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OSCILLATING BEHAVIOUR OF THE SPECTRUM FOR A PLASMONIC
PROBLEM IN A DOMAIN WITH A ROUNDED CORNER

Lucas Chesnel1, Xavier Claeys2,∗ and Sergei A. Nazarov3,4,5

Abstract. We investigate the eigenvalue problem −div(σ∇u) = λu (P) in a 2D domain Ω divided
into two regions Ω±. We are interested in situations where σ takes positive values on Ω+ and negative
ones on Ω−. Such problems appear in time harmonic electromagnetics in the modeling of plasmonic
technologies. In a recent work [L. Chesnel, X. Claeys and S.A. Nazarov, Asymp. Anal. 88 (2014) 43–74],
we highlighted an unusual instability phenomenon for the source term problem associated with (P):
for certain configurations, when the interface between the subdomains Ω± presents a rounded corner,
the solution may depend critically on the value of the rounding parameter. In the present article, we
explain this property studying the eigenvalue problem (P). We provide an asymptotic expansion of
the eigenvalues and prove error estimates. We establish an oscillatory behaviour of the eigenvalues as
the rounding parameter of the corner tends to zero. We end the paper illustrating this phenomenon
with numerical experiments.
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1. Introduction

In electromagnetics, it is well-known that the dielectric permittivity ε of metals has a negative real part
at optical wavelength. Because of this property, some waves called surface plasmon polaritons can propagate
at the interface between a metal and a classical dielectric [2, 50]. Physicists seek to use the plasmons in order
to propagate information and plasmonic technologies appear a promising solution for the miniaturization of
electronic devices. In this context, an important issue is to focus energy in some confined regions of space.
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To achieve this, one approach consists in using metallic structures with sharp geometries involving corners, tips,
edges, . . . [4, 46].

When losses are neglected, which is often desired for applications and which is reasonable to assume for
certain ranges of frequencies, the physical parameters in devices involving negative materials change sign in the
domain of interest. In this case, the study of time harmonic Maxwell’s equations can not be handled using the
classical methods [19,40]. New techniques have to be developed [13,20,25,41]. Using a variational approach, it
has been proved in [6,10] that the scalar problem equivalent to Maxwell’s equations in 2D configurations, turns
out to be of Fredholm type in the classical functional framework only whenever the contrast (ratio of the values
of ε across the interface) lies outside some interval, which always contains the value −1. Moreover, this interval
reduces to {−1} if and if only the interface between the positive material and the negative material is smooth (of
class C 1). Analogous results have been obtained by techniques of boundary integral equations in [17] long before
the age of plasmonic technologies. The numerical approximation of the solution of this scalar problem, based on
classical finite element methods, has been investigated in [10, 14, 38]. Under some assumptions on the meshes,
the discretized problem is well-posed and its solution converges to the solution of the continuous problem. The
study of Maxwell’s equations has been carried out in [7]. The influence of corners of the interface, studied
in [21,32,47,49], has been clarified in [5,8] for the scalar problem (see also the previous works [11,18,42] where
the general theory [26, 27, 31, 34] is extended to this configuration where the operator is not strongly elliptic).
In [8], following [1, 34–36], the authors prove that when the contrast of the physical parameters lies inside the
critical interval, Fredholm property is lost because of the existence of two strongly oscillating singularities at
the corner. In such a case, Fredholmness can be recovered by adding to the functional framework one of the two
singularities, selected by means of a limiting absorption principle, and by working in a special weighted Sobolev
setting with weight centered at the corner [9]. This functional framework amounts to prescribing a radiation
condition at the corner.

Such a special functional framework seems an uncomfortable situation though, at least from a physical point
of view. Indeed, it leads to working with solutions which are not of finite energy (their H1-norm is infinite). A
possible regularization that may appear natural would consist in considering slightly rounded corners, instead
of real corners at the interface. In the sequel, we will denote δ > 0 the (small) parameter corresponding to the
rounding of the corner. In a recent work [15], we prove an instability phenomenon for the source term problem
set in such a geometry: when the contrast of the physical parameters belongs to the critical interval, the solution
depends critically on the value of δ and does not converge, even for very weak norms, as δ tends to zero. In the
present article, our goal is to study the properties of the associated eigenvalue problem.

We use asymptotic analysis to carry out this study. We do not derive an asymptotic expansion of the eigen-
values though. Asymptotic techniques here only stand as an intermediate (yet crucial) tool for the description
of the predominant behaviour of the boundary value operator. Our analysis leads to the conclusion that this
operator and the corresponding eigenvalues asymptotically behave, as δ → 0, as an operator that admits an
a priori non-constant periodic dependency with respect to ln δ.

The outline of this paper is as follows. In Section 2, we describe in detail the problem and the geometry that
we want to consider, namely an eigenvalue problem for a diffusion equation with a sign-changing coefficient in the
principal part. The domain is a bounded cavity divided into two regions by an interface containing a rounded
corner close to the boundary. As above, the rounding of the corner is described by some small parameter δ
(δ = 0 corresponds to the geometry with a “perfect” corner in the interface). In Section 3, we study the spectral
properties of A0, the natural limit operator for δ = 0. More precisely, we recall some results of [11, 42] which
indicate that A0 is not self-adjoint. Using Kondratiev’s theory [26], and more precisely, the results established
in [9], we then describe all the self-adjoint extensions of A0. In Section 4, we propose a formal asymptotic
expansion of the eigenpairs of Aδ, the natural operator set in the geometry with a slightly rounded corner. This
expansion is built using matched asymptotics [29], ([30], Chap. 4, 5). In particular, in accordance with [23,33], we
find that the eigenpairs of Aδ behave asymptotically as the eigenpairs of some self-adjoint extension of A0. The
originality lies in the fact that the latter self-adjoint extension depends periodically of − ln δ. In Section 5, we
prove the main result of the paper, namely Theorem 5.3. We establish that, asymptotically, all the eigenvalues
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of Aδ are periodic in ln δ-scale as δ tends to zero. Section 6 is devoted to showing an important intermediate
proposition allowing to justify the formal asymptotic analysis and to provide error estimates. We conclude the
paper with numerical experiments illustrating the results we obtained in the previous section.

2. Description of the problem

Let Ω ⊂ R2 be a domain, i.e. a bounded and connected open subset of R2, with Lipschitz boundary ∂Ω

(see Fig. 1 below). We assume that Ω is partitioned into two sub-domains Ωδ± so that Ω = Ωδ+ ∪ Ωδ− with
Ωδ+ ∩ Ωδ− = ∅. We consider a smooth curve Σ0 that intersects ∂Ω at only two points O and O′. We assume
that ∂Ω and Σ0 are straight in a neighbourhood of O, O′, and that at O′, Σ0 is perpendicular to ∂Ω. We also
assume that the interface Σδ := Ωδ+ ∩Ωδ− coincides with Σ0 outside the disk D(O, δ). We denote S := O ∪O′
and we introduce nδ the unit outward normal vector to Σδ directed from Ωδ+ to Ωδ−.

In the sequel, we shall denote by (r, θ) the polar coordinates centered atO such that θ = 0 or π at the boundary
in a neighbourhood of O. As δ → 0, the sub-domains Ωδ± turn into Ω0

± and we assume that there exists a disk
D(O, 2r0) centered at O such that Ω0

− ∩ D(O, 2r0) = {(r cos θ, r sin θ) ∈ R2 | 0 < r < 2r0, 0 < θ < π/4} and
Ω0

+ ∩ D(O, 2r0) = {(r cos θ, r sin θ) ∈ R2 | 0 < r < 2r0, π/4 < θ < π}. We consider the value π/4 for the
aperture of the corner for a reason which appears in Section 3.1 (the calculus of Λ in (3.1) can be made explicit
in this case). However, there is no difficulty to adapt the rest of the forthcoming analysis for other values of
this angle (see the discussion in Rem. 3.2). To fix ideas, and without restriction, we assume that we can take
r0 = 1, i.e. we assume that there holds (D(O, 2) ∩ R× R∗+) ⊂ Ω, where R× R∗+ = {(x, y) ∈ R2 | y > 0}.

With this geometry, we associate a set of cut-off functions which we will refer to throughout this paper. We
introduce ψ ∈ C∞(R, [0; 1]) such that ψ(r) = 1 for 0 ≤ r ≤ 1 and ψ(r) = 0 for r ≥ 2. We define χ := 1 − ψ.
Finally, for t > 0, we denote ψt, χt the functions such that ψt(r) = ψ(r/t), χt(r) = χ(r/t) (see Fig. 2).

Figure 1. Geometry of the problem.

Figure 2. Cut-off functions.



1288 L. CHESNEL ET AL.

Figure 3. Frozen geometry.

2.1. Geometry of the rounded corner

The set Σδ ∩ D(O, δ) will be defined as follows. Let Ξ := R × R∗+ refer to the upper half plane partitioned
by means of two open sets Ξ± such that Ξ = Ξ+ ∪ Ξ− and Ξ+ ∩ Ξ− = ∅. We assume that Γ := Ξ+ ∩ Ξ− is
a curve Γ = {ϕΓ (t), t ∈ [0; +∞)} where ϕΓ is a C∞ function such that ∂tϕΓ (0) is orthogonal to the x-axis
and ϕΓ (t) = (t, t) for t ≥ 1, see Figure 3 below. In a neighbourhood of the corner, we assume that Ωδ± can be
defined from Ξ± by self similarity:

Ωδ± ∩D(O, δ) = { x ∈ R2 | x/δ ∈ Ξ± ∩D(O, 1)}.

2.2. The problem under study

First of all, let us set basic notations. In the sequel, for any open subset ω ⊂ Rd with d = 1, 2, the space L2(ω)
will refer to the Lebesgue space of square integrable functions equipped with the scalar product (u, v)L2(ω) :=∫
ω
u v dx. We denote ‖v‖L2(ω) :=

√
(v, v)ω. We will consider the Sobolev space H1(ω) := {v ∈ L2(ω) | ∇v ∈

L2(ω)}, and define H1
0(ω) := {v ∈ H1(ω) | v|∂ω = 0} equipped with

(u, v)H1
0(ω) :=

∫
ω

∇u · ∇v dx, ‖u‖H1
0(ω) := ‖∇u‖L2(ω).

The present article will focus on a transmission problem with a sign-changing coefficient. Define the function
σδ : Ω → R such that σδ = σ± in Ωδ±, where σ+ > 0 and σ− < 0 are constants. We are interested in the
eigenvalue problem

Find (λδ, uδ) ∈ C×H1
0(Ω) \ {0} such that

−div(σδ∇uδ) = λδuδ in Ω.
(2.1)

This problem also writes

Find (λδ, uδ+, u
δ
−) ∈ C×H1(Ωδ+)×H1(Ωδ−), with (uδ+, u

δ
−) 6= (0, 0), such that

−σδ±∆uδ± = λδuδ in Ωδ±

uδ+ − uδ− = 0 on Σδ \S
σδ+∂nu

δ
+ − σδ−∂nuδ− = 0 on Σδ \S

uδ± = 0 on ∂Ωδ± ∩ ∂Ω.

(2.2)

As usual, the problem above can be reformulated in terms of operators. Consider the unbounded operator
Aδ : D(Aδ)→ L2(Ω) defined by

Aδ v = −div(σδ∇v)

D(Aδ) := {v ∈ H1
0(Ω) | div(σδ∇v) ∈ L2(Ω)}.

(2.3)
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On Σδ \S , the elements of D(Aδ) satisfy the transmission conditions of (2.2). Since Σδ is smooth and intersect
∂Ω with right angles, we have the following proposition (see [11], Thm. 1 and [17,18,42]).

Proposition 2.1. Assume that the contrast κσ = σ−/σ+ satisfies κσ 6= −1. Then for any δ > 0, the operator
Aδ is densely defined, closed, self-adjoint and admits compact resolvent.

The previous result allows to study, for a fixed δ > 0, the spectrum of Aδ. That this spectrum is not semi-
bounded is a striking and challenging feature that will make the analysis more involved in the remaining of the
present article.

Proposition 2.2. Assume that the contrast κσ satisfies κσ 6= −1. Then the spectrum of Aδ, denoted S(Aδ),
consists of two sequences, one nonnegative and one negative, of real eigenvalues of finite multiplicity:

. . . λδ−m ≤ . . . ≤ λδ−1 < 0 ≤ λδ0 ≤ λδ1 ≤ . . . ≤ λδm . . .

Moreover, there hold inf S(Aδ) = −∞ and sup S(Aδ) = +∞.

Proof. The operator Aδ is self-adjoint. This implies that S(Aδ) ⊂ R. Since it has compact resolvent, it is a direct
application of ([24], Chap. III, Thm. 6.29) that S(Aδ) consists of isolated eigenvalues with finite multiplicities.
Let us show that inf S(Aδ) = −∞. According to ([3], Cor. 4.1.5), it suffices to exhibit a sequence (ξm)m of
elements of D(Aδ) which satisfies limm→+∞(Aδξm, ξm)L2(Ω) = −∞ and ‖ξm‖L2(Ω) = 1. We proceed as in ([12],
Prop. 4.1).

Let us introduce the function ξ′ such that ξ′(x) = exp(−1/(1−|x|2)) for |x| < 1 and ξ′(x) = 0 for |x| ≥ 1. One
can prove that ξ′ ∈ C∞0 (R2). Define ξ := ξ′/‖ξ′‖L2(Ω). Now, take any point x0 ∈ Ωδ− so that σ(x) = σ− < 0 in a
neighbourhood of x0. Set ξm(x) := mξ(m(x−x0)). For m large enough, we have supp(ξm) ⊂ Ωδ−. Elementary
calculus shows that ‖ξm‖L2(Ω) = 1 and ‖∇ξm‖2L2(Ω) = m2‖∇ξ‖2L2(Ω) → +∞ for m → +∞. As a consequence,
there holds

(Aδξm, ξm)L2(Ω) =
∫
Ω

σ|∇ξm|2dx = −m2 |σ−| ‖∇ξ‖2L2(Ω) −→m→+∞
−∞.

This proves that inf S(Aδ) = −∞. We establish similarly that sup S(Aδ) = +∞ by choosing x0 ∈ Ωδ+. Finally,
we may assume that the eigenvalues are indexed in increasing order, considering a renumbering if necessary.
This concludes the proof. �

In the present paper, our goal is to study the behaviour of the spectrum S(Aδ) as δ → 0. We will use
asymptotic analysis, providing error estimates.

2.3. Problematic

In order to explain the underlying difficulty of this asymptotic analysis, using the Riesz representation theo-
rem, we define the continuous linear operator Lδ : H1

0(Ω)→ H−1(Ω) such that

〈Lδu, v〉Ω = (σδ∇u,∇v)L2(Ω), ∀u, v ∈ H1
0(Ω). (2.4)

In the above definition, 〈·, ·〉Ω refers to the duality pairing between H−1(Ω) and H1
0(Ω). As it is known from [6],

for all δ > 0, the operator Lδ is Fredholm of index 0 (with a possible non trivial kernel) whenever κσ = σ−/σ+ 6=
−1, as the interface Σδ is smooth and meets ∂Ω orthogonally. In ([6], Thm. 6.2), it is also proved that, as soon as
Σδ presents a straight section, in the case κσ = σ−/σ+ = −1, the operator Lδ is not of Fredholm type. Actually,
for this configuration, one can check that ellipticity is lost for problem (2.1) (see [28, 44, 45]). Therefore, the
situation κσ = −1 cannot be studied with the tools we propose. We refer the reader to [37,39] for more details
concerning this case and we discard it from now on (Fig. 4).

Now, note that for δ = 0, the interface no longer meets ∂Ω perpendicularly. As shown in [6] and as mentioned
in the introduction, there exist values of the contrasts κσ = σ−/σ+ for which the operator L0 fails to be of
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Figure 4. Geometry for δ = 0.

Fredholm type, because of the existence of two strongly oscillating singularities at the corner point O. More
precisely, for the present geometrical configuration, L0 is a Fredholm operator if and only if, κσ ∈ R∗− := (−∞; 0)
satisfies κσ /∈ [−1;−1/3]. Here, the value 3 comes from the ratio of the two apertures: 3 = (π − π/4)/(π/4).

When L0 is of Fredholm type, there is no qualitative difference between problem (2.1) for δ > 0, and
problem (2.1) for δ = 0. In this case, using the analysis we provide in this article (and which was introduced
in [29,30], Chap. 4, 9) we can prove that the spectrum of Aδ converges to the spectrum of A0 as δ tends to zero.
Since this result can be obtained from the approach we present here, in a more classical way, we have chosen
not to present it.

When L0 is not of Fredholm type, there is a qualitative difference between problem (2.1) for δ > 0, and
problem (2.1) for δ = 0. The purpose of the present document is to study such a qualitative transition. When
κσ = −1/3, the singularities associated to the corner have a more complex structure, with a logarithmic term.
In the following, we discard this limit case, and therefore (unless otherwise stated), we assume that

κσ = σ−/σ+ ∈ (−1;−1/3). (2.5)

3. Limit problem

Since we are interested in the behaviour of the spectrum of Aδ for δ → 0, it seems natural to consider a
problem similar to (2.1) with δ = 0. To set such a limit problem, we have to choose a relevant functional setting.
This point is non-trivial because, for δ = 0, the interface Σδ does not intersect ∂Ω perpendicularly anymore,
which prevents the limit problem from admitting Fredholm property in a standard Sobolev setting. This is
our motivation for introducing a slightly different functional setting, based on weighted Sobolev (Kondratiev)
spaces, that will be better suited to the present situation.

3.1. Adapted functional setting

The description of functional spaces adapted to this limit problem was one of the outcomes of [9]. We
dedicate this subsection to recalling results already established in the latter article. These results will be usefull
for the analysis of the present article.

According to Kondratiev’s theory, we need first to describe the singularities associated to the corner point O.
Once singularities at O have been computed, all the results become a consequence of the general theory of [26,31]
(see also [27,34]). Singularities are functions of separate variables in polar coordinates which satisfy the homo-
geneous problem in the infinite corner. Define the function σ0 by σ0 = σ± in Ω0

±. According to Section 4.1
in [9], the problem of finding couples (λ, ϕ) ∈ C×H1

0(0;π) such that div(σ0∇(rλϕ(θ))) = 0 in Ω has non-trivial
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Figure 5. Set Λ for κσ = −1/4. This configuration is characteristic of the case κσ ∈ (−∞;−3)∪
(−1/3; 0).

Figure 6. Set Λ for κσ = −1/2. This configuration is characteristic of the case κσ ∈ (−1;−1/3).

Figure 7. Set Λ for κσ = −2. This configuration is characteristic of the case κσ ∈ (−3,−1).

solutions only for λ belonging to the set of singular exponents Λ with

Λ :=
(

2 Z \ {0}
)
∪ { iµ+ 4 Z } ∪ {−iµ+ 4 Z },

µ := − 2
π

ln

 1
2
σ+ − σ−
σ+ + σ−

+ i

√
1−

(
1
2
σ+ − σ−
σ+ + σ−

)2
· (3.1)

In the case where σ−/σ+ ∈ (−1;−1/3), we have µ ∈ (0; +∞), so that the set Λ contains only two elements in the
strip |<e λ| < 2, namely ±iµ. For λ = ±iµ, the space of functions ϕ ∈ H1

0(0;π) such that div(σ0∇(r±iµϕ(θ)) = 0
is one dimensional. It is generated by some φ, both for +iµ and −iµ (see [9], Sect. 4.1), such that

φ(θ) = cφ
sinh(µθ)

sinh(µπ/4)
on [0;π/4] and φ(θ) = cφ

sinh(µ(π − θ) )
sinh(µ 3π/4)

on [π/4;π], (3.2)

cφ being a constant of R \ {0}. We have
∫ π

0
σ0(θ)φ(θ)2dθ > 0 according to ([9], Lem. A.2). Hence, adjusting cφ

if necessary, we can normalize φ so that µ
∫ π

0
σ0(θ)φ(θ)2dθ = 1 (Figs. 5, 6 and 7).
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Remark 3.1.

• For κσ = −1/3, one has 0 ∈ Λ. The singularities associated with the singular exponent 0 are (r, θ) 7→ c ϕ(θ)
and (r, θ) 7→ c ln r ϕ(θ), where c is a constant, ϕ(θ) = θ on [0;π/4] and ϕ(θ) = (π − θ)/3 on [π/4;π]. As
previously announced, we do not study this limit case here.

• For κσ ∈ (−1;−1/3) such that κσ → −1+, there holds µ→ +∞.
• Finally, for κσ < 0 such that κσ /∈ [−1;−1/3], there holds Λ ∩ {λ ∈ C | <e λ = 0} = ∅. Consequently, in this

case, we can prove that the limit problem for δ = 0 admits Fredholm property in the standard Sobolev setting
H1

0(Ω).

Remark 3.2. Let us discuss briefly the situation where the aperture of the corner at O is not π/4 but a value
ϑ ∈ (0;π/2) (for the case ϑ ∈ (π/2;π) multiply the partial differential equation (2.1) by “−” to exchange the
roles of Ω+ and Ω−). In this case, the critical interval defined in (2.5) is not (−1;−1/3) but (−1;−ϑ/(π−ϑ)) and
the set of singular exponents Λ can not be computed explicitly as in (3.1). However, as proved in ([5], Lem. 2),
for all κσ ∈ (−1;−ϑ/(π − ϑ)), we have Λ ∩ {λ ∈ C | <e λ = 0} = {±iµ} for some µ > 0 depending on κσ. Due
to this property, phenomena analogous to the ones presented in this work in the case κσ ∈ (−1;−1/3) appear.
Mathematically, they can be explained following exactly the analysis developed below.

Let C∞0 (Ω \ {O}) refer to the set of infinitely differentiable functions supported in Ω \ {O}. For β ∈ R and
k ≥ 0, we define the Kondratiev space Vk

β(Ω) as the completion of C∞0 (Ω \ {O}) for the norm

‖v‖Vkβ(Ω) :=

∑
|α|≤k

∫
Ω

r2(β+|α|−k)|∂αxv|2 dx

1/2

.

Observe that V0
0(Ω) = L2(Ω). To take into account the Dirichlet boundary condition on ∂Ω, for β ∈ R, we

introduce the space
V̊1
β(Ω) :=

{
v ∈ V1

β(Ω) | v = 0 on ∂Ω \ {O}
}
. (3.3)

One can check that for all β ∈ R, V̊1
β(Ω) is equal to the completion of C∞0 (Ω) for the norm ‖ ·‖V1

β(Ω). Moreover,

using a Poincaré inequality on the arc (0;π), we can prove the estimate ‖r−1v‖Ω ≤ c ‖∇v‖Ω for all v ∈ V̊1
0(Ω)

(See [30] Vol. 1, Sect. 1.3.1). This allows to conclude that H1
0(Ω) = V̊1

0(Ω). The norm in the dual space to
V̊1
β(Ω) is the intrinsic norm

‖g‖V̊1
β(Ω)∗ := sup

v∈V̊1
β(Ω)\{0}

|〈g, v〉Ω |
‖v‖V1

β(Ω)

, (3.4)

where 〈·, ·〉Ω refers to the duality pairing between V̊1
β(Ω)∗ and V̊1

β(Ω). Although we adopt the same notation
for the pairing between H−1(Ω) and H1

0(Ω), this will not bring further confusion.
For β ∈ R, define the bounded linear operator Lβ : V̊1

β(Ω)→ V̊1
−β(Ω)∗ such that

〈Lβu, v〉Ω = (σ0∇u,∇v)L2(Ω), ∀u ∈ V̊1
β(Ω), v ∈ V̊1

−β(Ω). (3.5)

Note in particular that L0 = L0 where L0 has been introduced in (2.4). The following proposition is a conse-
quence of Kondratiev’s theory (see [9], Thm. 4.1, in particular the estimate (5.15) of the proof of [9], Thm. 4.1,
for the details).

Proposition 3.3. Assume that κσ = σ−/σ+ 6= −1. Then, the operator Lβ : V̊1
β(Ω)→ V̊1

−β(Ω)∗ is of Fredholm
type if and only if no element λ ∈ Λ satisfies <e λ = β. Moreover, if no element λ ∈ Λ satisfies <e λ = β, there
holds the estimate

‖u‖V1
β(Ω) ≤ C

(
‖Lβu‖V̊1

−β(Ω)∗ + ‖u‖
L2(Ω\D(O,1))

)
, ∀u ∈ V̊1

β(Ω). (3.6)

Here, C > 0 is a constant independent of u ∈ V̊1
β(Ω).
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Note that, according to (3.1), for κσ ∈ (−1;−1/3) the set Λ contains two purely imaginary singular expo-
nents ±iµ. Hence the proposition above shows that L0 : V̊1

0(Ω) = H1
0(Ω) → H−1(Ω) is not of Fredholm type:

this confirms that the standard Sobolev setting is not adapted to the limit geometry Ω0
± described in Figure 4.

On the other hand, for κσ ∈ (−1;−1/3), there is no element λ ∈ Λ satisfying 0 < |<e λ| < 2. As a consequence,
for all β ∈ (−2; 0) ∪ (0; 2), the operator Lβ is of Fredholm type whenever κσ ∈ (−1;−1/3). Let us define

s±(r, θ) := ψ(r)r±iµφ(θ), (3.7)

where ψ ∈ C∞(R, [0; 1]) is the cut-off function introduced right before Section 2.1. In particular, we recall
it satisfies ψ(r) = 1 for r ≤ 1 and ψ(r) = 0 for r ≥ 2. Observe that in a neighbourhood of O, s± has
the same behaviour as the singularity associated with the purely imaginary singular exponent ±iµ. Moreover,
the multiplication by the cut-off function ψ ensures that s± = 0 on ∂Ω \ {O}. A direct computation shows
that s± ∈ V̊1

β(Ω) for all β > 0. Application of Kondratiev’s calculus to the operators Lβ yields the following
decomposition result ([9], Thm. 5.2):

Proposition 3.4. Assume that κσ ∈ (−1;−1/3), so that the only elements λ ∈ Λ satisfying −2 < <e λ < +2
are λ = ±iµ. Let β ∈ (0; 2) be given and v be an element of V̊1

β(Ω) such that Lβv ∈ V̊1
β(Ω)∗ (the important point

here is that V̊1
β(Ω)∗ is embedded in V̊1

−β(Ω)∗ since −β < β). Then, there holds the following representation

v = c+s+ + c−s− + ṽ, with c± ∈ C, ṽ ∈ V̊1
−β(Ω).

3.2. Limit self-adjoint operators

We are interested in finding an operator that would be the “limit” of Aδ as δ → 0. A first candidate may
perhaps consist in the unbounded operator A : D(A)→ L2(Ω) defined by

Av := −div(σ0∇v)

D(A) := {v ∈ H1
0(Ω) | div(σ0∇v) ∈ L2(Ω)}.

Using the weighted Sobolev spaces introduced in (3.3), the regularity at O of the elements of D(A) can be
determined more precisely.

Proposition 3.5. There holds D(A) := {v ∈ V̊1
−1(Ω) | div(σ0∇v) ∈ L2(Ω)}. Moreover, there exists a constant

C > 0 such that
‖v‖V1

−1(Ω) ≤ C
(
‖Av‖L2(Ω) + ‖v‖

L2(Ω\D(O,1))

)
, ∀v ∈ D(A). (3.8)

Proof. Let v ∈ H1
0(Ω) = V̊1

0(Ω) ⊂ V̊1
1(Ω) be a function of D(A). We denote f := Av ∈ L2(Ω). Observing that

|(f, w)L2(Ω)| ≤ ‖f‖L2(Ω)‖w‖L2(Ω) ≤ ‖f‖L2(Ω)‖w‖V1
1(Ω), we deduce that f ∈ V̊1

1(Ω)∗ with ‖f‖V̊1
1(Ω)∗ ≤ ‖f‖L2(Ω).

Therefore, the equation Av = f also writes L+1v = f . The application of Proposition 3.4 for β = 1 implies that
there exist c± ∈ C and ṽ ∈ V̊1

−1(Ω) such that v = c+s+ +c−s−+ ṽ. Since s+ and s− are two linearly independent
elements of V̊1

1(Ω) \ V̊1
0(Ω) and since v ∈ V̊1

0(Ω), we deduce successively that c± = 0 and v ∈ V̊1
−1(Ω). Finally,

we obtain (3.8) applying (3.6) for β = −1. �

The operator A is symmetric. From the point of view of spectral analysis, it would be desirable to determine
whether it is self-adjoint. The following result is established in ([42], Chap. 7).

Proposition 3.6. The domain of the operator A∗ is given by D(A∗) = span{s+, s−} ⊕D(A).

Since D(A∗) 6= D(A), this shows that A cannot be self-adjoint. Actually, it is possible to completely describe
all the self-adjoint extensions of this operator (for the general theory, see e.g. [43], Sect. X.1). To do so, we begin
by introducing a classical tool (see [34], Chap. 5), namely the sesquilinear form q(·, ·) such that

q(u, v) := (A∗u, v)L2(Ω) − (u,A∗v)L2(Ω), ∀u, v ∈ D(A∗). (3.9)
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The form q(·, ·) is said to be anti-hermitian, or equivalently, symplectic, because it verifies q(u, v) = −q(v, u)
for all u, v ∈ D(A∗).

Proposition 3.7. The anti-hermitian form q(·, ·) satisfies the following properties:

(i) q(u, v) = q(v, u) = 0, for all u ∈ D(A∗), v ∈ D(A);
(ii) q(s+, s−) = q(s−, s+) = 0;
(iii) q(s+, s+) = −q(s−, s−) 6= 0.

Proof. Item (i) comes from the very definition of A∗, and the fact that A ⊂ A∗. One establishes (ii) noticing
that s+ = s−. Finally, one observes that, necessarily, there holds q(s+, s+) = −q(s−, s−) 6= 0, otherwise we
would have q(w, w̃) = 0, for all w, w̃ ∈ D(A∗), i.e. A∗ would be self-adjoint which is impossible according to
Proposition 3.6. �

Now, we are able to demonstrate the following result.

Proposition 3.8. The self-adjoint extensions of A are the unbounded operators A(τ), τ ∈ R, such that A(τ) :
D(A(τ))→ L2(Ω) is defined by

A(τ)v = −div(σ0∇v)

D(A(τ)) = span{s+ + eiτs−} ⊕D(A).
(3.10)

Proof. Suppose first that A : D(A ) → L2(Ω) is a self-adjoint extension of A. We have A ⊂ A ⊂ A∗ and
the inclusions are strict, otherwise A = A or A = A∗ (since dim(D(A∗)/D(A)) = 2) and then A would not
be self-adjoint. Due to Proposition 3.6, there exist fixed constants α± ∈ C such that D(A ) = span{α+s+ +
α−s−} ⊕ D(A). Set for a moment sα = α+s+ + α−s−. If the operator A is self-adjoint, it is in particular
symmetric. Since A ⊂ A∗, a necessary and sufficient condition for A to be symmetric is that q(u, v) = 0, for
all u, v ∈ D(A ). Take two arbitrary elements u, v ∈ D(A ), so that there exist ũ, ṽ ∈ D(A), and cu, cv ∈ C such
that u = cu sα + ũ and v = cv sα + ṽ. The symmetry of A and Proposition 3.7 impose

0 = q(u, v) = cu cv q(sα, sα), ∀u, v ∈ D(A ).

This is true if and only if 0 = q(sα, sα) = q(s+, s+)(|α+|2 − |α−|2) ⇔ |α+| = |α−| (6= 0). To briefly sum up, if
A is a self-adjoint extension of A, then we have

A v = −div(σ0∇v)

D(A ) = span{α+s+ + α−s−} ⊕D(A), where |α+| = |α−| 6= 0.
(3.11)

Now, let us consider an operator A which satisfies (3.11). Let us prove that A is a self-adjoint extension of
A. What precedes shows that the condition |α−| = |α+| implies symmetry of A , so we only have to establish
that D(A ∗) = D(A ). Take u ∈ D(A ∗). Since D(A ∗) ⊂ D(A∗), there exist ũ ∈ D(A) and c± ∈ C such that
u = c+s+ + c−s− + ũ. The symmetry of A allows to write

0 = q(u, α+s+ + α−s−) = q(s+, s+)(c+α+ − c−α−).

We deduce that c− = c+α+/α− = c+α−/α+ (remember that |α−/α+| = 1). We finally conclude that u =
c+/α+(α+s+ + α−s−) + ũ ∈ D(A ). This shows that (3.11) are actually necessary and sufficient conditions
of self-adjointness. It takes elementary calculus to check that this is equivalent to what is announced in the
statement of the proposition. �
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The anti-hermitian form q(·, ·) : D(A∗)2 → C introduced in (3.9) will play an important role in the sequel.
We shall also consider the linear forms π± : D(A∗)→ C such that

π+(v) :=
q(v, s+)
q(s+, s+)

, π−(v) :=
q(v, s−)
q(s−, s−)

, ∀v ∈ D(A∗). (3.12)

Clearly, the forms π± are continuous with respect to the norm of the graph of A∗: for all v ∈ D(A∗), |π±(v)| ≤
C (‖v‖L2(Ω) + ‖A∗v‖L2(Ω)). With these maps, we have the decomposition

v − (π+(v)s+ + π−(v)s−) ∈ D(A), ∀v ∈ D(A∗). (3.13)

To prove (3.13), it suffices to notice that if v = c+s+ +c−s−+ ṽ, with c± ∈ C, ṽ ∈ D(A), is an element of D(A∗),
then there holds, according to Proposition 3.7, q(v, s±) = c+q(s+, s±) + c−q(s−, s±) + q(ṽ, s±) = c±q(s±, s±).
The functionals π± can be exploited to express in a convenient manner a result established in [9] concerning
the kernels of operators L±1 (the operators Lβ defined in (3.5) with β = ±1).

Proposition 3.9. There exists a unique (modulo Ker L−1) element ζ ∈ Ker L+1\Ker L−1 satisfying π−(ζ) = 1.
This function is such that Ker L+1 = span{ζ} ⊕Ker L−1 and there holds |π+(ζ)| = 1.

Proof. First of all, by virtue of Proposition 3.6 and Proposition 3.4, it is clear that Ker L−1 ⊂ D(A) and
Ker L+1 ⊂ D(A∗). As shown in step 2 of the proof of ([9], Thm. 4.4), necessarily we have Ker L+1 6= Ker L−1.
If ζ ∈ Ker L+1 \ Ker L−1 then ζ ∈ D(A∗) and, applying the same calculus as in the proof of Proposition 3.8
above, we have 0 = q(ζ, ζ) = q(s+, s+)(|π+(ζ)|2 − |π−(ζ)|2). Since q(s+, s+) 6= 0, this implies |π+(ζ)| = |π−(ζ)|,
and |π−(ζ)| 6= 0 since ζ /∈ Ker L−1. Hence, dividing by π−(ζ) if necessary, we can assume that π−(ζ) = 1. In
this case, there holds |π+(ζ)| = 1.

Now, take another element ζ ′ ∈ Ker L+1 \ Ker L−1. We also have |π+(ζ ′)| = |π−(ζ ′)|. Moreover, there holds
0 = q(ζ ′, ζ) = q(s+, s+)

(
π+(ζ ′)π+(ζ)− π−(ζ ′)π−(ζ)

)
. We deduce

π+(ζ ′) = π−(ζ ′)π+(ζ) ⇒ ζ ′ − π−(ζ ′)
(
π+(ζ)s+ + s−

)
∈ V̊1

−1(Ω)

⇒ ζ ′ − π−(ζ ′)ζ ∈ Ker L−1.

This ends to prove that Ker L+1 = span{ζ} ⊕Ker L−1. �

3.3. Spectrum of the self-adjoint extensions

In this section, we study the features of the spectrum S(A(τ)) of the operator A(τ), τ ∈ R, defined in (3.10).
First, we prove it admits the same qualitative properties as S(Aδ) for δ > 0.

Proposition 3.10. Pick τ ∈ R. The operator A(τ) is closed, densely defined, self-adjoint and admits compact
resolvent. Its spectrum consists of two sequences, one nonnegative and one negative, of real eigenvalues of finite
multiplicity:

. . . η−m(τ) ≤ . . . ≤ η−1(τ) < 0 ≤ η0(τ) ≤ η1(τ) ≤ . . . ≤ ηm(τ) . . .

Moreover, there hold inf S(A(τ)) = −∞ and sup S(A(τ)) = +∞.

Proof. From Proposition 3.8, we know that for all τ ∈ R, A(τ) is a self-adjoint operator. In addition, for
z ∈ C \ R, using ([9], Thm. 4.4), we can prove the estimate

|π+(v)|+ ‖v − π+(v) (s+ + eiτs−)‖V1
−1(Ω) ≤ C ‖(A(τ)− zId)v‖L2(Ω), ∀v ∈ L2(Ω). (3.14)

Since the embedding V̊1
−1(Ω) ⊂ V0

0(Ω) = L2(Ω) is compact (see [27], Lem. 6.2.1), (3.14) allows to prove that
A(τ) has compact resolvent. The second part of the statement can be obtained working like in the proof of
Proposition 2.2. �
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Note that, because we define (ηj(τ))j≥0 and (ηj(τ))j<0 as ordered series, and because we impose that η0(τ)
is the smallest non negative eigenvalue, we cannot hope that the function τ 7→ ηj(τ) be continuous.

Yet there is a possibility to state useful results about the dependency of S(A(τ)) with respect to τ . Indeed
there is continuous dependency of A(τ) with respect to τ in the sense of “generalized convergence”. The later
is a notion of convergence defined on the set of closed possibly unbounded operators and is considered in ([24],
Chap. IV, Sect. 2). Let us briefly recall what it consists in. Define the gap functional

d(T, S) = sup
u∈D(T )\{0}

inf
v∈D(S)

‖u− v‖L2(Ω) + ‖Tu− Sv‖L2(Ω)

‖u‖L2(Ω) + ‖Tu‖L2(Ω)
·

A sequence of closed operators Tn : D(Tn)→ L2(Ω) is said to converge to a closed operator T : D(T )→ L2(Ω)
if and only if limn→+∞max(d(T, Tn), d(Tn, T )) = 0. A result of continuous dependency in this sense actually
holds.

Proposition 3.11. There is a constant C > 0 such that d(A(τ1),A(τ2)) ≤ C|eiτ1 − eiτ2 |, ∀τ1, τ2 ∈ R.

Proof. Take two τ1, τ2 ∈ R. Consider an arbitrary u ∈ D(A(τ1)) \ {0} such that u = π+(u) (s+ + eiτ1s−) + ũ,
with ũ ∈ D(A). Let us define v := π+(u) (s+ + eiτ2s−) + ũ ∈ D(A(τ2)). Straightforward calculus yields

‖u− v‖L2(Ω) + ‖A(τ1)u− A(τ2)v‖L2(Ω) = |π+(u)| |eiτ1 − eiτ2 | (‖s−‖L2(Ω) + ‖A∗s−‖L2(Ω)).

According to the continuity of π+, there exists C > 0 such that |π+(u)| ≤ C (‖u‖L2(Ω) + ‖A∗u‖L2(Ω)). Since
A∗u = A(τ1)u and ‖s−‖L2(Ω) 6= 0, this allows to obtain the result of Proposition 3.11. �

Proposition 3.12. For any fixed j ∈ Z, the function τ 7→ ηj(τ) is bounded over R.

Proof. Let us consider a fixed j ≥ 0. The proof below can be straightforwardly adapted to the case j < 0.
Since the operator valued function τ 7→ A(τ) defined in (3.10) is 2π-periodic, the map τ 7→ ηj(τ) is 2π-periodic.
Therefore, it suffices to show that τ 7→ ηj(τ) is bounded over [0; 2π].

Pick an arbitrary τ0 ∈ [0; 2π]. Take, at least, j+1 eigenvalues such that 0 < ηn0(τ0) < . . . < ηnj (τ0). Consider
a closed smooth curve Υτ0 ⊂ C \S(A(τ0)) dividing the complex plane in two connected components: a bounded
region Oτ0 and C \ Oτ0 . We choose Υτ0 so that Oτ0 contains the eigenvalues {ηnk(τ0)}jk=0 and so that there
holds Oτ0 ⊂ {λ ∈ C | <e λ > 0}. Since τ 7→ A(τ) is continuous in the sense of generalized convergence, we can
apply ([24], Chap. IV, Thm. 3.16). This theorem ensures that there exists ετ0 > 0 such that for |τ − τ0| < ετ0 ,
the domain Oτ0 contains j + 1 strictly positive eigenvalues of A(τ) (counted with their multiplicities). Thus,
according to the definition of ηj(τ), we have

∀τ ∈ (τ0 − ετ0 ; τ0 + ετ0), 0 ≤ ηj(τ) ≤ mτ0 = max{ <e λ | λ ∈ S(A(τ0)) ∩ Oτ0} < +∞.

The set [0; 2π] being compact, it can be covered by a finite number of intervals of this type: [0; 2π] ⊂ ∪pk=1(τk −
ετk ; τk + ετk). In conclusion, we have ηj(τ) ≤ maxk=1...pmτk < +∞ for all τ ∈ [0; 2π]. This ends to prove that
τ 7→ ηj(τ) is bounded over R. �

4. Formal asymptotics of the eigenvectors

We dedicate this section to the description of the asymptotics of the eigenvalues of the operator Aδ defined
in (2.3) as δ → 0. In the present problem, there appears a boundary layer in the neighbourhood of the rounded
corner. Therefore, we propose a far field expansion and a near field expansion that we will match. This kind
of procedure has been thoroughly described in ([22, 30, 48], Chap. 2) and we refer the reader to these reference
books for more details. The ansatz we define here will be validated by error estimates derived in the next
sections. Let us consider a fixed m ∈ Z and an eigenpair (λδm, u

δ) ∈ C×H1
0(Ω) \ {0} such that

Aδuδ = −div(σδ∇uδ) = λδmu
δ in Ω and ‖uδ‖L2(Ω) = 1, ∀δ ∈ (0; 1]. (4.1)
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We will also assume that
lim sup
δ→0

|λδm| < +∞.

Admittedly, it is not obvious that such an assumption holds true. However, it will be justified a posteriori
(see (5.3)). As previously announced and as it is common in asymptotic analysis, we distinguish expansions far
from the rounded corner, and close to the rounded corner.

4.1. Far field expansion

In the far field region, i.e. far from O, as δ → 0, we look for an expansion of (λδm, u
δ) of the form

λδm = ηδm + . . . , uδ = ŭδ + . . . , (4.2)

for some pair (ηδm, ŭ
δ) which has to be determined. We should make a few comments concerning this ansatz.

Observe that, in this notation, it seems that we allow some δ-dependence for the first term in the asymptotic
expansion of (λδm, u

δ). The reason comes from the results we obtained in [15]. In this paper, where we studied
the source term problem associated with (2.1), we proved that the solution, when it is well-defined, is not stable
with respect to δ, and depends on the small rounding parameter even at the first order. Nevertheless, (ηδm, ŭ

δ)
will be an asymptotic expansion of (λδm, u

δ) in the sense that it will be the solution of some problem defined
in the limit geometry (4) obtained taking δ = 0. Plugging (4.2) into (4.1), we see that the following equations
have to hold

−div(σ0∇ŭδ) = ηδmŭ
δ in Ω and ŭδ = 0 on ∂Ω \ {O}. (4.3)

Let us choose to impose that ŭδ be an element of L2(Ω). In this case, (4.3) leads us to look for a ŭδ which
belongs to D(A∗) and which satisfies the equation A∗ŭδ = ηδm ŭ

δ. Let us recall that according to Proposition 3.4,
we know there exist constants cδ± ∈ C such that

ŭδ − (cδ+ s+ + cδ− s−) ∈ D(A) ⊂ V̊1
−1(Ω). (4.4)

Let us emphasize that at this point, ηδm and ŭδ are not yet completely determined (in particular the constants cδ±
are not known). However, from a formal point of view, up to some remainder with respect to δ, we have the
following asymptotic behaviour as r → 0:

ŭδ(r, θ) = cδ+ s+(r, θ) + cδ− s−(r, θ) + . . .

= cδ+ r
+iµφ(θ) + cδ− r

−iµφ(θ) + . . .
(4.5)

4.2. Near field expansion

In the near field region, i.e. close to O, we consider the change of coordinates ξ = x/δ (ξ is the fast variable),
we set U δ(ξ) = uδ(δξ), and we look for an expansion of U δ of the form

U δ = Ŭ δ + . . . ,

where the function Ŭδ has to be determined. Again, in accordance with [15], we allow some δ-dependence for the
first term in the asymptotic expansion of U δ. However, Ŭ δ will be defined as the solution of some problem set
in a geometry whose features do not depend on δ. With the above change of variables, letting δ → 0, formally
we obtain 0 = divx(σδ∇xuδ) + λδmu

δ = δ−2(divξ(σ∞∇ξU δ) + δ2λδmU
δ), where σ∞ is the function such that

σ∞(ξ) = σ± in Ξ± (see the definition of Ξ± on Fig. 3). Since we assumed that (λδm)δ stays bounded as δ tends
to zero, this leads us to impose the equations

−div(σ∞∇Ŭδ) = 0 in Ξ and Ŭ δ = 0 on ∂Ξ \ {O}. (4.6)
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Now, we set a functional framework for Ŭδ. Let us denote (ρ, θ) the polar coordinates in the geometry Ξ. For
β ∈ R, k ≥ 0, we introduce the space Vkβ (Ξ) defined as the completion of the set {v|Ξ , v ∈ C∞0 (R2)} for the
norm

‖v‖Vkβ (Ξ) :=

∑
|α|≤k

∫
Ξ

(1 + ρ2)β+|α|−k|∂αξ v|2 dξ

1/2

. (4.7)

With these spaces, our goal is to discriminate behaviours of functions at infinity only and not at O. In the
sequel, we will impose the Dirichlet boundary condition on ∂Ξ working with functions belonging to

V̊1
β(Ξ) :=

{
v ∈ V1

β(Ξ) | v = 0 on ∂Ξ \ {O}
}
.

For all β ∈ R, this space coincides with the completion of C∞0 (Ξ) for the norm ‖ · ‖V1
β(Ξ).

Let us describe the structure of the solutions to problems of the form (4.6) in the weighted Sobolev setting
corresponding to norms (4.7). We denote V̊1

β(Ξ)∗ the dual space to V̊1
β(Ξ) equipped with the canonical norm

defined similarly to (3.4), and we let 〈·, ·〉Ξ refer to the duality pairing between these two spaces. First of all,
we have a Fredholmness result.

Proposition 4.1. Assume that κσ = σ−/σ+ 6= −1. For β ∈ R, introduce the bounded linear operator Bβ :
V̊1
β(Ξ) → V̊1

−β(Ξ)∗ such that 〈Bβu, v〉Ξ = (σ∞∇u,∇v)L2(Ξ) for u ∈ V̊1
β(Ξ), v ∈ V̊1

−β(Ξ). Then, Bβ is of
Fredholm type if and only if no element λ ∈ Λ satisfies <e λ = β (for the definition of Λ, see (3.1)).

The proof of this proposition actually boils down to the proof of Proposition 3.3, after applying the trans-
formation x 7→ x/|x|2. Like in Section 3.1, the operators Bβ can be studied by means of Kondratiev’s theory.
Let us set

S±(ρ, θ) = χ(ρ)ρ±iµφ(θ). (4.8)

Here, (±iµ, φ) ∈ C × H1
0(0;π) are the same pairs as in (3.7) and χ is introduced with Figure 2 (let us remind

that χ(ρ) = 0 for ρ ≤ 1 and χ(ρ) = 1 for ρ ≥ 2). Note that S± ∈ V̊1
−1(Ξ). Once again, transforming problem

considered in Proposition 4.1 by means of the map x 7→ x/|x|2, we can prove the following result using the
same arguments as for Proposition 3.9.

Proposition 4.2. There exists a unique (modulo Ker B+1) element Z ∈ Ker B−1 \ Ker B+1 admitting the
decomposition Z = S+ + cZS−+ Z̃ for some constant cZ ∈ C and some Z̃ ∈ V̊1

β(Ξ) for all β ∈ (0; 2). Moreover,
we have |cZ | = 1.

From the above result, we infer that Ker B−1 = span{Z} ⊕ Ker B+1. In the sequel, the following definition
will be convenient.

Definition 4.3. We call δ• the largest element of (0; 1] such that δ−2iµ
• = cZ .

Depending on the parameters σ± and on the domains Ξ±, it can happen that the operator B+1 gets a non
trivial (finite dimensional) kernel. We discard this possibility, considering an additional assumption

Assumption 4.4. The operator B+1 is injective.

For a concrete case where this assumption is satisfied, one may for example consider the situation of Section 7.
It is not clear under which precise circumstances Assumption 4.4 is satisfied, and this point is already the subject
of contributions in the current literature, see [20]. Another (open) question is wether or not the subsequent
analysis can be carried out without this assumption. Nevertheless, as is shown by the geometry considered for
the numerical experiment in Section 7, relevant geometries comply with this assumption.
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We will choose the function Ŭδ, which must satisfy equations (4.6), equal to cδNZ. Here, cδN is constant
depending on δ. Therefore, up to some remainder with respect to δ, the field in the inner region admits the
following behaviour as ρ = r/δ → +∞:

Ŭ δ = cδNS+ + cδNcZS− + . . .

= cδN

(r
δ

)+iµ

φ(θ) + cδNδ
−2iµ
•

(r
δ

)−iµ
φ(θ) + . . .

(4.9)

4.3. Matching of asymptotics and definition of the model operator

To conclude the construction of the first terms of the asymptotic expansion of the eigenpair (λδm, u
δ), we

apply the matching procedure. In the present case, it consists in equating expansion (4.5), (4.9) as r → 0 and
r/δ → +∞:

cδ+ r
+iµφ(θ) + cδ− r

−iµφ(θ) + . . . = cδN

(r
δ

)+iµ

φ(θ) + cδNδ
−2iµ
•

(r
δ

)−iµ
φ(θ) + . . .

Since r 7→ r+iµ and r 7→ r−iµ are independent functions and since φ 6= 0, this yields the identities cδ+ = cδNδ
−iµ,

cδ− = cδNδ
−2iµ
• δ+iµ, and, as a byproduct, the relation cδ− = (δ/δ•)2iµcδ+. Therefore, according to (4.4), ŭδ satisfies

ŭδ − cδNδ−iµ(s+ + (δ/δ•)2iµs−) ∈ D(A). (4.10)

This leads us to introduce the model operator Aδ ⊂ A∗ such that

Aδv = −div(σ0∇v)

D(Aδ) = span{ s+ + (δ/δ•)2iµs− } ⊕D(A).
(4.11)

With this definition, we observe from (4.10) that ŭδ ∈ D(Aδ). Remembering that (ηδm, ŭ
δ) has to satisfy (4.3),

we deduce that the matching procedure imposes that (ηδm, ŭ
δ) be an eigenpair of the operator Aδ. Since

|(δ/δ•)2iµ| = 1, according to Proposition 3.8, we know that Aδ is self-adjoint for all δ ∈ (0; 1] (note that
with Definition (3.10), we have Aδ = A(2µ ln(δ/δ•)). We shall denote {ηδj}j∈Z the set of ordered eigenvalues
(counted with their multiplicities) of Aδ. As a consequence of Proposition 3.12, for each fixed j ∈ Z, the function
δ 7→ ηδj is bounded over (0; 1].

Remark 4.5. When δ1, δ2 > 0 are such that (δ1/δ•)2iµ = (δ2/δ•)2iµ ⇔ ln δ1 = ln δ2 + kπ/µ for some k ∈ Z,
we have D(Aδ1) = D(Aδ2), so that Aδ1 = Aδ2 and S(Aδ1) = S(Aδ2). Therefore, for each fixed j ∈ Z, the map
δ 7→ ηδj is π/µ-periodic in ln δ-scale.

Remark 4.6. According to Proposition 3.9, there is a unique (modulo Ker L−1 ⊂ D(A)) element ζ ∈ D(A∗) \
D(A) admitting the decomposition ζ = s− + cζ s+ + ζ̃ with cζ ∈ C such that |cζ | = |π+(ζ)| = 1, and ζ̃ ∈ D(A).
When δ > 0 is such that (δ/δ•)2iµ = cζ , the function ζ belongs to D(Aδ). In this case, we have 0 ∈ S(Aδ).
Together with Remark 4.5, this shows that the set of values of δ such that Aδ is not injective accumulates at
zero. Figure 8 illustrates the phenomenon.

5. Main theorem

The formal asymptotic expansion above suggests that S(Aδ), the spectrum of the original operator in the
geometry with a rounded corner, behaves as S(Aδ), the spectrum of the model operator, as δ goes to zero.
To prove this result, we would like to show estimates on the inverses of these operators. However, this is not
possible because the set of δ such that Aδ is not invertible accumulates at zero. To circumvent this problem, we
will shift the spectrum in the complex plane working with Aδ + iId, Aδ + iId instead of Aδ, Aδ. To begin with,
we state an important result whose technical proof is postponed to the next section.
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Figure 8. As δ goes to zero, (δ/δ•)2iµ runs on the unit circle and hits cζ infinitely many times.

Theorem 5.1. Under Assumption 4.4, for any ε > 0, there is a constant Cε independent of δ ∈ (0; 1] such that

sup
f∈L2(Ω)\{0}

‖(Aδ + iId)−1f − (Aδ + iId)−1f‖L2(Ω)

‖f‖L2(Ω)
≤ Cε δ

1−ε. (5.1)

The result of this theorem can be rephrased as (Aδ + iId)−1 = (Aδ + iId)−1 + O(δ1−ε) considering (Aδ +
iId)−1, (Aδ + iId)−1 as operators mapping L2(Ω) to L2(Ω). Since these two operators are normal, we deduce in
the next proposition (see the proof in Appendix) that the spectra of (Aδ + iId)−1 and (Aδ + iId)−1 are closed
to each other.

Proposition 5.2. Under Assumption 4.4, for any ε > 0, there is a constant Cε independent of δ ∈ (0; 1] such
that

sup
η∈S(Aδ)

inf
λ∈S(Aδ)

∣∣∣ 1
λ+ i

− 1
η + i

∣∣∣ + sup
λ∈S(Aδ)

inf
η∈S(Aδ)

∣∣∣ 1
λ+ i

− 1
η + i

∣∣∣ ≤ Cε δ
1−ε. (5.2)

Now, we are ready to establish the main theorem of the paper.

Theorem 5.3. Assume that κσ ∈ (−1;−1/3).
Let {λδj}j∈Z refer to the set of ordered eigenvalues of the original operator Aδ defined in (2.3).
Let {ηδj}j∈Z refer to the set of ordered eigenvalues of the model operator Aδ defined in (4.11).
Under Assumption 4.4, for any j ∈ Z, ε > 0, there is a constant Cj, ε > 0 independent of δ ∈ (0; 1] such that

inf
λ∈S(Aδ)

|ηδj − λ|+ inf
η∈S(Aδ)

|λδj − η| ≤ Cj, ε δ
1−ε. (5.3)

Proof. Pick j ∈ Z and ε ∈ (0; 1). According to Proposition 3.12, we know that δ 7→ ηδj remains bounded as δ
goes to zero. From (5.2), we infer

inf
λ∈S(Aδ)

|ηδj − λ| ≤ Cj, ε δ
1−ε, ∀δ ∈ (0; 1].

This estimate, together with simple considerations based on the counting of the eigenvalues of Aδ allow to show
that for all j ∈ Z, δ 7→ λδj is bounded as δ → 0. Using again (5.2), finally we obtain (5.3). �

Theorem 5.3 guarantees that all the eigenvalues of the original operator Aδ behave as the eigenvalues of the
model operator Aδ as δ goes to zero. Since the eigenvalues of Aδ are periodic in ln δ - scale, this demonstrates
that, asymptotically, all the eigenvalues of Aδ are periodic in ln δ - scale as δ → 0.
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6. Asymptotic analysis for the source term problem

The goal of this section is to demonstrate Theorem 5.1. Consider the source term problem

Find uδ ∈ H1
0(Ω) such that

−div(σδ∇uδ) + iuδ = f in Ω,
(6.1)

where f is a given function of L2(Ω). For a fixed δ ∈ (0; 1], problem (6.1) has a unique solution uδ = (Aδ +
iId)−1f . Define vδ := (Aδ + iId)−1f . Proving Theorem 5.1 boils down to show that vδ is a good approximation
of uδ in the L2-norm as δ goes to zero. Because the sign of σδ changes on Ω, proving such a result is a delicate
task and the variational approach developed in [6, 10] to establish Fredholm property for (6.1) seems useless
here. Instead, we will employ a method introduced in ([30], Chap. 2, [33]) (see also [15, 16] for examples of
application in the context of negative materials). Our strategy is as follows. First in Section 6.1, we construct
an almost inverse of Aδ + iId that we denote R̂δ. Then, working with R̂δ, we prove a uniform stability estimate
for (Aδ + iId)−1 as δ goes to zero. In a third step, we define a second asymptotic expansion of uδ, denoted R̆δf ,
which involves directly the function vδ. We show that it yields a good approximation of uδ using the stability
estimate derived in Section 6.2. Finally, we establish that R̆δf and vδ are closed to each other when δ → 0.

6.1. First asymptotic expansion

Let us construct a first asymptotic expansion of uδ, the solution of problem (6.1). Decompose the source
term f ∈ L2(Ω) in an inner and an outer contribution,

f(x) = g(x) +G(x/δ) with g(x) = χ√δ(r)f(x) and G(ξ) = ψ√δ(δρ)f(δξ).

Let us emphasize that according to the definition of χ, ψ (see (2)), there holds χ√δ +ψ√δ = 1. Moreover, since
χ√δ = 0 for r ≤

√
δ and ψ√δ = 0 for r ≥ 2

√
δ, we know that g vanishes in a neighbourhood of the origin and

that supp(G) (the support of G) is bounded in Ξ. As a consequence, for all β ∈ R we have g ∈ V0
β(Ω) and

G ∈ V0
β(Ξ). To define a far field expansion for uδ, we use the following result.

Proposition 6.1. Assume that κσ ∈ (−1;−1/3). For all β ∈ (0; 2), there is a unique v admitting the decom-
position v = c (s+ + (δ/δ•)2iµs−) + ṽ, with c ∈ C, ṽ ∈ V̊1

−β(Ω), which satisfies −div(σ0∇v) + iv = g in Ω.
Moreover, we have c = π+(v) and

|π+(v)|+ ‖v − π+(v) (s+ + (δ/δ•)2iµs−)‖V1
−β(Ω) ≤ C ‖g‖V̊1

β(Ω)∗ (6.2)

where C depends on β but not on δ ∈ (0; 1].

Proof. For β ∈ (0; 2), define the space Vout
β (Ω) := span{s+ + (δ/δ•)2iµs−} ⊕ V̊1

−β(Ω) endowed with the norm

‖v‖Vout
β (Ω) := |c|+ ‖ṽ‖V1

−β(Ω) for v = c (s+ + (δ/δ•)2iµs−) + ṽ, c ∈ C, ṽ ∈ V̊1
−β(Ω).

Introduce the operator Jout
β : Vout

β (Ω) → V̊1
β(Ω)∗ such that 〈Jout

β u, v〉Ω = (σ0∇u,∇v)L2(Ω) + i(u, v)L2(Ω), for
all u ∈ Vout

β (Ω), v ∈ C∞0 (Ω). Using ([9], Thm. 4.4), we can prove that for all δ ∈ (0; 1], β ∈ (0; 2), Jout
β is

Fredholm of index zero. If u belongs to ker Jout
β , we have 0 = =m 〈Jout

β u, u〉Ω = ‖u‖2L2(Ω). This shows that Jout
β

is an isomorphism. Finally, since the map δ 7→ (δ/δ•)2iµ is periodic in ln δ-scale, we can demonstrate that the
constant C in (6.2) can be chosen independently of δ. �

Now, we wish to define a near field expansion for uδ. To proceed, we use the following result.

Proposition 6.2. Assume that κσ ∈ (−1;−1/3). Under Assumption 4.4, for all β ∈ (0; 2), the operator
B−β : V̊1

−β(Ξ) → V̊1
β(Ξ)∗ defined in Proposition 4.1 is onto and ker B−β = span{Z} where Z is introduced in

Proposition 4.2.
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Proof. When κσ ∈ (−1;−1/3), as seen in Section 3.1, we have {λ ∈ Λ | − 2 < <e λ < 2} = {±iµ}. Therefore,
Proposition 4.1 guarantees that for all β ∈ (0; 2), B−β and Bβ are Fredholm operators. Since B−β is the
adjoint of Bβ , we have Ind B−β = −Ind Bβ (here Ind stands for the index). On the other hand, the equality
{λ ∈ Λ | −2 < <e λ < 2} = {±iµ}, together with ([34], Chap. 4, Prop. 3.1), implies that Ind B−β− Ind Bβ = 2.
From the two previous relations, we infer Ind B−β = −Ind Bβ = 1. Applying the Kondratiev theory, since
{λ ∈ Λ | 0 < |<e λ| < 2} = ∅, we can prove that for all β ∈ (0; 2), ker B−β = ker B−1 and ker Bβ = ker B+1.
Under Assumption 4.4, we deduce that ker B−β = span{Z} and that B−β is onto (because B−β is the adjoint
of Bβ which is injective). �

Proposition 6.2 ensures that for all β ∈ (0; 2), there is a unique function U ∈ V̊1
−β(Ξ) satisfying

−div(σ∞∇U) = G in Ξ and the orthogonality condition
∫
Ξ∩D(0,R)

U(ξ)Z(ξ) dξ = 0 for some given R > 0.
Moreover, we have the continuity estimate

‖U‖V1
−β(Ξ) ≤ C ‖G‖V̊1

β(Ξ)∗ . (6.3)

Then we set V̂δ(x) = δ2Uδ(x) + δiµπ+(v)Zδ(x) with Uδ, Zδ such that Uδ(x) = U(x/δ), Zδ(x) = Z(x/δ). In the
definition of V̂δ, the multiplicative term in front of Zδ is added so that the behaviour of V̂δ matches with the one
of v when r → 0, r/δ → +∞ (exactly as in Sect. 4.3). Finally, we define the linear map R̂δ : L2(Ω) → L2(Ω)
such that R̂δf = ûδ (f is the source term appearing in (6.1)) with

ûδ = χδ v + ψ V̂δ − ψχδ m̂δ. (6.4)

In (6.4), we take m̂δ such that m̂δ(x) = π+(v)
(
r+iµ + (δ/δ•)2iµr−iµ

)
φ(θ). This function represents the predom-

inant behaviour of v (resp. V̂δ) as r → 0 (resp. r/δ → +∞).

6.2. Stability estimate

Now, with the operator R̂δ, we prove a uniform stability estimate for (Aδ + iId)−1 when δ goes to zero. To
proceed, as mentioned above, we will work with specific norms using a method introduced in ([30], Chap. 2, [33]).
To implement the technique, we need to introduce the Hilbert spaces V0

β, δ(Ω), β ∈ R. These spaces are defined
as the completions of C∞(Ω) for the weighted norms

‖v‖V0
β,δ(Ω) := ‖(r + δ)βv‖L2(Ω). (6.5)

Observe that for any β ∈ R and δ > 0, the space V0
β, δ(Ω) coincides with L2(Ω) because the norm (6.5) is

equivalent to ‖ · ‖L2(Ω). However, the constants coming into play in this equivalence depend on δ which is a
crucial feature.

Proposition 6.3. Under Assumption 4.4, for any β ∈ (0; 1), there is Cβ > 0 independent of δ such that

sup
f∈L2(Ω)\{0}

‖(Aδ + iId)−1f‖L2(Ω)

‖f‖V0
1−β,δ(Ω)

≤ Cβ , ∀δ ∈ (0; 1]. (6.6)

Proof. As above, we denote ûδ = R̂δf . The general scheme, whose steps will be justified hereafter, is the
following. We calculate

(Aδ + iId)(R̂δf) = −div(σδ∇ûδ) + iûδ = f + K̂δf (6.7)

where K̂δ : L2(Ω)→ L2(Ω) is a linear operator defined in (6.18). We prove that there holds

‖K̂δf‖V0
1−β,δ(Ω) ≤ C δγ/2 ‖f‖V0

1−β,δ(Ω), (6.8)
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where β is chosen in (0; 1) and where γ > 0 is chosen so that γ < β. Here and in the following, C > 0 denotes
a constant, which can change from one line to another and depends on β, but which does not depend on δ. We
infer that for δ small enough, Id+K̂δ is invertible as an operator of L2(Ω) endowed with the norm ‖ ·‖V0

1−β,δ(Ω).
On the other hand, a direct computation yields

‖R̂δf‖L2(Ω) = ‖ûδ‖L2(Ω) ≤ C ‖f‖V0
1−β,δ(Ω). (6.9)

Using (6.7), (6.9), then we can write

‖(Aδ + iId)−1f‖L2(Ω) = ‖R̂δ(Id + K̂δ)−1f‖L2(Ω) ≤ C ‖(Id + K̂δ)−1f‖V0
1−β,δ(Ω) ≤ C ‖f‖V0

1−β,δ(Ω). (6.10)

Taking the supremum over all f ∈ L2(Ω), we obtain (6.6). To end the proof, it remains to establish (6.7)–(6.9).
We first write estimates which will be useful in the analysis. Pick some β ∈ (0; 1), γ ∈ (0;β) and apply (6.2)
with β replaced by β + γ. We get

|π+(v)|+ ‖v − π+(v) (s+ + (δ/δ•)2iµs−)‖V1
−β−γ(Ω) ≤ C ‖g‖V̊1

β+γ(Ω)∗ . (6.11)

Again, we emphasize that C depends on β, γ but not on δ. Moreover, we have

‖g‖V̊1
β+γ(Ω)∗ ≤ ‖r

−β−γ+1g‖L2(Ω) ≤‖r−β−γ+1g‖
L2(Ω\D(O,

√
δ))

≤Cδ−γ/2 ‖r−β+1g‖
L2(Ω\D(O,

√
δ))

≤Cδ−γ/2 ‖(r + δ)−β+1g‖
L2(Ω\D(O,

√
δ))

≤Cδ−γ/2 ‖f‖V0
1−β,δ(Ω). (6.12)

Note that taking γ = 0 in (6.11), (6.12) gives

|π+(v)|+ ‖v − π+(v) (s+ + (δ/δ•)2iµs−)‖V1
−β(Ω) ≤ C ‖g‖V̊1

β(Ω)∗ ≤ C ‖f‖V0
1−β,δ

. (6.13)

For the near field term U , apply (6.3) with −β replaced by −β + γ. This yields

‖U‖V1
−β+γ(Ξ) ≤ C ‖G‖V̊1

β−γ(Ξ)∗ . (6.14)

Observe that

‖G‖V̊1
β−γ(Ξ)∗ ≤‖(1 + ρ)−β+γ+1G‖L2(Ξ)

≤‖(1 + ρ)−β+γ+1G‖
L2(Ξ\D(O,2/

√
δ)

≤C δ−γ/2‖(1 + ρ)−β+1G‖
L2(Ξ\D(O,2/

√
δ)
≤ C δβ−2−γ/2 ‖f‖V0

1−β,δ(Ω). (6.15)

The last inequality in (6.15) has been obtained making the change of variables x = δξ. This explains the
appearance of the term δβ−2. Now, we show (6.7)–(6.9).

? Proof of (6.7). A direct computation provides

−div(σδ∇ûδ) + iûδ = − χδ div(σδ∇v)− ψ div(σδ∇V̂δ) + ψχδ div(σδ∇m̂δ)

−
[
div(σδ∇·), χδ

]
v −

[
div(σδ∇·), ψ

]
V̂δ +

[
div(σδ∇·), ψχδ

]
m̂δ

+ iχδ v + iψ V̂δ − iψχδ m̂δ

=χδ χ√δ f + ψ ψ√δ f

−
[
div(σδ∇·), χδ

]
(v − m̂δ)−

[
div(σδ∇·), ψ

]
(V̂δ − m̂δ)

+ iψ (V̂δ − iχδ m̂δ)

= f −
[
div(σδ∇·), χδ

]
(v − m̂δ)−

[
div(σδ∇·), ψ

]
(V̂δ − m̂δ)

+ iψ (V̂δ − iχδ m̂δ). (6.16)
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In the above equalities, the commutator [A,B] is defined by [A,B] = AB − BA. In particular, observing that
∇(ψχδ) = ∇ψ +∇χδ, we find[

div(σδ∇·), ψχδ
]
m̂δ = div(σδ∇(ψχδm̂δ))− ψχδ div(σδ∇m̂δ)

= 2σδ∇(ψχδ) · ∇m̂δ + m̂δ div(σδ∇(ψχδ))

= 2σδ∇χδ · ∇m̂δ + m̂δ div(σδ∇χδ) + 2σδ∇ψ · ∇m̂δ + m̂δ div(σδ∇ψ)

=
[
div(σδ∇·), χδ

]
m̂δ +

[
div(σδ∇·), ψ

]
m̂δ. (6.17)

In (6.16), we also use that χδ χ√δ = χ√δ, ψδ ψ√δ = ψ√δ and χ√δ + ψ√δ = 1. From (6.16), we infer that the
operator K̂ introduced in (6.7) is defined by

K̂f = −
[
div(σδ∇·), χδ

]
(v − m̂δ)−

[
div(σδ∇·), ψ

]
(V̂δ − m̂δ) + iψ (V̂δ − χδ m̂δ). (6.18)

? Proof of (6.8). To compute the norm of K̂, we will assess each of the terms of the right hand side of (6.18).
For the first one, working as in (6.17), we find[

div(σδ∇·), χδ
]
(v − m̂δ) = 2σδ∇χδ · ∇(v − m̂δ) + (v − m̂δ) div(σδ∇χδ)

Define, for t > 0, Qt := {x ∈ Ξ | t < |x| < 2t}. Noticing that |∇χδ| ≤ C δ−1 and |div(σδ∇χδ)| ≤ C δ−2, we can
write

‖
[
div(σδ∇·), χδ

]
(v − m̂δ)‖V0

1−β,δ(Ω)

≤‖(r + δ)1−βσδ∇χδ · ∇(v − m̂δ)‖L2(Ω) + ‖(r + δ)1−β(v − m̂δ) div(σδ∇χδ)‖L2(Ω)

≤C (δ−1‖(r + δ)1−β∇(v − m̂δ)‖L2(Qδ) + δ−2‖(r + δ)1−β(v − m̂δ)‖L2(Qδ))

≤C δγ (‖r−β−γ∇(v − m̂δ)‖L2(Qδ) + ‖r−β−γ−1(v − m̂δ)‖L2(Qδ))

≤C δγ ‖v − m̂δ‖V1
−β−γ(Ω) ≤ C δγ/2 ‖f‖V0

1−β,δ(Ω). (6.19)

In (6.19), we use that we have |x| ≤ |x|+δ ≤ 2|x| in Qδ. Moreover, the last inequality comes from (6.11), (6.12).
Proceeding similarly, we find ‖

[
div(σδ∇·), ψ

]
(V̂δ−m̂δ)‖V0

1−β,δ(Ω) ≤ C δγ/2 ‖f‖V0
1−β,δ(Ω). Now, we bound the third

term of the right hand side of (6.18). Triangular inequality implies

‖(r + δ)1−βψ (V̂δ − χδ m̂δ)‖L2(Ω) ≤ ‖(r + δ)1−βψ (V̂δ − m̂δ)‖L2(Ω) + ‖(r + δ)1−βψδ m̂δ‖L2(Ω). (6.20)

On the one hand, using (6.13), (6.14) and (6.15), we find

‖(r + δ)1−βψ (V̂δ − m̂δ)‖L2(Ω) ≤‖(r + δ)1−βψ δ2Uδ‖L2(Ω) + ‖(r + δ)1−βψ (δiµπ+(v)Zδ − m̂δ)‖L2(Ω)

≤ δ4−β‖(1 + ρ)1−βψ1/δ U‖L2(Ξ) + C δ2−β |π+(v)| ‖(1 + ρ)1−βψ1/δ Z̃‖L2(Ξ)

≤C δ2−β+γ‖(1 + ρ)−β+γ−1 U‖L2(Ξ) + C δ2−β ‖Z̃‖V1
2−β(Ξ) ‖f‖V0

1−β,δ(Ω)

≤C δγ/2 ‖f‖V0
1−β,δ(Ω). (6.21)

On the other hand, with (6.13), we obtain

‖(r + δ)1−βψδ m̂δ‖L2(Ω) ≤ |π+(v)| ‖(r + δ)1−βψδ‖L2(Ω) ‖
(
r+iµ + (δ/δ•)2iµr−iµ

)
φ‖L∞(Ω)

≤ C ‖(r + δ)1−βψδ‖L2(Ω) ‖f‖V0
1−β,δ(Ω) ≤ C δ2−β ‖f‖V0

1−β,δ(Ω). (6.22)

Plugging (6.21) and (6.22) in (6.20) provides a good estimate for the third term of the right hand side of (6.18).



SPECTRUM FOR A PLASMONIC PROBLEM WITH A ROUNDED CORNER 1305

? Proof of (6.9). We have

‖ûδ‖L2(Ω) ≤ ‖χδ v‖L2(Ω) + ‖ψ (V̂δ − χδ m̂δ)‖L2(Ω). (6.23)

Exploiting (6.13), we get

‖χδ v‖L2(Ω) ≤ |π+(v)| ‖s+ + (δ/δ•)2iµs−‖L2(Ω) + ‖v − π+(v) (s+ + (δ/δ•)2iµs−)‖L2(Ω)

≤ C (‖f‖V0
1−β,δ(Ω) + ‖v − π+(v) (s+ + (δ/δ•)2iµs−)‖V1

−β(Ω)) ≤ C ‖f‖V0
1−β,δ(Ω). (6.24)

For the second term of the right hand side of (6.23), adapting (6.20)–(6.22), we find

‖ψ (V̂δ − χδ m̂δ)‖L2(Ω) ≤ C ‖f‖V0
1−β,δ(Ω). (6.25)

Plugging (6.24), (6.25) in (6.23) gives ‖ûδ‖L2(Ω) ≤ C ‖f‖V0
1−β,δ(Ω), which is exactly estimate (6.9). �

6.3. Second asymptotic expansion

In this section, we construct a second asymptotic expansion of uδ the solution to problem (6.1). This expansion
will be a bit different from the one derived in Section 6.1. In particular, it will involve directly the function
vδ := (Aδ + iId)−1f . This feature will be very useful to prove in Section 6.4 that vδ is a good approximation of
uδ, which is our final goal.

Set V̆δ(x) = δiµπ+(vδ)Zδ(x), with Zδ as in (6.4), and m̆δ(x) = π+(vδ)
(
r+iµ + (δ/δ•)2iµr−iµ

)
φ(θ). Then,

define the linear map R̆δ : L2(Ω)→ L2(Ω) such that R̆δf = ŭδ with

ŭδ = χδ v
δ + ψ V̆δ − ψχδ m̆δ. (6.26)

Note that m̆δ represents the main contribution of vδ (resp. V̆δ) as r → 0 (resp. r/δ → +∞). Using the uniform
stability estimate for (Aδ + iId)−1, we will show that R̆δf = ŭδ is a good approximation of (Aδ + iId)−1f = uδ

as δ goes to zero.

Proposition 6.4. Under Assumption 4.4, for any ε > 0, there is Cε > 0 independent of δ such that

sup
f∈L2(Ω)\{0}

‖(Aδ + iId)−1f − R̆δf‖L2(Ω)

‖f‖L2(Ω)
≤ Cε δ1−ε, ∀δ ∈ (0; 1]. (6.27)

Proof. Working as in (6.16), we find (Aδ + iId)(ŭδ − uδ) = −div(σδ∇(ŭδ − uδ)) + i(ŭδ − uδ) = K̆δf with

K̆δf = −ψδf −
[
div(σδ∇·), χδ

]
(vδ − m̆δ)−

[
div(σδ∇·), ψ

]
(V̆δ − m̆δ) + iψ (V̆δ − iχδ m̆δ). (6.28)

According to Proposition 6.4, we have

‖(Aδ + iId)−1f − R̆δf‖L2(Ω) = ‖uδ − ŭδ‖L2(Ω) = ‖(Aδ + iId)−1(K̆δf)‖L2(Ω) ≤ C ‖K̆δf‖V0
1−β,δ(Ω), (6.29)

where C is a constant independent from δ and where β is set in (0; 1). Therefore, we see it is sufficient to
examine each of the terms of the right hand side of (6.28). For the first one, we can write

‖ψδf‖V0
1−β,δ(Ω) = ‖(r + δ)1−βψδf‖L2(Ω) ≤ C δ1−β ‖f‖L2(Ω).

For the second one, using the estimate

|π+(vδ)|+ ‖vδ − π+δ(v) (s+ + (δ/δ•)2iµs−)‖V1
−1(Ω) ≤ C ‖f‖V̊1

1(Ω)∗ ≤ C ‖f‖L2(Ω), (6.30)
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(the same as (6.2) with β = 1) and mimicking (6.19), we find

‖
[
div(σδ∇·), χδ

]
(vδ − m̆δ)‖V0

1−β,δ(Ω)

≤‖(r + δ)1−βσδ∇χδ · ∇(vδ − m̆δ)‖L2(Ω) + ‖(r + δ)1−β(vδ − m̆δ) div(σδ∇χδ)‖L2(Ω)

≤C (δ−1‖(r + δ)1−β∇(vδ − m̆δ)‖L2(Qδ) + δ−2‖(r + δ)1−β(vδ − m̆δ)‖L2(Qδ))

≤C δ1−β (‖r−1∇(vδ − m̆δ)‖L2(Qδ) + ‖r−2(vδ − m̆δ)‖L2(Qδ))

≤C δ1−β ‖vδ − m̆δ‖V1
−1(Ω) ≤ C δ1−β ‖f‖L2(Ω). (6.31)

Analogously, we obtain ‖
[
div(σδ∇·), ψ

]
(V̆δ − m̆δ)‖V0

1−β,δ(Ω) ≤ C δ1−β ‖f‖L2(Ω). Now, we work on the fourth
term of the right hand side of (6.28). We have

‖ψ (V̆δ − χδ m̆δ)‖V0
1−β,δ(Ω)

≤ ‖(r + δ)1−βψ (V̆δ − m̆δ)‖L2(Ω) + ‖(r + δ)1−βψδ m̆δ‖L2(Ω). (6.32)

On the one hand, using (6.30), we find

‖(r + δ)1−βψ (V̆δ − m̆δ)‖L2(Ω) = ‖(r + δ)1−βψ (δiµπ+(vδ)Zδ − m̆δ)‖L2(Ω)

≤ C δ2−β ‖(1 + ρ)1−βψ1/δ Z̃‖L2(Ξ) ‖f‖L2(Ω) ≤ C δ2−β ‖f‖L2(Ω). (6.33)

On the other hand, again with (6.30), we get

‖(r + δ)1−βψδ m̆δ‖L2(Ω) ≤ |π+(v)| ‖(r + δ)1−βψδ‖L2(Ω) ‖r+iµ + (δ/δ•)2iµr−iµ
)
φ‖L∞(Ω)

≤C ‖(r + δ)1−βψδ‖L2(Ω) ‖f‖L2(Ω) ≤ C δ2−β ‖f‖L2(Ω). (6.34)

Plugging (6.33) and (6.34) in (6.32) furnishes a good estimate for the fourth term of the right hand side of (6.28).
Gathering (6.31)-(6.34), we deduce ‖K̆δf‖V0

1−β,δ(Ω) ≤ C δ1−β ‖f‖L2(Ω). Together with (6.29), this yields

‖(Aδ + iId)−1f − R̆δf‖L2(Ω) ≤ C δ1−β ‖f‖L2(Ω). Taking the supremum over all f ∈ L2(Ω), since this inequality
is true for all β ∈ (0; 1), finally we obtain (6.27). �

6.4. Proof of Theorem 5.1

Consider some given f ∈ L2(Ω) and again, set uδ = (Aδ + iId)−1f , ŭδ = R̆δf , vδ = (Aδ + iId)−1f . Using
triangular inequality and the result of Proposition 6.4, we can write

‖(Aδ + iId)−1f − (Aδ + iId)−1f‖L2(Ω) ≤‖(Aδ + iId)−1f − R̆δf‖L2(Ω) + ‖R̆δf − (Aδ + iId)−1f‖L2(Ω)

≤C δ1−ε ‖f‖L2(Ω) + ‖ŭδ − vδ‖L2(Ω). (6.35)

Let us assess the term ‖ŭδ − vδ‖L2(Ω). Observing that ψχδ = ψ(1− ψδ) = ψ − ψδ, we find

ŭδ − vδ = −ψδ (vδ − m̆δ) + ψ (V̆δ − m̆δ). (6.36)

We need to derive a proper upper bound for the L2-norm of each contribution in the right-hand side above.
First of all, note that vδ − m̆δ ∈ V1

−1(Ω). Observing that the support of ψδ is included in the disk D(O, 2δ),
with (6.30), we obtain

‖ψδ (vδ − m̆δ)‖L2(Ω) ≤ C δ2 ‖vδ − m̆δ‖V0
−2(Ω) ≤ C δ2 ‖vδ − m̆δ‖V1

−1(Ω) ≤ C δ2 ‖f‖L2(Ω), (6.37)

where C is independent of δ. To deal with the second term of the right-hand side of (6.36), we simply use (6.33)
which gives

‖ψ (V̆δ − m̆δ)‖L2(Ω) = δ |π+(v)| ‖ψ1/δ Z̃‖L2(Ξ)

≤C δ2−ε ‖(1 + ρ)1−εψ1/δ Z̃‖L2(Ξ) ‖f‖L2(Ω)

≤C δ2−ε ‖Z̃‖V1
2−ε(Ξ) ‖f‖L2(Ω) ≤ C δ2−ε ‖f‖L2(Ω). (6.38)
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Figure 9. Domains Ωδ and Ω0.

From (6.36)–(6.38), we infer
‖ŭδ − vδ‖L2(Ω) ≤ C δ2−ε ‖f‖L2(Ω). (6.39)

Finally, plugging (6.39) in (6.35) leads to the result of Theorem 5.1.

7. Numerical illustrations

To illustrate the results we proved in the two previous sections, we approximate numerically the spectrum of
problem (2.1) in a canonical geometry. The geometry will be chosen so that we can separate variables and thus,
proceed to explicit computations. The framework (see Fig. 9) will be slightly different from the one introduced
in Section 2 because Ωδ+∪Ωδ− will not be a fixed domain. However, the analysis we provided all along this paper
could be extended without difficulty to the geometry studied here and we would obtain analogous results.

Let us first describe the geometry. Consider δ ∈ (0; 1) and define (see Fig. 9)

Ωδ+ := { (r cos θ, r sin θ) | δ < r < 1, π/4 < θ < π};

Ωδ− := { (r cos θ, r sin θ) | δ < r < 1, 0 < θ < π/4};

Ωδ := { (r cos θ, r sin θ) | δ < r < 1, 0 < θ < π}.

Introduce the function σδ : Ωδ → R such that σδ = σ± in Ωδ±, where σ+ > 0 and σ− < 0 are constants. We are
interested in the eigenvalue problem

Find (λδ, uδ) ∈ C×H1
0(Ωδ) \ {0} such that

−div(σδ∇uδ) = λδuδ in Ωδ.
(7.1)

We define the unbounded operator Aδ : D(Aδ)→ L2(Ωδ) such that

Aδ v = −div(σδ∇v)

D(Aδ) := {v ∈ H1
0(Ωδ) | div(σδ∇v) ∈ L2(Ωδ)}.

(7.2)

Using an explicit computation relying on the separation of variables, we proved in [15] that for κσ = σ−/σ+ ∈
(−∞,−1)∪(−1/3; 0), the operator Aδ is injective for all δ ∈ (0; 1). Moreover, for κσ ∈ (−1;−1/3), Aδ is injective
if and only if δ ∈ (0; 1)\ ∪n∈N∗ {δn} with

δn = exp

(
−

nπ2

2 acosh( 1−κσ
2(1+κσ) )

)
−→
n→∞

0. (7.3)

Now, we discretize problem (7.1). For details concerning the process, we refer the reader to [10, 14, 38].
We impose σ+ = 1. Let us consider (T δh )h a shape regular family of triangulations of Ωδ, made of triangles.
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Moreover, we assume that, for any triangle τ , one has either τ ⊂ Ωδ1 or τ ⊂ Ωδ2 . Define the family of finite
element spaces

Vδ
h :=

{
v ∈ H1

0(Ωδ) such that v|τ ∈ P1(τ) for all τ ∈ T δh
}
,

where P1(τ) is the space of polynomials of degree at most 1 on the triangle τ . Let us consider the problem

Find (λδh, u
δ
h) ∈ C×Vδ

h \ {0} such that

(σδ∇uδh,∇vδh)L2(Ωδ) = λδh(uδh, v
δ
h)L2(Ωδ), ∀vδh ∈ Vδ

h.
(7.4)

• Outside the critical interval (-1;-1/3)
In Figure 10, we display the ten eigenvalues of smallest modulus of problem (7.4) with respect to − ln δ for a
contrast κσ = σ−/σ+ = −1 − 10−4 /∈ (−1;−1/3). In this case, it is proved in [6] that the limit problem for
δ = 0 (see Fig. 9, on right) is well-posed in the Fredholm sense in H1

0(Ω). The operator A0 : D(A0) → L2(Ω0)
is self-adjoint and has compact resolvent. The dashed lines in Figure 10 represent the approximation of the ten
eigenvalues of smallest modulus of the limit operator A0. The numerical experiments suggest that the spectrum
of Aδ converges to the spectrum of A0 as δ → 0. Actually, this can be established. However, since the method
is the same as the one we carry out in this paper, in a situation easier to handle, we have chosen not to present
the proof.

• Inside the critical interval (-1;-1/3)
In Figure 11, we display the ten eigenvalues of smallest modulus of problem (7.4) with respect to − ln δ for
a contrast κσ = σ−/σ+ = −1 + 10−4 ∈ (−1;−1/3). We observe that the spectrum of Aδ depends on δ even
for small δ. In other words, it does not converge to the spectrum of some operator independent of δ. The
dashed lines correspond to the expected values of δ = δn (see (7.3)), computed explicitly using separation of
variables, for which Aδ fails to be injective, or equivalently, for which zero belongs to the spectrum of Aδ. Notice
that the spectrum computed numerically indeed passes through zero for these values of δ. Figures 12 and 13
represent respectively the approximation of the first positive and the first negative eigenvalue of Aδ with respect
to − ln δ. Remark the periodic behaviour. This is consistent with what we proved in Theorem 5.3. Note that
in the particular geometry considered here, one can check that Assumption 4.4 appearing in the statement of
Theorem 5.3 holds for all κσ ∈ (−1;−1/3) by means of explicit computations using separation of variables.

Observe that we work here with a contrast very close to−1. This may seem surprising because for κσ = −1, the
operators Aδ are not of Fredholm type, due to the presence of singularities all over the interface ([6], Thm. 6.2).
However, this allows us to obtain several periods in Figures 12 and 13 without being obliged to use a very refined
mesh. Indeed, in Remark 4.5, we obtained that asymptotically, the eigenvalues are π/µ-periodic in ln δ−scale,
where µ is defined in (3.1). According to Remark 3.1, we know that for κσ ∈ (−1;−1/3) such that κσ → −1+,
there holds µ → +∞. In our case where κσ = −1 + 10−4, the coefficient |π/µ| = |π2/(2 acosh( 1−κσ

2(1+κσ) ))|
(see (7.3)) is approximately equal to −0.5. From a numerical point of view, it only requires to use meshes which
are locally symmetric with respect to the interface to avoid instability phenomena (see [14]).

In Figure 14, we consider the source term problem

Find uδh ∈ Vδ
h such that

(σδ∇uδh,∇vδh)Ωδ = (f, vδh)Ωδ , ∀vδh ∈ Vδ
h.

(7.5)

We choose f such that f(x, y) = 100 if x < −0.5 and f(x, y) = 0 if x ≥ −0.5. Moreover, we impose σ+ = 1
and σ+ = −1 + 10−4. We display the variation of ‖uδh‖H1

0(Ωδ) with respect to 1 − δ. We observe peaks which
correspond to the values δ = δn for which Aδ fails to be injective. Here, we can do explicit computations to prove
this result. For a general geometry where separation of variables does not work, we know from Theorem 5.3
that a similar behaviour should be observed. Indeed, S(Aδ) behaves asymptotically as S(Aδ) as δ goes to zero,
and periodically in ln δ-scale, S(Aδ) contains the value 0. Notice that for small values of δ, it is very expensive
to use a mesh adapted to the geometry. Therefore, the mesh size is chosen more or less constant with respect
to δ. This explains why peaks do not appear for small values of δ.
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Figure 10. For a given δ ∈ (0; 1), we approximate the ten eigenvalues of smallest modulus
of the operator Aδ. Then, we make δ tend to zero. The figure represents the approximation
of the spectrum of Aδ with respect to − ln δ. The horizontal dashed lines correspond to the
approximation of the ten eigenvalues of smallest modulus of the limit operator A0.

Figure 11. For a given δ ∈ (0; 1), we approximate the ten eigenvalues of smallest modulus of
the operator Aδ. Then, we make δ tend to zero. The figure represents the approximation of the
spectrum of Aδ with respect to − ln δ. The vertical dashed lines correspond to the expected
values of δ = δn for which Aδ fails to be injective (see (7.3)).

Figure 12. Approximation of the first positive eigenvalue of Aδ with respect to − ln δ. The
vertical dashed lines correspond to the expected values of δ = δn for which Aδ fails to be
injective (see (7.3)).
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Figure 13. Approximation of the first negative eigenvalue of Aδ with respect to − ln δ. The
vertical dashed lines correspond to the expected values of δ = δn for which Aδ fails to be
injective (see (7.3)).

Figure 14. Variation of ‖uδh‖H1
0(Ωδ) with respect to 1−δ. The vertical dashed lines correspond

to the expected values of δ = δn for which Aδ fails to be injective (see (7.3)).

Appendix

In this appendix, first we briefly recall an elementary result of spectral theory that we used in this article in
order to estimate the distance of a number to the spectrum of an operator. We provide a proof for the sake of
completeness. Then, we use it to complete the demonstration of Proposition 5.2.

Lemma A.1. Let H, equipped with the inner product (·, ·)H and the norm ‖ · ‖H, be a Hilbert space. For any
(a priori unbounded) normal linear operator A : D(A) ⊂ H→ H we have

inf
λ∈S(A)

|λ− µ| ≤ inf
v∈D(A)\{0}

‖Av − µv‖H
‖v‖H

, ∀µ ∈ C.

Proof. Since A is normal then, according to the spectral theorem ([3], Thm. 6.6.1), it admits a spectral de-
composition A =

∫
S(A)

ζdE(ζ) where E(ζ) refers to a spectral measure on H. Let dEv,v refer to the measure
associated with ζ 7→ (E(ζ)v, v)H. A spectral decomposition of A−µId is given by A−µId =

∫
S(A)

(ζ−µ)dE(ζ).
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Moreover the formula ‖Av− µv‖2H =
∫

S(A)
|ζ − µ|2dEv,v(ζ) holds for any v ∈ D(A). As a consequence, we have

‖v‖2H inf
λ∈S(A)

|λ− µ|2 = inf
λ∈S(A)

|λ− µ|2
∫

S(A)

dEv,v(ζ) ≤
∫

S(A)

|ζ − µ|2dEv,v(ζ) = ‖Av − µv‖2H.

Since this holds for any v ∈ D(A), we can divide by ‖v‖2H and take the inf in the right hand side of the estimate
above, which yields the desired inequality. �

Proof of Proposition 5.2. First, let us show that

sup
η∈S(Aδ)

inf
λ∈S(Aδ)

∣∣∣ 1
λ+ i

− 1
η + i

∣∣∣ ≤ Cε δ
1−ε, ∀δ ∈ (0; 1]. (A.1)

Pick some η ∈ S(Aδ). Clearly, we have

inf
λ∈S(Aδ)

∣∣∣ 1
λ+ i

− 1
η + i

∣∣∣ = inf
λ̃∈S((Aδ+iId)−1)

∣∣∣λ̃− 1
η + i

∣∣∣·
Note that (Aδ + iId)−1 is a normal operator such that D((Aδ + iId)−1) = L2(Ω). As a consequence, according
to Lemma A.1 above, we deduce

inf
λ̃∈S((Aδ+iId)−1)

∣∣∣λ̃− 1
η + i

∣∣∣ ≤ inf
v∈L2(Ω)\{0}

‖(Aδ + iId)−1v − (η + i)−1v‖L2(Ω)

‖v‖L2(Ω)
· (A.2)

Since η ∈ S(Aδ), there is some v ∈ L2(Ω) \ {0} such that (Aδ + iId)−1v = (η+ i)−1v. From (A.2) and (5.1), we
infer

inf
λ̃∈S((Aδ+iId)−1)

∣∣∣λ̃− 1
η + i

∣∣∣ ≤ ‖(Aδ + iId)−1v − (Aδ + iId)−1v‖L2(Ω)

‖v‖L2(Ω)
≤ Cε δ

1−ε.

Taking the supremum over all η ∈ S(Aδ), we obtain (A.1). Since the roles of Aδ and Aδ are symmetric, (5.2) is
proved. �
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