
ESAIM: M2AN 51 (2017) 1691–1731 ESAIM: Mathematical Modelling and Numerical Analysis
DOI: 10.1051/m2an/2016073 www.esaim-m2an.org

A DDFV METHOD FOR A CAHN−HILLIARD/STOKES PHASE FIELD MODEL
WITH DYNAMIC BOUNDARY CONDITIONS
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Abstract. In this paper we propose a “Discrete Duality Finite Volume” method (DDFV for short)
for the diffuse interface modelling of incompressible two-phase flows. This numerical method is, conser-
vative, robust and is able to handle general geometries and meshes. The model we study couples the
Cahn−Hilliard equation and the unsteady Stokes equation and is endowed with particular nonlinear
boundary conditions called dynamic boundary conditions. To implement the scheme for this model we
have to derive new discrete consistent DDFV operators that allows an energy stable coupling between
both discrete equations. We are thus able to obtain the existence of a family of solutions satisfying a
suitable energy inequality, even in the case where a first order time-splitting method between the two
subsystems is used. We illustrate various properties of such a model with some numerical results.
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1. Introduction

The aim of this paper is to derive and analyse a finite volume scheme for a phase-field model of two-phase
incompressible flows with surface tension effects and contact-line dynamics on the walls. We propose a numerical
method that falls into the Discrete Duality Finite Volume framework (DDFV for short); this choice is guided by
the capability of the method to deal with very general meshes (distorted, non conforming, locally refined, . . . )
while ensuring good robustness, stability and accuracy properties.

1.1. Presentation of the phase-field model and related discretization issues

The diffuse interface two-phase flow model under study couples the Cahn–Hilliard and the Stokes (or
Navier–Stokes) equations. The main feature of such a model is to allow the presence of diffuse interfaces of
prescribed width ε in the system while being able to describe surface tension effects in the hydrodynamics,
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through a suitable capillary force term in the momentum equation. The main unknown of this equation, the
order parameter c, is a smooth function which is equal to 1 in one of the two phases, 0 in the other one and
which varies continuously between 0 and 1 across the interface.

Here, wall effects are modelled through a nonlinear dynamic boundary condition for the order parameter.
Usually this kind of model is studied with the homogeneous Neumann boundary condition on the order pa-
rameter (see for example [1–3,7, 10, 25, 27, 31] and the references therein), which implies that the contact angle
between the diphasic interface and the wall is imposed to be equal to the static contact angle π

2 . However for
some physical systems, this condition may not be realistic for at least two reasons:

• the static contact angle may be different from π/2 due to wetting effects depending on the nature of the two
fluids and the material of the container,

• the influence of the hydrodynamics on the system near the wall implies that the dynamic contact angle is
not equal to the static contact angle; a time relaxation phenomenon may occur at the contact line.

In order to take into account the contact angle dynamics, it is proposed in [26] to use a dynamic boundary
condition for the order parameter (see also [40]). To our knowledge, there is only few available contributions
concerning the discretization of the Cahn−Hilliard/Navier−Stokes phase field model with dynamic boundary
conditions. From a computational point of view, some recent works propose numerical schemes for such kind of
models and give various simulations (see [12, 16, 17, 32, 43, 44] and the references therein), but without precise
mathematical analysis. We also mention [42] which is concerned with a slightly different model but gives a
thorough stability analysis for a conforming finite element discretization.

We would like here to develop a finite volume strategy in order to compute approximate solutions of our
model. The main motivation for that is twofold:

• First, those methods are naturally conservative and flux consistent, which is an important feature due to
the normal derivative term in the boundary condition (1.1g).

• Second, those methods are, by construction, able to deal with much more general grids than usual conforming
triangulations.

Here, in the DDFV framework, we are particularly concerned with the difficulties that are induced by the
nonlinear boundary terms and by the coupling terms. Those issues are the price to pay for the fact that the
numerical method is, by nature, applicable on very general families of meshes as mentioned above. We will
describe in details how to build all the coupling terms combined with a time splitting scheme for this model for
which we can show nonlinear stability estimates.

Since they are not our main concern here, we have chosen to neglect the issues related to the nonlinear inertia
term in the Navier−Stokes equations (those difficulties can be treated as in [22] for instance), thus the system
we will eventually study is the coupling between the Cahn−Hilliard equation and the unsteady Stokes problem
with dynamic boundary conditions, in the context of the Boussinesq approximation for the buoyancy term.
Finally, for simplicity, we concentrate on the 2D case but we emphasise that 3D versions of the DDFV schemes
are available and were analysed for instance in [4, 30].

1.2. The Cahn−Hilliard/Stokes system with dynamic boundary condition

1.2.1. Presentation of the system of equations

Let Ω ⊂ R2 be a connected and bounded polygonal domain. For a given final time T > 0 the problem we are
interested in is the following: To find the order parameter c : (0, T )×Ω → R, the generalised chemical potential
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μ : (0, T )× Ω → R, the velocity u : (0, T ) × Ω → R2 and the pressure p : (0, T )× Ω → R satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tc + u · ∇c = ΓbΔμ, in (0, T ) × Ω; (1.1a)

μ = −3
2
εσbΔc +

12
ε

σbf
′
b(c), in (0, T ) × Ω; (1.1b)

ρ∗
(

∂tu − 1
Re

Δu
)

+ ∇p = μ∇c + ρ(c)g, in (0, T ) × Ω; (1.1c)

divu = 0, in (0, T ) × Ω; (1.1d)
u = ub, on (0, T )× Γ ; (1.1e)
∂nμ = 0, on (0, T )× Γ ; (1.1f)
3
2
εσbDs∂tc�Γ = −f ′

s(c�Γ ) − 3
2
εσb∂nc, on (0, T ) × Γ ; (1.1g)

where c�Γ is the trace of c on Γ = ∂Ω, as well as suitable initial data for c and u. We assume that the boundary
velocity data satisfies

ub ∈ (H1/2(Γ ))2, is time-independent and satisfies ub · �n = 0, on Γ. (1.2)

Several physical parameters appear in the model:

• In the Cahn−Hilliard equation, ε > 0 stands for the interface thickness (see Fig. 1b), σb > 0 is the binary
surface tension between the two components and Γb > 0 is a diffusion coefficient called the mobility. Moreover,
in the dynamic boundary condition, Ds > 0 is a relaxation coefficient.

• In the Stokes problem, Re > 0 is the Reynolds number, ρ∗ the reference density (the one of the heavier
fluid), c �→ ρ(c) represents the density variations of the mixture (in practice it is chosen as a regularised
heaviside step function such that max ρ = ρ∗), and g the gravity vector.

In order to simplify the presentation, in Sections 2, 3 and 4 of the paper all the coefficients in the equations
will be taken equal to one. The functions fb and fs are nonlinear functions called respectively bulk and surface
Cahn−Hilliard potential that satisfy the following dissipativity assumption

lim inf
|c|→∞

f ′′
b
(c) > 0, (1.3)

as well as the following polynomial growth condition

|f ′
b
(c)| + |f ′

s
(c)| ≤ C(1 + |c|p), ∀c ∈ R, (1.4)

for some C > 0 and p ∈ [1, +∞[. We additionally assume that there exists α1 > 0 such that

fb(c) ≥ α1c
2 and fs(c) ≥ 0, ∀c ∈ R. (1.5)

Since adding constants to fb and fs does not change the equations, the first assumption above is actually a
consequence of (1.3) whereas the second one is equivalent to say that fs is bounded from below.

A typical choice for the bulk Cahn−Hilliard potential is the double-well function fb(c) = c2(1 − c)2 (see
Fig. 1a).

Let us recall that the dynamic boundary condition has been initially introduced in [26] to describe the
contact-line dynamics. For this purpose, we define the total Cahn−Hilliard energy as the sum of the bulk free
energy,

Fb(c) :=
∫

Ω

(
3
4
εσb |∇c|2 +

12
ε

σbfb(c)
)

, (1.6)
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fb(c) = c2(1 − c)2

(a) Bulk potential
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Interface thickness: ε

(b) Interface thickness

Figure 1. Double-well structure of fb and definition of the interface thickness.

c = 0

wall

σ0,w

c = 1

σ1,w

σb

θs

Figure 2. Definition of the contact angle θs, case σ0,w > σ1,w.

and a surface free energy Fs defined as follows,

Fs(c) :=
∫

Γ

fs(c�Γ ) (1.7)

with

fs(c�Γ ) :=

{
(σ0,w − σ1,w)c3

�Γ (3c�Γ − 4) + σ0,w if σ0,w ≥ σ1,w,

(σ0,w − σ1,w) (3c�Γ + 1) (1 − c�Γ )3 + σ1,w if σ1,w ≥ σ0,w,
(1.8)

where σ1,w is the surface tension between the phase c = 1 and the wall, σ0,w is the surface tension between the
phase c = 0 and the wall. We say that the phase c = 1 is wetting if σ1,w < σ0,w. Those formulas (see Fig. 3) are
chosen in a such a way that c = 0 and c = 1 are critical points of fs with fs(1) = σ1,w and fs(0) = σ0,w and
such that the condition (1.5) is fulfilled.

Following Young’s law, the static contact-angle θs (see Fig. 2) associated with those surface tension parameters
is given by the relation

cos(θs) =
σ0,w − σ1,w

σb
·

Observe that this choice of surface potential is not exactly the same as the one in [12,16,17,26,43,44] where
a cubic surface potential is considered (and thus assumption (1.5) is not satisfied). As explained above, our
construction retains the main qualitative properties required for fs so that it gives satisfactory numerical results
(see Sect. 5) while allowing a complete mathematical analysis, which is not the case for a cubic surface potential.
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0 1

σ0,w − σ1,w

Figure 3. Degenerate double-well structure of fs.

1.2.2. Formal energy estimate

The previous system is built upon thermodynamical consistency assumptions that ensure that we have dissi-
pation of the total energy (at least without source terms). This is a fundamental property from a mathematical
analysis point of view as well as for ensuring stability of related numerical schemes.

Let us describe here the formal computations that lead to this estimate. One of the main achievements of
this work will be to be able to satisfy such an estimate at the discrete level.

• We multiply equation (1.1a) by μ and we integrate over Ω. Since ∂nμ = 0 on Γ the Stokes formula gives,∫
Ω

(
μ∂tc + u · (μ∇c) + Γb|∇μ|2

)
= 0.

• We multiply equation (1.1b) by ∂tc and we integrate over Ω we have,∫
Ω

μ∂tc =
∫

Ω

∂t

(
3
4
εσb|∇c|2 +

12
ε

σbfb(c)
)
− 3

2
εσb

∫
Γ

∂tc∂nc.

• For standard Neumann boundary conditions on c, the boundary term
∫

Γ
∂tc∂nc just cancels whereas, in our

case, the term contributes to the energy balance. Indeed, by multiplying (1.1g) by ∂tc|Γ and integrating on
Γ we get

d
dt

∫
Γ

fs(c�Γ ) +
3
2
εσbDs

∫
Γ

|∂tc�Γ |2 +
3
2
εσb

∫
Γ

∂tc∂nc = 0.

• Let (w, p0) ∈ (H1(Ω))2 × L2
0(Ω) be a solution to the Stokes problem:⎧⎪⎪⎨⎪⎪⎩

− ρ∗

Re
Δw + ∇p0 = 0, in Ω;

divw = 0, in Ω;
w = ub, on Γ.

There exists C1 > 0 such that ‖w‖
H1(Ω) ≤ C1 ‖ub‖H

1/2(Γ )
.

Then, we multiply equation (1.1c) by u − w and we integrate over Ω. Since divu = divw = 0 in Ω and
u− w = 0 on Γ we get,∫

Ω

(μ∇c) · (u − w) =
∫

Ω

(
ρ∗

2
∂t|u− w|2 +

ρ∗

Re
|∇(u − w)|2

)
−

∫
Ω

ρ(c)g · (u − w).
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• Summing the previous four identities, and using that the convective term and the capillary term cancel each
other ∫

Ω

u · (μ∇c) =
∫

Ω

μ(u · ∇c), (1.9)

we finally obtain

d
dt

∫
Ω

(
Fb(c) + Fs(c) +

ρ∗

2
|u− w|2

)
= − Γb

∫
Ω

|∇μ|2 − ρ∗

Re

∫
Ω

|∇(u − w)|2

− 3
2
εσbDs

∫
Γ

|∂tc�Γ |2 −
∫

Ω

(μ∇c) ·w +
∫

Ω

ρ(c)g · (u− w).

To conclude to the stability estimate, we have to deal with the term due to the lifting w of the non-
homogeneous Dirichlet boundary condition ub by writing∣∣∣∣∫

Ω

(μ∇c) · w
∣∣∣∣ ≤ Γb

2
‖∇μ‖2

L2(Ω) + C ‖ub‖2
H

1/2(Γ )
‖∇c‖2

L2(Ω) .

The claim follows by Gronwall’s lemma and (1.5).

1.3. Outline and main contributions

Since this paper is devoted to the construction and analysis of a DDFV scheme for the previous system we
shall begin in Section 2 by a presentation of the DDFV framework we will use along the paper: the main notation
and assumptions on the meshes, the associated discrete operators and the available functional inequalities used
in this work.

In Section 3, we present the DDFV discretizations chosen for the main two ingredients in (1.1) that is, the
one for the (un-)steady Stokes problem with non-homogeneous Dirichlet boundary condition (Sect. 3.1 and
Appendix A) and the one for the Cahn−Hilliard equation with dynamic boundary condition (Sect. 3.2).

Section 4, which is the main part of this work, is dedicated to the analysis of the DDFV discretization for the
complete problem. As explained in Section 1.2.2, it is crucial to propose a discretization of the coupling terms
that ensures that the dissipation of the discrete total energy estimate will hold. Therefore, the first step to obtain
a suitable DDFV scheme for the Cahn−Hilliard/Stokes phase field problem, is to define DDFV operators that
discretize these terms (see Sect. 4.1) and for which, at least in a weak sense, the suitable cancellation properties
hold. We will show how to deal with this problem when considering a standard fully-coupled time-stepping
discretization.

However, from a computational point of view it can be demanding to solve a complete steady
Cahn−Hilliard/Stokes problem at each time step since we have a very strong coupling between the two sets
of equations. Additionally, even if it is not considered in this paper, it could be useful to use an incremental
projection method (or any of its variant) for solving the Stokes part of the system and therefore we need a more
flexible time stepping method.

That’s the reason why we choose to present an alternative time splitting approach to discretize the complete
problem. The price to pay is that, even if we build discrete operators which satisfy a discrete form of (1.9), we
cannot directly prove dissipation of the energy because of the splitting error of the time discretization. Some
additional work is thus needed and is presented in Section 4.2 where we prove existence and stability properties
for the solution of the fully discretized problem under some weak condition on the time step.

We conclude by presenting in Section 5 some numerical results that illustrate the good behaviour of the
numerical method and the influence of the dynamic nonlinear boundary condition on the global behaviour of
some typical diphasic flows.
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(a) The primal mesh M (b) The dual mesh M∗

Figure 4. A DDFV mesh T made of conforming triangles.

(a) The primal mesh M (b) The dual mesh M∗

Figure 5. A DDFV mesh T made of non-conforming quadrangles.

2. DDFV framework

2.1. The DDFV meshes and notations

We recall here the main notations and definitions taken from [5]. A DDFV mesh T is constituted by a primal
mesh M and a dual mesh M∗. We denote by ∂T the boundary mesh ∂M∪∂M∗ (see Figs. 4 and 5 for examples
of conforming or non conforming meshes).

The (interior) primal mesh M is a set of disjoint open polygonal control volumes K ⊂ Ω such that ∪K = Ω.
We denote by ∂M the set of edges of the control volumes in M included in Γ , which we consider as degenerate
control volumes.

• To each control volume K ∈ M, we associate a point xK. Even though many choices are possible, in this
paper, we always assume xK to be the mass center of K.

• To each degenerate control volume L ∈ ∂M, we associate the point xL that we choose here equal to the
midpoint of the control volume L.

At any vertex of the primal control volume in M, denoted by xK∗ , we associate the dual control volume K∗ ∈ M∗

which is defined as the polygon obtained by joining all the centers of the surrounding primal control volumes.
We define M∗ (resp. ∂M∗) as the set of all the dual control volume such that xK∗ /∈ Γ (resp. xK∗ ∈ Γ ).
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xK

xL

xK ∗

xL ∗σσ∗

�nσ∗ K ∗

�nσK

�τ KL

�τ K ∗ L ∗

Figure 6. Notations in a diamond cell D.

We also assume, even though it is not strictly necessary, that any K ∈ M (resp. K∗ ∈ M∗) is star-shaped with
respect to xK (resp. xK∗).

For all control volumes K and L, we assume that ∂K ∩ ∂L is either empty or a common vertex or an edge of
the primal mesh denoted by σ = K|L. We note by E the set of such edges. We also note σ∗ = K∗|L∗ and E∗ for
the corresponding dual definitions.

Given the primal and dual control volumes, we define the diamond cells Dσ being the quadrangles whose
diagonals are a primal edge σ = K|L = (xK∗ , xL∗) and a corresponding dual edge σ∗ = K∗|L∗ = (xK, xL), (see
Fig. 6). Note that the diamond cells are not necessarily convex. If σ ∈ E ∩ ∂Ω, the quadrangle Dσ degenerate
into a triangle. The set of the diamond cells is denoted by D and we have Ω = ∪

D∈D
D.

For any primal control volume K ∈ M, we note:

• mK its Lebesgue measure,
• EK the set of its edges (if K ∈ M), or the one-element set {K} if K ∈ ∂M.
• DK = {Dσ ∈ D, σ ∈ EK},

We will also use corresponding dual notations: mK∗ , EK∗ and DK∗ .
For any K∗ ∈ ∂M∗ we introduce the edge σK∗

Γ
= ∂K∗ ∩ Γ and we denote m

σK∗
Γ

its length.
For a diamond cell D whose vertices are (xK, xK∗ , xL, xL∗) (see Fig 6), we note

• mσ (resp.mσ∗) the length of the primal edge σ = [xK∗ , xL∗ ] (resp. the dual edge σ∗ = [xK, xL]),
• �nσK the unit vector normal to σ going from xK to xL,
• �nσ∗K∗ the unit vector normal to σ∗ going from xK∗ to xL∗ ,
• �τ KL the unit tangent vector to σ∗ oriented from xK to xL,
• �τ K∗L∗ the unit tangent vector to σ oriented from xK∗ to xL∗ ,
• mD the Lebesgue measure of D.

Let us note that the following relations hold:

�nKL · �τ KL = �nK∗L∗ · �τ K∗L∗ =
2mD

mσmσ∗
and �nKL · �τ K∗L∗ = �nK∗L∗ · �τ KL = 0. (2.1)

We define the set of boundary diamond cells Dext as the set of diamond cells which possess one side included
in ∂Ω; the set of interior diamond cells is thus Dint = D\Dext.

Let size(T ) be the maximum of the diameters of the diamond cells in D. We introduce a positive number
reg(T ) that measures the regularity of a given mesh and is useful to perform the convergence analysis of finite
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volume schemes:

reg(T ) := max

(
N ,N ∗, max

K∗∈M∗

diam(K∗)√
mK∗

, max
K∈M

diam(K)√
mK

,

max
D∈D

diam(D)
√

mD
, max
D∈D

mσmσ∗

mD
, max

K∈M
D∈DK

diam(K)
diam(D)

, max
K∗∈M∗
D∈DK∗

diam(K∗)
diam(D)

)
, (2.2)

where N and N ∗ are the maximum of edges of each primal cell and the maximum of edges incident to any
vertex. The number reg(T ) should be uniformly bounded when size(T ) → 0 for the convergence results to hold.

In order to simplify the presentation of the DDFV scheme, we shall adopt the following convention: for any
quantity F T that is defined on T (that is which belongs to RT or

(
R2

)T ), we shall write

F T := (F M, F ∂M, F M∗
, F ∂M∗

), (2.3)

to identify the contributions of the different submeshes (primal/dual, interior/boundary). In the same way we
shall denote by F ∂T := (F ∂M, F ∂M∗) the boundary values.

Projections onto the mesh.

Let us define now the mean-value projection P
T
m whose goal is to give a suitable DDFV discretization of

initial conditions and source terms to be used in our numerical scheme. In order to deal with non-homogeneous
boundary data for the velocity, we shall also need a variant P̃

T

m of this projection with a specific choice for
boundary terms on corners of the domain.

Definition 2.1. For any smooth enough real- or vector-valued function v on Ω we define the mean-value
projection P

T
m as follows

P
M

mv :=
((

1
mK

∫
K

v

)
K∈M

)
and P

M∗
m v :=

((
1

mK∗

∫
K∗

v

)
K∗∈M∗

)
,

P
∂M

m v :=
((

1
mσ

∫
σ

v

)
σ∈M

)
and P

∂M∗
m v :=

((
1

m
σK∗

Γ

∫
σK∗

Γ

v

)
K∗∈∂M∗

)
·

We also define P̃
T

mv to be equal to P
T
mv, excepted for all boundary dual unknowns where we set for K∗ ∈ ∂M∗,

P̃
K∗

m v :=

{
0, if xK∗ is a corner point of Γ = ∂Ω

P
K∗
m v, otherwise.

We can now introduce the two subsets of
(
R2

)T needed to take into account the homogeneous or non-
homogeneous Dirichlet boundary conditions in the Stokes problem

E0 :=
{
uT ∈

(
R2

)T
such that u∂T = 0

}
and Eub

:=
{
uT ∈

(
R2

)T
such that u∂T = P̃

∂T

m ub

}
,

(2.4)

where ub satisfies (1.2). Observe that we use the projection P̃
∂T

m here, so that all the corner dual unknowns in
Eub

are set to zero, by definition.
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2.2. Discrete operators

In this subsection, we define the discrete operators which are needed in order to write and analyse the DDFV
scheme.

Operators from primal/dual meshes into the diamond mesh.

Definition 2.2 (Discrete gradient). We define the discrete gradient operator ∇D that maps vector fields of(
R2

)T (resp. scalar fields of RT ) into matrix fields of (M2(R))D (resp. vector fields of
(
R2

)D), as follows: for
any diamond D ∈ D, we set

∇DuT :=
1

2mD
[mσ(uL − uK) ⊗ �nσK + mσ∗(uL∗ − uK∗) ⊗ �nσ∗K∗ ] , ∀uT ∈

(
R2

)T
,

∇DuT :=
1

2mD
[mσ(uL − uK)�nσK + mσ∗(uL∗ − uK∗)�nσ∗K∗ ] , ∀uT ∈ RT .

In this definition we used the usual notation for the tensor product of two vectors a,b ∈ R2, defined by
a ⊗ b = atb ∈ M2(R), tb being the transpose of b.

Definition 2.3 (Discrete divergence of vector fields). We define the discrete divergence operator divD mapping
vector fields of

(
R2

)T into scalar fields in RD, as follows. For any D ∈ D, we set

divDuT :=Tr (∇DuT )

=
1

2mD
[mσ(uL − uK) · �nσK + mσ∗(uL∗ − uK∗) ·�nσ∗K∗ ] , ∀uT ∈

(
R2

)T
.

Operators from the diamond mesh into the primal/dual meshes.

Definition 2.4 (Discrete divergence of matrix fields). We define the discrete divergence operator divT mapping
matrix fields in (M2(R))D into vector fields in

(
R2

)T , as follows. For any ξD ∈ (M2(R))D, we set div∂MξD = 0
and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

divKξD :=
1

mK

∑
σ∈∂K

mσξD.�nσK, ∀K ∈ M,

divK∗
ξD :=

1
mK∗

∑
σ∗∈∂K∗

mσ∗ξD.�nσ∗K∗ , ∀K∗ ∈ M∗,

divK∗
ξD :=

1
mK∗

( ∑
Dσ,σ∗∈DK∗

mσ∗ξD.�nσ∗K∗ +
∑

D∈DK∗∩Dext

dK∗,LξD.�nσK

)
, ∀K∗ ∈ ∂M∗,

where dK∗,L is the distance between xK∗ and xL.

We can also define a discrete divergence for vector fields as follows (see [5, 8] for more details).

Definition 2.5 (Discrete divergence of vector fields). We define the discrete divergence operator divT mapping
vector fields of

(
R2

)D into scalar fields of RT , as follows

divT ξD :=
(
divT

(
tξD

0

))
·
(

1
0

)
, ∀ξD ∈

(
R2

)D
.

Definition 2.6 (Discrete pressure gradient). We define the discrete gradient operator ∇T mapping scalar fields
of RD into vector fields in

(
R2

)T as follows

∇T pD := divT (pDId), ∀pD ∈ RD.
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2.3. Discrete Green/Stokes formulas

First of all, we define the following bilinear forms. For d ∈ {1, 2} and for any uT , vT ∈
(
Rd

)T , pD, qD ∈
(
Rd

)D

we set

�uT , vT �T :=
1
2

( ∑
K∈M

mK (uK, vK)
R

d +
∑

K∗∈M∗
mK∗ (uK∗ , vK∗)

R
d

)
,

(pD, qD)
D

:=
∑

D∈D

mD (pD, qD)
R

d .

Since the primal boundary values of uT and vT does not enter the definition of �., .�T , it is a semi-inner product
whereas (., .)

D
is actually an inner product. We denote by ‖.‖T and ‖.‖

D
the associated (semi-)norms. For any

q ≥ 1 we also define

‖uT ‖q,T :=

(
1
2

∑
K∈M

mK|uK|q +
1
2

∑
K∗∈M∗

mK∗ |uK∗ |q
) 1

q

,

‖uT ‖∞,T := max
(

max
M

|uK|, max
M∗

|uK∗ |
)

.

We also define two other inner products

�u∂T , v∂T �∂T :=
1
2

( ∑
L∈∂M

mσuLvL +
∑

K∗∈∂M∗
m

σK∗
Γ

uK∗vK∗

)
, ∀u∂T , v∂T ∈ R∂T ,

(ξD : φD)
D

:=
∑

D∈D

mD(ξD : φD) ∀ξD, φD ∈ (M2(R))D,

and we denote by ‖.‖
∂T and |||.|||

D
the associated norms. For any q ≥ 1, we also set

‖u∂T ‖q,∂T :=
(

1
2

∑
L∈∂M

mσ|uL|q +
1
2

∑
K∗∈∂M∗

m
σK∗

Γ
|uK∗ |q

) 1
q

, ∀u∂T ∈ R∂T .

In order to state the DDFV Green formulas, we shall also use the following bilinear form

(φD, v∂M)
∂Ω

:=
∑

D∈Dext

mσφDvL, ∀φD ∈ RDext , v∂M ∈ R∂M,

and the following trace operators:

• a trace operator for scalar fields of RT defined by γT : uT �→ (γL(uT ))L∈∂M
∈ R∂M with

γL(uT ) :=
dK∗,LuK∗ + dL∗,LuL∗ + mσuL

2mσ

, ∀L = [xK∗ , xL∗ ] ∈ ∂M;

• a trace operator for vector fields of
(
R2

)D defined as follows,

γD : φD ∈
(
R2

)D �→ (φD)D∈Dext
∈

(
R2

)Dext
.

We can now state the following discrete Green formulas that give its name to the Discrete Duality Method
(see for instance, [5, 15] for the proofs).

Theorem 2.7 (Green formulas). For any (ξD,uT ) ∈ (M2(R))D ×E0 and for any (gD, vT ) ∈
(
R2

)D ×RT , the
following equalities hold,

�divT ξD,uT �T = −
(
ξD : ∇DuT

)
D

, (2.5a)

�divT gD, vT �T = −
(
gD,∇DvT

)
D

+ (γD(gD) · �nT , γT (vT ))
∂Ω

, (2.5b)

with �nT = ((�nKL)L∈∂M) ∈
(
R2

)Dext .
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2.4. Discrete functional inequalities

In this section we gather without proofs some discrete functional inequalities available in the literature and
that we will use all along the paper. We assume that a DDFV mesh T of Ω is fixed.

Theorem 2.8 (Discrete Poincaré−Sobolev inequality, ([6], Thm. 5.1)). Let q ≥ 1, there exists C2 > 0 depending
only on Ω and q such that

‖uT ‖q,T ≤ C2

(
‖uT ‖T +

∣∣∣∣∣∣∇DuT

∣∣∣∣∣∣
D

)
, ∀uT ∈

(
R2

)T
.

Theorem 2.9 (Discrete Poincaré inequality, ([5], Lem. 3.2)). There exists C3 > 0, depending only on the
diameter of Ω and on reg(T ), such that

‖uT ‖T ≤ C3

∣∣∣∣∣∣∇DuT

∣∣∣∣∣∣
D

, ∀uT ∈ E0.

Definition 2.10 (Quasi-uniform mesh family). We define the number regunif(T ) as follows

regunif(T ) := sup
(

reg(T ), sup
K∈M

size(T )2

mK
, sup
K∗∈M∗

size(T )2

mK∗

)
·

We say that a family of DDFV meshes
(
T (m)

)
m∈N

is quasi-uniform if regunif(T (m)) is bounded.

Proposition 2.11. For any q ≥ 1, there exists a constant C4 > 0 (depending on q and regunif(T )) such that,

‖uT ‖∞,T ≤ C4

size(T )2/q
‖uT ‖q,T , ∀uT ∈ RT . (2.6)

We define the primal and dual mean-values of a function μT ∈ RT as follows,

MM (μT ) :=
∑

K∈M

mKμK and MM∗ (μT ) :=
∑

K∗∈M∗
mK∗μK∗ .

Observe that the primal boundary values of μT does not appear in those definition. This is due to the fact that
boundary primal control volumes are degenerate.

The following result is proved in ([6], Thms. 5.1 and 5.3).

Theorem 2.12. For any q ≥ 1 there exists C5 > 0 depending only on q, Ω and on reg(T ) such that

‖μT ‖q,T ≤ C5

∥∥∇DμT

∥∥
D

, ∀μT ∈ RT , with MM (μT ) = MM∗ (μT ) = 0. (2.7)

Finally, using the fact that the trace operator is continuous from BV (Ω) into L1(Γ ), we can use similar
techniques as that in ([6], Thm. 5.1) to obtain the following discrete trace theorem.

Theorem 2.13 (Trace inequality). For any q ≥ 1, there exists C6 > 0 depending only on q, Ω, and reg(T )
such that

‖u∂T ‖q,∂T ≤ C6

(
‖uT ‖T +

∥∥∇DuT

∥∥
D

)
, ∀uT ∈ RT . (2.8)

2.5. Stability estimates

We can finally prove the stability of the projections introduced in Definition 2.1.

Proposition 2.14. There exists C7 > 0 depending on reg(T ) such that

• For any v ∈ H1(Ω), we have
‖P

T
mv‖T +

∥∥∇DP
T
mv

∥∥
D
≤ C7 ‖v‖H1(Ω) . (2.9)
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xK ∗

σ∗
1σ∗
1

σ∗
2

�n1

�n2

Figure 7. Case where xK∗ is a corner point of Ω.

• For any v ∈ (H1(Ω))2 such that v · �n = 0 on Γ , we have∥∥∥P̃
T

mv
∥∥∥

T
+

∥∥∥∇DP̃
T

mv
∥∥∥

D

≤ C7 ‖v‖H1(Ω) . (2.10)

Proof. We first choose if necessary a lifting of v (resp. v) in H1(R2) (resp. (H1(R2))2).
The proof of the first point is now quite standard, see for instance [5]. It is based on the following inequality

(see [5] and [18], Lem. 3.4): there exists a universal C8 > 0 such that for any non degenerate polygonal domain
A and σ one of its edge we have∣∣∣∣ 1

mA

∫
A

v − 1
mσ

∫
σ

v

∣∣∣∣2 ≤ C8
diam(A)3

mσmA

∫
Â

|∇v|2 , ∀v ∈ H1(R2), (2.11)

where Â is the convex hull of A.
We just focus on the fact that even the discrete L2 estimate in (2.9) needs a complete H1 norm in the

right-hand side, since we have chosen here the dual boundary values of P
T
mv to be defined as mean-values of

the trace on Γ of the function v (this is a small difference with [5,18] that can be handled without difficulties).
For the estimate (2.10), we observe that the difference wT = P

T
mv − P̃

T

mv is non-zero only on corner points
of Γ (and there is only a finite number of such points) and we want to evaluate

∥∥∇DwT

∥∥2

D
.

Let K∗ ∈ ∂M∗ such that xK∗ is a corner point of Γ , see Fig 7. We denote by σ1, σ2 ∈ Eext = ∂M the only two
exterior edges such that ∂K∗ ∩ σi �= ∅ and we set σ∗

i = σi ∩ ∂K∗, i = 1, 2. Thanks to (2.11) we have for i = 1, 2∣∣∣∣∣ 1
mK∗

∫
K∗

v − 1
mσ∗

i

∫
σ∗

i

v

∣∣∣∣∣
2

≤ C8
diam(K̂∗)3

mσ∗
i
mK∗

∫
K̂∗

|∇v|2

≤ C(reg(T ))
∫
K̂∗

|∇v|2 .

(2.12)

Since by assumption we have v · �ni = 0 on σ∗
i , we have

∫
σ∗

i
v · �ni = 0 so that we get

∣∣∣∣ 1
mK∗

∫
K∗

v · �ni

∣∣∣∣2 ≤ C(reg(T ))
∫
K̂∗

|∇v|2 , for i = 1, 2.

Since the unit vectors �n1 and �n2 are not colinear (because xK∗ is a corner point of Γ ), we conclude that∣∣∣∣ 1
mK∗

∫
K∗

v
∣∣∣∣2 ≤ C(reg(T ))

∫
K̂∗

|∇v|2 .
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Coming back to (2.12), we finally obtain that for i = 1, 2 we have∣∣∣∣∣ 1
mσ∗

i

∫
σ∗

i

v

∣∣∣∣∣
2

≤ C(reg(T ))
∫
K̂∗

|∇v|2 .

Finally, we have that σK∗
Γ

= σ∗
1 ∪σ∗

2 so that wK∗ is a convex combination of 1
mσ∗

1

∫
σ∗
1
v and 1

mσ∗
2

∫
σ∗
2
v. It follows

that

|wK∗ |2 ≤ C(reg(T ))
∫
K̂∗

|∇v|2 .

The contribution of wK∗ in
∥∥∇DwT

∥∥2

D
is thus bounded as follows

m2
σ

4mD
|wK∗ |2 ≤ C(reg(T ))

∫
K̂∗

|∇v|2 ≤ C(reg(T ))‖v‖2
H1 .

The same estimate holds for each corner point of Γ which gives the claim by summing all of them (there is only
a finite and fixed number of such exceptional points). �

3. Separate analysis of the Stokes and of the Cahn−Hilliard DDFV schemes

In this section, before the study of the full coupled system, we present separately the DDFV scheme for the
steady Stokes problem in a first part and for the Cahn−Hilliard equation with dynamic boundary condition in
a second part.

3.1. The steady Stokes problem

The aim of this section is to investigate the DDFV discretization of the non-homogeneous 2D incompressible
steady Stokes problem: Find a velocity field u : Ω → R2 and a pressure field p : Ω → R,⎧⎪⎪⎪⎨⎪⎪⎪⎩

− Δu + ∇p = f , in Ω,

divu = 0, in Ω,

u = ub, on Γ,

m(p) = 0,

(3.1)

where f is a function in (L2(Ω))2, ub satisfies (1.2) and m(p) := 1
|Ω|

∫
Ω

p is the average of p.
In the case of homogeneous boundary condition (that is if ub = 0) the DDFV discretization of the problem

(in this primal form) was for instance studied in [9, 29] (see also [30] for the 3D case). We would like here to
recall those results and to generalise some of them to the non-homogeneous Dirichlet boundary data.

The DDFV method for the Stokes problem requires staggered unknowns. For the velocity field, it associates
to any primal cell K ∈ M an unknown value uK ∈ R2 and to any dual cell K∗ ∈ M∗ an unknown value uK∗ ∈ R2.
For the pressure field, we consider one unknown value pD ∈ R for each diamond cell D ∈ D. These unknowns
are collected in two vectors uT ∈

(
R2

)T , and, pD ∈ RD.
The DDFV scheme for problem (3.1) then reads as follows: Find uT ∈ Eub

and pD ∈ RD such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

divM(−∇DuT + pDId) = P
M

mf ,

divM∗
(−∇DuT + pDId) = P

M∗
m f ,

divDuT = 0,

m(pD) :=
∑

D∈D

mDpD = 0.

(3.2)
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This scheme is formally obtained by replacing the continuous gradient and divergence operators by the discrete
DDFV operators defined previously. It amounts to integrating the mass (resp. momentum) balance equation on
the diamond mesh D (resp. on the primal and interior dual meshes M and M∗), and then to approximate the
fluxes by using the DDFV gradient operator. Therefore, even though it is not clear at first sight in this compact
operator-oriented presentation, this scheme is indeed a finite volume method. The non-homogeneous Dirichlet
boundary conditions are specified on ∂M and on ∂M∗ through the definition of the space Eub

(see (2.4)).

The practical implementation of the scheme is straightforward: it simply consists in making a loop over the
diamond cells and to compute for each of them the contribution of the momentum flux across primal and dual
cells. Those fluxes only depend on the four velocity unknowns and of the pressure unknown related to the
current diamond cell. The source term and the boundary data then appears in the right-hand side member of
the resulting square linear system.

For a given mesh T , the discrete Inf-Sup (LBB) constant associated with this problem is defined in a standard
way as follows

βT := inf
pD∈RD

⎛⎝ sup
vT ∈E0

(
divDvT , pD

)
D

|||∇DvT |||D ‖pD − m(pD)‖
D

⎞⎠ . (3.3)

In this paper, we assume that all the DDFV meshes considered satisfy the Inf-Sup condition βT > 0, which
amounts to say that the kernel of the pressure gradient operator ∇T only contains constants. For such meshes,
it is a standard fact to prove that the discrete Stokes problem (3.2) is well-posed. However, the stability and
convergence of such method depends on the uniform Inf-Sup condition, that is to say that βT must remain away
from 0 when the mesh is refined.

In [9] the Inf-Sup stability of such DDFV scheme with homogeneous Dirichlet boundary condition was
thoroughly investigated. In particular, it is proved that for many kind of meshes, including non-conforming
Cartesian meshes or conforming triangle meshes the Inf-Sup stability property holds, at least up to a single
unstable pressure mode in some cases.

As for the continuous case (see Sect. 1.2.2), in order to deal with the non-homogeneous Dirichlet boundary
condition in the discrete energy estimate of the fully Cahn−Hilliard/Stokes coupled problem, we need to intro-
duce a suitable lifting of the boundary data. In order to simplify the computations, we will define such a lifting
as a solution to the Stokes problem without source term.

Theorem 3.1. There exists a unique (wT , qD) ∈ Eub
× RD solution to the following Stokes problem:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
divM(−∇DwT + qDId) = 0,

divM∗
(−∇DwT + qDId) = 0,

divDwT = 0,

m(qD) = 0.

(3.4)

Moreover, there exists C9 > 0 depending on Ω, βT , reg(T ) such that

‖wT ‖T ≤ C9 ‖ub‖H
1/2(Γ )

and
∣∣∣∣∣∣∇DwT

∣∣∣∣∣∣
D
≤ C9 ‖ub‖H

1/2(Γ )
.

This result is classical in the continuous setting but its proof do not seem to be available in the literature in the
DDFV framework. We propose a complete proof in the Appendix A.
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3.2. The Cahn−Hilliard DDFV scheme

In this section, we describe the DDFV scheme associated with the following Cahn−Hilliard equation with
dynamic boundary conditions: Find the concentration c and the chemical potential μ such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tc = Δμ, in (0, T ) × Ω;
μ = −Δc + f ′

b
(c), in (0, T ) × Ω;

∂nμ = 0, on (0, T )× Γ ;
∂tc�Γ = −f ′

s
(c�Γ ) − ∂nc, on (0, T ) × Γ,

(3.5)

with the initial condition c(0) = c0.

From a theoretical point of view, the questions such as existence, uniqueness and regularity of solutions,
existence of attractors and convergence to stationary states have been treated (see [14,35,39,41,45] and the ref-
erences therein). From a numerical point of view, finite-difference methods have been implemented in [20, 21, 28]
where the authors give various numerical illustrations, without proof of stability or convergence. Convergence
results and optimal error estimates for the space semi-discrete scheme, with a finite-element discretization, are
proved in [13] when the domain is a slab with periodic conditions in the longitudinal direction. Concerning
finite-volume methods on unstructured grids, in [37,38] the author proposes and analyses finite-volume schemes
based on a two point flux approximation which is posed on a possibly smooth non-polygonal domain. However,
up to our knowledge, there is no DDFV scheme available yet for this kind of problem. Our interest for this
particular method comes from its capability to handle very general grids (even non conforming) and its very
good robustness properties (as illustrated in the benchmarks [19, 23] for instance).

For the space discretization, all the discrete unknowns are located on the primal and dual meshes (namely on
the centers and the vertices). For the time discretization, we set N ∈ N∗ and Δt = T

N . For any n ∈ {1, . . . , N},
we define tn = nΔt. Then, the approximation at time tn is denoted by

cn
T =

(
(cn

K)K∈M

(cn
K∗)K∗∈M∗

)
∈ RT and μn

T =
(

(μn
K)K∈M

(μn
K∗)K∗∈M∗

)
∈ RT .

Contrary to the velocity/pressure unknowns for the Stokes problem here the unknowns cT and μT are colocalized
scalar fields.

To derive a DDFV scheme for the Cahn−Hilliard equation with dynamic boundary conditions (3.5), we first
adopt a semi-discrete time discretization, then we formally replace the differential operators in the system by
the discrete operators defined in Section 2.2. Here also, it amounts to integrate the two equations on the primal
and dual meshes and to use discrete gradient operators to define the required numerical fluxes.

The additional delicate point here is the approximation of the dynamic boundary condition on the boundary
dual control volumes. Indeed, these control volumes have a specific role because they are considered both
as interior unknowns in the equation on the chemical potential and as boundary unknowns in the dynamic
boundary condition. Let us remark that this is not the case for boundary primal control volumes because they
only play a role here in the discretization on the dynamic boundary condition, since those control volume are
in fact degenerate (they are edges of interior control volumes).

To obtain the DDFV approximation for the boundary dual mesh ∂M∗, we integrate the equation on the
chemical potential on all boundary dual cells K∗ ∈ ∂M∗ and the dynamic boundary condition on σK∗

Γ = ∂K∗∩Γ .
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In summary, the DDFV scheme we propose then reads, for a given initial data c0
T ∈ RT : for any n, find

(cn+1
T , μn+1

T ) ∈ RT × RT such that,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cn+1
T0

− cn
T0

Δt
= divT

(
∇Dμn+1

T

)
,

γD(∇Dμn+1
T ) · �nT = 0,

μn+1
M

= −divM
(
∇Dcn+1

T

)
+ dfb (cn

M
, cn+1

M
),

μn+1
M∗ = −divM∗ (

∇Dcn+1
T

)
+ dfb(cn

M∗ , cn+1
M∗ ),

mK∗μn+1
K∗ = −

∑
Dσ,σ∗∈DK∗

mσ∗∇Dcn+1
T · �nσ∗K∗ + mK∗dfb(cn

K∗ , cn+1
K∗ )

+ m
σK∗

Γ

cn+1
K∗ − cn

K∗

Δt
+ m

σK∗
Γ

dfs(cn
K∗ , cn+1

K∗ ), ∀K∗ ∈ ∂M∗,

cn+1
∂M − cn

∂M

Δt
= −dfs(cn

∂M, cn+1
∂M ) − γD(∇Dcn+1

T ) · �nT .

(3.6)

Observe that, since the evolution equation for c is not discretized on the boundary primal mesh ∂M (due to

the Neumann boundary condition on μ), we needed to use here the following notation cT0 =

⎛⎝ cM

0
cM∗

⎞⎠, for any

cT ∈ RT , which is compatible with the fact that we have conventionally set div∂M = 0 (see Def. 2.5).
In the previous scheme we have denoted by dfb (resp. dfs) the semi-discrete approximation of the nonlinear

terms f ′
b (resp. f ′

s). Many choices are possible for those terms (see [11,37]) but we decided here to consider the
following one

dfb(x, y) :=
fb(y) − fb(x)

y − x
and dfs(x, y) :=

fs(y) − fs(x)
y − x

, ∀x, y, x �= y, (3.7)

which ensures automatically the stability property. In practice, the potentials fb and fs we use are polynomial
functions, thus the terms dfb and dfs are also polynomials functions in the two variables x and y. Therefore,
there is no need to make divisions in their computation, thus avoiding numerical accuracy issues. Using the
assumption (1.4), we easily prove that dfb and dfs satisfy, for some C > 0,

|dfb(x, y)| + |dfs(x, y)| ≤ C(1 + |x|p + |y|p), ∀x, y ∈ R. (3.8)

Recall that the continuous total free energy is the sum of a bulk energy and a surface energy (see Defs. 1.6
and 1.7). Similarly, the discrete free energy associated with the numerical scheme under study is defined as
follows. For any cT ∈ RT ,

FT (cT ) :=
1
2

∥∥∇DcT

∥∥2

D
+ �fb(cT ), 1T �T︸ ︷︷ ︸

:=Fb,T (cT )

+ �fs(c∂T ), 1∂T �∂T︸ ︷︷ ︸
:=Fs,∂M(c∂T )

, (3.9)

where 1∂T ∈ R∂T is the constant function equal to 1 on all the boundary control volumes and 0 elsewhere.

Proposition 3.2 (Properties of the Cahn−Hilliard DDFV scheme). Let cn
T ∈ RT . Assuming that there exists

a solution (cn+1
T , μn+1

T ) ∈ RT × RT to problem (3.6) then the following properties hold:

• Volume conservation:

MM

(
cn+1
T

)
= MM (cn

T ) , and MM∗
(
cn+1
T

)
= MM∗ (cn

T ) ,
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• Energy equality:

FT (cn+1
T ) −FT (cn

T ) + Δt
∥∥∇Dμn+1

T

∥∥2

D
+

1
2

∥∥∇D(cn+1
T − cn

T )
∥∥2

D
+

1
Δt

∥∥cn+1
∂T − cn

∂T

∥∥2

∂T
= 0.

We do not give the proof here because it is very similar to the proof of Proposition 4.9 that we detail below.
Let us remark that the right hand-side of the energy equality is exactly equal to 0 because we choose the

discretization (3.7) for the nonlinear terms. As a consequence, the dissipation of the discrete total energy is
valid for all time step Δt. This property leads to the existence of a solution to problem (3.6). We do not give
the details since the proof can be done in a similar (even simpler) way as the one of our main result (Thm. 4.11)
that concerns the complete coupled system.

4. Coupling between the Cahn−Hilliard equation and the unsteady Stokes

problem

We can now enter the heart of the paper, that is to propose and analyse a DDFV scheme for the phase-field
coupled problem (1.1).

4.1. Definition of discrete coupling operators

In Sections 3.1 and 3.2 we have introduced all the notation and tools necessary to study DDFV schemes.
We also described the corresponding discretizations of the steady Stokes problem in the one hand and of the
Cahn−Hilliard equation with dynamic boundary condition in the other hand.

The main new difficulty is to describe a suitable discretization of the coupling terms that is of the advection
term u · ∇c in the Cahn−Hilliard equation and of the capillary forces term μ∇c in the momentum equation.

Let us summarise the issues that we need to deal with.

• Convection term:
The velocity unknowns are located on the primal and the dual meshes but the discrete gradient of the
concentration c is naturally defined on diamond cells. Thus, we cannot discretize the term u · ∇c by simply
writing uT · ∇DcT which is meaningless.
The first idea, in order to ensure mass conservation, is to discretize this term in conservative form div(cu).
The Stokes formula gives∫

K
div(uc) =

∑
σ∈EK

∫
σ

c u · �nσK,

∫
K∗

div(uc) =
∑

σ∗∈EK∗

∫
σ∗

c u · �nσ∗K∗ ,

and we propose to discretize those balance equations as follows⎧⎪⎪⎪⎨⎪⎪⎪⎩
divK

π(uT , cT ) :=
1

mK

∑
σ∈EK

cσFπ
σ,K(uT ), ∀K ∈ M,

divK∗
π (uT , cT ) :=

1
mK∗

∑
σ∗∈EK∗

cσ∗Fπ
σ∗,K∗(uT ), ∀K∗ ∈ M∗,

(4.1)

where cσ (resp. cσ∗) is a primal (resp. dual) edge approximations of c defined from the main unknowns cT

as follows

cσ :=
cK + cL

2
, cσ∗ :=

cK∗ + cL∗

2
, (4.2)
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and Fπ
σ,K(uT ) (resp. Fπ

σ∗,K∗(uT )) is an approximation of the flux
∫

σ u · �nσK, (resp.
∫

σ∗ u ·�nσ∗K∗).
Those new fluxes have to satisfy the following conditions:
(1) Conservativity: {

Fπ
σ,K(uT ) = −Fπ

σ,L(uT ), if σ = K|L,

Fπ
σ∗,K∗(uT ) = −Fπ

σ∗,L∗(uT ), if σ∗ = K∗|L∗.
(4.3)

(2) Divergence-free condition: {
divK

π(uT , 1) = 0, ∀K ∈ M,

divK∗
π (uT , 1) = 0, ∀K∗ ∈ M∗.

(4.4)

Those properties imply the mass conservation property as well as the fact that the constant pure states
c ≡ 0, c ≡ 1 will be particular solutions of the convected Cahn−Hilliard equation. This is an important
requirement to ensure that the bulk phases will be suitably computed by the coupled model.

• Capillary forces term:
Similarly we cannot simply write μT ∇DcT , which is meaningless, to discretize the capillary forces term in
the momentum equation. We shall build in the sequel an adapted discretization of this term denoted by
GT (cT , μT ).
We will base our construction on the fact that, at the continuous level, this term μ∇c can be interpreted as
the local volume force exerted through the interface which exactly compensate the local free energy creation
due to the convective term in the Cahn−Hillard equation.
In other words, we will try to mimick at the discrete level the following identity∫

Ω

(u · ∇c)μ =
∫

Ω

(μ∇c) · u,

that is to say, with the DDFV notation,

�divT
π (uT , cT ), μT �T = �GT (cT , μT ),uT �T , ∀uT ∈ Eub

, ∀cT , μT ∈ RT . (4.5)

The construction of the fluxes Fπ
σ,K(uT ) and of the operator GT satisfying those properties is now given in the

following two subsections.

4.1.1. Construction of primal and dual mass fluxes

In this section, we shall give a precise definition of the mass fluxes Fπ
σ,K(uT ), Fπ

σ∗,K∗(uT ) in such a way
that (4.3) and (4.4) are fulfilled. The construction is mainly inspired by the one in [22], even though we adopt
a slightly different point of view.

We begin with some additional notation related to diamond cells. Let D ∈ D be the diamond cell whose
vertices are xK, xL, xK∗ , xL∗ (see Fig. 8).

• We use the letter s to refer to the sides of the diamond D. More precisely, sKK∗ ⊂ ∂D is the side D whose
ends are xK and xK∗ . We use similar notations for the three other sides of D: sKL∗ , sLK∗ and sLL∗ .

• The set of all the sides of all the diamond cells in D is denoted by S.
• We note ms the length of any side s ∈ S and �ns,D the unit normal vector of s outward to D.

For any uT ∈
(
R2

)T and any side s = [xP , xP∗ ] of the diamond cell, with P ∈ {K, L} and P∗ ∈ {K∗, L∗}, we
define the flux across s to be

Fπ
s,D(uT ) := ms

uP + uP∗

2
· �ns,D. (4.6)

Thanks to the following geometric formulas valid in each half diamond

mσ�nKL = −msKK∗�nsKK∗ ,D − msKL∗�nsKL∗ ,D = msLK∗�nsLK∗ ,D + msLL∗�nsLL∗ ,D,

mσ∗�nK∗L∗ = −msKK∗�nsKK∗ ,D − msLK∗�nsLK∗ ,D = msKL∗�nsKL∗ ,D + msLL∗�nsLL∗ ,D,
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xK

xL

xK ∗

xL ∗

σ

σ∗ �nsKK∗ ,D

�nsKL∗ ,D

�nsLK∗ ,D

�nsLL∗ ,D

D sKK∗

sKL∗

sLK∗

sLL∗

Figure 8. Definitions in a diamond cell D ∈ D.

and to the definition of the discrete divergence operator (see Def. 2.3), we observe that

divDuT =
1

mD

∑
s⊂∂D

Fπ
s,D(uT ). (4.7)

We observe now that, for a divergence-free vector field u, the Stokes formula gives∫
σ

u · �nσK +
∫

sKK∗

u · �nsKK∗ ,D +
∫

sKL∗

u · �nsKL∗ ,D = 0.

We use this property (and similar ones for dual cells), at the discrete level, to define the following fluxes⎧⎪⎨⎪⎩
Fπ

σ,K(uT ) = −
(
Fπ

sKK∗ ,D(uT ) + Fπ
sKL∗ ,D(uT )

)
Fπ

σ∗,K∗(uT ) = −
(
Fπ

sKK∗ ,D(uT ) + Fπ
sLK∗ ,D(uT )

)
.

(4.8)

Proposition 4.1. Let ub satisfying (1.2) and uT ∈ Eub
, such that divDuT = 0.

Then, the primal and dual fluxes defined in (4.8) satisfy the properties (4.3) and (4.4).
Moreover, for any σ ∈ Eext, if we denote by D ∈ Dext the associated boundary diamond, we have

Fπ
σ,K(uT ) = 0, and

{
Fπ

σ∗,K∗(uT ) = −Fπ
sKK∗ ,D(uT ),

Fπ
σ∗,L∗(uT ) = −Fπ

sKL∗ ,D(uT ).

We particularly emphasise the fact that, the boundary dual fluxes in the last formula are not zero in general
for, at least, two reasons: first, the normals �nsKK∗ ,D and �nsKL∗ ,D are not parallel to the outward normal to the
domain, and second the interior unknown uK are no reason to have its normal component to be zero. However,
those terms will compensate each other in the forthcoming conservativity and stability computations.

Proof.

• For a divergence-free discrete vector field, the formula (4.7) implies

Fπ
sKK∗ ,D(uT ) + Fπ

sKL∗ ,D(uT ) + Fπ
sLK∗ ,D(uT ) + Fπ

sLL∗ ,D(uT ) = 0, (4.9)

that we can rewrite as follows
Fπ

σ,K(uT ) + Fπ
σ,L(uT ) = 0,

but also as follows
Fπ

σ∗,K∗(uT ) + Fπ
σ∗,L∗(uT ) = 0.

This is exactly the conservativity property we wanted to show.
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• Let us consider a primal control volume K. From (4.1), proving the property (4.4), is equivalent to show
that ∑

σ∈EK

Fπ
σ,K(uT ) = 0.

Using the definition (4.8) of those fluxes, we arrive to∑
σ∈EK

Fπ
σ,K(uT ) = −

∑
σ∈EK

(
Fπ

sKK∗ ,D(uT ) + Fπ
sKL∗ ,D(uT )

)
,

where, in this sum, the diamond D is the one associated with the edge σ. We observe now that, for each
vertex xK∗ of the control volume K, the side sKK∗ in this sum appears exactly twice. More precisely, we have∑

σ∈EK

Fπ
σ,K(uT ) = −

∑
K∗∈M∗

s.t.sKK∗∈S

(
Fπ

sKK∗ ,D(uT ) + Fπ
sKK∗ ,D′(uT )

)
,

where in this sum D and D′ are the two diamond cells sharing the common side sKK∗ . Due to opposite normal
orientations, we deduce from (4.6) that the two corresponding fluxes above exactly cancels, and the claim is
proved for primal control volumes. The same computation can be made on dual control volumes, by using
Proposition 4.1.

• Assume now that D ∈ Dext. In that case, the diamond cell degenerates into a triangle. It means that, in
Figure 8, the point xL belongs to σ = [xK∗ , xL∗ ]. Consequently, sLL∗ and sLK∗ are included in the edge σ,
which is itself included in the boundary of Ω. By the definition of Eub

, of the projection P̃
T

m (see Def. 2.1)
and the assumption (1.2), we deduce that Fπ

sLK∗ ,D(uT ) = Fπ
sLL∗ ,D(uT ) = 0.

By (4.8) and the conservativity property (4.3), we obtain the last claim of the proposition. �

To sum up, we can gather the construction of the convection operator in the following definition.

Definition 4.2 (Definition of the discrete operator divT
π ). We define the operator divT

π :
(
R2

)T × RT → RT as
follows. Let uT ∈

(
R2

)T and cT ∈ RT , then we set div∂M

π (uT , cT ) = 0 and the other terms are defined in (4.1),
with the fluxes definition (4.2), (4.6) and (4.8).

4.1.2. Definition and properties of the operator GT

We are now in position to define the discrete operator GT : RT × RT →
(
R2

)T . We recall that it is supposed
to approximate the continuous operator (c, μ) �→ μ∇c, while ensuring the compatibility condition (4.5) that is
crucial to prove energy estimates (see Sect. 4.2).

For any K ∈ M and K∗ ∈ M∗ such that xK∗ is a vertex of K, we consider the segment s = [xK, xK∗ ] which, by
construction is a common side of exactly two diamonds D1 and D2. Let �nD1,D2 the unit normal across s oriented
from D1 to D2 and xL1 , xL∗

1
(resp. xL2 , xL∗

2
) the other vertices of D1 (resp. D2). With those notations, the primal

(resp. dual) edge of Di is σi = [xK∗ , xL∗
i
] (resp. σ∗

i = [xK, xLi ]), see Figure 9.
For any cT ∈ RT , we define

gs(cT ) :=
ms

2
(cσ2 − cσ1)�nD1,D2 , and g∗s (cT ) :=

ms

2
(cσ∗

2
− cσ∗

1
)�nD1,D2 . (4.10)

We recall that we choose to define the edge approximation of c by (4.2), so that we can rewrite the terms
above as follows

gs(cT ) =
ms

4
(cL2 − cL1)�nD1,D2 , g∗s(cT ) =

ms

4
(cL∗

2
− cL∗

1
)�nD1,D2 ,

but (4.10) has the advantage that each term can be computed diamond cell by diamond cell, just like the all the
other terms in the assembly process. Moreover (4.10) can be used with any other approximation of the terms
cσ and cσ∗ (with some upwinding for instance).
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xK

xL1

xK ∗

xL ∗
1

D1
σ1

σ ∗
1

xL2

xL ∗
2

D2

σ2

σ ∗
2s

Figure 9. Notations for the construction of GT .

Definition 4.3 (Definition of the discrete operator GT ). For any cT , μT ∈ RT , we set G∂M(cT , μT ) := 0 and

GK(cT , μT ) :=
1

mK

∑
K∗∈M∗

s.t. sKK∗∈S

gsKK∗ (cT )μK + g∗sKK∗ (cT )μK∗ , ∀K ∈ M

GK∗
(cT , μT ) :=

1
mK∗

∑
K∈M

s.t. sKK∗∈S

gsKK∗ (cT )μK + g∗sKK∗ (cT )μK∗ , ∀K∗ ∈ M∗.

Proposition 4.4. The operators divT
π and GT defined above, satisfy the compatibility property (4.5).

Proof. From (4.1) and (4.8) we have

mKdivK
π(uT , cT ) =

∑
σ∈EK

cσFπ
σ,K(uT ) =

∑
K∗∈M∗

s.t. sKK∗∈S

gsKK∗ (cT ) · (uK + uK∗),

mK∗divK∗

π (uT , cT ) =
∑

σ∗∈EK∗
cσ∗Fπ

σ∗,K∗(uT ) =
∑
K∈M

s.t. sKK∗∈S

g∗sKK∗ (cT ) · (uK + uK∗).

Multiplying by μK and μK∗ respectively, and summing the results we exactly obtain

�divT
π (uT , cT ), μT �T =

1
2

∑
K∈M

mKuK · GK(cT , μT ) +
1
2

∑
K∗∈M∗

mK∗uK∗ · GK∗
(cT , μT ), (4.11)

which proves the claim. �

We prove now some properties of the operator GT that will be useful in the stability analysis of our numerical
method. We first observe that, provided that uT is divergence-free, adding constants to μT does not change the
value of �GT (cT , μT ),uT �T . More precisely, we have

Lemma 4.5. For any uT ∈ Eub
such that divD(uT ) = 0 and for any μT , cT ∈ RT and α, β ∈ R we have,

�GT (cT , μ̃T ),uT �T = �GT (cT , μT ),uT �T ,

where we define μ̃T ∈ RT as follows,

μ̃K := μK + α, ∀K ∈ M

and μ̃K∗ := μK∗ + β, ∀K∗ ∈ M∗.
(4.12)



DDFV FOR A PHASE FIELD MODEL WITH DYNAMIC BOUNDARY CONDITIONS 1713

Proof. Thanks to Proposition 4.4 and to the bilinearity of GT , we have

�GT (cT , μ̃T ),uT �T = �GT (cT , μT ),uT �T + �divT
π (uT , cT ), μ̃T − μT �T .

It remains to prove that the last term in the right hand side of this equality is zero. The definition of μ̃T and
the one of divT

π (see (4.1)) give

�divT
π (uT , cT ), μ̃T − μT �T =

α

2
∑

K∈M

∑
σ∈EK

cσFπ
σ,K(uT ) +

β

2
∑

K∗∈M∗

∑
σ∗∈EK∗

cσ∗Fπ
σ∗,K∗(uT ).

By using the conservativity property (4.3) as well as the boundary conditions for uT (see Prop. 4.1), we get∑
K∈M

∑
σ∈EK

cσFπ
σ,K(uT ) =

∑
σ=K|L∈Eint

cσ

(
Fπ

σ,K(uT ) + Fπ
σ,L(uT )

)
+

∑
σ=L∈Eext

cσFπ
σ,K(uT ) = 0.

Similarly, the definition of the fluxes Fπ
σ∗,K∗ and the conservativity property leads to∑

K∗∈M∗

∑
σ∗∈EK∗

cσ∗Fπ
σ∗,K∗(uT ) =

∑
D∈D

cσ∗
(
Fπ

σ∗,K∗(uT ) + Fπ
σ∗,L∗(uT )

)
= 0.

The claim is proved. �

Proposition 4.6. Let T be a DDFV mesh of Ω, and q ∈ [2, +∞]. Let p ∈ [1, 2] be such that

1
p

=
1
2

+
1
q
.

There exists C10 > 0 depending only on reg(T ) and q, such that

‖GT (cT , μT )‖p,T ≤ C10

∥∥∇DcT

∥∥
D
‖μT ‖q,T , ∀cT , μ ∈ RT .

Proof. We assume that q < +∞; the case q = +∞ is a straightforward adaptation of this case.
Thanks to the definitions (4.2) of cσ and cσ∗ and Definition 2.2 of the discrete DDFV gradient we can write,

using the notation of Figure 9, the following formulas

gs(cT ) =
ms

4
(mσ∗

2
∇D2cT · �τ KL2

− mσ∗
1
∇D1cT · �τ KL1

)�nD1,D2 ,

g∗s(cT ) =
ms

4
(mσ2∇D2cT · �τ K∗L∗

2
− mσ1∇D1cT · �τ K∗L∗

1
)�nD1,D2 .

It follows that
max(|gs(cT )|, |g∗s (cT )|) ≤ C(reg(T ))(mD1 |∇D1cT | + mD2 |∇D2cT |),

and thus, by definition of GT we have

|GK(cT , μT )| ≤ C(reg(T ))
1

mK

∑
K∗∈M∗

s.t. sKK∗∈S

(mD1 |∇D1cT | + mD2 |∇D2cT |)(|μK| + |μK∗ |).

By using the definition of reg(T ) we see that∑
D∈DK

mD ≤ C(reg(T ))mK, ∀K ∈ M,

and therefore, the Hölder inequality with the exponents 2, q, p/(p− 1) gives

|GK(cT , μT )| ≤ C(reg(T ))
m

1− 1
p

K

mK

( ∑
D∈DK

mD|∇DcT |2
) 1

2

⎛⎜⎝mK|μK|q +
∑

K∗∈M∗
s.t. sKK∗∈S

mK∗ |μK∗ |q

⎞⎟⎠
1
q

.
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It follows

mK|GK(cT , μT )|p ≤ C(reg(T ))

( ∑
D∈DK

mD|∇DcT |2
) p

2

⎛⎜⎝mK|μK|q +
∑

K∗∈M∗
s.t. sKK∗∈S

mK∗ |μK∗ |q

⎞⎟⎠
p
q

.

Summing those inequalities for K ∈ M and using once again the Hölder inequality with exponents 2/p and q/p
we obtain the claim.

A similar computation on the dual term GK∗(cT , μT ) concludes the proof. �

By combining Propositions 4.6, 2.11 and Theorem 2.12, we easily obtain the following corollary.

Corollary 4.7 (Estimate of the operator GT in the quasi-uniform case). Let T be a DDFV mesh associated
with Ω, for any α > 0 there exists C11 > 0 depending only on the uniform regularity of the mesh regunif(T ) (see
Def. 2.10), Ω and α such that for any cT ∈ RT , μT ∈ RT satisfying MM (μT ) = MM∗ (μT ) = 0 the following
inequality holds,

‖GT (cT , μT )‖T ≤ C11

size(T )α

∥∥∇DcT

∥∥
D

∥∥∇DμT

∥∥
D

.

4.1.3. Consistency study

It is possible to perform a consistency analysis for the two coupling operators that we have built before. Since
we shall not detail the error analysis in this paper, we only give below without proof (see [36]) the main result
in this direction.

Theorem 4.8 (Weak consistency of the operator GT ). Let u : Ω → R2 and c, μ : Ω → R be smooth functions
such that u · �n = 0 on Γ and divu = 0, then there exists C12 > 0 such that,

|�GT (cex
T , μex

T ),uex
T �T − 〈μ · ∇c,u〉| ≤ C12size(T ),

where cex
T , μex

T and uex
T are the discrete functions obtained by taking the value of c, μ and u respectively at the

centers and vertices of the mesh.

4.2. DDFV approximation of the uncoupled scheme

A similar derivation as the one given in Sections 3.1 and 3.2 and the definitions of the discrete coupling
operators given in Section 4.1 allows us to give the DDFV scheme associated with problem (1.1).

However, we want to use a time splitting algorithm that let us solve successively the Cahn−Hilliard and
the Stokes part of the system. This is an important requirement since it allows the use of efficient and specific
solvers for each of the two systems (we can think of the incremental projection method for the Stokes part of
the system for instance [33, 34]).

Here is the uncoupled numerical scheme that we propose to analyse in the sequel of the paper:

Step 1. Resolution of the convected Cahn−Hilliard equation with an explicit velocity field: Let (cn
T ,un

T ) ∈
RT × Eub

be given, find (cn+1
T , μn+1

T ) ∈ RT × RT such that

⎧⎨⎩
cn+1
T0

− cn
T0

Δt
+ divT

π (un
T , cn+1

T ) − divT
(
∇Dμn+1

T

)
= 0, (4.13a)

γD(∇Dμn+1
T ) · �nT = 0, (4.13b)
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with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μn+1
M

= −divM
(
∇Dcn+1

T

)
+ dfb(cn

M
, cn+1

M
), (4.14a)

μn+1
M∗ = −divM∗ (

∇Dcn+1
T

)
+ dfb(cn

M∗ , cn+1
M∗ ), (4.14b)

mK∗μn+1
K∗ = −

∑
Dσ,σ∗∈DK∗

mσ∗∇Dcn+1
T · �nσ∗K∗ + mK∗dfb(cn

K∗ , cn+1
K∗ ) (4.14c)

+m
σK∗

Γ

cn+1
K∗ − cn

K∗

Δt
+ m

σK∗
Γ

dfs(cn
K∗ , cn+1

K∗ ), ∀K∗ ∈ ∂M∗;

cn+1
∂M

− cn
∂M

Δt
+ dfs(cn

∂M
, cn+1

∂M
) + γD(∇Dcn+1

T ) · �nT = 0. (4.14d)

Step 2. Resolution of the Stokes problem with the capillary term computed with up-to-date approximations
of c and μ.
Let (cn+1

T , μn+1
T ,un

T ) ∈ RT × RT × Eub
be given, find (un+1

T , pn+1
D

) ∈ Eub
× RD such that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

un+1
M − un

M

Δt
− divM(∇Dun+1

T ) + ∇Mpn+1
D

= GM(cn+1
T , μn+1

T ) + ρ(cn+1
M

)g, (4.15a)

un+1
M∗ − un

M∗

Δt
−divM∗

(∇Dun+1
T )+∇M∗

pn+1
D

= GM∗
(cn+1

T , μn+1
T )+ρ(cn+1

M∗ )g, (4.15b)

divD(un+1
T ) = 0, (4.15c)

m(pn+1
D

) = 0. (4.15d)

Let us remark that, because of the explicit discretization of the velocity in the convected Cahn−Hilliard equation
(which is mandatory to ensure that the two steps are uncoupled) we do not have cancellation between the
convective term divT

π (un
T , cn+1

T ) and the capillary term GT (cn+1
T , μn+1

T ) despite the fact that the compatibility
condition (4.5) holds. Thus, some additional work is needed to achieve a useful discrete energy estimate. Let us
first compute the total a priori energy equality for the full discrete problem.

Proposition 4.9 (A priori properties). Let wT be the lifting of the boundary data defined in Theorem 3.1.
For any cn

T ∈ RT ,un
T ∈ Eub

, if there exists a solution (cn+1
T , μn+1

T ,un+1
T , pn+1

D ) ∈ RT ×RT ×Eub
×RD to the

problem (4.13)−(4.15), then the following properties hold

• Volume conservation:

MM

(
cn+1
T

)
= MM (cn

T ) , and MM∗
(
cn+1
T

)
= MM∗ (cn

T ) , (4.16)

• Energy equality:(
FT (cn+1

T ) +
1
2

∥∥un+1
T − wT

∥∥2

T

)
−

(
FT (cn

T ) +
1
2
‖un

T − wT ‖2
T

)
+ Δt

∥∥∇Dμn+1
T

∥∥2

D
+ Δt

∣∣∣∣∣∣∇D(un+1
T − wT )

∣∣∣∣∣∣2
D

+
1
2

∥∥un+1
T − un

T

∥∥2

T
+

1
2

∥∥∇D(cn+1
T − cn

T )
∥∥2

D
+

1
Δt

∥∥cn+1
∂T − cn

∂T

∥∥2

∂T

=Δt
�
GT (cn+1

T , μn+1
T ),un+1

T − un
T − wT

�
T

+ Δt
�
ρ(cn+1

T )g,un+1
T − wT

�
T

.

Proof. The volume conservation property comes from the flux conservativity and the boundary conditions as
stated in Proposition 4.1.

To prove the energy equality, we first consider the inner product in RT between equation (4.13a) and μn+1
T .

Thus, using the Green formula (2.5b) associated with the homogeneous Neumann boundary condition (4.13b),
we get �

cn+1
T − cn

T , μn+1
T

�
T

+ Δt
�
divT

π (un
T , cn+1

T ), μn+1
T

�
T

+ Δt
∥∥∇Dμn+1

T

∥∥2

D
= 0. (4.17)
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Then, we multiply all the equations (4.14a) on the interior primal mesh by mK
2 (cn+1

K − cn
K), all the equations on

the interior dual mesh (4.14b) by mK∗
2 (cn+1

K∗ − cn
K∗) and all the equations on the boundary dual mesh (4.14c) by

1
2 (cn+1

K∗ − cn
K∗). Summing all the resulting equalities, we obtain

1
2

∑
K∗∈∂M∗

∑
D∈DK∗∩Dext

dK∗,L∇Dcn+1
T · �nσK

(
cn+1
K∗ − cn

K∗
)

−
�
divT

(
∇Dcn+1

T

)
, cn+1

T − cn
T

�
T

+
�
dfb(cn

T , cn+1
T ), cn+1

T − cn
T

�
T

−
�
μn+1

T , cn+1
T − cn

T

�
T

+
1

2Δt

∑
K∗∈∂M∗

m
σK∗

Γ

(
cn+1
K∗ − cn

K∗
)2

+
1
2

∑
K∗∈∂M∗

m
σK∗

Γ
dfs(cn

K∗ , cn+1
K∗ )(cn+1

K∗ − cn
K∗) = 0.

(4.18)

Now, we have to take into account the dynamic boundary condition on the boundary primal mesh. To this end,
we multiply all the equations on the boundary primal mesh (4.14d) by mσ

2 (cn+1
L − cn

L). Summing up over all the
boundary primal control volumes, we have

1
2Δt

∑
L∈∂M

mσ

(
cn+1
L − cn

L

)2
+

1
2

∑
L∈∂M

mσdfs(cn
L, cn+1

L )(cn+1
L − cn

L)

+
1
2

∑
D∈Dext

mσ∇Dcn+1
T ·�nσK

(
cn+1
L − cn

L

)
= 0.

(4.19)

We observe that for any vT ∈ RT , ξD ∈ RDext , we have∑
K∗∈∂M∗

∑
D∈DK∗∩Dext

dK∗,LξDvK∗ =
∑

D∈Dext

(dK∗,LvK∗ + dL∗,LvL∗) ξD.

Applying this equality to the functions vT = (cn+1
T − cn

T ) and ξD = γD
(
∇Dcn+1

T

)
· �nT and summing equa-

tions (4.18) and (4.19), we obtain

−
�
divT

(
∇Dcn+1

T

)
, cn+1

T − cn
T

�
T

+
(
γD

(
∇Dcn+1

T

)
· �nT , γT

(
cn+1
T − cn

T

))
∂Ω

+
�
dfb(cn

T , cn+1
T ), cn+1

T − cn
T

�
T
−

�
μn+1

T , cn+1
T − cn

T

�
T

+
1

Δt

∥∥cn+1
∂T − cn

∂T

∥∥2

∂T
+ �dfs(cn

∂T , cn+1
∂T ), cn+1

∂T − cn
∂T �∂T = 0.

(4.20)

The Green formula (2.5b) gives,

(
∇Dcn+1

T ,∇D(cn+1
T − cn

T )
)

D
−

�
μn+1

T , cn+1
T − cn

T

�
T

+
1

Δt

∥∥cn+1
∂T − cn

∂T

∥∥2

∂T

= −
�
dfb(cn

T , cn+1
T ), cn+1

T − cn
T

�
T
− �dfs(cn

∂T , cn+1
∂T ), cn+1

∂T − cn
∂T �∂T . (4.21)

Summing equations (4.17) and (4.21), using the relation 2a(a − b) = a2 − b2 + (a − b)2 and the definition (3.7)
of the nonlinear terms dfb and dfs we deduce

FT (cn+1
T ) −FT (cn

T ) + Δt
∥∥∇Dμn+1

T

∥∥2

D

+
1
2

∥∥∇D(cn+1
T − cn

T )
∥∥2

D
+

1
Δt

∥∥cn+1
∂T − cn

∂T

∥∥2

∂T
+ Δt

�
divT

π (un
T , cn+1

T ), μn+1
T

�
T

= 0. (4.22)

We concentrate now on the Stokes part of the system. We multiply the mass balance equation in the interior
primal cells (4.15a) by mK(un+1

K − wK) and we sum up over all the interior primal control volumes. Then
we multiply all the equations in the interior dual cells (4.15b) by mK∗(un+1

K∗ − wK∗) and we sum up over all
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the interior dual control volumes. Summing these two equations and noting that by definition of the lifting wT

we have un+1
T − wT ∈ E0 we obtain,

�un+1
T − un

T ,un+1
T − wT �T − Δt

�
divT (∇Dun+1

T ),un+1
T − wT

�
T

+ Δt
�
∇T pn+1

D ,un+1
T − wT

�
T

= Δt
�
GT (cn+1

T , μn+1
T ),un+1

T − wT

�
T

+ Δt
�
ρ(cn+1

T )g,un+1
T − wT

�
T

. (4.23)

Since (wT , qD) is solution to discrete Stokes problem (3.4), we get:

−
�
divT (∇Dun+1

T ),un+1
T − wT

�
T

+
�
∇T pn+1

D ,un+1
T − wT

�
T

= −
�
divT (∇D(un+1

T − wT )),un+1
T − wT

�
T

+
�
∇T (pn+1

D − qD),un+1
T − wT

�
T

.

Using again that un+1
T − wT ∈ E0 and that divDun+1

T = divDwT = 0, the Stokes formula (2.5a) gives

−
�
divT (∇D(un+1

T − wT )),un+1
T − wT

�
T

=
∣∣∣∣∣∣∇D(un+1

T − wT )
∣∣∣∣∣∣2

D

and �
∇T (pn+1

D
− qD),un+1

T − wT

�
T

= −
(
divD(un+1

T − wT ), pn+1
D

− qD

)
D

= 0.

Finally, writing un+1
T − un

T = (un+1
T − wT ) − (un

T − wT ), equation (4.23) leads to

1
2

∥∥un+1
T − wT

∥∥2

T
− 1

2
‖un

T − wT ‖2
T +

1
2

∥∥un+1
T − un

T

∥∥2

T
+ Δt

∣∣∣∣∣∣∇D(un+1
T − wT )

∣∣∣∣∣∣2
D

= Δt
�
GT (cn+1

T , μn+1
T ),un+1

T − wT

�
T

+ Δt
�
ρ(cn+1

T )g,un+1
T − wT

�
T

. (4.24)

Thanks to the compatibility condition (4.5) we sum equations (4.22) and (4.24) to conclude the proof. �

Lemma 4.10 (Initial data). Let u0 ∈ (L2(Ω))2, c0 ∈ H1(Ω). For any DDFV mesh T on Ω, we set

c0
T := P

T
mc0 ∈ RT , u0

T := (PM

mu0, 0, PM∗
m u0, 0) ∈

(
R2

)T
.

Then, for some C13 > 0 depending only on reg(T ), fb and fs, we have

FT (c0
T ) ≤ C13(1 + ‖c0‖p+1

H1(Ω)
), and

∥∥u0
T

∥∥
T
≤ C13 ‖u0‖L2(Ω) ,

|MM

(
c0
T

)
| + |MM∗

(
c0
T

)
| ≤ C13 ‖c0‖H1(Ω) .

Observe that the boundary values for the discrete initial velocity are taken to be 0 here even though we
consider non-homogeneous boundary data for the velocity. Actually, it can be checked that those values are not
used in our scheme.

Proof. Thanks to definition (3.9) of the discrete energy FT and growth assumption (1.4) we have,

FT (cT ) ≤ 1
2

∥∥∇Dc0
T

∥∥2

D
+ C

(
|Ω| +

∥∥c0
T

∥∥p+1

p+1,T

)
+ C

(
|Γ | +

∥∥c0
∂T

∥∥p+1

p+1,∂T

)
.

Proposition 2.14 gives the bound on the discrete H1 semi-norm of c0
T and for any q ≥ 1 definition of c0

T , the
Jensen inequality and the trace inequality get∥∥c0

T

∥∥q

q,T
≤

∥∥c0
∥∥q

Lq(Ω)
+ C(reg(T ))size(T )

∥∥c0
∥∥q

Lq(Γ )

≤
∥∥c0

∥∥q

Lq(Ω)
+ C(reg(T ))size(T )

∥∥c0
∥∥q

H1(Ω)
,

that gives the bound on
∥∥c0

T

∥∥
p+1,T

and on the mean-value of c0
T . Similarly we obtain the bound on

∥∥c0
∂T

∥∥
p+1,∂T

and so the bound on the discrete initial energy.
Finally in the same way, definition of u0

T and especially the fact that u0
T is chosen equal to 0 on the boundary

mesh ∂T and the Jensen inequality give the bound on the velocity. �
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Theorem 4.11 (Existence of a family of solutions and energy inequality). Let T be a DDFV mesh associated
with Ω, c0 ∈ H1(Ω), u0 ∈ (L2(Ω))2 and α > 0.

There exists γ > 0 depending only on regunif(T ), βT , α, and on the data of the problem such that for any
Δt ≤ γsize(T )α there exists a solution

((cn
T )1≤n≤N , (μn

T )1≤n≤N , (un
T )1≤n≤N , (pn

D)1≤n≤N ) ∈ (RT )N × (RT )N × (Eub
)N × (RD)N

to the problem (4.13)−(4.15) associated with the discretization of the initial data c0
T , u0

T as introduced in
Lemma 4.10.

Moreover, for some M0 > 0 depending only on regunif(T ), βT , α and the data, we can choose such a solution
so that the following bounds are satisfied

N−1∑
n=0

Δt
(∥∥μn+1

T

∥∥2

T
+

∥∥∇Dμn+1
T

∥∥2

D
+

∣∣∣∣∣∣∇Dun+1
T

∣∣∣∣∣∣2
D

)
≤ M0, (4.25a)

sup
n≤N

(
‖cn

T ‖
2
T +

∥∥∇Dcn
T

∥∥2

D

)
≤ M0, (4.25b)

sup
n≤N

‖un
T ‖

2
T ≤ M0, (4.25c)

and

N−1∑
n=0

Δt

∥∥∥∥cn+1
∂T − cn

∂T

Δt

∥∥∥∥2

∂T

≤ M0. (4.25d)

Remark 4.12. Observe that, on a quasi-uniform mesh family and provided that the time step is suitably
chosen, this theorem gives uniform bounds on :

• the discrete L∞(0, T ; H1(Ω)) norm of the order parameter c,
• the discrete L2(0, T ; H1(Ω)) norm of the chemical potential μ,
• the discrete L∞(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)) norm of the velocity field u,
• the discrete L2(]0, T [×Γ ) norm of the time derivative of the trace of c.

Those bounds correspond to the natural energy space a priori estimates for the PDE system (1.1) we are
interested in.

At least for a linear dynamic boundary condition, those estimates are sufficient (along with compactness)
arguments to prove the convergence, up to a subsequence, of the approximate solutions towards a solution
of (1.1). We do not give the details here and we refer for instance to [13, 37].

Proof of Theorem 4.11. In this proof, all the constants Mi, i = 0, . . . are supposed to depend only on regunif(T ),
βT , c0, u0, and α.

For any δ ∈ [0, 1], we denote by (Pδ) the same problem as (4.13)−(4.15) where we added a factor δ in front
of the nonlinear terms, namely:

• in front of divT
π in (4.13a),

• in front of dfb in (4.14a), (4.14b) and (4.14c),
• in front of dfs in (4.14c) and (4.14d),
• in front of GT and ρg in (4.15a) and (4.15b).

The total discrete free energy naturally associated with the modified problem (Pδ) is then defined as follows

Fδ
T (cT ) :=

1
2

∥∥∇DcT

∥∥2

D
+ δ �fb(cT ), 1T �T + δ�fs(c∂T ), 1∂T �∂T , ∀cT ∈ RT . (4.26)
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Using a same computations as in Proposition 4.9 we get that any solution of (Pδ) satisfies the following energy
equality(
Fδ

T (cn+1
T ) +

1
2

∥∥un+1
T − wT

∥∥2

T

)
−

(
Fδ

T (cn
T ) +

1
2
‖un

T − wT ‖2
T

)
+ Δt

∥∥∇Dμn+1
T

∥∥2

D

+ Δt
∣∣∣∣∣∣∇D(un+1

T − wT )
∣∣∣∣∣∣2

D
+

1
2

∥∥un+1
T − un

T

∥∥2

T
+

1
2

∥∥∇D(cn+1
T − cn

T )
∥∥2

D
+

1
Δt

∥∥cn+1
∂T − cn

∂T

∥∥2

∂T

= Δtδ
�
GT (cn+1

T , μn+1
T ),un+1

T − un
T − wT

�
T

+ Δtδ
�
ρ(cn+1

T )g,un+1
T − wT

�
T

. (4.27)

For M0 > 0 and CT ,Δt > 0 given (to be determined later), we introduce the following a priori bound on the
pressure

sup
n≤N

‖pn
D
‖2

D
≤ CT ,Δt, (4.28)

and the set

K =
{

((cn
T )n, (μn

T )n, (un
T )n, (pn

D
)n) ∈ (RT )N × (RT )N × (Eub

)N × (RD)N ,

that satisfy the estimates (4.25) and (4.28)
}

.

The set of equations (Pδ)δ forms a continuous map with respect to all the variables - including δ - and the
problem we initially want to solve is simply (P1).

The Brouwer degree theory will let us conclude to the existence of at least one solution of our initial problem
in K if we manage to prove that

(a) For δ = 0, the linear problem (P0) has a unique solution in K.
(b) For any δ ∈ [0, 1], (Pδ) has no solution on ∂K.

Observe first that if δ = 0, ub = 0, c0
T = 0, u0 = 0, then (4.27) implies that cn

T = μn
T = 0 and un

T = 0 for all n.
It follows that ∇Dpn

D = 0 and thus pn
D = 0 for any n. As a consequence, the only solution of the homogeneous

linear problem associated with (P0) is zero; this proves that (P0) is well-posed. The estimates given below will
clearly show that its solution belongs to K and thus the property (a) is proved.

Let δ ∈ [0, 1]. Let us assume that there is a solution of (Pδ) in K. We are going to show that (for a suitable
choice of M0 and CT ,Δt) this solution necessarily satisfies the same estimates as (4.25) and (4.28) but with strict
inequalities. This will obviously imply the property (b).

We begin with the study of the first term in the right hand side of (4.27)

δΔt
�
GT (cn+1

T , μn+1
T ),un+1

T − un
T − wT

�
T

= δΔt
�
GT (cn+1

T , μn+1
T ),un+1

T − un
T

�
T
− δΔt

�
GT (cn+1

T , μn+1
T ),wT

�
T

. (4.29)

Thanks to Lemma 4.5, the Young inequality and since δ ≤ 1 the first term in (4.29) satisfies,

δΔt
�
GT (cn+1

T , μn+1
T ),un+1

T − un
T

�
T
≤ 1

4

∥∥un+1
T − un

T

∥∥2

T
+ Δt2

∥∥∥GT (cn+1
T , μ̃n+1

T )
∥∥∥2

T

where μ̃n+1
T is defined by (4.12) in such a way that MM

(
μ̃n+1

T

)
= MM∗

(
μ̃n+1

T

)
= 0.

Applying Corollary 4.7 (with α/2 instead of α) and using bound (4.25b) we get

Δt2
∥∥∥GT (cn+1

T , μ̃n+1
T )

∥∥∥2

T
≤ C2

11Δt2

size(T )α

∥∥∇Dcn+1
T

∥∥2

D

∥∥∥∇Dμ̃n+1
T

∥∥∥2

D

≤ C2
11M0Δt2

size(T )α

∥∥∥∇Dμ̃n+1
T

∥∥∥2

D

.
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Thus, if Δt ≤ Δt1 :=
size(T )α

4C2
11M0

, noting that
∥∥∥∇Dμ̃n+1

T

∥∥∥
D

=
∥∥∇Dμn+1

T

∥∥
D
, we obtain

δΔt
�
GT (cn+1

T , μn+1
T ),un+1

T − un
T

�
T
≤ 1

4

∥∥un+1
T − un

T

∥∥2

T
+

Δt

4

∥∥∇Dμn+1
T

∥∥2

D
. (4.30)

As far as the second term in (4.29) is concerned, we use Lemma 4.5, the Hölder inequality and Proposition 4.6
to obtain,

�
GT (cn+1

T , μn+1
T ),wT

�
T
≤

∥∥GT (cn+1
T , μn+1

T )
∥∥

4/3,T
‖wT ‖4,T

≤ C10

∥∥∇Dcn+1
T

∥∥
D

∥∥∥μ̃n+1
T

∥∥∥
4,T

‖wT ‖4,T .

Thus thanks to Theorems 2.8, 2.12 and 3.1 we have
�
GT (cn+1

T , μn+1
T ),wT

�
T
≤ 2C2C5C9C10 ‖ub‖H

1/2(Γ )

∥∥∇Dcn+1
T

∥∥
D

∥∥∇Dμn+1
T

∥∥
D

.

Using the Young inequality, we deduce

Δt
�
GT (cn+1

T , μn+1
T ),wT

�
T
≤ Δt

4

∥∥∇Dμn+1
T

∥∥2

D
+ 4ΔtC2

2C2
5C2

9C2
10 ‖ub‖2

H
1/2(Γ )

∥∥∇Dcn+1
T

∥∥2

D
.

Let us set C14 := 4C2
2C2

5C2
9C2

10, if we choose Δt ≤ Δt2 :=
1

8C14 ‖ub‖2
H

1/2(Γ )

we have,

Δtδ
�
GT (cn+1

T , μn+1
T ),wT

�
T
≤Δt

4

∥∥∇Dμn+1
T

∥∥2

D
+

1
4

∥∥∇D(cn+1
T − cn

T )
∥∥2

D

+ 2C14 ‖ub‖2
H

1/2(Γ )
Δt

∥∥∇Dcn
T

∥∥2

D
.

(4.31)

Finally, since un+1
T − wT ∈ E0 we can use the Poincaré inequality and the Young inequality, so that the last

term in the right hand side of (4.27) satisfies

δΔt
�
ρ(cn+1

T )g,un+1
T − wT

�
T
≤ Δt

2

∣∣∣∣∣∣∇D(un+1
T − wT )

∣∣∣∣∣∣2
D

+Δt
C2

3

2
‖ρ‖2

L∞ |g|2. (4.32)

Gathering estimates (4.27)−(4.32) and assuming that Δt ≤ min(Δt1, Δt2), we have obtained(
Fδ

T (cn+1
T ) +

1
2

∥∥un+1
T − wT

∥∥2

T

)
−

(
Fδ

T (cn
T ) +

1
2
‖un

T − wT ‖2
T

)
+

Δt

2

∥∥∇Dμn+1
T

∥∥2

D
+

Δt

2

∣∣∣∣∣∣∇D(un+1
T − wT )

∣∣∣∣∣∣2
D

+
1
4

∥∥un+1
T − un

T

∥∥2

T

+
1
4

∥∥∇D(cn+1
T − cn

T )
∥∥2

D
+

1
Δt

∥∥cn+1
∂T − cn

∂T

∥∥2

∂T

≤Δt
C2

3

2
‖ρ‖2

L∞ |g|2 + 2C2
14 ‖ub‖2

H
1/2(Γ )

Δt
∥∥∇Dcn

T

∥∥2

D
.

(4.33)

Setting En = Fδ
T (cn

T ) + 1
2 ‖un

T − wT ‖2
T , and using (1.5), we have proved that

En+1 − En ≤ Δt
C2

3

2
‖ρ‖2

L∞ |g|2 + 4C2
14 ‖ub‖2

H
1/2(Γ )

ΔtEn.

From the discrete Gronwall lemma, we deduce that, for all n,

En ≤
(

E0 + T
C2

3

2
‖ρ‖2

L∞ |g|2
)

e
4C2

14‖ub‖2

H
1/2(Γ )

T
.
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By Lemma 4.10 and Theorem 3.1, we have

E0 ≤ C13(1 + ‖c0‖p+1
H1(Ω)

) + C2
13 ‖u0‖2

L2(Ω) + C2
9 ‖ub‖2

H
1/2(Γ )

.

All these estimates show that, for some M1 > 0, we have

sup
n≤N

(∥∥∇Dcn
T

∥∥2

D
+ ‖un

T ‖
2
T

)
≤ M1. (4.34)

Coming back to (4.33), we find that for some M2 > 0, we have

N−1∑
n=0

(
Δt

∥∥∇Dμn+1
T

∥∥2

D
+ Δt

∣∣∣∣∣∣∇Dun+1
T

∣∣∣∣∣∣2
D

+ Δt

∥∥∥∥cn+1
∂T − cn

∂T

Δt

∥∥∥∥2

∂T

)
≤ M2. (4.35)

Observe next that the volume conservation property (4.16) still holds for the problem (Pδ), so that with
Lemma 4.10 we obtain that

sup
n≤N

(
|MM (cn

T ) | + |MM∗ (cn
T ) |

)
≤ C13 ‖c0‖H1(Ω) .

Therefore, we can deduce from Theorem 2.12 that, for a suitable M3 > 0,

sup
n≤N

‖cn
T ‖

2
T ≤ M3. (4.36)

We shall now estimate the primal and dual mean values of the chemical potential. By summing the equa-
tions (4.14a)−(4.14d) of the problem (Pδ) with suitable weights that are respectively the measures of the primal
edges and the measures of the boundary primal edges, we obtain

MM

(
μn+1

T

)
= δMM

(
dfb(cn

M, cn+1
M )

)
+ δM∂M

(
dfs(cn

∂M, cn+1
∂M )

)
+ M∂M

(
cn+1

∂M − cn
∂M

Δt

)
·

Similarly, by summing the equations (4.14b) and (4.14c) with the corresponding weights, we get

MM∗
(
μn+1

T

)
= δMM∗

(
dfb (cn

M∗ , c
n+1
M∗ )

)
+ δM∂M∗

(
dfs(cn

∂M∗ , cn+1
∂M∗)

)
+ M∂M∗

(
cn+1

∂M − cn
∂M

Δt

)
·

Using the Cauchy−Schwarz inequality, the property (3.8), the trace theorem 2.13, and the
bounds (4.34), (4.35), (4.36), we deduce that, for some M4 > 0, we have

N−1∑
n=0

Δt
(
|MM

(
μn+1

T

)
|2 + |MM∗

(
μn+1

T

)
|2
)
≤ M4. (4.37)

With (4.35), (4.37) and the Poincaré–Wirtinger inequality given in Theorem 2.12, we finally obtain for some
M5 > 0, that

N−1∑
n=0

Δt
∥∥μn+1

T

∥∥2

T
≤ M5.

Finally, for any vT ∈ E0, we deduce from the momentum equation, that
�
∇T pn+1

D
,vT

�
T

= − 1
Δt

�
un+1

T − un
T ,vT

�
T
−

(
∇Dun+1

T : ∇DvT

)
D

+ δ
�
GT (cn+1

T , μn+1
T ),vT

�
T

+ δ
�
ρ(cn+1

T )g,vT

�
T

≤
(

2
√

M1

Δt
+

C11√
Δtsize(T )2/q

√
M1M2 + ‖ρ‖∞|g|

)
‖vT ‖T +

√
M2√
Δt

∣∣∣∣∣∣∇DvT

∣∣∣∣∣∣
D

.

Using that m(pn+1
D ) = 0, the Poincaré inequality (Thm. 2.9), and the inf-sup inequality (3.3), we obtain the

bound (4.28) with a strict inequality, provided that CT ,Δt is chosen large enough.
To conclude the proof, it is enough to choose a M0 satisfying

M0 > max(M1 + M3, M2 + M5). �
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Table 1. Physical parameters (common to all simulations).

σb Re ρc = 0 = ρ∗ g

24.5 100 1000 −0.98 ey

Table 2. Parameters for the droplet spreading simulations.

Γb ε Ds θs ρc = 1/ρc = 0

Case 1 (Fig. 10) 10−5 0.05 0.05
π

3
or

2π

3
1

Case 2 (Fig. 11) 10−5 0.05 0.05
π

3
or

2π

3
0.1

(a) θs = 2π
3

,

ρc=1/ρc=0 = 1

(b) θs = π
3
,

ρc=1/ρc=0 = 1

Figure 10. Case 1: Comparison of two different static contact angles; no buoyancy effects.

5. Numerical results

We present now three families of numerical simulations obtained by means of the presented numerical method
for our phase-field model with nonlinear dynamic boundary condition.

For all the simulations below, we consider a set of parameters taken from the benchmark proposed in [24]
and that we summarise in Table 1. The other parameters will vary from one test to another and will be precised
in each subsection.

5.1. Droplet spreading

We aim at simulating the spreading of a droplet on a solid surface so as to observe the influence of the wetting
parameters as well as the influence of buoyancy effects.

The computational domain Ω is the rectangle ]0, 2[×] − 0.5, 0.5[. We consider the homogeneous Dirichlet
boundary condition for the velocity, namely ub = 0 and at time t = 0 the velocity is zero. The initial shape of
the droplet is a half-circle whose center is at (1,−0.5) (see the dashed line in Figs. 10 and 11). In order to be
more accurate near the contact point and to illustrate the robustness of our numerical method on general grids,
the simulation is computed on a non-conforming Cartesian mesh (the bottom quarter of the domain is refined).
The primal cells size for the coarse grid is 0.028 and 0.014 in the fine grid, and the time step is Δt = 10−3.

On each figure, in order to visualise the time evolution of the droplet, we plot the isolines c = 0.5 are various
times t = 0 (dashed line), t = 1, 2, 3, 4 (thin solid lines) and the final time t = 5 (thick solid line). The physical
parameters used are those given in Table 1 and in Table 2.
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(a) θs = 2π
3

,

ρc=1/ρc=0 = 0.1

(b) θs = π
3
,

ρc=1/ρc=0 = 0.1

Figure 11. Case 2: Comparison of two different static contact angles; with buoyancy effects.

0 1 2 3 4 5

−2

−1.5

−1

−0.5

0

Time

T
ot

al
en

er
gy

dr
op

θs = π
3

θs = 2π
3

Figure 12. Case 1: Evolution of the energy drop as a function of time.

• In Case 1, the densities of the two phases are the same, so that there is no buoyancy effects. We observe
the dynamics of the interface for the two values of the static contact angle θs. When θs = 2π

3 the droplet is
wetting whereas when θs = π

3 it is non wetting.
• In Case 2, the density ratio between the two phases is 0.1, and we can observe the influence of buoyancy

effects on the dynamics of the interface compared to the Case 1. Due to the gravity, the spreading of the
droplet is increased and the shape of the interface is no more circular at the equilibrium.

The results are qualitatively similar to those reported in the literature (see [42,43] for example and the references
therein).

Moreover, in Case 1 we can observe that the numerical method actually dissipates the total energy. To this
end, we plot in Figure 12 the evolution of the energy drop (that is the difference between the total energy at
time t and the initial total energy) as a function of time. In Case 2 a similar plot is not relevant since the energy
may locally increase due to the power of buoyancy forces.
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Table 3. Parameters for the inclined plane simulation, see Figures 13 and 14.

Γb ε Ds θs ρc=1/ρc=0

10−4 0.05 0.05 or 5
π

3
or

2π

3
0.1

(a) Ds = 5, θs = 2π
3

(b) Ds = 0.05, θs = 2π
3

(c) Ds = 0.05, θs = π
3

Figure 13. Falling drop simulations at time t = 3.

5.2. Falling drop on an inclined plane

We would like now to illustrate the influence of the relaxation parameter Ds on the dynamics of the contact
angle. To this end we propose a simulation of a droplet that falls under the effect of gravity alongside an inclined
plane.

The computational domain Ω is the rectangle ]− 0.5, 0.5[×]0, 2[ that we incline with the angle α = 70◦ with
respect to the horizontal axis. The primal mesh is made of conforming triangles whose maximal diameter is
around 0.03 and the time step is Δt = 10−3. We consider the homogeneous Dirichlet boundary condition for
the velocity: ub = 0.

At time t = 0 the velocity is zero and the initial interface is a half-circle of radius R = 0.25 centered at
(x0, y0) = (0.35,−0.5). More precisely, the initial concentration c0 we used is given by the formula

c0(x, y) :=
1
2

(
1 + tanh

(√
(x − x0)2 + (y − y0)2 − R

0.01
√

2

))
·

We represent the solution, for various values of the parameters Ds and θs, at times t = 3 (in Fig. 13) and
t = 10 (in Fig. 14) by using the following visualisation rules:

• We plot the three isolines c ∈ {0.1, 0.5, 0.9} of the order parameter with black lines to represent the interface
position and its actual thickness;

• The zone where c = 0 is filled in gray, whereas the zone where c = 1 is left in white;
• We plot uniformly distributed isolines of the stream function with thin grey lines.

We can make the following observations:

• For a fixed static contact-angle (θs = 2π
3 here), when Ds = 5 (see Figs. 13a and 14a) the falling velocity of

the droplet is lower than for Ds = 0.05 (see Figs. 13b and 14b).
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(a) Ds = 5, θs = 2π
3

(b) Ds = 0.05, θs = 2π
3

(c) Ds = 0.05, θs = π
3

Figure 14. Falling drop simulations at time t = 10.

Table 4. Parameters for driven cavity simulations, see Figures 16 and 17.

Γb ε Ds θs ρc = 1/ρc = 0

10−4 0.04 0.2
π

3
or

2π

3
1

This phenomenon is the one expected for the chosen dynamic boundary condition. Indeed, in the asymptotics
Ds → +∞, the boundary condition becomes ∂tc�Γ = 0 on Γ and thus, the values of the order parameter on
the boundary should not depend on time. This would imply, in this limit, that the interface do not move.

• For the same fixed static contact-angle, when Ds = 0.05 (see Figs. 13b and 14b) we observe that the actual
contact-angle between the wall and the interface is established almost instantaneously at both contact points
to the given value of the static contact angle. This is in accordance with the mathematical structure of the
dynamic boundary condition. Indeed, in the limit Ds → 0 the boundary condition becomes ∂nc = −f ′

s
(c�Γ ),

which is built so as to impose at each given time t the contact angle to the prescribed static value.
By contrast, in the case where Ds = 5 (see Figs. 13a and 14a) we observe different that the actual contact
angles are different at the front and at the back of the droplet, and they are not equal to the fixed static
contact angle θs. Moreover, those actual contact angles evolve during time until they achieve the prescribed
static value once a steady state is achieved.

5.3. Driven cavity

Here the computational domain Ω is the unit square ]0, 1[2 and the simulation is performed on a non-
conforming Cartesian mesh (see Fig. 15a). The cells size for the coarse grid is 0.028 and 0.014 in the fine grid,
and the time step is 10−3. The other parameters used are summarised in Table 4. We perform two different
simulations with two different values of the static contact angle, so that in one case the wetting phase is either
the one represented by c = 0 or the one represented by c = 1.

The non-homogeneous Dirichlet boundary condition chosen for the velocity (which generates the flow) is
ub = (4, 0) on the top side of the cavity and ub = (0, 0) elsewhere. Due to the singularity of this boundary
data at the top corners of the cavity (it does not satisfy (1.2)) we decided to refine the mesh near those singular
points.
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(a) Non-conforming mesh (b) Initial concentration

Figure 15. Primal mesh M and initial data for the driven cavity simulations.

(a) Time t = 1 (b) Time t = 2.5 (c) Time t = 8 (d) Time t = 15.5

Figure 16. Evolution of the driven cavity for a static contact-angle θs =
2π

3
.

(a) Time t = 1 (b) Time t = 2.5 (c) Time t = 8 (d) Time t = 15.5

Figure 17. Evolution of the driven cavity for a static contact-angle θs =
π

3
.

We observe that, from the very beginning of the simulation (see Figs. 16a and 17a), the solution advances in
such a way to satisfy the prescribed contact-angle, since Ds is small. Then, the solution evolves very differently
depending on which of the two phases is wetting:

• When the phase c = 0 is wetting (that is, with our convention, θs = 2π
3 , see Fig. 16), there is a competition

between the effects of the rotating flow and the fact that the gray phase is preferred by the wall.
• When the phase c = 1 is wetting (θs = π

3 , see Fig. 17), there is no more competition.

In both cases the steady-states achieved are similar (with of course the phases c = 0 and c = 1 that are
exchanged so that the wetting phase is in contact with the boundary) but the dynamics is rather different.
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Appendix A. The DDFV method for the non-homogeneous Stokes problem

We gather in this appendix the main results concerning the DDFV approximation of the non-homogeneous
Stokes problem. In particular, we aim at proving the lifting Theorem 3.1.

Lemma A.1. Let ub satisfying (1.2) and vT ∈ Eub
, then m(divDvT ) = 0.

Proof. By the Definition 2.3, we have

2|Ω|m(divDvT ) =
∑

D∈D

[
mσ(vL − vK) ·�nσK + mσ∗(vL∗ − vK∗) · �nσ∗K∗

]
.

We can rewrite this quantity as sums over the primal and dual unknowns as follows

2|Ω|m(divDvT ) = −
∑

K∈M

vK ·
( ∑

σ∈EK

mσ�nσK

)
+

∑
L∈∂M

mσvL · �nσL

−
∑

K∗∈M∗
vK∗ ·

( ∑
σ∗∈EK∗

mσ∗�nσ∗K∗

)
−

∑
K∗∈∂M∗

vK∗ ·
( ∑

σ∗∈EK∗
mσ∗�nσ∗K∗

)
.

Observe in particular in this formula that the boundary primal unknowns appear in the contribution of one
single diamond cell whereas the boundary dual unknowns may appear in the contribution of several diamond
cells (see for instance Fig. A.1 where the unknown vK∗ is concerned with three diamond cells).

We now claim that we have∑
σ∈EK

mσ�nσK =
∫

∂K
Id.�n =

∫
K

div(Id) = 0, ∀K ∈ M,

∑
σ∗∈EK∗

mσ∗�nσ∗K∗ =
∫

∂K∗
Id.�n =

∫
K∗

div(Id) = 0, ∀K∗ ∈ M∗.

Moreover, since vT ∈ Eub
, and by the Definition 2.1 of the projection P̃

T

m and (1.2), we see that

vL · �nσL =
1

mσ

∫
σ

ub ·�nσL = 0, ∀L ∈ ∂M.

At this point we have shown that

2|Ω|m(divDvT ) =
∑

K∗∈∂M∗
vK∗ ·

( ∑
σ∗∈EK∗

mσ∗�nσ∗K∗

)
, (A.1)

xK ∗xK ∗

σK∗
Γ

KxKxx

Figure A.1. The case of boundary dual unknowns.
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and it remains to evaluate the contribution of the boundary dual unknowns. By Definition 2.1, such a boundary
unknown is zero if xK∗ is a corner of ∂Ω. Hence, we assume that xK∗ is not a corner of ∂Ω. The difference with
interior dual control volumes stands in the fact that the boundary of the cell ∂K∗ is not the union of the dual
edges in EK∗ since we also need to take into account the “edge” σK∗

Γ
, as shown in Figure A.1 for instance. Thus,

we can write
0 =

∫
K∗

div(Id) =
∫

∂K∗
Id.�n =

∑
σ∗∈EK∗

mσ∗�nσ∗K∗ + m
σK∗

Γ
�nσK.

The contribution of vK∗ in (A.1) can thus be rewritten as follows

vK∗ ·
( ∑

σ∗∈EK∗
mσ∗�nσ∗K∗

)
= −m

σK∗
Γ

vK∗ · �nσK = −
∫

σK∗
Γ

ub · �nσK,

and this term is equal to zero by (1.2). The proof is complete. �

Remark A.2. In particular, the previous lemma gives that for any vT ∈ E0, we have m(divDvT ) = 0.

Theorem A.3. Let fD ∈ (M2(R))D, fT ∈
(
R2

)T , and gD ∈ RD such that m(gD) = 0, then there exists a unique
(vT , pD) ∈ E0 × RD solution to the following Stokes problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

divM(−∇DvT + pDId) = divM(fD) + fM,

divM∗
(−∇DvT + pDId) = divM∗

(fD) + fM∗ ,

divDvT = gD,

m(pD) = 0.

(A.2)

Moreover, for some C15 > 0 depending only on reg(T ) and βT , we have∣∣∣∣∣∣∇DvT

∣∣∣∣∣∣
D

+ ‖pD‖D
≤ C15(‖fD‖D

+ ‖gD‖D
+ ‖fT ‖T ). (A.3)

Proof. Observe first that solving the system (A.2) is equivalent to solving the following one⎧⎪⎨⎪⎩
divM(−∇DvT + pDId) = divM(fD) + fM,

divM∗
(−∇DvT + pDId) = divM∗

(fD) + fM∗ ,

divDvT + m(pD) = gD.

(A.4)

Indeed, using that m(gD) = 0 and that m(divDvT ) = 0 for any vT ∈ E0 (see Lem. A.1 and Rem. A.2), we observe
that any solution of (A.4) necessarily satisfies m(pD) = 0 and is thus a solution of (A.2). Since (A.4) is a linear
system with as many unknowns as equations, it is enough to prove that any possible solution (vT , pD) ∈ E0×RD

satisfies the estimate (A.3).

• For any wT ∈ E0, the first two equations in (A.4) lead to

−
�
divT (∇DvT ),wT

�
T

+ �∇T pD,wT �T = �divT (fD),wT �T + �fT ,wT �T , (A.5)

so that, using the Green formulas (Thm. 2.7), the Cauchy−Schwarz inequality and the Poincaré inequal-
ity 2.9, we obtain (

pD, divDwT

)
D

≤
(∣∣∣∣∣∣∇DvT

∣∣∣∣∣∣
D

+ ‖fD‖D
+ C3 ‖fT ‖T

) ∣∣∣∣∣∣∇DwT

∣∣∣∣∣∣
D

.

By definition of the inf-sup constant (3.3) we deduce

‖pD − m(pD)‖
D
≤ 1

βT

(∣∣∣∣∣∣∇DvT

∣∣∣∣∣∣
D

+ ‖fD‖D
+ C3 ‖fT ‖T

)
. (A.6)
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• Taking wT = vT in (A.5), the Green formula (since vT ∈ E0) and the mass conservation equation, we obtain∣∣∣∣∣∣∇DvT

∣∣∣∣∣∣2
D

+ |Ω|(m(pD))2 = (gD, pD)
D

+ �divT (fD),vT �T + �fT ,vT �T

≤ ‖gD‖D
‖pD‖D

+ (‖fD‖D
+ C3 ‖fT ‖T )

∣∣∣∣∣∣∇DvT

∣∣∣∣∣∣
D

.

Using the Young inequality, we obtain

∣∣∣∣∣∣∇DvT

∣∣∣∣∣∣2
D

+ |Ω|(m(pD))2 ≤
(

1 +
3

βT
2

)
‖gD‖2

D
+ 3(‖fD‖D

+ C3 ‖fT ‖T )2. (A.7)

• The two previous estimates (A.6) and (A.7) give the required a priori estimate and conclude the proof. �

To build the lifting wT as in Theorem 3.1 we first need to define a lifting of the boundary data (which is not
necessarily divergence free) and which satisfies a suitable discrete H1-bound.

Proposition A.4. Let ub satisfying (1.2). There exists a discrete vector field GT ∈ Eub
such that there exists

C16 > 0 only depending on reg(T ) and on Ω satisfying

‖GT ‖T +
∣∣∣∣∣∣∇DGT

∣∣∣∣∣∣
D
≤ C16 ‖ub‖H

1/2(Γ )
. (A.8)

Proof. Let Ub ∈ (H1(R2))2 be a lifting of the function ub ∈ (H1/2(Γ ))2 (that is Ub �Γ = ub) and such that, for
some C17 > 0 depending only on Ω, we have

‖Ub‖H1(R
2) ≤ C17 ‖ub‖H

1/2(Γ )
. (A.9)

We set GT = P̃
T

mUb (see Def. 2.1) and the claim simply follows from the stability estimate of Proposi-
tion 2.14. �

We can now deduce the

Proof of Theorem 3.1. Let GT ∈ Eub
given by Proposition A.4. We set fD = ∇DGT , fT = 0 and gD =

−divDGT and we observe that Lemma A.1 gives m(gD) = 0.
Thus, we can apply Theorem A.3 and obtain a solution (vT , pD) ∈ E0 × RD to⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

divM(−∇DvT + pDId) = divM(∇DGT ),

divM∗
(−∇DvT + pDId) = divM∗

(∇DGT ),

divDvT = −divDGT ,

m(pD) = 0,

that satisfies the estimates (A.3). We easily deduce that wT = vT +GT belongs to Eub
and satisfies the required

properties (with qD = pD). �
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