero of order 2 in w = 0, see (M2) of
Lemma 5.7. Therefore, the following limit exists and satisfies: ul)lg}) d(w)a(w)™t > 0.

(2) or @(0)~" > 0. Applying Theorem 5.6 to ¢(s), we notice ¢(0) > 0, hence (6.15) holds true.

e w,. > 0. The following cases are possible:

(1) 0 < a(wy;) < 00 (=00 < @&(w,y,;) < 0). Due to (P2), the inequality ¥(w)@(w) > 0 holds for all
W=wy, —0 (w=wy, +6), with § > 0 being sufficiently small. As for , there are two possibilities:

— ¢(w) does not have a pole in w;. Then, due to (6.14), the limit (6.15) exists and satisfies the
inequality (6.15) (this includes the case gzNS(ww) =0).

— ¢hasapolein w-, . This is impossible, since in this case (6.14) would require that d(w) > 0 (dp(w) < 0)
for w =w,, — 6 (w= W, +96), for § > 0; this would be a contradiction to the fact that in its pole
gzNS(w) changes its sign from negative to positive, see (P2).

(2) @(w) has a zero in w.,. Then in w,, @&(w) changes its sign from positive to negative, see (P3), and so
does 7, see (P2). Thus, in the vicinity of w,,, the product &(w)~*5(w) > 0. Therefore, (6.14) requires
that gg(w) > 0 there. Thus ¢ changes the sign in w,, from positive to negative, which is possible only
if gZ)(wn,j) =0, see (P3). Since nonvanishing zeros of &, 1) are simple, (6.15) holds true.

(3) & has a pole in w,,. Then there are two possibilities:

— ¢ is finite in w-,;. This immediately implies that the limit (6.15) vanishes.

— gz~5 has a pole in w,,;. Due to (P2), in w,; both functions gz~5, & change their signs from negative to
positive (and hence their product is positive in the vicinity of the pole). This, combined with the
simplicity of poles of &, ¢, shows that (6.15) holds true. O

The following result is a direct corollary of the above.
Corollary 6.18. Let a(s), ¥(s), c(s) satisfy Assumption 6.10. Assume that (NSC1)-(a) holds true. Then in all

the zeros (Waj);io of a(w) the following limit exists and satisfies

0< lim &w)(w) < +oo. (6.16)

w—>w,,,j
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Proof. The condition (NSC1)-(a) can be rewritten as follows: for all w € R\ (Dy UD,), it holds: é¢(w) *a(w)~* >
0 = YP(w)é(w)™t > 0. Then a(s) = c(s)~1, v(s) = a(s)~! and ¢(s) = 1(s) satisfy conditions of Lemma 6.17
(see (3.3)), from which the result is immediately obtained. O

Finally, what remains to show is the following.

Lemma 6.19. Let a(s), 1(s), c(s) satisfy Assumption 6.10. Assume that (NSC1)-(a) holds. Then in all the
poles (wwj)?io of ¥(w), the following limit exists and satisfies

—00 < lim é&w)a(w)™' <0, (6.17)

W Wy

Proof. Recall that wy,; = 0 cannot be a pole of 1;, see Theorem 5.6. Hence we consider the case wy,;, > 0 (negative
values are treated similarly). We thus look at the following cases:

(1) let —0o < E(wy,) <0 (0 < E(wy,;) < 00). As for a(w), it satisfies either of the following:

e G(w) is finite and does not change its sign in wy;. Assume by contradiction that (6.17) does not hold
true, i.e. ¢(wy,)a(wy,)” " > 0. By continuity this holds in a vicinity of wy,. Then, due to (NSC1)-(a),
d(w)i/?(w) > 0 in the vicinity of wy,. We arrive at the contradiction, since t changes its sign in wy,; but
not a. Hence, necessarily, ¢(wy, )a(wy, )" < 0.

e wy, is a pole of a(w). Then obviously the limit (6.17) vanishes.

e G(wy,) = 0: due to (P3), a changes its sign from positive to negative in wy,,, and the inequality é(w)a(w) >
0 holds for all w = Wy, +6 (w=w,, —§), with § > 0 being sufficiently small. Then, due to (NSC1)-(a),
the product a(w)y(w) > 0 for such values w, which is impossible, since ¢ changes in wy,; its sign from
negative to positive and @ from positive to negative, see (P3) and (P2).

(2) é(wy,) = 0. Then either is possible for a:

e G(w) is finite or has a pole in wy,. Obviously, the limit (6.17) vanishes.

e if @(wy,;) = 0, then (P3) and (P2) imply that a(w)é(w) < 0 in a vicinity of wy,. Combined with the fact
that positive zeros and poles of @ and ¢ are simple, we obtain the existence of the limit.

(3) ¢ has a pole in wy,. As shown in Lemma 6.17, with a = a, ¢ =1, 7 = ¢, in this case 1/; can have a pole in
wy,; only if @ has a pole in wy,. The existence of the limit follows from the fact that wy, is a simple pole
of a, ¢, and the sign of the limit follows from the character of the sign change of ¢ and @ in wy,;, see (P2)
and (P2). O

6.3.3. Necessary stability condition (NSC1)-(b) implies passivity of b(s) " ta(s)(s)~1 (NSC2)-(b)

Now our goal is to connect the passivity of b(s)ta(s)1(s)~! and the necessary stability condition. We will
not make use of lemmas similar to Lemma 6.17, but rather use some trivial logic arguments to show that
Lemma 6.15 implies the validity of the following result.

Lemma 6.20. Let a(s), 1(s), b(s) satisfy Assumption 6.10. If (NSC1)-(b) holds true, then so does (NSC2)-(b).
Proof. Given a, b, 1, let us introduce the following new unknowns:
Cn =17t an i =b, Y, = a. (6.18)

Notice that ¢, (s) is passive, see (3.3). Due to Lemma 6.15, the first statement below implies the second one:

(1) for allw € R\ (D,, UD,,) it holds that
en(W)an (W) >0 = Pp(W)an(w) >0, (6.19)

(2) Re(scp(s)an(s)™tpu(s)) > 0 in C,, or, equivalently, see (3.3), and the notation (6.18),
Re (5b(s)1(s)a(s)~') > 0 in Cy..
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With the new notation (6.18), the expression (6.19) reads
P(w)Mh(w) >0 = aw)b(w) >0, weR\ (DyUDy),
However, the above is equivalent to
AWh(W) <0 = Pw) 'bw)1 <0, weR\ (DyUDy),
or, alternatively, due to the continuity of all the functions in w,
A(w)h(w) <0 = P(w)a(w) <0, weR\ (DyUDy).
From this we obtain the desired statement. 0
Remark 6.21. As before, the necessary condition in the above lemma is also sufficient, see Remark 6.16.

6.4. Numerical experiments

In this section we will numerically verify Theorem 6.11, and study its applicability to materials with losses.

Example 6.22 (Anisotropic Lorentz material. Numerical verification of Thm. 6.11). We start with the sys-
tem (2.4), where we choose the parameters as follows, see Remark 3.6,

2 2w
SN x -1 W TN N1 YT SN e _
a(w) =éx(w)™ " = oL bw)=¢é1(w)™ " = Fk é(w) = a(w) =1, wp = 5. (6.20)

By Theorem 6.11, stable PML in z is generated by 1(s), s.t. (s)~! is passive and ¢ (w)a(w) > 0 for w from
ab<0 | pae>0 _ “r o 0. %
" U = (—o0, —wp) U ( ——, u =3 U (wp, +00).

Let us consider the following possible choices of 1 (s):

pa(s) = ea(s) ™" (6.21)

Notice that Re (5¢;(s)) > 0, j = 1,...,4, in Cy thanks to (M2) of Lemma 5.7. We expect the PMLs to be
unstable for 1(s) = 11 (s) (classical PMLs) and stable otherwise (since 1;a > 0, j = 2,3, 4, in ab<0 ac>0) In
particular, 4 corresponds to the PML of Theorem 4.8. The parameters of the numerical experiment are given
in Table 4. As before, in y-direction we use zero Dirichlet boundary conditions. The results of these experiments
are shown in Figure 6. The new PMLs are stable, unlike the classical PMLs. The rate of the decrease of the
solution norm for the PMLs with ¢(s) = 12(s), ¢¥(s) = 93(s), ¥(s) = ¥4(s) is almost indistinguishable on the
scale used in the figure.

TABLE 4. Parameters for the experiment with dielectric permittivity and magnetic permeabil-
ity (6.20). By H(x) we denote the Heaviside function. See Section 4.1.2 for notation.

LZ Ly Lg L'Z Oz ($) Jy(y) AZE At f(ta x, y)
12 2 0 202> 0 0025 00125 (t—2)e 021000382 pr3 g8 4
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FIGURE 6. Left: H, of Example 6.22 at t = 60 computed with 1(s) = 12(s), see (6.21). The
boundary between the physical domain and the PML is marked in black. Right: The dependence
of ||H,||1z, computed with different 1 (s), on time.

Example 6.23 (Anisotropic Lorentz materials with loss). Another interesting question is whether a perfectly
matched layer which we have devised for the Lorentz materials (2.8) in this section can be applied to Lorentz
materials with losses, more precisely, when the dielectric permittivity /permeability are of the form

n ”’e
=1 - >0, w >0, v >0.
=1 ey S eez0n

Tt is easy to check that Re (sr(s)) > 0, s € C; this shows that all the roots of 7(s) lie in C\C... Moreover, all poles
of 7(s) also lie in C\Cy.. To see this, notice that the poles of 7(s) are given by s3 = —vp/v7 —w?, £=0,...,n.
If vy > wy, then szt < 0; otherwise Re sjgt = —uy.

We consider the problem (2.4) with the following parameters:

€21

auls) =1, e2(5) + 52+ 2us + w2’

wu(s) =1, g91 = 12, wp = 2. (6.22)
Although these parameters do not satisfy Assumption 5.1, we would like to verify whether it’s possible to use for
it the PML in z-direction, which was constructed for the analogical non-dissipative case, namely 1 (s) = eo(s) ™!
from (6.22) with v = 0. The necessary stability conditions of the PMLs in [9] do not cover this case, and hence
we would like to check it numerically. We test the following choices of ¥(s) = 1;(s):

-1 —1
€91 €21
— 1 — 1 [ — R = ]_ _ . 6.23
n@ =1 ww=(1+52s) L e = (1 ) (6:23)
The choice 1(s) = 12(s) corresponds to a stable PML in the case v = 0, whereas the choice ¥(s) = ¥3(s) is a
stable PML of Theorem 4.8. The parameters of the experiment are presented in Table 5.

The results of the experiment are shown in Figure 7. The choice 1(s) = 13(s) results in a stable solution, thus
confirming numerically the result of Theorem 4.8 (even though here o(z) # const). The choice ¥(s) = a(s),
which one would hope to be stable, results in instabilities, which seem to develop at long time. However, the
larger the absorption v is, the faster the instability occurs. The classical PMLs develop instabilities almost
immediately. For other examples involving the application of the PML of Theorem 6.11 to non-local materials
we refer an interested reader to [11].

TABLE 5. Parameters for the experiment of Example 6.23 with the dielectric permittivity and
magnetic permeability (6.22). By H(x) we denote the Heaviside function. The notation can be
found in the beginning of Section 4.1.2.

L. Ly, L Ly oz(z) oyly) Az At f(tz,y)
8 12 2 0 5027 0 005 0.025 e 1000(==3.8)°-300y*-800:% (g gg  ;)o=15(t-1.6)"
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071 (s) = i (s) | 1071 i(s) = i (s)
B —(s) = a(s) _ ——(s) = thals)
= —— (s) = s(s) S ——(s) = s (s)
i 107 |- i i 102 i
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t t

FIGURE 7. The dependence of the L?-norm of the solution H, (computed inside the domain
and the PML) to the problem of Example 6.23 on time, computed with different PMLs. In the
left plot ¥ = 0.01 in (6.22), and in the right plot v = 0.1.

7. CONCLUSIONS AND OPEN QUESTIONS

7.1. Open questions: Stable PMLs in 3D

It is natural to ask whether the suggested PML technique and the analysis can be extended to a more broad
class of problems, in particular, to the wave propagation in 3D. Naively, one would expect that in the simplest
case of the Maxwell equations with a diagonal tensor of the dielectric permittivity and wu(s) = 1, it is sufficient
to study the well-posedness of the PML (4.6) applied to the acoustic dispersive 3D wave equation (written in
the Laplace domain)

a(s)0%u + b(s)@ju + ¢(8)0%u — s2d(s)u = 0. (7.1)
This is, however, not the case. One should rather consider the vector equation

curlcurl E + s%¢(s)E = 0,

with ¢ being a diagonal matrix. This leads to several difficulties, both analytic and conceptual. First of all, when
e = Id, it is well-known that the standard PMLs are stable. However, proving the coercivity of the corresponding

sesquilinear form with the PML in C4, as we have done in 2D, is no longer trivial, because the corresponding
spatial operator looses its self-adjoint nature. On the other hand, it is still possible to prove very special inf-sup
conditions. This is a subject of future research.
Second, it is not always possible to stabilize the PML for 3D dispersive problems using the change of variables
as in this article. In particular, in [8], one considers the 3D wave propagation in cold strongly magnetized plasmas.
2

There g(s) = diag(1, 1, 1+ %), with w, € R being a plasma frequency, and u(s) = 1. However, even in this very

simple case the system cannot be reduced to the form (7.1). Moreover, one can demonstrate that the dispersion
relation is not of the form

a(s)k3 4 b(s)k] + c(s)k? + s°d(s) = 0, (7.2)

but is a product of two such terms. The first term corresponds to isotropic non-dispersive waves (i.e. a = b =
¢ =d =1 in (7.2)), which are absorbed by the classical PMLs (i.e. the choice ¢(s) = 1 would be stable).
2

Whereas the second term is of the form (7.2) with a(s) = b(s) = (1 + j—;’)_l and ¢(s) = d(s) = 1, for which the

choice ¥(s) = a(s) = (1+ j—;)*l is stable. Nevertheless, since both kinds of waves are present simultaneously for
the same frequency, none of these choices is suitable. It is possible to show that there exists no 1 (s) satisfying
assumptions of Section 6 that would lead to a stable 3D PML system in this case. The construction of stable
PMLs for cold plasmas requires a more elaborate treatment, and constitutes the subject of [8]. However, the
method of this article serves as an important component of the technique suggested in [8].
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To summarize, the new PML change of variables (4.6) does not provide a general method for the stabilization
of the PMLs for a 3D anisotropic dispersive Maxwell system, however, serves as a component for stabilizing the
PMLs for such systems.

7.2. Conclusions

In this work we have shown how to construct stable perfectly matched layers for a class of anisotropic
dispersive models described in the Laplace domain by the wave equation with frequency-dependent coefficients

a(s)02u + b(s)@iu —s%c(s) =0, s € Cy,

where the coefficients a(s), b(s), ¢(s) are analytic in C,, and satisfy Re (Sa(s)) > 0, Re (8b(s)) > 0, Re (sc(s)) >
0, for s € C;. Following [9], in order to construct the PML in one direction (assuming that the PML layer is
located in a half-plane = > 0), we suggest to use the following change of variables:

T

x—>x+@/a(m’)daz’, x>0,

0

where 1)(s) satisfies Re (51(s)) > 0, s € C4. This article provides choices of 1(s) that would stabilize the PMLs.
Based on the Laplace domain analysis in the free space for o = const, we claim that the following choices of
¥ (s) would result in stable PMLs in the z-direction:

(1) for arbitrary passive models: ¥(s) = a(s);

(2) for isotropic passive models (where a(s) = b(s)): 1(s) = (ac(s) + (1 — a)(fl(s))fl, 0<a<l;

(3) in the case when a(s)™!, b(s)~!, c(s) correspond to generalized Lorentz models, one can choose (s), s.t.
(s)~1 is Lorentz and which would satisfy the following condition for all w € R:

a(w)b(w) <0 or a(w)é(w) >0 = a(w)y(w) > 0.

Moreover, if b(s) = ¢(s)~! (2D uniaxial cold plasma model (2.7)), the only possible choice among passive

(s)~! satisfying Assumption 5.1 is ¥(s) = a(s).
We confirm the obtained results with the help of numerical experiments, including examples with dissipation.
Indeed, there are many open questions remaining which are the subject of the future work. In particular, they
include the construction of stable PMLs for 3D anisotropic Maxwell’s equations, even in the simplest case of a
diagonal tensor of dielectric permittivity (where, as we discussed earlier, the instabilities cannot be overcome
by the use of a special frequency-dependent change of variables). Another important question is a construction
of stable PMLs for nonpassive materials, which is also a subject of the future research.

APPENDIX A. PROOF OF LEMMA 3.4

The upper bound in this lemma can be obtained using ([41], Thm. 8, p. 18), and the lower bound can be
viewed as a minor improvement of ([46], Thm. 3) (we consider a more general class of functions, however, the
main idea of the proof is basically the same).

Let us first obtain the upper bound, which we derive using the methods of [20]. This will serve as a basis
to compute the lower bound for Im f.(z) as well. The main idea is to construct a function on the unit circle
to which the Schwarz’s lemma ([20], Chap. 4, Thm. 1) can be easily applied. Let us set h(s) = sc(s). Taking
so € C4, we define the Mébius transformation ([20], p. 43,44)

7"::5_8_0, Ir] <1, s € Cy,
S+ Sp
<s - so> _ h(s) — h(so)
I\ 50/ h(s)+ h(so)
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The function g(r) is analytic inside the unit circle |r| < 1; g(0) = 0 and |g(r)| < 1, due to passivity of ¢. Then,
thanks to the Schwarz’s lemma, |g(r)| < |r| inside the unit circle. Hence,

h(s) = h(s0)

h(s) + h(so)

S — S0
s+ 3o

< : (A1)

(1) The proof of the upper bound on |A(s)|. From (A.1) it follows

—1 S — 50 —1 —1 5 — 50 —1
h()h(so) ™~ 1] < |72 ’h(s)h(so) — Ti(s0)h(s0) \ < || (h()h(so) ™ +1)
Using |h(s)h(so)™t — 1] > |h(s)h(s0)| "' — 1, and recalling that r = 22|, and |r| < 1, we get the following
bound
- —1 —1
Ih(s)] < |h(s0)| (1 +7) (1 —7)"" = |h(so)] (1 +7)? (1—r%)"" <Adlh(so)| (1 —7*) . (A.2)
Notice that the function (1 —72)~! grows in 7; hence, let us obtain the upper bound on 7 in terms of Re s
and |s|:
s — S0 2_|s|2—2Re(s%)+|so|2_ ~ 2Re(sso) + 2Re (s50) 1 4Re sRe sg (A.3)
s+30| |s]2+2Re(sso) +|s0|2 5|2 +2Re (ss0) + |s0|>2 |s|? + 2Re (ss0) + |so|? ’

The lower bound for

ResRe sy
s+ 5o?

1 ResResg
2[s[* + [so]?

>

Therefore, using (A.2), we obtain
Ih(3)] < 2Jh(s0)] (Re's Re so) L (Isf? + [sof2) < C” (Isf? + [sol?) (Res) ™",
for some C’ > 0. From this we immediately obtain, for some C' > 0,
Ise(s)| < C'Js|? (1 + |so[?|s|72) (Res) ™" < C|s|? (Re s) ! max (1, (Res)_Q) , s€Cy.

The same (up to a constant) bound can be obtained with the help of ([41], Thm. 8, p. 18).
(2) The proof of the lower bound on Reh(s), s € C4. We rewrite (A.1), taking the square of both sides:

|h(s)[? — 2Re(h(s0)h(s)) + |h(s0)|? _q_ 4Reh(s)Reh(so) <1 4ResRe s

[7(s)]2 + 2Re(h(s0)A(s)) + [h(s0)[* [h(s) +h(so)2 ~  Isl® +2Re(s08) + [so]*’

where the last inequality is obtained with the help of (A.3). This gives, using (A.4),

Reh(s)Re h(so) < 1 ResResg

h(s) +h(so)? 2 1sP + [so

_ N2
Next, notice that |h(s) + A(so)|? > (Reh(s)—i—Reh(so)) > (Reh(so))?. Using s> + |sof?> <
Co max(|s|?,1), Cp > 0, we obtain the desired bound:

Reh(s) > Cmin(|s|"2,1)Res > C|s| 2 Resmin(1, (Res)?).
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APPENDIX B. PROOF OF COROLLARY 4.6

First, let us prove the result for arbitrary materials. Notice that for any a(s), ¥(s) satisfying the conditions
of the corollary, the bound (4.9) holds with the following parameters, see Corollary 3.5,

Ps)| _|5¥(s)

(o) () < |s]|e(s)] (Re (5a(s))) " < Cls|* (Res) > max(1, (Res)” %), C > 0.

Ng
For the Lorentz materials, let us bound a(s)~! which has an expansion (2.8), i.e. a(s)"! =1+ 3 757, with
=0" "t

ag > 0 and wy € R. Notice that for all w € R and s € C,, it holds that

1
52 4+ w?

B 1 1
|s—iw|[s +iw| ~ |s|Res

(B.1)

Then, for some C,C > 0, the modulus |a(s)~!| < 1+ M% < C'max (1, (Re 5)_2). Thanks to the inequality
Re(s(s)™1) > Res, ¢f. Theorem 5.4, we obtain

P(s)
a(s)

sa(s)

sy(s)~!

APPENDIX C. PROOF OF EQUIVALENCE IN LEMMA 6.15

< < C|s| max (1, (Re s)_2> (Re 31/1(3)*1)_1 < C|s| max (1, (Re s)_3> .

Lemma C.1. Let a(s), ¥(s), c(s) satisfy Assumption 6.10. Assume (NSC2)-(a) holds true, i.e. ¢(s)a(s)™ 4(s)
is passive. Then (NSC1)-(a) holds, i.e. for all w € 26> the product i(w)a(w) > 0.

Proof. First of all, in w = 0, due to Theorem 5.6, it holds that $(0)a(0) > 0. Due to the equivalence of the
positivity of the derivative (wf(w))’ > 0, w € R, and the property Re (sf(s)) > 0 in C (see [11], or Lem. 5.5
for a part of the equivalence result), the following derivative is strictly positive for w € R with the exception of
poles of Ezﬁd*l:

(wé(w)zﬁ(w)&(w)*l)/ = (We(w))P(@)a(w) ! +wiw)(W) aw) " + wiw)dw)(@w) ") > 0. (C.1)

Take w s.t. ¢(w)a(w) > 0 and assume that a(w)y(w) < 0. Using Lemma 5.5 about the signs of the derivatives
of the passive functions, the equation (3.3), which shows the passivity of a(s)~!, as well as the fact that

(@(w)~1) >0, (¥(w))" < 0 outside of the poles of these functions (this can be verified by a direct computation,
see Theorems 5.4, 5.6), we obtain that the above is strictly negative, and thus the contradiction. O

Remark C.2. One could try proving Lemma 6.15 by examining the sign of the derivative (C.1); however, when
é(w)a(w) < 0, and ¢(w)a(w) is of any sign, one does not see immediately that the expression (C.1) is strictly
positive.
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