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Abstract. This work is devoted to the derivation of an asymptotic-preserving scheme for the electronic
M1 model in the diffusive regime. The case without electric field and the homogeneous case are studied.
The derivation of the scheme is based on an approximate Riemann solver where the intermediate states
are chosen consistent with the integral form of the approximate Riemann solver. This choice can be
modified to enable the derivation of a numerical scheme which also satisfies the admissible conditions
and is well-suited for capturing steady states. Moreover, it enjoys asymptotic-preserving properties and
handles the diffusive limit recovering the correct diffusion equation. Numerical tests cases are presented,
in each case, the asymptotic-preserving scheme is compared to the classical HLL [A. Harten, P.D. Lax
and B. Van Leer, SIAM Rev. 25 (1983) 35–61.] scheme usually used for the electronic M1 model. It is
shown that the new scheme gives comparable results with respect to the HLL scheme in the classical
regime. On the contrary, in the diffusive regime, the asymptotic-preserving scheme coincides with the
expected diffusion equation, while the HLL scheme suffers from a severe lack of accuracy because of
its unphysical numerical viscosity.
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1. Introduction

In inertial confinement fusion, nanosecond laser pulses are used to ignite a deuterium-tritium target. An
accurate description of this process is necessary for the understanding of laser-matter interactions and for target
design. Numerous physical phenomena such as, parametric [36, 67] and hydrodynamic [32, 74, 81] instabilities,
laser-plasma absorption [73], wave damping [57], energy redistribution [70] inside the plasma and hot spots
formation [12, 65] from which the thermonuclear reactions propagate depend on the electron heat transport.
The most popular electron heat transport theory was developed by Spitzer and Härm [76] who first solved the
electron kinetic equation by using the expansion of the electron mean free path to the temperature scale length
(denoted ε in this paper). Considering the distribution function of particles close to equilibrium, its deviation

Keywords and phrases. Electronic M1 moment model, approximate Riemann solvers, Godunov type schemes, asymptotic
preserving schemes, diffusive limit, plasma physics.
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2 Université Bordeaux, CELIA, UMR 5107, 33400 Talence, France.

Article published by EDP Sciences c© EDP Sciences, SMAI 2017

https://doi.org/10.1051/m2an/2016079
http://www.esaim-m2an.org
http://www.edpsciences.org


1806 S. GUISSET ET AL.

from the Maxwellian distribution function can be computed and the electron transport coefficients in a fully
ionised plasma without magnetic field are derived. However, even if the electron heat transport is essential, it
is not correctly described in large inertial confinement fusion tools. Indeed, when the electron mean free path
exceeds about 2 × 10−3 times the temperature gradient length, the local electron transport model of Spitzer
and Härm fails. The transport coefficients were derived in the case where the isotropic part of the electron
distribution function remains close to the Maxwellian function. The results of Spitzer and Härm have been
reproduced in several approaches [4,11,75] which develop another technique of solution to the integral equation
for the electron distribution function introduced many years ago by Chapman and Enskog [23] for neutral gases.
Therefore, kinetic approaches seem necessary in the context of inertial confinement fusion. In such multiscale
issues, kinetic solvers are often very computationally expensive and usually limited to time and length much
shorter than those studied with hydrodynamic simulations. It is then a challenge to describe kinetic effects using
a reduced kinetic code on fluid time scales.

It is considered that angular moments models provide higher accuracy than fluid model because the veloc-
ity modulus (denoted ζ in this work) is kept as a variable. The integration of the kinetic equation to obtain
such models is performed only in angle (integration on the unit sphere). Angular moments represent angular
average quantities of the distribution function. Therefore, they can be seen as intermediate models between
kinetic and classic fluid models. Originally, the moment closure hierarchy introduced by Grad [40] leads to a
hyperbolic set of equations for flows close to equilibrium but may suffer from closure breakdown and lead to
unrealisable macroscopic moments. Grad hierarchy is derived from a truncated polynomial series expansion for
the velocity distribution function near the Maxwellian equilibrium and does not ensure the positivity of the
distribution function. Other moment closure approaches have been investigated based on entropy minimisa-
tion principles [2, 61, 68, 69, 77]. The distribution function derived, verifies a minimum entropy property and the
consistency with the set of moments. Fundamental mathematical properties [42,66] such as positivity of the dis-
tribution function, hyperbolicity and entropy dissipation can be exhibited. Levermore [61] proposed a hierarchy
of minimum-entropy closure where the lowest order closure are the Maxwellian and Gaussian closure. In the
present case, the aim is different. Here the energy of particles constitutes a free parameter. Then we integrate
only the kinetic equation with respect to the angle variable and we return only the energy of particles as kinetic
variable. By using a closure defined from a minimisation entropy principle, we obtain the M1 model [33,34,63].
The M1 model is largely used in various applications such as radiative transfer [7,24,35,71,72,79,80] or electronic
transport [33, 63]. The M1 model is known to satisfy fundamental properties such as the positivity of the first
angular moment, the flux limitation and conservation of total energy. Also, it correctly recovers the asymptotic
diffusion equation in the limit of long time behaviour with important collisions [34].

One challenging issue is to derive numerical schemes satisfying fundamental properties. For example, the
classical HLL scheme [44] ensures the positivity of the first angular moment and the flux limitation prop-
erty. However, this scheme fails in recovering the correct limit diffusion equation in the asymptotic regime [3].
Therefore, numerous numerical schemes have been derived over the last 20 years to recover the correct asymp-
totic limit. These schemes are able to handle multiscales situations and are called asymptotic-preserving (AP)
scheme. They are consistent with the macroscopic model when ε tends to zero and are uniformly stable with
respect to ε. AP schemes also avoid the coupling of multiscales equations where the coupling conditions at the
interface can be difficult to obtain. Early works on AP schemes have been performed in [46–49, 58, 59]. These
works have been largely extended in the frame of kinetic equations in fluid and diffusive regimes [17,25,50,54].
The time stiffness induced by the collisional operator led to propose a decomposition of the distribution func-
tion between an equilibrium and a deviation [5, 14, 19, 45, 51, 53, 55, 60]. In [13], a two steps method based on
a relaxation scheme and a well-balanced scheme step is proposed, (see [9, 52] for more details on the relax-
ation scheme framework). The derivation of well-balanced schemes also helps to design AP schemes [38,39] (see
also [1, 9, 10, 18, 21, 22, 37, 41] for details on well-balanced schemes in different frameworks). The AP frame was
also largely extended to the quasi-neutral limit [26–30, 43]. In [7], an HLLC scheme is proposed to solve the
M1 model of radiative transfer in two space dimensions. The HLLC approximate Riemann solver considered
and relevant numerical approximations of extreme wavespeeds give the asymptotic-preserving property. Similar
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ideas were also developed in [6], where a relaxation scheme is exhibited. In order to derive suitable schemes
pertinent for transport and diffusion regimes, different authors proposed modified Godunov-type schemes in
order to include sources terms [41]. The numerical viscosity is modified in [15,16,38,39] to correctly recover the
expected diffusion regimes but extensions seem challenging issues. In [8], the approximate HLL Riemann solver
is modified to include a collisional source term. The resulting numerical scheme satisfies all the fundamental
properties and a clever correction enables to recover the good diffusion equation in the asymptotic limit.

In this paper, we consider the M1 model for the electronic transport [33,63,64] in a Lorentzian plasma where
ions are supposed fixed. The moment system studied writes⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tf0(t, x, ζ) + ζ∂xf1(t, x, ζ) + E(x)∂ζf1(t, x, ζ) = 0,

∂tf1(t, x, ζ) + ζ∂xf2(t, x, ζ) + E(x)∂ζf2(t, x, ζ) − E(x)
ζ

(f0(t, x, ζ) − f2(t, x, ζ))

= −2αei(x)f1(t, x, ζ)
ζ3

,

(1.1)

where f0, f1 and f2 are the first three angular moments of the electron distribution function f . Omitting the
x and t dependency, they are given by

f0(ζ) = ζ2

∫ 1

−1

f(μ, ζ)dμ, f1(ζ) = ζ2

∫ 1

−1

f(μ, ζ)μdμ, f2(ζ) = ζ2

∫ −1

−1

f(μ, ζ)μ2dμ. (1.2)

The coefficient αei is a positive physical function which may depend on x, E represents the electrostatic field
and ζ the velocity modulus. In the present study the electric field is considered constant. The fundamental
point of the moments models is the definition of the closure which writes the highest moment as a function of
the lower ones. This closure relation corresponds to an approximation of the underlying distribution function,
which the moments system is constructed from. In the M1 problem we need to define f2 as a function of f0

and f1. The closure relation originates from an entropy minimisation principle [61, 68]. The moment f2 can be
calculated [33, 35] as a function of f0 and f1

f2(t, x, ζ) = χ

(
f1(t, x, ζ)
f0(t, x, ζ)

)
f0(t, x, ζ), with χ(α) ≈ 1 + α2 + α4

3
· (1.3)

The closure relation in equation (1.3) is not the exact M1 closure but an approximation. Therefore it is not
clear the model inherit hyperbolicity and entropy decay. This approximation is used since one can not find an
exact expression for the highest order moment as a function of lower ones. The set of admissible states [33] is
defined by

A =
(
(f0, f1) ∈ R

2, f0 ≥ 0, |f1| ≤ f0

)
. (1.4)

A challenging issue is to derive a numerical scheme for the electron M1 model (1.1) satisfying all the funda-
mental properties and which handles correctly the diffusive limit recovering the good diffusion equation. Such
a scheme could then have a direct access to all the nonlocal regimes and their related physical effects described
above while the other numerical schemes breakdown in such regimes. Different complications arise when con-
sidering such an issue. Firstly, the electronic M1 model (1.1) is nonlinear. Because, of the entropic closure, the
angular moment f2 is a nonlinear function of f0 and f1. Secondly, the approach undertaken must be sufficiently
general to correctly take into account the source term −E(f0(t, x, ζ)− f2(t, x, ζ))/ζ. One must notice, that this
term is closely related to the term E∂ζf2(t, x, ζ), it plays an important role for low energies and can not be
treated as a collisional source term. Thirdly, for the purpose of realistic physical applications, one may require
to correctly capture steady states. In the case of near-equilibrium configurations such a well-balancing property
is then desired. Also, the physical parameter αei is a function of x and cannot be treated as a constant. Finally,
the space and energy dependencies of the angular moments, lead to a very complex diffusion equation in the
asymptotic limit with mixed derivatives.
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In this paper, the case without electric field and the homogeneous case are studied. The extension to the
general case is beyond the scope of this paper. However, the generalisation to the general problem requires a deep
understanding of the two configurations studied here. The approach retained is noticeably different with [6,7,44].
The derivation of the scheme is based on an approximate Riemann solver where the intermediate states are
chosen consistent with the integral form of the approximate Riemann solver. This choice can be modified to
enable the derivation of a scheme which also satisfies the admissibility conditions (1.4) and is well-suited for
capturing steady states. Moreover, it enjoys asymptotic-preserving properties and correctly handles the diffusive
limit recovering the good diffusion equation.

We first introduce the model without electrostatic field and its diffusive limit in Section 2. The limits of the
classical HLL scheme [44] are briefly recalled before introducing the derivation of the new numerical scheme.
The asymptotic-preserving property is exhibited. Then, Section 3 is devoted to the homogeneous case with
an electric field. We point out the great difficulties encountered when using a relaxation approach in order
to include the source term −E(x)(f0(t, x, ζ) − f2(t, x, ζ))/ζ. Then, the derivation of an asymptotic-preserving
scheme following the method introduced in the previous section is detailed and the well-balanced and asymptotic-
preserving properties are analysed. In Section 4, different numerical tests are presented to highlight the efficiency
of the present method. We conclude the paper in Section 5.

2. Case without electrostatic field

The first simplified case we consider is given by system (1.1) without electrostatic field E. In this case the
M1 model (1.1) writes ⎧⎨

⎩
∂tf0 + ζ∂xf1 = 0,

∂tf1 + ζ∂xf2 = −2αei

ζ3
f1.

(2.1)

A very similar system was considered in [6] in the frame of radiative transfer and a relaxation scheme was
proposed. The same procedure could be applied in this case, however we introduce a different approach based
on approximate Riemann solvers.

2.1. Model and diffusive limit

We consider the following diffusion scaling

t̃ = t/t∗, x̃ = x/x∗, ζ̃ = ζ/vth, Ẽ = Ex∗/vth.

The parameters t∗ and x∗ are chosen such that τei/t∗ = ε2, λei/x∗ = ε, where τei is the electron-ion collisional
period, λei the electron-ion mean free path and vth the thermal velocity defined by vth = λei/τei. The positive
parameter ε is devoted to tend to zero. In that case, omitting the tilde notation, system (2.1) rewrites⎧⎨

⎩
ε∂tf

ε
0 + ζ∂xfε

1 = 0,

ε∂tf
ε
1 + ζ∂xfε

2 = −2σ

ζ3

fε
1

ε
,

(2.2)

where the coefficient σ represents a positive function of x defined as

σ(x) =
τeiαei(x)

v3
th

·

Inserting the following Hilbert expansion of fε
0 and fε

1{
fε
0 = f0

0 + εf1
0 + O(ε2),

fε
1 = f0

1 + εf1
1 + O(ε2),

(2.3)



AP SCHEME FOR THE ELECTRONIC M1 MODEL IN THE DIFFUSION LIMIT: PARTICULAR CASES 1809

into the second equation of (2.2) leads to
f0
1 = 0. (2.4)

Using the definition (1.3), it follows that
f0
2 = f0

0/3.

So, the second equation of (2.2) gives

f1
1 = − ζ4

6σ
∂xf0

0 . (2.5)

Using the previous equation and the first equation of (2.2) finally leads to the diffusion equation for f0
0

∂tf
0
0 (t, x) − ∂x

(
ζ5

6σ(x)
∂xf0

0 (t, x)
)

= 0. (2.6)

Here we have omitted the tilde notation, writing this diffusion equation in non-rescaled (dimensional) variables
we obtain

∂tf
0
0 (t, x) − ∂x

(
ζ5

6αei(x)
∂xf0

0 (t, x)
)

= 0. (2.7)

2.2. The numerical method

In this part, we first study the limit of the HLL scheme in the diffusive regime. Then a Godunov-type scheme
based on an approximate Riemann solver is proposed.

2.2.1. Limit of the HLL scheme

Introduce a uniform mesh with constant space step Δx = xi+1/2 − xi−1/2, i ∈ Z and a time step Δt. We
consider a piecewise constant approximate solution Uh(x, tn) ∈ R

2 at time tn

Uh(x, tn) = Un
i if x ∈ [xi−1/2, xi+1/2]

with Un
i = t(fn

0i, f
n
1i). The classical HLL scheme [44] for the system (2.6), in the case where the minimum

and maximum velocity waves involved in the approximate Riemann solver are chosen equal to −ζ and ζ, writes
⎧⎪⎪⎨
⎪⎪⎩

ε
fn+1,ε
0i − fn,ε

0i

Δt
+ ζ

fn,ε
1i+1 − fn,ε

1i−1

2Δx
− ζΔx

fn,ε
0i+1 − 2fn,ε

0i + fn,ε
0i−1

2Δx2
= 0,

ε
fn+1,ε
1i − fn,ε

1i

Δt
+ ζ

fn,ε
2i+1 − fn,ε

2i−1

2Δx
− ζΔx

fn,ε
1i+1 − 2fn,ε

1i + fn,ε
1i−1

2Δx2
= −2σi

ζ3

fn+1,ε
1i

ε
·

(2.8)

We introduce the discrete Hilbert expansions{
fε
0i = fn,0

0i + εfn,1
0i + O(ε2),

fn,ε
1i = fn,0

1i + εfn,1
1i + O(ε2).

(2.9)

At the order ε−1, the second equation of (2.8) gives

fn,0
1i = 0

and using the definition (1.3), it follows that

fn,0
2i = fn,0

0i /3.

At the order ε0, the second equation of (2.8) gives

fn,1
1i = − ζ3

3σi

fn,0
0i+1 − fn,0

0i−1

2Δx
·
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Figure 1. Structure solution of the approximate Riemann problem.

However, because of the diffusive part of the HLL scheme, the first equation of (2.8) also leads to

fn,0
0i+1 − 2fn,0

0i + fn,0
0i−1

Δx2
= 0

which is not the diffusion equation expected for f0
0 . The diffusive part of the HLL scheme gives an unphysical

numerical viscosity and leads to the wrong asymptotic behaviour.

2.2.2. Derivation of the scheme

The numerical scheme considered in the previous part to compute fn+1
1i at each time step is conserved and

writes
fn+1
1i − fn

1i

Δt
+ ζ

fn
2i+1 − fn

2i−1

2Δx
− ax

fn
1i+1 − 2fn

1i + fn
1i−1

2Δx
= −2σi

ζ3
fn+1
1i . (2.10)

However, in order to determine fn+1
0i at each time step, a Godunov-type scheme based on an approximate

Riemann solver is considered. The ideas introduced in [6, 8, 9, 41] in order to include the contribution of source
terms, urge to consider approximate Riemann solvers which own a stationary discontinuity (0-contact discon-
tinuity). Therefore, we introduce the following approximate Riemann solvers at each cell interface, denoted by
UR(x/t, UL, UR), defined by

UR(x/t, UL, UR) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

UL if x/t < −ax,

UL∗ if − ax < x/t < 0,

UR∗ if 0 < x/t < ax,

UR if ax < x/t,

(2.11)

where UL∗ = t(fL∗
0 , f∗

1 ), UR∗ = t(fR∗
0 , f∗

1 ) and the minimum and maximum velocity waves −ax and ax.
Note, we choose the two velocity waves to be opposite. The structure solution of the approximate Riemann
problem is displayed in Figure 1. At the interface xi+ 1

2
, the quantities UL and UR stand for Ui = t(f0i, f1i)

and Ui+1 = t(f0i+1, f1i+1). Contrarily to the classical HLL scheme [78] two intermediate states UL∗ and UR∗

are introduced. The second components of the two intermediate states are chosen equal, ie fL∗
1 = fR∗

1 = f∗
1 . It

will be shown that in spite of this simplification in the approximate Riemann solver an asymptotic-preserving
scheme can be derived.

The approximate solution at time tn + Δt is chosen as

Uh(x, tn + Δt) = UR

(
x − xi+1/2

tn + Δt
, Ui, Ui+1

)
if x ∈ [xi, xi+1]. (2.12)
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As the following CFL condition is respected

Δt ≤ Δx

2ax
,

the piecewise constant approximate solution is then obtained

Un+1
i =

1
Δx

∫ xi+1/2

xi−1/2

Uh(x, tn+1)dx. (2.13)

The intermediate states fL∗
0 , fR∗

0 and f∗
1 must be defined. Integrating the first equation of (2.1) on

[−axΔt, axΔt] × [0, Δt] and multiplying by 1
2axΔt , gives the following consistency condition

fL∗
0 + fR∗

0

2
=

fL
0 + fR

0

2
− 1

2ax

(
ζfR

1 − ζfL
1

)
. (2.14)

The unknowns fL∗
0 and fR∗

0 will be chosen in order to satisfy this consistency condition (2.14). The same
procedure using the second equation of (2.1) gives

f∗
1 =

fL
1 + fR

1

2
− 1

2ax

(
ζfR

2 − ζfL
2

) − 2
ζ3

1
2axΔt

∫ axΔt

−axΔt

∫ Δt

0

αei(x)f1(x, t)dtdx. (2.15)

The following approximation is made

1
2axΔt

∫ axΔt

−axΔt

∫ Δt

0

αei(x)f1(x, t)dtdx = ᾱeiΔtf∗
1 , (2.16)

with ᾱei = α(0). In the approximation (2.16), the solution is chosen at time Δt. Indeed, since the source term
becomes stiff in the limit regime an implicit treatment is considered. Using (2.16) in (2.15), it follows that

f∗
1 =

ζ3

ζ3 + 2ᾱeiΔt

[
fL
1 + fR

1

2
− 1

2ax
(ζfR

2 − ζfL
2 )

]
. (2.17)

Finally the following definition of f∗
1 is chosen

f∗
1 =

2axζ3

2axζ3 + 2ᾱeiΔx

[
fL
1 + fR

1

2
− 1

2ax

(
ζfR

2 − ζfL
2

)]
. (2.18)

It will be shown in the next part, that this choice of intermediate state enables to obtain the good asymptotic-
preserving property. Also, this definition recovers the formalism introduced in [7, 8].

If the intermediate states fL∗
0 and fR∗

0 are chosen such that fL∗
0 = fR∗

0 = f̃0, the consistency relation (2.14)
is satisfied but one recovers the usual HLL scheme which does not behave correctly in the limit. Therefore the
following definitions are proposed {

fL∗
0 = f̃0 − Γ,

fR∗
0 = f̃0 + Γ,

(2.19)

with

f̃0 =
fL
0 + fR

0

2
− 1

2ax
(ζfR

1 − ζfL
1 ), (2.20)

and Γ is a coefficient which needs to be fixed. Obviously, the definitions (2.19) respect the consistency
relation (2.14). The coefficient Γ is now fixed by considering the Rankine−Hugoniot relations⎧⎪⎪⎨

⎪⎪⎩
fL∗
0 = fL

0 − ζ

ax
(f∗

1 − fL
1 ),

fR∗
0 = fR

0 − ζ

ax
(fR

1 − f∗
1 ).

(2.21)
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By injecting (2.21) into (2.19), it follows that

Γ =
1
2

[
fR
0 − fL

0 − ζ

ax
(fL

1 − 2f∗
1 + fR

1 )
]

. (2.22)

Unfortunately, the intermediate states defined here are not always admissible. In order to enforce the ad-
missibility conditions (1.4) of the numerical solution, we propose to modify the states fL∗

0 and fR∗
0 such that{

fL∗
0 = f̃0 − Γθ,

fR∗
0 = f̃0 + Γθ,

(2.23)

where θ ∈ [0, 1] is fixed to ensure the admissibility conditions.

Remark 2.1. In the case θ = 0, the admissibility requirements (1.4) are fulfilled.

Indeed, in this case system (2.23) gives fR∗
0 = fL∗

0 = f̃0 and f∗
1 is given by (2.18). Since 2axζ3/(2axζ3+σΔx) ≤

1 it follows that f∗
1 ≤ fR∗

0 = fL∗
0 . Then the parameter θ is computed as the largest possible such that

⎧⎪⎨
⎪⎩

fR∗
0 − |f∗

1 | ≥ 0,

fL∗
0 − |f∗

1 | ≥ 0,

fR∗
0 ≥ 0 and fL∗

0 ≥ 0.

(2.24)

Equations (2.22)−(2.24) lead to the following condition

θ̃ =
f̃0 − |f∗

1 |
|Γ | ≥ 0. (2.25)

Finally, θ is chosen as θ = min(θ̃, 1). In the case where the parameter θ is not equal to 1, one observes that
the Rankine−Hugoniot conditions (2.21) are not respected. However, the admissibility of the numerical solution
is privileged here. In addition, despite the loss of the Rankine−Hugoniot conditions (2.21), the consistency of
the approximate Riemann solver with the integral form of (2.1) ensures the efficiency of the method [44]. This
is also observed in practice when considering the different numerical test cases.

The unknown fn+1
0i is finally computed using (2.13)

fn+1
0i =

axΔt

Δx
fR∗
0i−1/2 +

(
1 − 2axΔt

Δx

)
fn
0i +

axΔt

Δx
fL∗
0i+1/2, (2.26)

with the relations (2.23).
The wavespeed ax is fixed using the ideas introduced in [6]. It is known that the electronic M1 model without

electric field is hyperbolic symmetrizable [61] and the eigenvalues of the Jacobian matrix always belong in the
interval [−ζ, ζ]. Therefore, we set ax = ζ.

2.3. Admissibility and asymptotic-preserving properties

In this part the admissibility of the numerical solution and the asymptotic-preserving property of the
scheme (2.10)−(2.18)−(2.23)−(2.26) are proved. It is shown that when ε tends to zero, the scheme is con-
sistent with the limit diffusion equation (2.6).

Proposition 2.2. The numerical scheme (2.10)−(2.18)−(2.23)−(2.26) preserves the admissibility of the nu-
merical solutions.
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Proof. We remark that equation (2.35) rewrites

fn+1
1i = α

axΔt

Δx
f̃1i−1/2 + α

(
1 − 2axΔt

Δx

)
fn
1i + α

axΔt

Δx
f̃1i+1/2, (2.27)

with α = ζ3/(ζ3 + 2αeiΔt) ∈ [0, 1] and

f̃1i+1/2 =
fn
1i + fn

1i+1

2
− 1

2ax
(ζfn

2i+1 − ζfn
2i).

Using equation of (2.26) and (2.27) a direct calculation of fn+1
0i ±fn+1

1i shows that the condition (2.25) ensure
the admissibility of the numerical solution. Also, it can be seen geometrically since the admissible set a convex
cone and α belongs to [0, 1]. �

Theorem 2.3 (Consistency in the limit regime). When ε tends to zero, the unknown fn+1,0
0i given by the

numerical scheme (2.10)−(2.18)−(2.23)−(2.26) satisfies the following discrete equation

fn+1,0
0i − fn,0

0i

Δt
− ζ

Δx

[ ζ3

6σ̄i+1/2Δx

[
(ζfn,0

0i+1 − ζfn,0
0i )

]
− ζ3

6σ̄i−1/2Δx

[
(ζfn,0

0i − ζfn,0
0i−1)

]]
= 0. (2.28)

Proof. Following the same approach as in [7, 8], using the diffusive scaling and equation (2.26) leads to

ε
fn+1
0i − fn

0i

Δt
=

ax

Δx
fL∗
0i+1/2 −

2ax

Δx
fn
0i +

ax

Δx
fR∗
0i−1/2, (2.29)

where the intermediate states fL∗
0 and fR∗

0 are given by (2.23) and (2.18) rewrites

f∗
1 =

2axζ3

2axζ3 + 2σ̄Δx/ε

[
fL
1 + fR

1

2
− 1

2ax
(ζfR

2 − ζfL
2 )

]
· (2.30)

As soon as ε tends to zero, we obtain f∗
1 = 0. We now suppose that fn

1i = 0 in the limit ε tends to zero. In
this case, the definition (2.25) leads to

θ̃ =
fL
0 + fR

0

|fL
0 − fR

0 | ≥ 1.

Then the parameter θ is equal to 1.

Remark 2.4. In the diffusive regime when ε tends to zero, no limitation on the intermediates states (2.23) is
required.

Using the definition (2.23), it follows that the intermediate states fL∗
0 and fR∗

0 are given by⎧⎪⎪⎨
⎪⎪⎩

fL∗
0 = fL

0 − ζ

ax
(f∗

1 − fL
1 ),

fR∗
0 = fR

0 − ζ

ax
(fR

1 − f∗
1 ).

(2.31)

The discrete Hilbert expansions (2.9) are now used. Inserting the previous expressions in equation (2.29),
considered at the order ε0, gives no information since the terms cancel each other out. However, at the order ε1,
the expressions (2.31), (2.30) and equation (2.29) lead to⎧⎪⎪⎨

⎪⎪⎩
fL∗,1
0 = fL,1

0 − ζ

ax
(f∗,1

1 − fL,1
1 ),

fR∗,1
0 = fR,1

0 − ζ

ax
(fR,1

1 − f∗,1
1 ),

(2.32)
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with

f∗,1
1 = − ζ3

6σ̄Δx

(
ζfR,n,0

0 − ζfL,n,0
0

)
(2.33)

and
fn+1,0
0i − fn,0

0i

Δt
=

ax

Δx
f∗,1
0i+1/2 −

2ax

Δx
fn,1
0i +

ax

Δx
f∗,1
0i−1/2. (2.34)

Inserting expressions (2.32) into (2.34) leads to equation (2.28) which is consistent with the limit diffusion
equation (2.6). To complete the proof, it is necessary to show that fn+1

1 tends to zero as ε tends to zero. By
using the diffusion scaling equation (2.10) rewrites under the form

fn+1
1i =

ε2ζ3

ε2ζ3 + 2σiΔt

[
fn
1i −

Δt

ε

(
ζ
fn
2i+1 − fn

2i−1

2Δx
− ax

fn
1i+1 − 2fn

1i + fn
1i−1

2Δx

)]
· (2.35)

One directly observes that fn+1
1 tends to zero as ε tends to zero. �

The asymptotic-preserving property requires that the scheme should be uniformly stable with respect to the
small parameter ε. In the case of an uniform stable scheme the CFL stability condition in diffusive regime
should be that of a diffusion scheme Δt ≤ 3αeiΔx2/ζ5 (see Eq.2.7). Also, in the case of a small collisional
parameter αei, the time step should be chosen according to the hyperbolic CFL condition Δt ≤ Δx/ax. An
uniform stability property is proved in[56] or [62] in the framework of linear scalar equations. However, the
model considered in this work is a nonlinear system and the derivation of such a property is very challenging.
Therefore, for the numerical test cases we consider the following CFL condition

Δt ≤ max(Δx/ax, 3αeiΔx2/ζ5). (2.36)

3. Homogeneous case with electric field

The second simplified model studied, is given by (1.1) without space dependency but considering an electric
field. In this section, the difficulties encountered when using a relaxation-type method to include the source
term −E

ζ (f0−f2) are highlighted. Following the same procedure as in the case without electric field, a numerical
scheme is proposed and the source term −E

ζ (f0 − f2) is taken into account. The scheme presented, satisfies a
well-balanced property and is asymptotic-preserving. The collision coefficient αei is a function of x and is then
constant in the present case. However, the method proposed here, is able to handle the case where αei depends
on ζ. Without spatial dependency, the model (1.1) simplifies into⎧⎨

⎩
∂tf0 + E∂ζf1 = 0,

∂tf1 + E∂ζf2 − E

ζ
(f0 − f2) = −2αeif1

ζ3
· (3.1)

Using the Hilbert expansions (2.3) as in the previous case, the following diffusion equation is obtained

∂tf
0
0 (t, ζ) − E∂ζ

(
Eζ3

6αei
∂ζf

0
0 (t, ζ) − Eζ2

3αei
f0
0 (t, ζ)

)
= 0. (3.2)

3.1. Limit of the relaxation approach

Using the ideas introduced in [6], one can think of deriving a relaxation scheme for system (3.1). Even if the
approach is similar, the relaxation scheme involved would be significantly different from the one proposed in [6]
since the source term −E

ζ (f0 − f2) should be added. To assess such an issue, we first consider the collisionless
case ⎧⎨

⎩
∂tf0 + E∂ζf1 = 0,

∂tf1 + E∂ζf2 − E

ζ
(f0 − f2) = 0.

(3.3)
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Setting ∂ζz(ζ) = 1/ζ, we propose the following relaxation model⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂tf0 + E∂ζφ − E(f1 − φ)z′(ζ) = 0,

∂tφ + E∂ζf0 − 2Ef0z
′(ζ) = μ(f1 − φ),

∂tf1 + E∂ζπ − E(f0 − π)z′(ζ) = 0,

∂tπ + E∂ζf1 − 2Ef1z
′(ζ) = μ(f2 − π),

∂tz = 0,

(3.4)

where φ and π are relaxation variables. In the case μ = 0, the previous system is hyperbolic, the eigenvalues
are −E, 0, E and are associated with linearly degenerate fields. Hence, the Riemann problem can be solved.

In order to be consistent with the notations [6], we introduce

w = t(f0, φ, f1, π, z), U = t(f0, f1), F(U) = t
(
Ef1, Ef2(f0, f1)

)
(3.5)

Lemma 3.1. Let wL,R be equilibrium constant states with φL,R = fL,R
1 and πL,R = fL,R

2 . Defining the initial
condition of (3.4) by w0(x) = wL if x < 0 and w0(x) = wR if x > 0 for μ = 0, the solution of (3.4) writes

w(x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

wL if x/t < −E,

wL∗ if − E < x/t < 0,

wR∗ if 0 < x/t < E,

wR if E < x/t,

(3.6)

with

fL∗,R∗
0 =

3(ζL,R)2

4(2(ζR)6 + 2(ζL)6 + 5(ζR)3(ζL)3)

(
(−fR

2 − 2fR
1 + 3fR

0 )(ζR)4 + (−fL
2 + 2fL

1 + 3fL
0 )(ζL)4

+ (fL
2 + 4fL

1 + 3fL
0 )(ζR)3(ζL) + (fR

2 − 4fR
1 + 3fR

0 )(ζR)(ζL)3
)
,

fL∗,R∗
1 =

3(ζL,R)2

4(2(ζR)6 + 2(ζL)6 + 5(ζR)3(ζL)3)

(
(3fR

2 − 2fR
1 − fR

0 )(ζR)4 + (−3fL
2 − 2fL

1 + fL
0 )(ζL)4

+ (−3fL
2 − 4fL

1 − fL
0 )(ζR)3(ζL) + (3fR

2 − 4fR
1 + fR

0 )(ζR)(ζL)3
)
,

zL∗,R∗ = zL,R,

φL∗ = fL
0 + fL

1 − fL∗
0 , φR∗ = −fR

0 + fR
1 + fR∗

0 ,

πL∗ = fL
1 + fL

2 − fL∗
1 , πR∗ = −fR

1 + fR
2 + fR∗

1 ,

and UL∗,R∗ = t(fL∗,R∗
0 , fL∗,R∗

1 ) satisfy the admissibility conditions (1.4).

The computation of the intermediate states UL∗,R∗ is straightforward using the Riemann invariants given in
Table 1. A long but easy calculation, using the expressions gives the admissibility conditions (1.4).

The relaxation model (3.4) enables the computation of a numerical scheme [9, 20, 52] for the model (3.3).
However, one notices the complexity of the intermediate states UL∗,R∗ and an extension including the collisional
term −2αeif1/ζ3 is very challenging. Different relaxation models were tested in order to include the collisional
source term, but, because of their complexity, they lead to configurations where a Riemann invariant is missing
and the problem remains unclosed. In a recent work [31], the same issue is encountered and an additional relation
is arbitrarily imposed. In the present situation, this strategy leads to particularly inconvenient solutions and
the admissibility conditions are lost.



1816 S. GUISSET ET AL.

Table 1. Features of the Riemann problem.

Eigenvalue Multiplicity Riemann Invariants Eigenvectors

E 2 f0 + φ, f1 + π, z t(0, 0, 1, 1, 0), t(1, 1, 0, 0, 0)

−E 2 −f0 + φ, −f1 + π, z t(0, 0,−1, 1, 0), t(−1, 1, 0, 0, 0)

0 1
f1

ζ2
,

f0

ζ2
, ζ(π − f0/3), ζ(φ − f1/3)

t(2f0, f1 − φ, 2f1, f0 − π, 1)

3.2. The numerical method

The numerical approach presented in the case with electric field is now considered. Contrarily to the
relaxation-type procedure, this method enables to include the source term −E

ζ (f0 − f2) naturally.
Integrating the second equation of (3.1) on [−aζΔt, aζΔt]×[0, Δt] and multiplying by 1

2aζΔt gives the following
expression

f∗
1 =

2aζζ
3

2aζζ3 + 2αeiΔζ

[
fL
1 + fR

1

2
− 1

2aζ
(EfR

2 − EfL
2 ) +

Δζ

2aζ
SL,R

]
, (3.7)

with

SL,R =
1
2

[
E

ζR
(fR

0 − fR
2 ) +

E

ζL
(fL

0 − fL
2 )

]
·

The unknowns fL∗
0 , fR∗

0 and fn+1
0 are computed following the same approach as in the first part

fn+1
0i =

aζΔt

Δζ
fR∗
0i−1/2 +

(
1 − 2aζΔt

Δζ

)
fn
0i +

aζΔt

Δζ
fL∗
0i+1/2, (3.8)

where the unknowns fR∗
0 and fL∗

0 are given by{
fL∗
0 = f̃0 − Γθ,

fR∗
0 = f̃0 + Γθ,

(3.9)

with

Γ =
1
2

[
fR
0 − fL

0 − ζ

aζ
(fL

1 − 2f∗
1 + fR

1 )
]

and

f̃0 =
fL
0 + fR

0

2
− 1

2aζ

[
ζfR

1 − ζfL
1

]
.

Using, the same arguments as in the case without electric field, we set aζ = |E|. The following scheme is
considered to compute fn+1

1i at each time step

fn+1
1i =

ζ3
i

ζ3
i + 2αeiΔt

[
fn
1i − Δt

(
E

fn
2i+1 − fn

2i−1

2Δζ
− aζ

fn
1i+1 − 2fn

1i + fn
1i−1

2Δζ
+

E

ζi
(fn

0i − fn
2i)

)]
· (3.10)

3.3. Properties

In this part, we are interested in the equilibrium solution of system (3.1). In particular, it is shown that the
scheme (3.8)−(3.10) preserves this solution. Then, the asymptotic-preserving feature of the scheme is exhibited.
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A stationary solution of system (3.1) satisfies⎧⎪⎪⎨
⎪⎪⎩

E
∂f1

∂ζ
= 0,

E
∂f2

∂ζ
− E

ζ
(f0 − f2) = −2αeif1

ζ3
·

(3.11)

The first equation of (3.11) implies that f1 is independent of ζ. Using the definitions of the angular mo-
ments (1.2) and the definition (1.3), it follows that f1 = 0 and f2 = f0/3. Indeed the definitions (1.2) imply
f1 = 0 in ζ = 0. The second equation of the previous system is solved and gives the equilibrium solution of the
model (3.1) {

f0 = Kζ2,

f1 = 0,
(3.12)

where K is a scalar constant.

Theorem 3.2. The numerical scheme given by (3.8)−(3.10) is well-balanced in the sense that the stationary
states (3.12) are exactly preserved by the scheme.

Proof. Using the stationary states (3.12) into the definition (3.7) leads to

f∗
1 =

2aζζ
3

aζζ3 + 2αeiΔζ

[
− 1

3aζ
(EKζ2

R − EKζ2
L) +

ΔζEK

3aζ
(ζR + ζL)

]
.

Since (ζ2
R − ζ2

L) = (ζR + ζL)(ζR − ζL) = (ζR + ζL)Δζ, the calculation of the previous equation gives

f∗
1 = 0.

The same calculation considering (3.10) leads to

fn+1
1 = 0.

Using the definition (2.23) it follows that⎧⎪⎨
⎪⎩

fR∗
0 =

1
2
[f0L − θf0L + f0R + θf0R],

fL∗
0 =

1
2
[f0R − θf0R + f0L + θf0L].

(3.13)

The initial conditions (3.12) imply that θ = 1 and inserting (3.13) into equation (3.8) give

fn+1
0i =

aΔt

Δζ
Kζ2

i +
(

1 − 2aΔt

Δζ

)
Kζ2

i +
aΔt

Δζ
Kζ2

i .

Finally, the previous equation simplifies to give

fn+1
0i = Kζ2

i .

The stationary solution (3.12) is then preserved by the scheme. �

Using the ideas introduced in the first section, we obtain that the scheme (3.8)−(3.10) is consistent with the
limit diffusion equation (3.2) in the diffusive limit.
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Theorem 3.3. When ε tends to zero, the unknown fn+1
0 given by the numerical scheme (3.8)−(3.10) satisfies

the following discrete equation

fn+1,0
0i − fn,0

0i

Δt
− E

Δζ

[
ζ3
i+1/2

6σΔζ

[(
Efn,0

0i+1 − Efn,0
0i

)]

−
ζ3
i−1/2

6σΔζ

[
(Efn,0

0i − Efn,0
0i−1)

]
+

ζ3
i+1/2S

n,0
i+1/2

2σ
−

ζ3
i−1/2S

n,0
i−1/2

2σ

]
= 0,

with

Sn,0
i+1/2 =

E

3

[
fn,0
0i+1

ζi+1
+

fn,0
0i

ζi

]
·

Proof. The proof is the same as in the case without electric field. �

Following the procedure considered in the inhomogeneous case without electric field, in practice the following
stability CFL condition is used

Δt ≤ max
(
Δζ/aζ , 3αeiΔζ2/E2ζ3

max

)
. (3.14)

4. Numerical examples

In this section we compare the asymptotic-preserving scheme to the standard HLL scheme [44] and to an
explicit discretisation of the diffusion equation in different regimes. For all the numerical test cases the time
step considered for the asymptotic-preserving scheme is taken as the maximum of the hyperbolic time step and
the diffusion time step (see CFL condition Eq. (2.36)). The numerical scheme is able to work with the diffusion
time step when it becomes larger than the hyperbolic time step.

4.1. Free transport without electric field

We first consider system (2.1), without collisions, to validate the numerical scheme proposed
in (2.10)−(2.18)−(2.23)−(2.26) on a simple advection of an initial profile. The solution is compared with the
exact solution. Consider the initial conditions⎧⎪⎪⎪⎨

⎪⎪⎪⎩
f0(x, 0) =

√
2
π

exp
(
− (x + 5)2

2

)
,

f1(x, 0) =

√
2
π

exp
(
− (x + 5)2

2

)
,

with periodical boundary conditions. In this case we have fixed ζ = 5. In Figure 2, we compare the numerical
solution obtained with the scheme (2.10)−(2.18)−(2.23)−(2.26) displayed in dashed blue with the exact solution
in red at time t = 6 using Δx = 4 × 10−3. In Table 2 the results of a convergence study are given. The scheme
is first order accurate.

4.2. Temperature gradient with collisions without electric field

We now consider the system equation (2.1) with collisions to validate the numerical
scheme (2.10)−(2.18)−(2.23)−(2.26) taking into account the collisional part. The solution obtained with
the scheme presented in this paper is compared with the classical HLL scheme.
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Figure 2. Free transport: comparison of the numerical solution for Δx = 4 × 10−3 and the
exact solution (red) at time t = 6. (Color online)

Table 2. Convergence study of the method. The order of the method is given for the L1, L2

and L∞ norms.

Δx L1 error L1 order L2 error L2 order L∞ error L∞ order

4 × 10−2 0.63 – 0.27 – 0.22 –

2 × 10−2 0.36 0.77 0.17 0.7 0.14 0.65

1 × 10−2 0.20 0.88 0.09 0.83 0.08 0.84

6.66 × 10−3 0.14 0.88 0.06 0.9 0.06 0.87

5 × 10−3 0.11 0.84 0.05 0.92 0.04 0.91

4 × 10−3 0.08 1.09 0.04 0.95 0.03 0.93

Consider the initial conditions⎧⎪⎨
⎪⎩

f0(x, ζ, 0) =

√
2
π

ζ2

Tini(x)3/2
exp

(
− ζ2

2Tini(x)

)
,

f1(x, ζ, 0) = 0,

with
Tini(x) = 2 − arctan(x)

and αei = 1. On the right and left boundaries, we use a Neumann boundary condition: the values of f0 and
f1 in the boundary ghost cells are set to the values in the corresponding real boundary cells. The energy range
chosen is [0, 12] with an energy step Δζ = 0.1 and the space range is [−40, 40] with a space step Δx = 0.2. In
Figure 3, we compare the numerical solution obtained with the AP scheme (2.18)−(2.23)−(2.26). The solution
obtained with the Asymptotic-preserving scheme is displayed in continuous lines with the solution given by
HLL scheme in dashed lines at time 0.25 and 0.5. The Asymptotic-preserving numerical scheme and the HLL
scheme gives comparable results.

4.3. Temperature gradient in the diffusive regime without electric field

In this numerical test, the same initial and boundary conditions that in the test case 3.2 are chosen. However,
we consider a large collisional parameter and take αei = 104. The scheme (3.8)−(3.10) is studied in the diffusive
regime. The results are compared with the diffusion solution and with the ones obtained with the HLL scheme.
In Figure 4 the results obtained with the asymptotic-preserving scheme are displayed in continuous green lines
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Figure 3. Temperature gradient: comparison of the temperature profile for the numerical
solution (AP) and for the HLL scheme (HLL) at time 0.25 and 0.5.
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Figure 4. Temperature gradient in the diffusive limit: comparison of the temperature profile
of the asymptotic-preserving scheme (AP), the HLL scheme (HLL) and the diffusion solution
at time t = 50, 100, 500 and 1000.
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Figure 5. Comparison of the f0 profile for the asymptotic-preserving scheme (AP), for the
HLL scheme (HLL) and the diffusion solution at time t = 200.

with the solution given by HLL scheme in continuous purple lines and the diffusion solution in dashed blue lines
at time t = 50, t = 100, 500 and 1000. The AP numerical scheme and the diffusion solution match perfectly
while we remark for time t = 50 and t = 100 that the HLL scheme gives very inaccurate results. The results
obtained with the HLL scheme at time t = 500 and t = 1000 are completely wrong and are not displayed,
however we notice that in the long time regime the AP numerical scheme and the diffusion solution still match.

4.4. Discontinuous initial condition in the diffusive regime without electric field

In this case, a discontinuous initial condition in the diffusive regime without electric field is considered. The
results are compared with the diffusion equation solution and the HLL scheme. The energy range chosen is
[0, 6] with an energy step Δζ = 0.1 and the space range L=[−10, 10] with a space step Δx = 5×10−2. Consider
the initial conditions

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f0(x, ζ, 0) =

⎧⎪⎨
⎪⎩

1 if x ≤ L/3,

0 if L/3 ≤ x ≤ 2L/3,

1 if L/3 ≤ x,

f1(x, ζ, 0) = 0,

with periodical boundary conditions and αei = 104. In Figure 5, we compare the numerical solution obtained
with the Asymptotic-preserving scheme displayed in red with the diffusion solution in dashed blue and the HLL
scheme in green at time t = 200. The AP and diffusion solutions match perfectly while the HLL scheme is very
inaccurate. In Figure 6, the long time behaviour of the numerical solutions is considered. The AP scheme and
the diffusion solution are compared at time t = 500, the results match.

4.5. Relaxation of a Gaussian profile, in the homogeneous case in the diffusive regime
with electric field

We consider system (3.1) with collisions and the source term E
ζ (f0 − f2) to validate the numerical

scheme (3.8)−(3.10) in the diffusive limit. On the left and right boundaries, we use Neumann boundary
conditions: the values of f0 and f1 in the boundary ghost cells are set to the values in the corresponding
real boundary cells. Here αei = 104 and the energy range chosen is [0, 20] with an energy step Δζ = 10−2.
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Figure 6. Comparison of the f0 profile for the Asymptotic-preserving scheme (AP), and the
diffusion solution at time t = 500.
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Figure 7. Relaxation of a Gaussian profile: comparison of the f0 profile for the asymptotic-
preserving scheme (AP), for the HLL scheme (HLL) and the diffusion solution at time t = 20.

Here we have chosen E = 1 and considered the following initial conditions

⎧⎪⎨
⎪⎩

f0(ζ, 0) =

√
2
π

exp
(
−ζ2

2

)
,

f1(ζ, 0) = 0.

In Figure 7, we compare the numerical solution obtained with the scheme (3.8)−(3.10) displayed in red with
the diffusion solution in dashed blue and the HLL scheme at time t = 20. The asymptotic-preserving and
diffusion solutions match perfectly while the HLL scheme is very diffusive. In Figure 8, the results obtained
with the AP scheme and the diffusion solution are compared in the long time regime at time t = 80.
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Figure 8. Relaxation of a Gaussian profile: comparison of the f0 profile for the asymptotic-
preserving scheme (AP) and the diffusion solution at time t = 80.

4.6. Relaxation of a Gaussian profile in the diffusive regime without electric field
in the case of a non-constant collisional parameter

In this example, the numerical scheme (2.10)−(2.18)−(2.23)−(2.26) is verified in the diffusive regime without
electric field in a inhomogeneous collisional plasma. In this case the coefficient αei is not constant and follows
the linear profile

αei(x) = (5x/8 + 15/2)× 103.

Then αei(−4) = 5 × 103 and αei(4) = 104. On the left and right boundaries, we use Neumann boundary
conditions: the values of f0 and f1 in the boundary ghost cells are set to the values in the corresponding real
boundary cells. The energy range chosen is [0, 8] with an energy step Δζ = 0.1 and the space range [−4, 4] with
a space step Δx = 5 × 10−2. The initial conditions are the following

⎧⎨
⎩ f0(x, ζ, 0) = ζ2 exp

(
−x2

2

)
,

f1(x, ζ, 0) = 0.

In Figure 9, we compare the numerical solution obtained with the asymptotic-preserving scheme displayed
in red with the diffusion solution in dashed blue at time t = 150. In this case, the asymptotic-preserving and
diffusion solutions also match perfectly. The HLL scheme results are not given in Figure 9, since the final time
t = 150 is important the HLL results are completely wrong.

5. Conclusion

In this work, we have proposed a numerical scheme for the electronic M1 model in the case without electric field
and in the homogeneous case. We have exhibited an approximate Riemann solver that satisfies the admissibility
conditions. Contrarily to the HLL scheme, the proposed numerical scheme is asymptotic-preserving and recovers
the correct diffusion equation in the diffusive limit. It has been shown, in the homogeneous case, that the
method presented, enables to include the source term −E(f0 − f2)/ζ, while a relaxation type method seems
inconvenient. In addition, the scheme is well-balanced, capturing the steady state considered. Several numerical
tests have been performed, it has been shown that the presented scheme behaves correctly in the classical
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Figure 9. Relaxation of a Gaussian profile in the case of a linear collisional parameter: com-
parison of the f0 profile for the asymptotic-preserving scheme (AP) and the diffusion solution
at time t = 150.

regime and in the diffusive limit. Indeed, while, the HLL scheme is very inaccurate in the diffusive regime,
the asymptotic-preserving scheme matches perfectly with the expected diffusion solution. Also, the method
correctly handles the case where the collisional parameter is not constant. The present study can be extended
to the general electronic M1 model (1.1). However, the correct treatment of the mixed-derivatives, arising in
the diffusive limit when considering the entire model is a challenging issue. This problem will be investigated
in a forthcoming separate study.
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