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CONVERGENCE OF A VECTOR PENALTY PROJECTION SCHEME
FOR THE NAVIER STOKES EQUATIONS WITH MOVING BODY

Vincent Bruneau1, AdrienDoradoux2,∗ and Pierre Fabrie2

Abstract. In this paper, we analyse a Vector Penalty Projection Scheme (see [1]) to treat the displace-
ment of a moving body in incompressible viscous flows in the case where the interaction of the fluid
on the body can be neglected. The presence of the obstacle inside the computational domain is treated
with a penalization method introducing a parameter η to enforce the velocity on the solid boundary.
The incompressibility constraint is approached using a Vector Projection method which introduces a
relaxation parameter ε. We show the stability of the scheme and that the pressure and velocity converge
towards a limit when the relaxation parameter ε and the time step δt tend to zero with a proportional-
ity constraint ε = λδt. Finally, when η goes to 0, we show that the problem admits a weak limit which
is a weak solution of the Navier-Stokes equations with no-slip condition on the solid boundary.
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1. Introduction

Simulation of complex flows such that Fluid Structure Interaction is a major challenge. Indeed, as the body
moves, the fluid domain is not fixed but time dependent.

The first possibility to deal with this specifity is to move mesh nodes in function of the time, this is used in
the Arbitrary Lagrangian Eulerian (ALE) [12, 21] method. It involves remeshing at each time step which can
be very time consuming.

Immersed boundary methods are another way to apprehend the problem. The idea of this kind of methods,
introduced by Peskin [22] to treat flow in a beating heart, is to consider a fixed grid which contains fluid and
solid domains. Equations or discretization operators are then modified to take into account the presence of the
solid in the computational domain. Many of these methods are presented in [19].

Among them, the penalization method adds a term in the Navier-Stokes equations to enforce the velocity in
the solid region. For instance, in [7], the authors studied the coupling between penalized Navier-Stokes equations
and solid dynamics to determine the solid velocity. In [6], fish like swimming is simulated using penalization
and a level set method to localize the structure.

To deal with the incompressibility constraint, two families of methods have been developed. The first one
aims to solve momentum and mass equations simultaneously. The resolution of this optimization problem is
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the Augmented Lagrangian strategy [11]. The second one is composed of scalar projection methods which were
introduced by Chorin [9]. These methods reduce the saddle point problem to two distinct elliptic problems on
the velocity and the pressure. We focus here on the Vector Penalty Projection scheme (V PP )ε introduced by
Angot et al. [1] which belongs to the second family of methods described above and avoids many drawbacks
of other projection methods. In particular, the pressure scalar does not need to be computed, which does not
impose the resolution of a Poisson type equation that introduce boundary conditions on the pressure. The
divergence of the velocity is controlled by an intrinsic parameter ε. In practice, this parameter is chosen as
small as possible in order to approximate a divergence free condition. In [3] the authors obtained a second order
convergence rate for pressure and velocity in space and time for a second order backward temporal scheme. The
convergence towards the Navier-Stokes equations when the penalty parameter (on the divergence) tends to 0
has been studied in [4]. In this last article, the authors considered a continuous (in time) problem in div/curl
formulation. In these two previous works the domain is fixed and no space penalization is included.

Here, the coupling between Vector Penalty Projection scheme and penalization method is analysed in the case
where the solid is animated by its own velocity. We give new convergence results for (V PP )ε with a penalization
term when the time step δt, the VPP parameter ε and the penalization parameter η tend to 0. From a stability
result we first prove the weak convergence of the scheme towards the continuous incompressible Navier-Stokes
problem with a penalization term when δt and ε go to 0. In the last section, we treat the convergence of this last
continuous problem when the penalty parameter η goes to 0. At the limit process, we recover the Navier-Stokes
equations on the time-dependent fluid domain with a no-slip condition on the solid boundary. It gives a new
proof of an existence result in time dependent domains (see for instance [16,20] for analog results using Galerkin
methods).

1.1. Notations

Let T > 0 and Ω be a simply connected bounded domain of IRd (d = 2 or 3) with a smooth boundary ∂Ω.
We use in the paper the usual functional setting for the unsteady Navier-Stokes Equations.

• For p > 0, Lp = Lp(Ω), the classical Lebesgue space.
• For p > 0, Lp0 = {v ∈ Lp;

∫
Ω

v dx = 0}.

• For p ∈ IR, Hp = Hp(Ω), the classical Sobolev space.
• H1

0 =
{
v ∈ H1; v|∂Ω = 0

}
.

• H1
ν =

{
v ∈ H1; v|∂Ω .ν = 0

}
.

• H =
{
v ∈ L2; div(v) = 0 on Ω; (v.ν)|∂Ω = 0

}
.

• Hdiv =
{
v ∈ L2; div(v) ∈ L2

}
.

• Hdiv,ν =
{
v ∈ L2; div(v) ∈ L2; (v.ν)|∂Ω = 0

}
.

• G =
{
v ∈ L2; ∃q ∈ H1; v = ∇q

}
.

• V =
{
v ∈ H1

0; div(v) = 0 on Ω
}

.

where ν is the outward unit normal vector on ∂Ω. For details on the definition of these spaces, we refer to [8].

1.2. Incompressible Navier-Stokes system

In Ω, we consider the smooth time dependent solid domain ω(t) ⊂ Ω, t ∈ [0, T ], and vs its velocity. We focus
on the incompressible Navier Stokes equation in Ω(t) := Ω \ ω(t):

∂v

∂t
+ (v.∇)v − div(2µD(v)) +∇p = f on Ω(t)

div(v) = 0 on Ω(t)
v = 0 on ∂Ω

v = vs on ∂ω(t)
v(0, x) = v0(x) on Ω(0) (1.1)
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where D is the strain rate tensor and f is a given source term defined on [0, T ]×Ω.
The associated penalized Navier Stokes problem reads:

∂v

∂t
+ (v.∇)v − div(2µD(v)) +

1
η
χω(t)(v − vs) +∇p = f on Ω

div(v) = 0 on Ω

v = 0 on ∂Ω

v(0, x) = v0(x) on Ω (1.2)

where χω(t) is the characteristic function of the solid domain ω(t).

Hypothesis.
(H): We suppose that vs is the restriction to

⋃
t<T

{t} × ω(t) of a function ψ defined on [0, T ]×Ω such that:

div(ψ) = 0 on Ω

ψ = 0 on ∂Ω

ψ ∈ L∞(]0, T [; H3)
∂ψ

∂t
∈ L2(]0, T [; L2).

(1.3)

The existence of such function is ensured as the regularity of vs is sufficient and the moving body does not
meet ∂Ω (see [20]).

1.3. The Vector Penalty Projection Scheme

Let δt > 0 be the time step and tn = nδt. For p0 ∈ L2
0 and v0 = v0 ∈ H1

0 ∩H, the Vector Penalty Projection
Scheme is a fractional step method:
• A predicted velocity ṽn+1 is first computed considering the pressure gradient at the previous time step tn.

At the end of this step, the velocity does not respect the free divergence condition.
• The velocity is then corrected such that div(vn+1) is approximately 0 at the end of the time step.
• The pressure gradient ∇pn+1 is finally actualized.

For all n ∈ N such that nδt ≤ T , the numerical scheme reads:

ṽn+1 − vn

δt
+B(vn, ṽn+1)− div(2µD(ṽn+1)) +

1
η
χω(tn+1)(ṽn+1 − vn+1

s ) +∇pn = fn+1 (1.4)

ε

δt
v̂n+1 −∇ (div(v̂n+1) + div(ṽn+1)) = 0 (1.5)

∇(pn+1 − pn) +
1
ε
∇(div(vn+1)) = 0 (1.6)

where vn+1 = ṽn+1 + v̂n+1 and B(u, v) = (u.∇)v +
1
2

div(u) v.
It is completed by the following initial and boundary conditions on ∂Ω:

ṽn+1 = 0 on ∂Ω, v̂n+1.ν = 0 on ∂Ω (1.7)
ṽ0 = v0 in Ω, v̂0 = 0 in Ω. (1.8)

The original scheme has been completed by the penalization term which only appears in the prediction step.
Note that since vn+1.ν = 0, then div(vn+1) ∈ L2

0 and since p0 ∈ L2
0 we can show recursively that pn+1 has a

null average on Ω for all n ∈ N, solving (1.6) in the space of null average functions. We finally obtain:

ε(pn+1 − pn) + div(vn+1) = 0. (1.9)
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Proposition 1.1 (Existence of the iterates).
We suppose that v0 ∈ H1

0 ∩ H, p0 ∈ L2
0 and f ∈ L2(]0, T [; L2). Then, for all n ∈ N such that nδt ≤

T , (1.4)–(1.9) defined recursively:
(ṽn, v̂n, pn) ∈ H1

0 ×H1
ν × L2

0

with vn = ṽn + v̂n.

Proof. Suppose that (ṽn, v̂n) ∈ H1
0 × H1

ν and show that (ṽn+1, v̂n+1) ∈ H1
0 × H1

ν . Equation (1.4) is a linear
advection diffusion problem, therefore we obtain that ṽn+1 exists and lies in H1

0. We now show the existence
of v̂n+1. In the space Hdiv,ν , (1.5) is a linear and coercive problem, then v̂n+1 exists and is unique in Hdiv,ν .
Moreover, v̂n+1 is a gradient, therefore curl(v̂n+1) = 0. We deduce that v̂n+1 lies in H1

ν (see Prop. 2.2).
Using (1.6), for pn ∈ L2

0 we deduce that ∇pn+1 lies in H−1. As pn+1 has a null average on Ω, we conclude
using the Poincaré Wirtinger inequality that pn+1 ∈ L2

0. �

1.4. Organization of the article

In Section 3, the stability of the scheme introduced above is demonstrated using a set of energy estimates as
in [2] where no space penalization is included. It gives a bound for the velocity in the space L∞(]0, T [; L2) ∩
L2(]0, T [; H1

ν). The final inequality is quite similar to the one obtained in [2] but contains an additional term
which is only active in the solid region and ensures that the difference ṽn − vs is of the order η

1
2 for the

L2(]0, T [, L2(ω(t)))-norm. We then obtain an upper bound on the velocity divergence which depends on ε.
Finally, we give an estimate on the velocity translation in the space H−1 which is useful to demonstrate the
strong convergence of the velocity in Section 4.

Section 4 aims to establish the convergence when the parameters ε and δt tend to 0 with the proportionality
constraint ε = λδt. To do so, the weak convergence of the velocity is first obtained. The strong convergence is
then demonstrated using a compactness result from Aubin Lions Simon. To the best of our knowledge, there is
no previous convergence result on the discretized (V PP )ε scheme. Finally, in Section 5 we state a Theorem that
deals with the weak convergence when the penalization parameter η goes to 0. At the limit process, the solution
verifies (in the weak sense) the Navier-Stokes equations in the moving fluid domain with no-slip boundary
condition on the solid.

2. Mathematical recalls

In this article, we will need the following standard results and notations. Here and in the following sections,
the different constants are always denoted C.

To deal with the nonlinear convective term, we use the bilinear form B introduced by Temam (see [25,26]).

Definition 2.1. For u ∈ H1 and v ∈ H1
0, we define the bilinear form B by:

B(u, v) = (u.∇)v +
1
2

div(u)v. (2.1)

Taking the scalar product of B(u, v) by w ∈ H1
0 and integrating by part the second term, we obtain the

associated trilinear form b:

b(u, v, w) =
1
2

∫
Ω

(u.∇)v.w dx− 1
2

∫
Ω

(u.∇)w.v dx. (2.2)

The trilinear form b satisfies the antisymmetry property b(u, v, w) = −b(u,w, v) and b(u, v, v) = 0.
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Proposition 2.2 [10, 14]. Under the previous hypothesis and notations, one has the following decomposition:

L2 = H⊕G,

Ker(curl) = G.

Moreover, there exists a constant C > 0 depending only on Ω such that:

||u||2H1 = ||u||2L2 + ||∇u||2L2 ≤ C
(
||u||2L2 + ||div(u)||2L2 + ||curl(u)||2L2

)
, ∀u ∈ H1

ν .

Besides, if we suppose that the open set Ω is simply-connected, there exist two constants λ0 and λ1 depending
only on Ω such that:

||u||2L2 ≤ λ0

(
||div(u)||2L2 + ||curl(u)||2L2

)
, ∀u ∈ H1

ν ,

||u||2L2 + ||∇u||2L2 ≤ λ1

(
||div(u)||2L2 + ||curl(u)||2L2

)
, ∀u ∈ H1

ν .

Remark 2.3. In the domain Ω, a Poincaré-type inequality holds since Ω is simply connected. At the limit
process η → 0, we are in the domain Ω(t) = Ω \ ω(t) which is not simply connected anymore and the last
inequality is not verified.

We now recall the discrete Gronwall Lemma (see [13,15,23]).

Lemma 2.4 Discrete Gronwall Lemma [15].
Let (yn), (fn) and (gn) three non-negative sequences such that:

yn ≤ fn +
n−1∑
k=0

gk yk for n ≥ 0.

Then,

yn ≤ fn +
n−1∑
k=0

fkgk exp

 n−1∑
j=k+1

gj

 for n ≥ 0.

Estimates on inertia terms, developed in Section 4, will use the following interpolation properties between
Lp-spaces.

Proposition 2.5 ([8], Thm. II.5.5). Let I be an interval of IR, let Ω be an open subset of IRd, and let p1, q1, p2, q2
be four real numbers in [1,+∞]. If f ∈ Lp1(I, Lq1(Ω)) ∩ Lp2(I, Lq2(Ω)) then for all θ ∈]0, 1[, the function f
belongs to Lp(I, Lq(Ω)) for p and q defined by

1
p

=
θ

p1
+

1− θ
p2

, and
1
q

=
θ

q1
+

1− θ
q2

and we have
||f ||Lp(I,Lq(Ω)) ≤ ||f ||θLp1 (I,Lq1 (Ω))||f ||

1−θ
Lp2 (I,Lq2 (Ω)).

In order to prove the convergence of the velocity we will need the following analysis result ([8], Prop. II.5.11).
Let X and Y two Banach spaces, let T > 0 and p, q satisfying 1 ≤ p, q ≤ +∞. We denote:

Ep,q(X,Y ) =
{
u ∈ Lp(]0, T [, X),

du
dt
∈ Lq(]0, T [, Y )

}
.
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Proposition 2.6. Suppose that X is embedded in a continuous and dense way into Y . Any element u of
Ep,q(X,Y ) (defined almost everywhere) possesses a continuous representation on [0, T ] with values in Y , and
the embedding of Ep,q(X,Y ) into C0([0, T ], Y ) is continuous.

Moreover, for all t1, t2 ∈ [0, T ] we have:

u(t2)− u(t1) =

t2∫
t1

du
dt

dt

where it is understood that we have identified u and its continuous representation.

Finally, let us formulate an important compactness theorem, which will be useful to prove the strong conver-
gence of the velocity in Section 4.

Lemma 2.7 Aubin−Lions−Simon [5,24].
Let B0 ⊂ B1 ⊂ B2 be three Banach spaces. We assume that the embedding of B1 in B2 is continuous and

that the embedding of B0 in B1 is compact. Let T > 0 and p, r such that 1 ≤ p, r ≤ +∞. Then,

(i) If p < +∞, the embedding of Ep,r(B0, B2) in Lp(]0, T [;B1) is compact.
(ii) If p = +∞ and if r > 1, the embedding of Ep,r(B0, B2) in C(]0, T [;B1) is compact.

3. Stability analysis

In this section the stability of the numerical scheme is obtained considering energy estimates. Then we obtain
an upper bound on the velocity divergence in the space L2(]0, T [; L2).

To each sequence (vk)k defined on Ω we will associate a sequence of functions (vδt)δt which are the step
functions in time vδt defined by:

vδt(t) = vk if t ∈ [tk, tk+1[. (3.1)

We denote ( · , · )L2 the usual scalar product on L2 and 〈 · , · 〉E′,E the duality bracket.
To perform calculus, we need to build a lifting of the velocity. In the following, to the function v (resp. vn,

ṽn, v̂n, vδt) we will associate the function w (resp. wn, w̃n, ŵn, wδt) defined by substraction of the function ψ
(resp. ψn = ψ(tn)), introduced in (1.3):

w = v − ψ, wn = vn − ψn, w̃n = ṽn − ψn, ŵn = v̂n, wδt = vδt − ψ. (3.2)

The system (1.4)−(1.8) becomes:

w̃n+1 − wn

δt
+B(wn, w̃n+1) +B(ψn, w̃n+1)

− div(2µD(w̃n+1)) +
1
η
χω(tn+1)w̃

n+1 +∇pn = Fn+1 −B(wn, ψn+1) (3.3)

ŵn+1

δt
− 1
ε
∇(div(w̃n+1 + ŵn+1)) = 0 (3.4)

∇(pn+1 − pn) +
1
ε
∇(div(wn+1)) = 0 (3.5)

w̃n+1 = 0 on ∂Ω, ŵn+1.ν = 0 on ∂Ω (3.6)

w̃0 = v0 − ψ0 in Ω, ŵ0 = 0 in Ω (3.7)

where Fn+1 = fn+1 − ψn+1 − ψn

δt
+ div(2µD(ψn+1))−B(ψn, ψn+1).
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Performing estimates on the prediction, the correction and pressure equations respectively given
by (3.3)−(3.5), we establish the following result:

Proposition 3.1 Stability.
Let v0 ∈ H1

0 ∩H, p0 ∈ L2
0 such that ∇p0 ∈ L2 and f ∈ L2(]0, T [; L2). We assume that hypothesis (H) is

verified. Then, there exists a constant C > 0 independent of ε and δt such that:

(i) ||wδt||L∞(]0,T [;L2) ≤ C.
(ii) ||w̃δt||L2(]0,T [;H1

0)
≤ C.

(iii) ||wδt||L2(]0,T [;H1
ν)
≤ C

(
1 +

δt

ε

)
.

Proof of Proposition 3.1. We prove the result using several energy estimates as in [2] for homogeneous Navier-
Stokes flows. In our estimates, an additional term appears due to the penalization term on the moving body.

Taking w̃n+1 as a test function in (3.3), we obtain:

1
δt

(
w̃n+1 − wn, w̃n+1

)
L2 + 2µ

(
D(w̃n+1) : D(w̃n+1)

)
L2 +

1
η

∫
Ω

χω(tn+1)|w̃n+1|2 dx

+ b(wn, w̃n+1, w̃n+1) + b(ψn, w̃n+1, w̃n+1) +
(
∇pn, w̃n+1

)
L2

=
(
Fn+1, w̃n+1

)
L2 − b(wn, ψn+1, w̃n+1).

The diffusion term is integrated by parts, the Korn inequality ([8, 17, 18], Rem. IV.7.3) is then used in H1
0, to

obtain the lower bound:
||∇w̃n+1||2L2 ≤ 2||D(w̃n+1)||2L2 .

The convective terms b(wn, w̃n+1, w̃n+1) and b(ψn, w̃n+1, w̃n+1) vanish by antisymmetry of the trilinear form b.
By definition of b given in (2.2) and using Hölder’s inequality it comes:

2|b(wn, ψn+1, w̃n+1)| ≤ ||(wn.∇)ψn+1.w̃n+1||L1 + ||(wn.∇)w̃n+1.ψn+1||L1

≤ ||wn||L2 ||∇ψn+1||L∞ ||w̃n+1||L2 + ||wn||L2 ||∇w̃n+1||L2 ||ψn+1||L∞ . (3.8)

Since w̃n+1 ∈ H1
0, from the Poincaré inequality there exists a constant C(Ω) such that:

||w̃n+1||L2 ≤ C(Ω)||∇w̃n+1||L2 .

Going back to (3.8) and using finally Young’s inequality, it yields:

|b(wn, ψn+1, w̃n+1)| ≤ C(Ω,µ)||wn||2L2 ||∇ψn+1||2L∞ +
µ

8
||∇w̃n+1||2L2 + C(µ)||wn||2L2 ||ψn+1||2L∞ +

µ

8
||∇w̃n+1||2L2

≤ µ

4
||∇w̃n+1||2L2 + C(Ω,µ)||wn||2L2

(
||ψn+1||2L∞ + ||∇ψn+1||2L∞

)
.

The part of w̃n+1 in
(
Fn+1, w̃n+1

)
is absorbed thanks to the diffusion term using again the Poincaré inequality.

We finally use the following equality:

(a− b, a) =
1
2
(
||a||2 − ||b||2 + ||a− b||2

)
. (3.9)

The following estimate is obtained:

1
2δt

(
||w̃n+1||2L2 − ||wn||2L2 + ||w̃n+1 − wn||2L2

)
+
µ

2
||∇w̃n+1||2L2

+
1
η

∫
Ω

χω(tn+1)|w̃n+1|2 dx + (∇pn, w̃n+1)L2 ≤ C||Fn+1||2L2 + C||wn||2L2 , (3.10)

where C depends on µ, Ω and ψ.
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From (3.4) and (3.5), we have:

wn+1 − w̃n+1

δt
+∇(pn+1 − pn) = 0. (3.11)

By taking wn+1 as a test function in (3.11) and using again (3.9) we obtain:

1
2δt

(
||wn+1||2L2 − ||w̃n+1||2L2 + ||wn+1 − w̃n+1||2L2

)
+
(
∇pn+1 −∇pn, wn+1

)
L2 = 0. (3.12)

We choose pn+1 as a test function in (1.9) and exploit that div(ψ) = 0. The boundary term vanishes in the
integration by part since wn+1.ν = 0 on ∂Ω and we have:

ε

2
(
||pn+1||2L2 − ||pn||2L2 + ||pn+1 − pn||2L2

)
−
(
∇pn+1, wn+1

)
L2 = 0. (3.13)

At last, taking ∇pn+1 as a test function in (3.11) we obtain:

δt

2
(
||∇pn+1||2L2 − ||∇pn||2L2 + ||∇pn+1 −∇pn||2L2

)
+
(
∇pn+1, wn+1 − w̃n+1

)
L2 = 0. (3.14)

Finally, these four estimates (3.10), (3.12)−(3.14) are summed up. The sum of the scalar products reduces to(
∇pn+1 −∇pn, wn+1 − w̃n+1

)
, which is bounded using Young inequality:

|
(
∇(pn+1 − pn), wn+1 − w̃n+1

)
L2 | ≤

δt

2
||∇pn+1 −∇pn||2L2 +

1
2δt
||wn+1 − w̃n+1||2L2 .

Therefore,

1
2δt

(
||wn+1||2L2 − ||wn||2L2 + ||w̃n+1 − wn||2L2

)
+
µ

2
||∇w̃n+1||2L2

+
ε

2
(
||pn+1||2L2 − ||pn||2L2 + ||pn+1 − pn||2L2

)
+
δt

2
(
||∇pn+1||2L2 − ||∇pn||2L2

)
+

1
η

∫
Ω

χω(tn+1)|w̃n+1|2 dx ≤ C||Fn+1||2L2 + C||wn||2L2 .

This last equation is multiplied by 2δt and written in k instead of n. Finally, the equations are summed from

k = 0 to n− 1 with n ≤ N = E(
T

δt
) where E denotes the floor function, and we deduce:

||wn||2L2 + δtε||pn||2L2 + δt2||∇pn||2L2 +
n−1∑
k=0

||w̃k+1 − wk||2L2

+ µ

n−1∑
k=0

δt||∇w̃k+1||2L2 + ε

n−1∑
k=0

δt||pk+1 − pk||2L2 +
2
η

n−1∑
k=0

δt

∫
Ω

χω(tk+1)|w̃k+1|2 dx

≤ ||w0||2L2 + εδt||p0||2L2 + δt2||∇p0||2L2 + 2C
n−1∑
k=0

δt||F k+1||2L2 + 2C
n−1∑
k=0

δt||wk||2L2 . (3.15)

It implies:

||wn||2L2 ≤ fn +
n−1∑
k=0

gk||wk||2L2
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with,  fn = ||w0||2L2 + εδt||p0||2L2 + δt2||∇p0||2L2 + 2C
n−1∑
k=0

δt||F k+1||2L2 ,

gk = 2Cδt.

The discrete Gronwall Lemma 2.4 thus gives the following upper bound on ||wn||L2 :

||wn||2L2 ≤ fn(1 + 2CT exp(2CT )).

Going back to (3.15), from the assumptions on w0, p0, ψ and f , we deduce that there exists C > 0, independent
of n < N and δt, such that:

δtε||pn||2L2 + δt2||∇pn||2L2 +
n−1∑
k=0

||w̃k+1 − wk||2L2

+ µ

n−1∑
k=0

δt||∇w̃k+1||2L2 + ε

n−1∑
k=0

δt||pk+1 − pk||2L2 +
2
η

n−1∑
k=0

δt

∫
Ω

χω(tk+1)|w̃k+1|2 dx ≤ C, (3.16)

which demonstrates the two first points of Proposition 3.1.
To prove the last point, we take ŵk+1 as a test function in the correction step (3.4) and obtain:

||ŵk+1||2L2 +
δt

ε
||div(ŵk+1)||2L2 = −δt

ε

(
div(w̃k+1),div(ŵk+1)

)
L2

≤ δt

2ε
||div(ŵk+1)||2L2 +

δt

2ε
||div(w̃k+1)||2L2 .

We thus deduce an estimate on the corrected velocity ŵk+1 and its divergence:

||ŵk+1||2L2 +
δt

2ε
||div(ŵk+1)||2L2 ≤

δt

2ε
||div(w̃k+1)||2L2 . (3.17)

Using that for functions of H1
ν , the norm || · ||H1 is equivalent to the norm

(
|| · ||2L2 + ||div(·)||2L2 + ||curl(·)||2L2

) 1
2

(see Prop. 2.2) and curl(ŵk+1) = 0, we obtain:

||ŵk+1||2H1 ≤ C
(
||ŵk+1||2L2 + ||div(ŵk+1)||2L2

)
≤ C

(
δt

2ε
+ 1
)
||∇w̃k+1||2L2 .

The previous inequalities are summed up from k = 0 to N −1. The predicted velocity gradient is bounded using
the stability result (3.16). Then, we find the claimed upper bound on the total velocity gradient:

N−1∑
k=0

||∇wk+1||2L2δt ≤ 2
N−1∑
k=0

δt||∇w̃k+1||2L2 + 2
N−1∑
k=0

δt||∇ŵk+1||2L2

≤ 2C + 2C
(

1 +
δt

2ε

)N−1∑
k=0

δt||∇w̃k+1||2L2

≤ 2
(

2 +
δt

2ε

)
C. �
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Remark 3.2. The bounds found for wδt and w̃δt are independant of η. Equation (3.16) contains the penalization
term which is only active in the solid region. It ensures that the difference between the predicted velocity given
by the scheme and the solid velocity vs is of the order η

1
2 :

2
η

T∫
0

||ṽδt − vs,δt||2L2(ω(τ))dτ ≤ C. (3.18)

Lemma 3.3. Under the hypothesis of Proposition 3.1, we have:

(i) the divergence of wδt lies in L2(]0, T [; L2) and there exists C > 0 such that for any ε > 0,

||div wδt||L2(]0,T [;L2) ≤ C
√
ε. (3.19)

As ψ is divergence free, the same inequality holds for vδt which implies the strong convergence of div(vδt)
towards 0 when ε tends to 0.

(ii) ŵδt is bounded in L2(]0, T [; H−1) with:

||ŵδt||2L2(]0,T [;H−1) ≤ Cδt
δt

ε
·

Proof of (i). From the pressure equation (1.9) we have ε(pn+1 − pn) = −div(wn+1). Then we have:

N−1∑
k=0

δt||div(wk+1)||2L2 = ε2
N−1∑
k=0

δt||pk+1 − pk||2L2 ,

and we deduce (3.19) exploiting the stability result (3.16). �

Proof of (ii). The second point is proved using the correction equation (3.4). Taking the H−1-norm we obtain:

||ŵk+1||H−1 ≤ δt

ε
||div(wk+1)||L2 . (3.20)

Therefore, summing the square of this inequality from k = 0 to N − 1 and using the bound of the velocity’s
divergence (3.19), we finally obtain:

N−1∑
k=0

δt||ŵk+1||2H−1 ≤
Cδt2

ε
· (3.21)

�

Lemma 3.4. Under the hypothesis of Proposition 3.1, the velocity translation satisfies:

N−1∑
k=0

||wk+1 − wk||2H−1 ≤ C
(
δt

ε
+ 1
)
· (3.22)

Proof. The stability result (3.16) gives a bound on the difference between the predicted velocity at the current
time step and the velocity at the previous time step. Using the embedding of L2 in H−1 we deduce:

N−1∑
k=0

||w̃k+1 − wk||2H−1 ≤ C.
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Then, combining it with (3.21) the following inequality holds:

N−1∑
k=0

||wk+1 − wk||2H−1 ≤ 2
N−1∑
k=0

[
||wk+1 − w̃k+1||2H−1 + ||w̃k+1 − wk||2H−1

]
≤ C

(
δt

ε
+ 1
)
· �

Remark 3.5. The ratio δt
ε appears in some bounds found in this section (see Prop. 3.1, Lem. 3.3 or Lem. 3.4).

Therefore, to pass to the limit on ε, we impose that ε and δt tend to 0 with the proportionality constraint
ε = λδt. In fact, it would be sufficient to assume that δt = O(ε) with ε tending to 0.

Remark 3.6. All the results obtained in this section are independent of η and will allow us to pass to the limit
when η goes to 0 in Section 5 using the lower semicontinuity of the norm for the weak topology.

4. Convergence analysis when ε and δt tend to 0

A stability result has been obtained in the previous section. The main purpose of this section is to establish
the following convergence theorem, when the parameters ε and δt tend to 0 with the constraint ε = λδt, λ > 0
fixed.

Theorem 4.1 Convergence when ε and δt tend to 0.
Let Ω ∈ IRd (d = 2 ou 3) be a simply connected bounded domain, v0 ∈ H1

0 ∩H and f ∈ L2(]0, T [; L2).
We suppose that hypothesis (H) is verified.
Then, up to a subsequence, (vδt, pδt)δt the sequence of step functions defined by (1.4)−(1.8) and (3.1) converges

towards (v, p), weak solution of the penalized Navier Stokes problem (1.2), when ε and δt tend to 0 with ε = λδt,
λ > 0 fixed. Furthermore, v and p satisfy:

v ∈ L∞(]0, T [; H) ∩ L2(]0, T [; H1
0), p ∈W−1,∞(]0, T [; L2

0).

Moreover, this solution is unique in two dimensional space.

4.1. Weak convergence of the velocity

We first establish the following result:

Lemma 4.2. Under the hypothesis of Proposition 3.1, there exists v ∈ L2(]0, T [; H1
0) such that, up to a subse-

quence, (vδt)δt and (ṽδt)δt weakly converge towards v when ε and δt tend to 0 with ε = λδt:

(i) (ṽδt)δt −⇀ v weakly in L2(]0, T [; H1
0)

(ii) (vδt)δt −⇀ v weakly in L2(]0, T [; H1
ν).

Proof. This result directly comes from the stability study. Indeed, the properties of ψ (1.3) and Proposition 3.1
ensure that (ṽδt)δt is bounded in L2(]0, T [; H1

0). Then we can extract a subsequence that weakly converges
towards v in L2(]0, T [; H1

0).
By definition, vδt = ṽδt + ŵδt, where from Lemma 3.3, when ε = λδt, ŵδt satisfies:

ŵδt −→
δt→0

0 strongly in L2(]0, T [; H−1). (4.1)

Moreover, Proposition 3.1 ensures that ŵδt = wδt − w̃δt is bounded in L2(]0, T [; H1
ν). Therefore, we can extract

a subsequence such that ŵδt weakly converges in L2(]0, T [; H1
ν). Finally (4.1) implies that this limit is zero and

we deduce the weak convergence of vδt towards v, the limit of ṽδt. �
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4.2. Strong convergence of the velocity

We demonstrate here the strong convergence of wδt towards w = v−ψ. To do so, we shall apply Aubin Lions
Simon’s Lemma 2.7 with B0 = F, B1 = H and B2 = V′ where F =

{
v ∈ H1

ν ; div(v) = 0 on Ω
}

.
In order to perform estimates on the time derivative, we introduce the piecewise linear function w1,δt defined

by:

w1,δt(t) =
(t− tk)wk+1 + (tk+1 − t)wk

δt
for t ∈ [tk, tk+1[, k ≤ N − 1. (4.2)

Aubin Lions Simon’s Lemma cannot be directly applied to w1,δt since it does not belong to H. To bypass
this difficulty, we introduce the orthogonal projection P from L2 onto H in order to apply Aubin Lions Simon’s
Lemma on P (w1,δt). The operator P verifies some continuity properties, there exists C > 0 such that:

||P (v)||L2 ≤ C||v||L2 for v ∈ L2

||P (v)||H1 ≤ C||v||H1 for v ∈ H1. (4.3)

Using the Helmhotz−Hodge decomposition [26], there exists qδt ∈ L2(]0, T [; H1) such that:

w1,δt = P (w1,δt) +∇qδt. (4.4)

Proposition 4.3. Strong convergence of the velocity. Let p ∈ [2,+∞[. Under the assumptions and notations of
Lemma 4.2, if δt and ε tend to 0 with ε = λδt, λ > 0 then (vδt)δt strongly converges towards v in Lp(]0, T [; L2).

Proof. We first consider the case where p = 2.
The proof of the Proposition is composed of three steps. First, we demonstrate the strong convergence of

P (w1,δt) towards a function g in L2(]0, T [; L2) when ε and δt tend to 0 using Aubin Lions Simon’s Lemma 2.7.
Then we show that the gradient term of the Helmholtz decomposition tends to 0 in L2(]0, T [; L2). We finally
prove that the convergence applies for the step functions wδt and that g = w = v − ψ so that vδt strongly
converges towards v in L2(]0, T [; L2) when ε and δt tend to 0, ε = λδt, λ > 0 fixed.

Step 1. The embedding of F in H is compact. Moreover, we also have H ⊂ V′ with continuous embedding
by density of V in H. By continuity of the orthogonal projection (4.3) and according to the stability result
Proposition 3.1, P (w1,δt) is bounded in L2(]0, T [; F). Finally Lemma A.2 (given in appendix) ensures that
∂P (w1,δt)

∂t
is bounded in L

4
3 (]0, T [; V′). Therefore, applying the compactness result from Aubin Lions Simon

Lemma 2.7 with B0 = F, B1 = H and B2 = V′, we obtain the strong convergence of P (w1,δt) towards a
function g in L2(]0, T [; H).

Step 2. Let us establish the strong convergence of ∇qδt = w1,δt − P (w1,δt) to 0 in L2(]0, T [; L2). From (4.4),
we have div(∇qδt) = div(w1,δt) ∈ L2(]0, T [; L2) so that ∇qδt.ν makes sense in H−

1
2 (∂Ω). Thus qδt verifies the

following Neumann problem: { −∆qδt + div(w1,δt) = 0 on [0, T ]×Ω

(∇qδt.ν)∂Ω = 0 on [0, T ]× ∂Ω.
(4.5)

Since div(wδt) −→ 0
ε→0

in L2(]0, T [; L2) (see Lem. 3.3), then div(w1,δt) also tends to 0 in the same space. Thus,

by ellipticity of the Neumann problem one has qδt −→ 0 in L2(]0, T [; H1). We finally deduce that w1,δt strongly
converges towards g in the space L2(]0, T [; L2).

Step 3. The two previous points show that w1,δt strongly converges towards a function g in the space
L2(]0, T [; L2). Moreover, applying Lemma 4.2 we know that wδt weakly converges to w = v−ψ in L2(]0, T [; H1)
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and from Lemma A.1 (given in appendix) w1,δt − wδt strongly converges towards 0 in L2(]0, T [; L2) when δt
tends to 0. It gives the strong convergence of wδt towards w in L2(]0, T [; L2) when δt tends to 0. Moreover,
ψδt −→

δt→0
ψ. Consequently vδt strongly converges towards v in L2([0, T ]; L2).

Finally, vδt is bounded in L∞(]0, T [; L2). Therefore, using Lemma 4.2, the following result holds: vδt −→
δt→0

v strongly in L2(]0, T [; L2)

vδt −⇀
δt→0

v weakly- ? in L∞(]0, T [; L2).

Therefore, we deduce the strong convergence of vδt towards v when ε and δt tend to 0 in Lp(]0, T [; L2) for any
p ∈ [2,+∞[ using interpolation properties. �

4.3. Weak convergence of the inertia terms

We study the convergence of the inertia term B(vδt(· − δt), ṽδt(·)).

Lemma 4.4. If δt and ε tend to 0 with ε = λδt then:

(i) div(vδt)ṽδt tends to 0 in L1(]0, T [; L
3
2 ).

(ii) (vδt.∇)ṽδt weakly converges towards (v.∇)v in Lp(]0, T [; Lq), with (p, q) = (4
3 ,

4
3 ) in two dimensions and

(p, q) = (4
3 ,

6
5 ) in three dimensions.

Proof of (i). From Lemma 3.3 div(vδt) tends to 0 in L2(]0, T [; L2). Then (i) is a consequence of the boundedness
of ṽδt in L2(]0, T [; H1

0) exploiting the embedding of H1 into L6. �

Proof of (ii). We distinguish the cases of two and three dimensional spaces.

4.3.1. The three dimensional case

For d = 3, from Hölder’s inequalities, we have:

||(vδt.∇)ṽδt||L2(]0,T [;L1) ≤ ||vδt||L∞(]0,T [;L2)||∇ṽδt||L2(]0,T [;L2)

and,

||(vδt.∇)ṽδt||
L1(]0,T [;L

3
2 )
≤ ||vδt||L2(]0,T [;L6)||∇ṽδt||L2(]0,T [;L2).

Thanks to Proposition 3.1 and Sobolev embeddings in three dimensions, the r.h.s. in the above estimates is
uniformly bounded. Then by interpolation (see Prop. 2.5), we deduce that (vδt.∇)ṽδt is uniformly bounded in
L

4
3 (]0, T [; L

6
5 ). Therefore, in this space, the sequence ((vδt.∇)ṽδt)δt weakly converges towards a function g that

remains to determine.
From the convergences of Lemma 4.2 and Proposition 4.3, we deduce the following weak convergence:

(vδt.∇)ṽδt −⇀ (v.∇)v in L1(]0, T [; L1).

The weak convergence in the smaller space L
4
3 (]0, T [; L

6
5 ) yields g = (v.∇)v and:

(vδt.∇)ṽδt −⇀ (v.∇)v weakly in L
4
3 (]0, T [; L

6
5 ). (4.6)

Thus for d = 3 Lemma 4.4 follows.



1430 V. BRUNEAU ET AL.

4.3.2. The two dimensional case

For a two dimensional space, we can demonstrate the convergence in a higher regularity space.
Indeed, as vδt ∈ L∞(]0, T [; L2)∩L2(]0, T [; H1) then by interpolation (see Prop. 2.5), vδt lies in L4(]0, T [; H

1
2 ).

Yet, H
1
2 is embedded into L4, therefore vδt ∈ L4(]0, T [; L4).

Then (vδt.∇)ṽδt is bounded in L
4
3 (]0, T [; L

4
3 ). Using the same arguments as above we deduce:

(vδt.∇)ṽδt −⇀ (v.∇)v weakly in L
4
3

(
]0, T [; L

4
3

)
and we conclude the proof of Lemma 4.4 in the two dimensional case. �

4.4. Proof of Theorem 4.1

We can now pass to the limit in the numerical scheme. Let φ ∈ V. The numerical scheme (1.4)-(1.8) reads in
variational formulation:

d
dt

(vδt(t), φ) + 2µ(D(ṽδt) : D(φ)) + (B(vδt(t− δt), ṽδt(t)), φ)

+
1
η

(χω(t)(ṽδt(t)− vs(t)), φ) = (f(t), φ).

We multiply by a function θ ∈ C1(0, T ) such that θ(T ) = 0 and we integrate from 0 to T . We do not have any
information on the time derivative of the velocity. Therefore, the temporal term is integrated by part so that
the time derivative holds on θ:

−
T∫

0

(vδt(t), φ) θ′(t) dt− (vδt(0), φ) θ(0) + 2µ

T∫
0

(D(ṽδt(t)) : D(φ)) θ(t) dt

+

T∫
0

((vδt(t− δt).∇)ṽδt(t), φ) dt +
1
2

T∫
0

(div(vδt(t− δt))ṽδt(t), φ) θ(t) dt

+
1
η

T∫
0

(χω(t)(ṽδt(t)− vs(t)), φ) θ(t) dt

=

T∫
0

(fδt, φ) θ(t) dt. (4.7)

We pass to the limit δt→ 0 in this last equation with ε = λδt using Lemmas 4.2 and 4.4. It gives:

−
T∫

0

(v(t), φ) θ′(t) dt− (v0, φ) θ(0) + 2µ

T∫
0

(D(v(t)), D(φ)) θ(t) dt

+

T∫
0

((v(t).∇)v(t), φ) θ(t) dt +
1
η

T∫
0

(χω(t)(v(t)− vs(t)), φ) θ(t) dt

=

T∫
0

(f(t), φ) θ(t) dt. (4.8)

Since ε also tends to 0 then from Lemma 3.3 and (1.3), we have at the limit:

div(v) = 0 on Ω.
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Applying the above equality for θ ∈ D(0, T ), we deduce the following equality in V′:

−
T∫

0

v(t) θ′(t) dt =

T∫
0

div(2µD(v(t))) θ(t) dt− 1
η

T∫
0

χω(t)(v(t)− vs) θ(t) dt

−
T∫

0

(v(t).∇)v(t) θ(t) dt +

T∫
0

f(t) θ(t) dt. (4.9)

The operator L : u 7→ div(2µD(u)) (respectively B : (u, v) 7→ B(u, v)) is continuous from V to V′ (resp. from
V ×V to V′). Therefore, there exists C > 0 such that:

T∫
0

||div(2µD(v))||V′ dt ≤ C
T∫

0

||v||V dt ≤ C
√
T ||v||L2(]0,T [;V).

T∫
0

||(v.∇)v||V′ dt ≤ C
T∫

0

||v||2V dt ≤ C||v||2L2(]0,T [;V). (4.10)

As (4.9) is valid for any θ ∈ D(]0, T [) we deduce that v has a weak derivative in time which lies in L1(]0, T [; V′)
and for almost every t ∈]0, T [:

∂v

∂t
− div(2µD(v)) + (v.∇)v +

1
η
χω(t)(v − vs) = f in V′. (4.11)

We now need to recover the initial data. Since
∂v

∂t
belongs to L1(]0, T [; V′) and v belongs to L2(]0, T [; V), we

show using Proposition 2.6 that v is continuous with values in V′ for the strong topology. Furthermore, by
hypothesis v(0) = v0 in the weak continuity sense with values in V′. Therefore, the initial condition v(0) = v0
is verified in the strong sense because the weak limit is unique.

From De Rham theorem, we can now deduce the existence of the pressure. Let G(t) be defined by:

G(t) = −div(2µD(v)) + (v.∇)v +
1
η
χω(t)(v − vs)− f.

Thanks to (4.11), for almost every t ∈]0, T [,〈
dv
dt
, φ

〉
V′,V

+ 〈G(t), φ〉H−1,H1
0

= 0.

We integrate this last equation from 0 to t. It gives:

〈v(t), φ〉L2 − 〈v(0), φ〉L2 +

〈 t∫
0

G(τ) dτ , φ

〉
= 0.

It can be written under the form:
〈K(t), φ〉H−1,H1

0
= 0,

where

K(t) = v(t)− v(0)−
t∫

0

div(2µD(v)) dτ +

t∫
0

(v.∇)v dτ +
1
η

t∫
0

χω(τ)(v − vs) dτ −
t∫

0

f dτ .
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Note that K is weakly continuous in time with values in H−1. Therefore, for all t ∈]0, T [ we deduce from De
Rham theorem the existence of π(t) ∈ L2

0 such that:

K(t) = −∇π(t).

Following the work of [8] (chapter V), we show that t 7→ π(t) is weakly continuous in time with values in L2. In
particular, π lies in the space L∞(]0, T [; L2

0). Indeed, if g ∈ L2, there exists h ∈ H1
0 such that div(h) = g−m(g)

where m(g) denotes the mean value of g on Ω. Then,

(π(t), g)L2 = (π(t), g −m(g))L2 because m(π) = 0
= (π(t),div(h))L2

= −(∇π(t), h)H−1,H1
0

= (K(t), h)H−1,H1
0
.

This quantity is continuous because K is weakly continuous in time with values in H−1. We can then introduce

the distribution p =
∂π

∂t
which lies in the space W−1,∞(]0, T [; L2

0). Taking test functions under the form
∂φ

∂t
with φ ∈ D(]0, T [×Ω), we show that the equation

∂v

∂t
− div(2µD(v)) + (v.∇)v +

1
η
χω(t)(v − vs) +∇p = f (4.12)

is satisfied in the sense of distributions.
In two dimensional space we can show the uniqueness of solutions of this equation using classical results

(see [8] Chapt. V).

5. Convergence towards the Navier-Stokes equations

The aim of this section is to study the convergence when η tends to 0. To do so, we consider the weak limit
of the scheme when ε and δt tend to 0 which verifies (4.12) and indice the solution by η.

First, inspired by ([20], Def. 2.1) (see also [16]), let us define a weak solution of (1.1), the Navier Stokes
equation in the moving domainΩ(t) = Ω\ω(t) . We assume that (H) holds and there exists a C∞-diffeomorphism
between

⋃
t<T

{t} × Ω(t) and a cylindrical domain [0, T ] × Ω̃ for some bounded domain Ω̃ ⊂ IRd. Then as for

Ω (see Notations in the Introduction), we can define H̃ (resp. Ṽ) on Ω̃ and using the pull back by the C∞-
diffeomorphism we also define Ht (resp. Vt) the associated space on Ω(t). Moreover, using this diffeomorphism,
we are able to transport any function, any space and any equation on [0, T ]× Ω̃ onto

⋃
t<T

{t}×Ω(t). For ψ given

by (H), we will say that v is a weak solution of (1.1) if, for any φ ∈ Vt and any θ ∈ C1(0, T ), with θ(T ) = 0,
the function v − ψ ∈ L∞(]0, T [; Ht) ∩ L2(]0, T [; Vt) satisfies:

−
T∫

0

(v(t), φ)t θ′(t) dt− (v0, φ)0 θ(0) + 2µ

T∫
0

(D(v(t)), D(φ))t θ(t) dt

+

T∫
0

((v(t).∇)v(t), φ)t θ(t) dt =

T∫
0

(f(t), φ)t θ(t) dt.

where (·, ·)t denotes the scalar product in L2(Ω(t)).
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Theorem 5.1 Convergence when η tends to 0.
Under the above assumptions, when η tends to 0, the sequence (vη)η, weak solution of the penalized Navier

Stokes problem (1.2) weakly converges towards v a weak solution of (1.1), the Navier Stokes problem on the
time dependent domain Ω(t) = Ω \ ω(t).

We first prove the following lemma:

Lemma 5.2. For all t ∈]0, T [, and η ∈]0, 1], we have:

t∫
0

||vη − vs||2L2(∂ω(τ)) dτ ≤ Cη 1
2 .

Proof. For a.e. t ∈]0, T [,

||vη − vs||2L2(∂ω(t)) ≤ C||vη − vs||L2(ω(t))||vη − vs||H1(ω(t)).

Going back to the fixed domain and using norm equivalence properties (see [16,20]), we show that the constant
C is uniform in time. We integrate this last inequality from 0 to t and obtain:

t∫
0

||vη − vs||2L2(∂ω(τ)) dτ ≤ C
t∫

0

||vη − vs||L2(ω(τ))||vη − vs||H1(ω(τ)) dτ

≤ C

 t∫
0

||vη − vs||2L2(ω(τ)) dτ


1
2
 t∫

0

||vη − vs||2H1(ω(τ)) dτ


1
2

≤ C

 t∫
0

||vη − vs||2L2(ω(τ)) dτ


1
2

||wη||L2(]0,T [;H1).

From Proposition 3.1 (see also Rem. 3.2), wδt is uniformly bounded in L2(]0, T [; H1), with respect to η ∈]0, 1]

and to
δt

ε
. Using the lower semicontinuity of the norm for the weak topology, we obtain that wη is also bounded

in H1. Finally, from the energy estimates of Section 3 (see Rem. 3.2), we obtain:

t∫
0

||vη − vs||2L2(∂ω(τ)) dτ ≤ Cη 1
2 · �

Therefore, when η → 0, the velocity on the immersed boundary ∂ω(t) tends towards the obstacle velocity v = vs
in the space L2(]0, T [;L2(∂ω(t))).

Proof of Theorem 5.1. Let φ ∈ Vt and θ ∈ C1(0, T ) such that θ(T ) = 0. Since φ(t, .) ∈ H1
0(Ω(t)), it can be

extended to a function φ ∈ V such that φ(t, .) = 0 on ω(t). Then taking φ instead of φ in (4.8) we deduce:

−
T∫

0

(vη(t), φ) θ′(t) dt− (v0, φ) θ(0) + 2µ

T∫
0

(D(vη(t)), D(φ)) θ(t) dt

+

T∫
0

((vη(t).∇)vη(t), φ) θ(t) dt =

T∫
0

(f(t), φ) θ(t) dt, (5.1)
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where we used that φ and χω(t) have disjoint supports. Let us mention that this above substitutions can be
justified coming back to a fixed cylindrical domain [0, T ]× Ω̃ (see above or [20] for more details).

Now, following the proof of Theorem 4.1 (in particular estimates of Prop. 3.1) we obtain that (vη)η is
bounded in L∞(]0, T [; H)∩L2(]0, T [; V) (see also Rem. 3.2). Thus, up to a subsequence, (vη)η weakly converge
in L∞(]0, T [; H) ∩ L2(]0, T [; V) to a fonction v which, thanks to Lemma 5.2, satisfies (v − ψ)|∂ω(t) = 0.

We conclude the proof taking the limit as η goes to 0 in (5.1) and using that φ(t, .) being supported in Ω(t),
we have (v(t), φ(t, .)) = (v(t), φ(t, .))t. �

Appendix A.

In this appendix we use the assumptions and the notations of Section 4.2. We prove auxiliary results for the
proof of Proposition 4.3.

Lemma A.1. The difference between the piecewise linear function and the step function w1,δt − wδt strongly
converges to 0 in the space L2(]0, T [; L2), when δt goes to 0.

Proof. We first show that w1,δt − wδt strongly converges to 0 in L2(]0, T [; H−1) when δt tends to 0. Using
Lemma 3.4 we have:

||w1,δt − wδt||2L2(]0,T [;H−1) ≤
N−1∑
k=0

δt||wk+1 − wk||2H−1

≤ Cδt (A.1)

which gives the strong convergence of the difference w1,δt − wδt to 0 in L2(]0, T [; H−1) when δt goes to 0.
Moreover, as both functions wδt and w1,δt are bounded in L2(]0, T [; H1) (see Prop. 3.1), the difference w1,δt−wδt
is bounded in L2(]0, T [; H1). We then deduce the strong convergence w1,δt − wδt −→ 0 when δt goes to 0 in
L2(]0, T [; L2). �

The following Lemma gives a bound on the time derivative in the space L
4
3 (]0, T [; V′).

Lemma A.2. Using the definition of the piecewise linear functions w1,δt (4.2), there exists a constant C > 0
such that the time derivative of P (w1,δt) verifies:∣∣∣∣∣∣∣∣∂P (w1,δt)

∂t

∣∣∣∣∣∣∣∣
L

4
3 (]0,T [;V′)

≤ C.

Proof. To obtain the bound in the dual space of V, we have to show that there exists a constant C > 0 such
that for any φ ∈ V: ∣∣∣∣∣∣

T∫
0

〈
∂P (w1,δt)

∂t
, φ

〉
V′,V

dt

∣∣∣∣∣∣ ≤ C||φ||L4(]0,T [;V).

Let φ ∈ V. We perform estimates on the variational formulation of the problem (3.3)−(3.5). Since φ vanishes
on the boundary ∂Ω and div(φ) = 0, the pressure cancelled.

The temporal term is decomposed using the orthogonal projection P . There exists a function qδt ∈ H1 such
that w1,δt = P (w1,δt) + ∇qδt. Since we work at a discrete level, the time derivative of the piecewise linear

function w1,δt is equal to
wk+1 − wk

δt
on each interval [tk, tk+1[ (k ≤ N − 1) and commutes with P . Then we

can integrate by part the gradient term ∇qδt of the Helmholtz decomposition without consideration on the time
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derivative. Finally this last term vanishes using again that div(φ) = 0 and φ = 0 on the boundary and the
variational formulation reads:

T∫
0

<
∂P (w1,δt)

∂t
, φ >V′,V dt+ 2µ

∫ T

0

D(wδt) : D(φ) dt+

T∫
0

B(wδt(t− δt), w̃δt(t)).φ dt

+

T∫
0

B(ψδt(t− δt), w̃δt).φ dt+

T∫
0

B(wδt(t− δt), ψ(t)).φdt+
1
η

T∫
0

χω(t)w̃δt.φ dt =

T∫
0

F.φdt. (A.2)

We now have to perform estimates on inertia terms. We detail here the estimates for the convective term
b(wδt, w̃δt, φ). The same process applies on a simpler way for the two other terms.

Going back to the definition of the convective term (2.2), the trilinear form reads:

b(wδt, w̃δt, φ) =
1
2

∫
Ω

(wδt.∇)w̃δt.φ dx +
1
2

∫
Ω

(wδt.∇)φ.w̃δt dx.

Using Hölder’s inequality then Sobolev embeddings H1
ν ↪→ H

1
2 ↪→ L3 and H1 ↪→ L6 for d ≤ 3, there exists a

constant C > 0 such that:

||(wδt.∇)w̃δt.φ||L1 ≤ C||wδt||L3 ||∇w̃δt||L2 ||φ||L6

≤ C||wδt||
1
2
L2 ||∇wδt||

1
2
L2 ||∇w̃δt||L2 ||∇φ||L2 .

This last inequality is integrated in time using again Hölder’s inequality. The factor ||∇wδt||
1
2
L2 lies in L4(]0, T [)

so that we have:

||(wδt.∇)w̃δt.φ||L1(]0,T [;L1) ≤ ||wδt||
1
2
L∞(]0,T [;L2)

∣∣∣∣∣∣(||∇wδt|| 12L2

)∣∣∣∣∣∣
L4(]0,T [)

||∇w̃δt||L2(]0,T [;L2)||φ||L4(]0,T [;V)

≤ ||wδt||
1
2
L∞(]0,T [;L2)||∇wδt||

1
2
L2(]0,T [;L2)||∇w̃δt||L2(]0,T [;L2)||φ||L4(]0,T [;V).

Using the same arguments, we obtain a same expression for the second term:

||(wδt.∇)φ.w̃δt||L1(]0,T [;L1) ≤ ||wδt||
1
2
L∞(]0,T [;L2)||∇wδt||

1
2
L2(]0,T [;L2)||∇w̃δt||L2(]0,T [;L2)||φ||L4(]0,T [;V).

Finally, using Proposition 3.1, the following inequality is obtained:∣∣∣∣∣∣
T∫

0

〈∂P (w1,δt)
∂t

, φ〉V′,V dt

∣∣∣∣∣∣ ≤ C||φ||L4(]0,T [;V).

which ensures that
∂P (w1,δt)

∂t
is bounded in the space L

4
3 (]0, T [; V′). �
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