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NUMERICAL ANALYSIS OF A STABILIZED FINITE ELEMENT
APPROXIMATION FOR THE THREE-FIELD LINEARIZED VISCOELASTIC

FLUID PROBLEM USING ARBITRARY INTERPOLATIONS

Ernesto Castillo1,2 and Ramon Codina3

Abstract. In this paper we present the numerical analysis of a three-field stabilized finite element
formulation recently proposed to approximate viscoelastic flows. The three-field viscoelastic fluid flow
problem may suffer from two types of numerical instabilities: on the one hand we have the two inf-
sup conditions related to the mixed nature problem and, on the other, the convective nature of the
momentum and constitutive equations may produce global and local oscillations in the numerical
approximation. Both can be overcome by resorting from the standard Galerkin method to a stabilized
formulation. The one presented here is based on the subgrid scale concept, in which unresolvable scales of
the continuous solution are approximately accounted for. In particular, the approach developed herein is
based on the decomposition into their finite element component and a subscale, which is approximated
properly to yield a stable formulation. The analyzed problem corresponds to a linearized version of
the Navier–Stokes/Oldroyd-B case where the advection velocity of the momentum equation and the
non-linear terms in the constitutive equation are treated using a fixed point strategy for the velocity
and the velocity gradient. The proposed method permits the resolution of the problem using arbitrary
interpolations for all the unknowns. We describe some important ingredients related to the design of the
formulation and present the results of its numerical analysis. It is shown that the formulation is stable
and optimally convergent for small Weissenberg numbers, independently of the interpolation used.
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1. Introduction

The numerical approximation of viscoelastic fluid flows is a current line of research due to the wide range of
industrial applications where these materials are found [15]. The mathematical structure of the equations that
define the problem presents different types of numerical instabilities and difficulties in which intensive research
has been done in recent years (see for example [1, 25, 37] for a review about this topic).

When using finite elements, the numerical approximation of the flow of viscoelastic fluids presents basically
two types of instabilities. The first is associated with the two compatibility or inf-sup conditions that restrict
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the possible choices of interpolation spaces. The second is related to the convective terms in both the momentum
and the hyperbolic constitutive equation, in both cases nonlinear.

Referring to the compatibility conditions, many authors have studied the problem, considering first simplified
model problems such as the three-field Stokes problem [9,18,35] or the three-field Navier–Stokes problem [3,12],
which have the same interpolation requirements as the viscoelastic case. For these simplified problems the
classical compatibility condition between velocity and pressure [10] is not sufficient, and an additional condition
that relates the interpolation of the velocity with that of the elastic stress must be added. The convective terms
have been treated using the extension of classical methods used for the Navier–Stokes problem, such as the
SUPG method [34], the Galerkin/Least-Squares (GLS) method [23] or approaches based on the Variational
Multiscale (VMS) concept (see [13, 31], among others).

Concerning the mathematical analysis, the existence of a slow steady viscoelastic flow solution has been
proved by Renardy in [36]. For the time-dependent case, existence of solutions locally in time, and for small
data globally in time, have been proved by Guillopé and Saut [26]. These analysis have been performed in Hilbert
spaces. The extension to Banach spaces and a complete review of uniqueness, regularity, well-posedness and
stability results can be found in the work of Fernández−Cara et al. [25]. The existence of global weak solutions
for general initial conditions using a co-rotational Oldroyd model has been proved by Lions and Masmoudi
in [33].

In the context of the finite element approximation, for the steady state case one of the first works where
the existence of approximate solutions and error analysis were presented is that of Baranger and Sandri in [2].
The authors used a discontinuous interpolation (Lesaint–Raviart method) to treat the viscoelastic stresses.
Later, Sandri in [40] showed by using a fixed point method that the discrete approximate problem using a
P1(continuous)-P2(continuous)-P1(continuous) interpolation for stress, velocity and pressure, respectively, and
the SUPG method to treat the convective term in the constitutive equation, has an unique solution for which
error bounds were given, supposing that the continuous problem admits sufficiently smooth and small solutions.
Picasso and Rappaz [35] analyzed a stationary non-linear Stokes problem (Stokes/Oldroyd-B model without
convective term), and they proved a priori and a posteriori error estimates for the finite element approximation
for small Weissenberg numbers using a GLS method and an Elastic Viscous Split Stress (EVSS) scheme. The
extension to the time-dependent case was treated in [8] for the same non-linear Stokes problem, proving global
existence in time in Banach spaces provided the data are small enough. For a Stokes/Oldroyd-B linearized
problem, Bonito and Burman presented in [7] optimal a priori error estimates using the Interior–Penalty method.
In this work the authors showed that adding some type of artificial viscosity in the constitutive equation, the
problem can be solved for a large range of Weissenberg numbers. A similar problem was studied by Ervin
et al. in [21] for the steady state case, but using the Johnson–Segalman linearized constitutive model, proving
existence and uniqueness of the continuous problem and of a finite element approximation under small data
assumption. Ervin and Miles in [22] analyzed the Oldroyd-B time-dependent case both in the semi-discrete and
in the fully discrete cases using the SUPG method, proving existence and deriving a priori error estimates for
the numerical approximation, assuming a Taylor−Hood pair approximation for the velocity and pressure and a
continuous approximation for the viscoelastic stresses.

The stabilized finite element formulation analyzed in this work has its roots in the VMS framework introduced
by Hughes et al. [28] for the scalar convection-diffusion-reaction problem, and extended later to the vectorial
Stokes problem in [16], where the space of the sub-grid scales is taken orthogonal to the finite element space.
As we shall see, this is an important ingredient in the design of the formulation analyzed herein. The starting
point of a VMS approach is to split the unknowns of the problem in two scales, the finite element one and the
unresolvable one, called sub-grid scale or simply subscale in what follows. The latter needs to be approximated
in a simple manner in terms of the former, so as to capture its main effect and yield a stable formulation for
the finite element unknown, keeping therefore the number of degrees of freedom of the Galerkin method.

One of the most common viscoelastic constitutive models used in the rheological community is the Oldroyd-B
model. When this model is approximated numerically, the most challenging problem associated to it is the High
Weissenberg Number Problem (HWNP), a phenomenon related to the inability of the numerical algorithms
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to converge to a solution when the Weissenberg (or Deborah) number is high (see for example [29, 38] and the
references therein). Some numerical tools have been proved to increase the limits of the numerical formulations
to solve more elastic fluids. The log-conformation formulation presented by Fattal and Kupferman [24] is a
common possibility to deal with the exponential growth of stresses when the Weissenberg number is increased.
Continuation methods are another numerical tool used to increase the Weissenberg number limits that can
be reached by a standard formulation, as one can see in the work of Howell [27]. For the treatment of local
oscillations, discontinuity-capturing techniques have proved to produce good results in [7, 13].

The objective of this paper is to analyze numerically a stabilized finite element formulation presented in
previous works and tested numerically with very good accuracy and robustness properties, both in stationary [13]
and time dependent cases [11, 14]. The analysis is standard and follows a classical approach to prove stability
and convergence, first using a mesh-dependent or working norm, and then extending the results to natural
norms, that is to say, to the norms of the spaces where the continuous problem is posed. As it is common to
other analyses, the Weissenberg number needs to be small enough.

The paper is organized as follows. In the following section we present the problem to be solved and its
Galerkin finite element approximation, explaining the sources of numerical instability. Then, in Section 3 we
present our stabilized finite element formulation. In Section 4, we present the numerical analysis performed,
and finally, conclusions and remarks are given in Section 5.

2. Problem statement and Galerkin finite element discretization

2.1. Boundary value problem

The stationary linearized viscoelastic fluid flow problem is defined by the following equations. First we have
the conservation equations for momentum and mass

ρa · ∇u −∇ · T + ∇p = f in Ω (2.1)
∇ · u = 0 in Ω (2.2)

where a is the advection velocity vector, Ω represents the computational domain of R
d occupied by the fluid,

d = 2 or 3 being the space dimensions, ρ denotes the density of the fluid, p : Ω −→ R the pressure, u : Ω −→ R
d

the velocity field, f : Ω → R
d the force vector and T : Ω −→ R

d ⊗ R
d the deviatoric extra stress tensor, which

can be defined in terms of a viscous and a viscoelastic or elastic contribution as

T = 2βμ∇su + σ (2.3)

where, μ represents the total viscosity, β ∈ (0, 1) is a real parameter to define the amount of viscous or solvent
viscosity μs = βμ and elastic or polymeric viscosity μp = (1 − β)μ in the fluid, and ∇su is the symmetrical
part of the gradient of u, given by

∇su :=
1
2
[∇u + (∇u)T

]
In (2.1)−(2.2) and in what follows we use classical tensor notation; in particular, the dot stands for the con-
traction of the nearest indexes of the tensors being multiplied.

We will consider that both the density ρ and the total viscosity μ are constants. For viscoelastic fluids, the
problem is incomplete without the definition of a constitutive equation for the elastic part of the extra stress
tensor (σ). A large variety of approaches exist to define it (see [4,5] for a description). In this work, we use the
classical Oldroyd-B constitutive model to describe the fluid, which is defined as

1
2μ

σ − (1 − β)∇su +
λ

2μ

(
a · ∇σ − σ · ∇a − (∇a)T · σ

)
= 0 in Ω (2.4)

where λ is the relaxation time. This equation can be viewed as a convection-reaction equation.
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Equations (2.1)−(2.4) are a mixed elliptic-hyperbolic system which additionally needs boundary conditions
both in the velocity and in the stress fields to close the problem. In principle the elastic stresses can be fixed
only on the inflow part of the boundary Γin = {x ∈ ∂Ω | (u · n) (x) < 0}, where n is the outward unit normal
vector to ∂Ω. For simplicity in the exposition, we shall consider the simplest boundary condition u = 0 on ∂Ω
for the velocity.

Calling U = [u, p,σ], F = [f , 0,0] and defining

L (U) :=

⎛
⎜⎝

−2βμ∇ · ∇su + ρa · ∇u −∇ · σ + ∇p
∇ · u

1
2μ

σ − (1 − β)∇su +
λ

2μ

(
a · ∇σ − σ · ∇a − (∇a)T · σ

)
⎞
⎟⎠ (2.5)

we may write (2.1), (2.2) and (2.4) as L (U) = F .
This linearized problem can be viewed as a viscoelastic Oseen problem that represents a linearization of the

stationary Navier–Stokes/Oldroyd-B problem, case in which a can be considered the velocity field evaluated
in a previous iteration. It also appears as one of the steps of some multilevel or multi-grid methods (see for
example [32] in the context of viscoelastic flows). This is why it is often used as a first step towards the
analysis of the full nonlinear problem, both to obtain a priori and a posteriori error estimates. With respect
to the advection velocity, we will take it in C0

(
Ω
)
, weakly divergence free and with bounded derivatives (see

assumption H1 in the following section).

2.2. Variational form of the problem

Let us introduce some notation in order to write the weak form of the problem. The space of square integrable
functions in a domain ω is denoted by L2 (ω), and the space of functions whose distributional derivatives of
order up to m ≥ 0 (integer) belong to L2 (ω) by Hm (ω). The space H1

0 (ω) consists of functions in H1 (ω)
vanishing on ∂ω. The topological dual of H1

0 (Ω) is denoted by H−1 (Ω), the duality pairing by 〈·, ·〉, and the
L2 inner product in Ω (for scalars, vectors and tensors) is denoted by (·, ·). The integral of the product of two
functions in a domain ω is denoted as 〈·, ·〉ω . The subscript ω is omitted when ω = Ω. The norm in a space X is
written as ‖·‖X , with the subscript omitted when X = L2 (Ω). When X = L2 (ω) we denote the norm by ‖·‖ω.

Let Υ :=
{
τ | τ ∈ (

L2 (Ω)
)d×d

, τij = τji, a · ∇τ ∈ (
L2 (Ω)

)d×d
}

, V := (H1
0 (Ω))d and Q := L2 (Ω) /R,

which are the spaces where we may seek the elastic stress, the velocity and the pressure, respectively. The weak
form of the problem is obtained by testing (2.5) against an arbitrary test function V = [v, q, τ ] with appropriate
regularity. It can be written as: find U = [u, p,σ] ∈ X := V ×Q× Υ such that

2βμ (∇su,∇sv) + 〈ρa · ∇u,v〉 + (σ,∇sv) − (p,∇ · v) = 〈f ,v〉 (2.6)
(q,∇ · u) = 0 (2.7)

1
2μ

(σ, τ ) − ((1 − β)∇su, τ ) +
λ

2μ

(
a · ∇σ − σ · ∇a − (∇a)T · σ, τ

)
= 0 (2.8)

for all V = [v, q, τ ] ∈ X , where it is assumed that f is such that 〈f ,v〉 is well defined.
In a compact form, problem (2.6)−(2.8) can be written as

B (U ,V ) = 〈f ,v〉 (2.9)

for all V ∈ X , where

B (U ,V ) = 2βμ (∇su,∇sv) + 〈ρa · ∇u,v〉 + (σ,∇sv) − (p,∇ · v) + (q,∇ · u) +
1
2μ

(σ, τ )

− (1 − β) (∇su, τ ) +
λ

2μ

(
a · ∇σ − σ · ∇a − (∇a)T · σ, τ

)
(2.10)
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To guarantee the well-posedness of problem (2.9), λ must be small enough and the advection velocity must
satisfy H1 below. Note that this assumption is consistent with those used in previous works [21, 25, 39], and it
is obviously inherited by the discrete problem:

H1 a ∈ V, ∇ · a = 0, ‖a‖L∞(Ω) ≤Ma <∞, ‖∇a‖L∞(Ω) ≤Mg <∞.

2.3. Stability of the Galerkin finite element discretization

Let us consider a finite element partition Ph = {K} of the domain Ω of diameter h. For simplicity, we will
consider quasi-uniform refinements, and thus all the element diameters can be bounded above and below by
constants multiplying h. Under the above considerations, we can construct conforming finite elements spaces,
Vh ⊂ V, Qh ⊂ Q and Υ h ⊂ Υ in the usual manner. In practice, the zero mean for the pressure space can be
replaced by prescribing the pressure at an arbitrary point, and the symmetry of the stress tensor can be forced
by choosing the degrees of freedom corresponding to the upper diagonal of this tensor. The condition that the
convective derivative of the stress be square integrable will follow from H1 and choosing the stresses continuous,
for example. The advection velocity a will be approximated by ah ∈ Vh; to simplify the exposition, we will
consider that this approximation also satisfies H1 (the zero divergence condition could be avoided by the usual
modification of the convective term in its skew-symmetric form).

If X h = Vh ×Qh ×Υ h, and Uh = [uh, ph,σh], the Galerkin finite element approximation consists in finding
Uh ∈ X h such that

B (Uh,V h) = 〈f ,vh〉 (2.11)

for all V h = [vh, qh, τ h] ∈ X h.
At the moment, we have posed no restrictions on the choice of the finite element spaces. However, there are

restriction that must be satisfied. For example, using the fact that ah is divergence free, it is readily checked
that

B (Uh, [(1 − β)uh, (1 − β) ph,σh]) = 2βμ (1 − β) ‖∇suh‖2 +
1
2μ

‖σh‖2 − λ

2μ

(
σh · ∇ah + (∇ah)T · σh,σh

)

Assuming λ∇ah to be small enough, this expression provides only control on ‖σh‖2 for all β ∈ (0, 1). To
control the other two fields one has then to make use of the two inf-sup conditions that restrict the possible
interpolations:

inf
qh∈Qh

sup
vh∈Vh

(qh,∇ · vh)
‖vh‖Vh

‖qh‖Qh

≥ C1 (2.12)

to control ph, and

inf
vh∈Vh

sup
τh∈Υ h

(τh,∇svh)
‖τh‖Υ h

‖vh‖Vh

≥ C2 (2.13)

to control ∇suh, where C1 and C2 are positive constants. It is therefore required that the finite element spaces
satisfy (2.12)−(2.13). These two conditions pose stringent requirements on the choice of the finite element
spaces (see for example [34] for the 2D case and [6] for the 3D case). Our intention in this paper is to analyze
a stabilized finite element formulation that avoids the need for such conditions and, in particular, allows one to
use equal interpolation for all the unknowns, including the possibility to use discontinuous interpolations.

Let us introduce some notation. Summation over all the elements of Ph will be indicated as
∑

K . The
collection of all edges (faces, for d = 3) will be denoted by Eh = {E} and, as for the elements, summation
over all these edges will be indicated as

∑
E . Suppose now that elements K1 and K2 share an edge E, and

let n1 and n2 be the normals to E exterior to K1 and K2, respectively. For a scalar function g, possibly
discontinuous across E, we define its jump as [[ ng ]] E := n1g|∂K1∩E + n2g|∂K2∩E , and for a vector or tensor v,
[[ n · v ]] E := n1 · v|∂K1∩E + n2 · v|∂K2∩E . When E ⊂ ∂Ω and n is the external normal, these definitions reduce
to [[ ng ]] E := ng|E and [[ n · v ]] E := n · v|E . Generic positive constants will be denoted by C, possibly with
subscripts and with different values in different appearances. The symbol � will be used for ≤ up to constants.
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3. Stabilized finite element method

In this section we summarize the stabilized formulation analyzed. This formulation was proposed in [13] and
tested numerically in [11, 13, 14], but the numerical analysis was not performed yet. As a novelty of this work,
we will introduce an additional stabilizing term for the subscales on the element boundaries that the original
work does not include, which allows us to consider discontinuous pressure and stress interpolations.

The method consist in replacing (2.11) by the following problem: find Uh ∈ X h such that

Bstab (Uh,V h) = B (Uh,V h) +B∗ (Uh,V h) = 〈f ,vh〉 (3.1)

for all V h ∈ X h, where B∗ represents the stabilizing part of the model, defined as

B∗ (Uh,V h) = S⊥
1 (Uh,V h) + S⊥

2 (Uh,V h) + S⊥
3 (Uh,V h)

where the three additional terms that define B∗ (Uh,V h) are associated to the stabilization terms of each
equation and are defined as

S⊥
1 (Uh,V h) =

∑
K

αu

〈
P⊥

u (ρah · ∇uh) , P⊥
h (ρah · ∇vh)

〉
K

+
∑
K

αu

〈
P⊥

u (∇ph) , P⊥
h (∇qh)

〉
K

+ (1 − β)
∑
K

αu

〈
P⊥

u (∇ · σh) , P⊥
u (∇ · τh)

〉
K

+
∑
E

α[u] 〈 [[ (nqh − (1 − β) n · τh) + 2βμn · ∇svh ]] , [[ (nph − n · σh) − 2βμn · ∇suh ]] 〉E (3.2)

S⊥
2 (Uh,V h) =

∑
K

αp

〈
P⊥

p (∇ · uh) , P⊥
p (∇ · vh)

〉
K
, (3.3)

S⊥
3 (Uh,V h) =

∑
K

ασ

〈
P⊥

σ (Rσ) , P⊥
σ

(
∇svh − λ

2μ

(
ah · ∇τ h + τ h ·(∇ah)

T + ∇ah · τh

))〉
K

(3.4)

In the last expression, Rσ represents the residual of the constitutive equation without the stress, given by

Rσ = (1 − β)∇suh − λ

2μ

(
ah · ∇σh − σh · ∇ah − (∇ah)T · σh

)
In the numerical analysis below we will also use the notation

σh · ∇ah + (∇ah)T · σh = σ̇∗
h + σ̇∗∗

h and σh · (∇ah)T + ∇ah · σh = σ̇∗
h − σ̇∗∗

h

where σ̇∗
h = σh · ∇sah + ∇sah ·σh and σ̇∗∗

h = σh · ∇asah −∇asah · σh. In these expressions, ∇asah represents
the skew-symmetric part of the velocity gradient, given by

∇asa =
1
2
[∇a − (∇a)T ]

In (3.2)−(3.4), P⊥
u represents the projection L2-orthogonal to the velocity space without boundary conditions,

P⊥
p the projection L2-orthogonal to the pressure space and P⊥

σ the projection L2-orthogonal to the stress space.
For example P⊥

u = I−Pu, where Pu is the L2 projection onto the velocity finite element space without boundary
conditions. We will also need to use the L2-projection onto the velocity space with boundary conditions, Vh, that
we will denote by Pu,0. The last term in S⊥

1 is an approximation to the subscales on the element boundaries and
allows us to consider discontinuous interpolations for the pressure and the stress. The design of the stabilization
terms without the boundary term was presented in [13] for the stationary three-field viscoelastic case. For the
design of the boundary term we refer to [18], where a three-field Stokes problem was analyzed in detail. The
extension to the Oldroyd-B viscoelastic case is trivial.
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The stabilization parameters αi, i = u or i = p or i = σ, are computed within each element K as

αu =
(
c1
μ

h2
+ c2

ρ |ah|
h

)−1

(3.5)

αp =
h2

c1α1
(3.6)

ασ =
(
c3

1
2μ

+ c4
λ

2μ
|ah|
h

+ c5
λ

μ
|∇ah|

)−1

(3.7)

A possible justification for these parameters is the Fourier analysis presented in [18] for the three-field Stokes
problem or in [17] for the transient Navier–Stokes problem. The constants ci, i = 1, 2, 3, 4, 5, are algorithmic
parameters. As a reference, the values used in the numerical experiments in [11,13,14] for linear elements were
c1 = 4.0 or 12.0, c2 = 2.0, c3 = 4.0 and c4 = c5 = 0.25 or 1.0. For higher order elements these values should be
modified in terms of the interpolation order used (more details can be found in the numerical references where
the method was tested).

The boundary stabilization parameter in S⊥
1 can be defined as α[u] = δ0h

2μ , as in [18, 20], where δ0 is an
algorithmic parameter that can be taken as δ0 = 0.1.

The method presented is a mix of an orthogonal term-by-term formulation for the momentum and continuity
equations and a residual-based formulation for the constitutive equation. The term-by-term part is not just a
simplification of a standard residual based one. For smooth solutions, both have an optimal convergence rate
in h. However, in problems where the solution has strong gradients, we have found the term-by-term formulation
more robust than the residual-based one, which can be explained using numerical analysis as we will show below.
The method we analyze permits a term-by-term control of the orthogonal projections of the pressure gradient,
the convective term of the momentum equation and the divergence of the elastic stress which is not possible
using the residual-based formulation.

4. Numerical analysis

The numerical analysis performed in this section follows a more or less standard approach. First we prove
stability in the form of inf-sup condition in a mesh dependent norm that depends on the stabilized formulation
used. Next we prove convergence in the same norm. Stability and convergence in natural norms, that is to say,
the norms where the continuous problem is posed, are then proved. Finally, we obtain an L2-error estimate for
the velocity using a duality argument.

4.1. Preliminaries

As it has been mentioned in Section 3, we will consider for the sake of conciseness quasi-uniform finite element
partitions. Therefore, we assume that there is a constant cinv, independent of the mesh size h (the maximum of
all the element diameters), such that

‖∇vh‖K ≤ cinvh
−1 ‖vh‖K

for all finite element functions vh defined on K ∈ Ph, which can be either scalars, vectors or tensors. Similarly,
the trace inequality

‖v‖2
∂K ≤ ctr

(
h−1 ‖v‖2

K + h ‖∇v‖2
K

)
is assumed to hold for functions v ∈ H1 (K), K ∈ Ph. The last term can be dropped if v is a polynomial on
the element domain K. Thus, if ϕh is a piecewise discontinuous polynomial and ψh a continuous one, it follows
that ∑

E

‖ [[ nϕh ]]‖2
E ≤ 2ctrh−1

∑
K

‖ϕh‖2
K ,

∑
E

‖ψh‖2
E ≤ ctr

2
h−1

∑
K

‖ψh‖2
K (4.1)
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We will also make use of Korn’s inequality, which holds for the conforming approximation that we consider:

‖vh‖2
H1(Ω) ≤ c ‖∇svh‖2

, with vh = 0 on ∂Ω

Let Wh be a finite element space of degree kv. For any function v ∈ Hk′
v+1 (Ω) and for i = 0, 1, we define the

interpolation errors εi (v) from the interpolation estimates

inf
vh∈Wh

∑
K

‖v − vh‖Hi(K) ≤ Chk′′
v +1−i

∑
K

‖v‖
Hk′′

v +1(K)
=:

∑
K

εi,K (v) =: εi (v)

where k′′v = min (kv, k
′
v). We will denote by ṽh the best approximation of v in Wh. Clearly, we may take

ε0 (v) = hε1 (v).
We will need a condition on the interpolating spaces that holds in the case of equal order interpolations

(see [19]), and that can be written as follows:

H2 Given ah,vh ∈ Vh, qh ∈ Qh, τh ∈ Υ h and zh := ρah · ∇vh + ∇qh −∇ · τ h, there holds

‖zh‖ ≤ cm
(‖Pu,0 (zh)‖ +

∥∥P⊥
u (zh)

∥∥) (4.2)

for a constant cm > 0.
According to this condition, the component of Pu (zh) that corresponds to the boundary of Ω can be bounded

in terms of the right-hand-side of equation (4.2). To prove this, one can use the macro-element technique
employed in [19].

4.2. Stability and convergence in a mesh-dependent norm

The norm in which the results will be first presented is

‖V h‖2
W =2βμ (1 − β)

∑
K

‖∇svh‖2
K +

1
2μ

∑
K

‖τ h‖2
K +

∑
K

αu ‖ρah · ∇vh + ∇qh −∇ · τ h‖2
K

+
∑
K

αu

∥∥P⊥
u (ρah · ∇vh)

∥∥2

K
+ (1 − β)

∑
K

αu

∥∥P⊥
u (∇ · τh)

∥∥2

K
+
∑
K

αu

∥∥P⊥
u (∇qh)

∥∥2

K

+
∑
K

αp ‖∇ · vh‖2
K +

∑
K

ασ

∥∥∥∥− (1 − β)∇svh +
λ

2μ
(ah · ∇τh − τ̇ ∗∗

h )
∥∥∥∥

2

K

+ (1 − β)
∑
E

α[u] ‖ [[ nqh − n · τh ]]‖2
E (4.3)

although later on we will transform our results to natural norms under the assumption of small elasticity and
large viscosity. Note that the term multiplied by αp is unnecessary, since it is already contained in the first
right hand side term. However, we will keep it to see the effect of the subscale associated to the pressure. It
can also be helpful for some non-conforming elements (not considered in this work) for which the discrete Korn
inequality does not hold (see e.g. [30]).

If β is very small (or β = 0) the control on velocity gradient can be obtained from the term multiplied by
ασ. However, to simplify a little the analysis we will consider β > 0, and the stability provided by the first term
relevant enough.

Note that the stabilization term S⊥
1 allows us to have a term-by-term control of the orthogonal projections

of the convective term, the pressure gradient and the divergence of the elastic stress tensor. This fact may be
an explanation of why we have found the term-by-term stabilization more robust than the residual based one
in the presence of high gradients.
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Our first result states the formulation we consider is stable in the working norm (4.3):

Theorem 4.1 (Stability). Suppose that H2 holds. For λ small enough, there is a constant C > 0 such that

inf
Uh∈Xh

sup
V h∈X h

Bstab (Uh,V h)
‖Uh‖W ‖V h‖W

≥ C

provided δ0 is taken small enough and the constants ci, i = 1, 2, 3, 4, 5 in (3.5)−(3.7) are large enough.

Proof. Given Uh ∈ X h, consider Uh1 = [(1 − β)uh, (1 − β) ph,σh]. Using only Schwarz’s inequality we obtain

Bstab (Uh,Uh1) ≥ 2β (1 − β)μ ‖∇suh‖2 +
1
2μ

∑
K

(1 − 2λ ‖∇ah‖K) ‖σh‖2
K

− 1
2μ

∑
K

(
4λ

(
ασ

λ

2μ

)
‖∇sah‖2

K

)
‖σh‖2

K + (1 − β)
∑
K

αp

∥∥P⊥
p (∇ · uh)

∥∥2

K

+ (1 − β)
∑
K

αu

∥∥P⊥
u (ρah · ∇uh)

∥∥2

K
+ (1 − β)

∑
K

αu

∥∥P⊥
u (∇ph)

∥∥2

K

+ (1 − β)
∑
K

αu

∥∥P⊥
u (∇ · σh)

∥∥2

K
+
∑
K

ασ

∥∥∥∥P⊥
σ

(
− (1 − β)∇suh +

λ

2μ
(ah · ∇σh − σ̇∗∗

h )
)∥∥∥∥

2

K

+ (1 − β)
∑
E

δ0h

2μ
‖ [[ nph − n · σh ]]‖2

E − (1 − β)
∑
E

δ0h

2μ
‖ [[ 2βμn · ∇suh ]]‖2

E

Using now (4.1) we obtain

Bstab (Uh,Uh1) ≥ 2β (1 − β)μ
∑
K

(1 − 2βδ0ctr) ‖∇suh‖2
K + (1 − β)

∑
K

αu

∥∥P⊥
u (ρah · ∇uh)

∥∥2

K

+ (1 − β)
∑
K

αp

∥∥P⊥
p (∇ · uh)

∥∥2

K
+

1
2μ

∑
K

(
1 − 2λ ‖∇ah‖K − 4λασ

λ

2μ
‖∇sah‖2

K

)
‖σh‖2

K

+ αu (1 − β)
∑
K

∥∥P⊥
u (∇ph)

∥∥2

K
+ (1 − β)

∑
K

αu

∥∥P⊥
u (∇ · σh)

∥∥2

K

+ ασ

∥∥∥∥P⊥
σ

(
− (1 − β)∇suh +

λ

2μ
(ah · ∇σh − σ̇∗∗

h )
)∥∥∥∥

2

K

+ (1 − β)
∑
E

δ0h

2μ
‖ [[ nph − n · σh ]]‖2

E (4.4)

An important restriction inherited from the continuous case is that the stability of the elastic stresses can
be ensured only for small Weissenberg numbers. In the above expression the factor of the term ‖σh‖2 must be
strictly positive to guarantee stability. In this factor we have two negative components, the first 2λ ‖∇ah‖ comes
from the Galerkin method, and the second 4λασ

λ
2μ ‖∇sah‖2 from the stabilized formulation. All the analysis

carried out assumes that

1 − 2λ ‖∇ah‖K − 4λασ
λ

2μ
‖∇sah‖2

K ≥ C > 0

The basic idea to prove Theorem 4.1 is to obtain control on the components on the finite element space
for the terms whose orthogonal component appears in the above expression. The key point is that this control
comes from the Galerkin terms of Bstab in (3.1).

Let us start considering V h1 = [αu (1 − β) (Pu,0 (ρah · ∇uh + ∇ph −∇ · σh) , 0,0)]. Recalling that Pu,0

is defined based on elementwise integrals, Pu,0 (ρah · ∇uh + ∇ph −∇ · σh) is well defined. We will use
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the abbreviation v1 ≡ Pu,0 (ρah · ∇uh + ∇ph −∇ · σh). Using Young’s inequality, inverse estimates and (4.1),
we obtain

Bstab (Uh,V h1) =B (Uh,V h1) +B∗ (Uh,V h1)

≥B∗ (Uh,V h1) + (1 − β)
(
1 − ε1

2
− ctr

2
ε2
2

)∑
K

αu ‖Pu,0 (ρah · ∇uh + ∇ph −∇ · σh)‖2
K

− μ (1 − β) (2β)2
c2inv

2ε1

∑
K

αu
μ

h2
‖∇suh‖2

K

− (1 − β)
1

2ε2

∑
E

αu

h
‖ [[ (nph − n · σh) − 2βμn · ∇suh ]]‖2

E

≥B∗ (Uh,V h1) + (1 − β)
(
1 − ε1

2
− ctr

2
ε2
2

)∑
K

αu ‖Pu,0 (ρah · ∇uh + ∇ph −∇ · σh)‖2
K

− μ (1 − β) (2β)2
(
c2inv

2ε1
+ 4

ctr
2ε2

)∑
K

αu
μ

h2
‖∇suh‖2

K

− 2 (1 − β)
1

2ε2

∑
E

αu

h
‖ [[ nph − n · σh ]]‖2

E (4.5)

for any ε1, ε2. On the other hand, the stabilizing part leads to

B∗ (Uh,V h1) ≥ − (1 − β)
1

2ε4

∑
K

(
α2

u

ρ ‖ah‖K

h

)∥∥P⊥
u (ρah · ∇uh)

∥∥2

K

− (1 − β) (cinv)
2
∑
K

α2
u

(
αp

h2

ε3
2

+
ρ ‖ah‖K

h

ε4
2

+
2μ
h2
β2δ0ctr

ε5
2

+
ασ

h2

ε6
2

)
‖v1‖2

K

− (1 − β)
1

2ε3

∑
K

αp

∥∥P⊥
p (∇ · uh)

∥∥2

K

− 2 (1 − β)
1

2ε6

∑
K

ασ

∥∥∥∥P⊥
σ

(
− (1 − β)∇suh +

λ

2μ
(ah · ∇σh − σ̇∗∗

h )
)∥∥∥∥

2

K

− 2 (1 − β)
1

2ε6

(
λ

2μ

)2 ∑
K

ασ ‖σ̇∗
h‖2

K

− 2 (1 − β)
1

2ε5

∑
E

α[u] ‖ [[ nph − n · σh ]]‖2
E − 8β2 (1 − β)μctr

1
2ε5

∑
K

δ0 ‖∇suh‖2
K (4.6)

for any εi, i = 3, 4, 5, 6. Using (4.6) in (4.5) we get

Bstab (Uh,V h1) ≥ (1 − β)
∑
K

αuCu ‖v1‖2
K

− μ (1 − β) (2β)2
(
c2inv

2ε1
+ 4

ctr
2ε2

+ 2
ctrδ0
2ε5

)∑
K

αu
μ

h2
‖∇suh‖2

K

− (1 − β)
1

2ε3

∑
K

αp

∥∥P⊥
p (∇ · uh)

∥∥2

K
− (1 − β)

1
2ε4

∑
K

α2
u

ρ ‖ah‖K

h

∥∥P⊥
u (ρah · ∇uh)

∥∥2

K
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− (1 − β) 2
1

2ε6

∑
K

ασ

∥∥∥∥P⊥
σ

(
− (1 − β)∇suh +

λ

2μ
(ah · ∇σh − σ̇∗∗

h )
)∥∥∥∥

2

K

− 1
2μ

2 (1 − β)
1

2ε6

∑
K

ασ

2μ
(λ ‖∇sah‖K)2 ‖σh‖2

K

− 2 (1 − β)
(
δ0h

μ

(
αu

μ

δ0h2

1
2ε2

+
1

2ε5

))∑
E

‖ [[ nph − n · σh ]]‖2
E (4.7)

with

Cu := 1 − ε1
2

− ε2
4
ctr − αu

(
αp

h2

ε3
2

+
ρ ‖ah‖K

h

ε4
2

+
2μ
h2
β2δ0ctr

ε5
2

+
ασ

h2

ε6
2

)
c2inv (4.8)

Let us consider now the test function V h2 = αp (1 − β) [0, Pp (∇ · uh) ,0]. We will use the abbreviation
q2 ≡ Pp (∇ · uh). Proceeding as before we get

Bstab (Uh,V h2) ≥ (1 − β)
∑
K

αpCp ‖Pp (∇ · uh)‖2
K

− (1 − β)
ε7
2

∑
K

αu

∥∥P⊥
u (∇ph)

∥∥2

K
− 2

δ0h

2μ
(1 − β) ε8

∑
E

αp

μ
‖ [[ nph − n · σh ]]‖2

E

− 2
δ0h

2μ
(1 − β) (2βμ)2

2ctr
h
ε8
∑
K

αp

μ
‖∇suh‖2

K (4.9)

for any ε7, ε8, with

Cp := 1 − c2inv

2ε7
αuαp

h2
− δ0ctr

2ε8
(4.10)

The last step is to consider as test function V h3 = ασ[0, 0,σ3], with

σ3 := Pσ

(
− (1 − β)∇suh +

λ

2μ

(
ah · ∇σh − σh · ∇ah − (∇ah)T · σh

))

Using the same tools as in the previous cases we now obtain

Bstab (Uh,V h3) ≥ − 1
2μ

1
2ε9

‖σh‖2 − 2
δ0h

2μ
1

2ε12
(1 − β)

∑
E

‖ [[ nph − n · σh ]]‖2
E

− (1 − β)2
1

2ε11

∑
K

αu

∥∥P⊥
u (∇ · σh)

∥∥2

K
− 2

δ0h

2μ
1

2ε12
(1 − β) (2βμ)2

2ctr
h

∑
K

‖∇suh‖2
K

+
∑
K

ασCσ

∥∥∥∥Pσ

(
− (1 − β)∇suh +

λ

2μ
(ah · ∇σh − σ̇∗∗

h )
)∥∥∥∥

2

K

+
∑
K

ασ

[
1 − 2

1
2ε10

− 2
(
ασ

2μ
ε9
2

+ αu
ασ

h2
c2inv

ε11
2

+ 2ctrδ0
ασ

2μ
ε12
2

)

−2
(
ασ

2μ

)2
(

4
(
λ ‖ah‖K

h

)2

+ 4 (λ ‖∇sah‖K)2 + 2 (λ ‖∇asah‖K)2
)
ε13
2

]∥∥∥∥Pσ

(
λ

2μ
σ̇∗

h

)∥∥∥∥
2

K

− 2
1

2ε13

∑
K

ασ

∥∥∥∥P⊥
σ

(
− (1 − β)∇suh +

λ

2μ
(ah · ∇σh − σ̇∗∗

h )
)∥∥∥∥

2

K

− 2
1

2ε13

∑
K

ασ

∥∥∥∥P⊥
σ

(
λ

2μ
σ̇∗

h

)∥∥∥∥
2

K

(4.11)
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for any εi, i = 9, 10, 11, 12, 13, with

Cσ := 1 − 2
ε10
2

− 2
(
ασ

2μ
ε9
2

+ αu
ασ

h2
c2inv

ε11
2

+ 2ctrδ0
ασ

2μ
ε12
2

)

− 2
(
ασ

2μ

)2
(

4
(
λ ‖ah‖K

h

)2

+ 4 (λ ‖∇sah‖K)2 + 2 (λ ‖∇asah‖K)2
)
ε13
2

(4.12)

It can be checked that the constants εi, i = 1, . . . , 13, can be taken such that

Cu > 0, Cp > 0, Cσ > 0

where Cu, Cp and Cσ are given by (4.8), (4.10) and (4.12), respectively.
Let V h = Uh1 + θ1V h1 + θ2V h2 + θ3V h3. It is trivially verified that the parameters θi can be chosen small

enough so as to obtain

Bstab (Uh,V h) ≥ 2β (1 − β)μ
∑
K

C1 ‖∇suh‖2 +
1
2μ

∑
K

C2 ‖σh‖2

+ (1 − β)
∑
K

αuC3 ‖Pu,0 (ρah · ∇uh + ∇ph −∇ · σh)‖2

+ (1 − β)
∑
K

αuC4

∥∥P⊥
u (ρah · ∇uh)

∥∥2
+ (1 − β)

∑
K

αuC5

∥∥P⊥
u (∇ph)

∥∥2

+ (1 − β)
∑
K

αuC6

∥∥P⊥
u (∇ · σh)

∥∥2

+ (1 − β)
∑
K

αpC7

∥∥P⊥
p (∇ · uh)

∥∥2
+ (1 − β)

∑
K

αpC8 ‖Pp (∇ · uh)‖2

+
∑
K

ασC9

∥∥∥∥Pσ

(
− (1 − β)∇suh +

λ

2μ
(ah · ∇σh − σ̇∗∗

h )
)∥∥∥∥

2

+
∑
K

ασC10

∥∥∥∥P⊥
σ

(
− (1 − β)∇suh +

λ

2μ
(ah · ∇σh − σ̇∗∗

h )
)∥∥∥∥

2

+
δ0h

2μ

∑
E

C11 ‖ [[ nph − n · σh ]]‖2 +
1
2μ

∑
K

ασC12 ‖λPσ (σ̇∗
h)‖2 (4.13)

with the various constants appearing in this expression given by

C1 =1 − θ12βc2invαu
μ

h2

(
1

2ε1
+

4ctr
2ε2

+
2ctrδ0
2ε5

)
− θ2

αp

μ
(4δ0βctrε8) − θ32δ0βctr

1
2ε12

C2 =1 − 2λ ‖∇ah‖K − 4λασ
λ

2μ
‖∇sah‖2

K − θ3
1

2ε9

−
(
ασ

λ

2μ
‖∇sah‖K

)2(
θ1

(
2 (1 − β)

2μ
ασ

1
2ε6

)
+ θ3

(
2
2μ
ασ

1
2ε13

))

C3 = θ1

(
1 − ε1

2
− ε2

4
ctr −

(
αu
αp

h2

ε3
2

+ αu
ρ ‖ah‖K

h

ε4
2

+ αu
2μ
h2
β2δ0ctr

ε5
2

+ αu
ασ

h2

ε6
2

)
c2inv

)
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C4 =1 − θ1αu
μ

h2

ρ ‖ah‖K h

μ

1
2ε4

C5 =1 − θ2
ε7
2

C6 =1 − θ3 (1 − β)
1

2ε11

C7 =1 − θ1
1

2ε3

C8 = θ2

(
1 − c2invαu

αp

h2

1
2ε7

− δ0ctr
1

2ε8

)

C9 = θ3

(
1 − 2

ε10
2

− 2
(
ασ

2μ
ε9
2

+ αu
ασ

h2
c2inv

ε11
2

+ 2ctrδ0
ασ

2μ
ε12
2

)

−2
(
ασ

2μ

)2
(

4
(
λ ‖ah‖K

h

)2

+ 4 (λ ‖∇sah‖K)2 + 2 (λ ‖∇asah‖K)2
)
ε13
2

)

C10 =1 − θ12 (1 − β)
1

2ε6
− θ32

1
2ε13

C11 =1 − 2θ12 (1 − β)
(
αu

μ

δ0h2

1
2ε2

+
1

2ε5

)
− θ2 (1 − β)

αp

μ
ε8 − θ3

1
2ε12

C12 = θ3
ασ

2μ

(
1 − 2

1
2ε10

− 2
(
ασ

2μ
ε9
2

+ αu
ασ

h2
c2inv

ε11
2

+ 2ctrδ0
ασ

2μ
ε12
2

)

−2
(
ασ

2μ

)2
(

4
(
λ
‖ah‖K

h

)2

+ 4 (λ ‖∇sah‖K)2 + 2 (λ ‖∇asah‖K)2
)
ε13
2

)

all positive for λ (or the Weissenberg number) small enough and the constants ci, i = 1, 2, 3, 4, 5 in (3.5)−(3.7)
large enough.

Comparing the terms in the right-hand-side of (4.13) and the definition (4.3), it is seen that the former
bounds ‖Pu,0 (ρah · ∇uh + ∇ph −∇ · σh) ‖ and ‖P⊥ (ρah · ∇uh + ∇ph −∇ · σh) ‖. Assumption H2 allows us
to guarantee that it also bounds ‖ρah · ∇uh + ∇ph −∇ · σh‖. Therefore, for each Uh we have found V h such
that

Bstab (Uh,V h) ≥ C‖Uh‖2
W

In fact, it is seen from (4.13) that we could have included the term 1
2μC12 ‖λPσ (σ̇∗

h)‖2 in the working norm,
which gives control on the finite element part of σh · ∇sah + ∇sah · σh.

On the other hand, it is easily checked that ‖V h‖W ≤ C ‖Uh‖W . Using this fact we have shown that for
each Uh ∈ X h there exist V h ∈ X h such that Bstab (Uh,V h) ≥ C ‖Uh‖W ‖V h‖W , from where the theorem
follows. �

Once stability is established, a more or less standard procedure leads to convergence. The objective is to
show that the error function of the method is

E (h) :=
√
με1 (u) +

√
μ
∑
K

√
ρ ‖ah‖K h

μ
ε1,K (u) +

1√
μ
ε0 (σ) +

1√
μ

∑
K

λ ‖ah‖K

h
ε0,K (σ) +

1√
μ
ε0 (p) (4.14)

This expression allows us to see how the error will deteriorate in terms of the local Reynolds number and the
local Weissenberg number, defined as the factors that multiply ε1,K (u) and ε0,K (σ), respectively.
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The first preliminary result we need concerns the consistency of the formulation:

Lemma 4.2 (Consistency). Let U ∈ X be the solution of the continuous problem and Uh ∈ X h the finite
element solution. If f ∈ Vh and U is regular enough, so that Bstab (U ,V h) is well defined, then

Bstab (U − Uh,V h) ≤ CE (h) ‖V h‖W (4.15)

for all V h ∈ Xh, where E (h) is given by (4.14).

Proof. Obviously, the Galerkin terms do not contribute to the consistency error. In the constitutive equation
the stabilization term is residual based and the consistency is also satisfied by construction, the same as in the
continuity equation. It only remains to show that S⊥

1 has a consistency error bounded as (4.15) indicates. This
easily follows from the fact that the orthogonal projection P⊥ onto an appropriate finite element space (without
boundary conditions) satisfies ‖P⊥(v)‖ ≤ Cε0(v) for any function v. �

The second preliminary lemma provides an interpolation error in terms of the working norm ‖·‖W and the
stabilized form Bstab for the continuous solution U = [u, p,σ] ∈ X , assumed to have enough regularity:

Lemma 4.3 (Interpolation error). Let U ∈ X be the solution of the continuous problem, assumed to be regular
enough, and Ũh ∈ X h its best finite element approximation. Then, for λ small enough the following inequalities
hold:

Bstab

(
U − Ũh,V h

)
≤ CE (h) ‖V h‖W (4.16)∥∥∥U − Ũh

∥∥∥
W

≤ CE (h) (4.17)

Proof. Set eu = u− ũh, ep = p− p̃h and eσ = σ − σ̃h. The proof of (4.17) follows from a repeated application
of Schwarz’s inequality and then Young’s inequality for scalars. Boundary terms can be treated using (4.1). One
gets∥∥∥U − Ũh

∥∥∥2

W
≤ 2μ

∑
K

(
β + β

ε1
2

+
αp

2μ
+
ασ

2μ
β2 1

2ε3
+ 2

ασ

2μ

(
1 +

ε3
2

)
+ 2δ0ctrβ2

(
1 + 2β

ε4
2

))
‖∇seu‖2

K

+ 2μ
∑
K

αu
ρ ‖ah‖K

h

ρ ‖ah‖K h

2μ
‖∇seu‖2

K

+
1
2μ

∑
K

(
1 + β

1
2ε1

+
1

2ε2
+ 4λ2 ‖∇ah‖2

K

ε2
2

+ (1 − β)αu
2μ
h2

+ 2ctrδ0 (2 + β)
)
‖eσ‖2

K

+
1
2μ

∑
K

ασ

2μ

(
2
(
λ ‖ah‖K

h
− λ ‖∇asah‖K

)2 (
1 + 2

ε3
2

)
+ λ ‖∇sah‖2

K

(
1
2
− 2

ε3
2

))
‖eσ‖2

K

+
1
2μ

∑
K

(
αu

2μ
h2

+ 2ctrδ0
(
1 + 2β

ε4
2

))
‖ep‖2

K

for any constants εi, i = 1, 2, 3 (not to be confused with the interpolation errors). Estimate (4.17) follows from
the definition of the error function in (4.14) and assuming λ to be small enough (this assumption allows us not
to include the gradient of ah in the error function).

To prove (4.16) one needs to apply repeatedly Young’s inequality and use the expression of the stabilization
parameters, as well as classical interpolation estimates. To treat the boundary terms, note that according to (4.1)
we may write ∑

K

‖v − ṽh‖2
∂K ≤ C

(
h−1ε20 (v) + hε21 (v)

)
= Ch−1ε20 (v)

for both continuous and discontinuous functions v.
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The bound one finally obtains is

Bstab

(
U − Ũh,V h

)

≤ √
με1 (u)

(∑
K

(
2β

√
μ ‖∇svh‖K +

h√
μ
‖−∇qh + (1 − β)∇ · τh‖K +

ρ ‖ah‖h
μ

√
μ

cinv
‖∇vh‖K

)

+
∑
E

√
ctr

√
h√
μ
‖ [[ nqh − (1 − β) n · τh ]]‖E

)

+
1√
μ
ε0 (σ)

∑
K

(√
μ ‖∇svh‖K +

1
2
√
μ
‖τh‖K +

λ ‖ah‖K

h
cinv

1
2
√
μ
‖τ h‖K + λ ‖∇ah‖K

λ√
μ
‖τ h‖K

)

+ (1 − β)
cinv√
μ
ε0 (σ)

∑
K

αu
μ

h2

cinv√
μ
‖τ h‖

+
√
με1 (u)

∑
K

(
αp

μ

√
μ ‖∇ · vh‖K + αu

μ

h2

(
ρ ‖ah‖K h

μ

)2√
μ ‖∇vh‖K + (1 − β)

ασ

μ

√
μ ‖∇svh‖K

)

+
1√
μ
ε0 (p) (

√
μ ‖∇ · vh‖) +

1√
μ
ε0 (p)

∑
K

(
αu

μ

h2

c2inv√
μ
‖qh‖K

)

+
δ0
2

1√
μ

(ε0 (p) + ε0 (σ) + 2βμε1 (u))
∑
E

√
h√
μ
‖ [[ nqh − (1 − β) n · τh + 2βμn · ∇svh ]]‖E

+ (1 − β)
√
με1 (u)

∑
K

ασ

μ

1
2
√
μ

∥∥∥λ(ah · ∇τ h + τ h · (∇ah)T + ∇ah · τ h

)∥∥∥
+

1
2
√
μ
ε0 (σ)

∑
K

√
μ
ασ

μ

(
‖∇svh‖K +

∥∥∥∥ λ2μ
(
ah · ∇τ h + τ h · (∇ah)T + ∇ah · τh

)∥∥∥∥
K

)

×
(
λ ‖ah‖K

h
cinv + 2λ ‖∇ah‖K

)

All the terms have been organized to see that they are bounded by CE (h) ‖V h‖W , from where (4.16)
follows. �

We are finally in a position to prove convergence. The proof is standard, but we include it for completeness.

Theorem 4.4 (Convergence). Let U = [u, p,σ] ∈ X be the solution of the continuous problem, and suppose
that the assumptions of Theorem 4.1 hold. Then there exist a constant C > 0 such that

‖U − Uh‖W ≤ CE (h)

Proof. Consider the finite element function Ũh −Uh ∈ X h, where as in Lemma 4.3, Ũh ∈ X h is the best finite
element approximation to U . Starting from the inf-sup condition, it follows that there exist V h ∈ X h such that

C
∥∥∥Ũh − Uh

∥∥∥
W

‖V h‖W ≤ Bstab

(
Ũh − Uh,V h

)
= Bstab

(
Ũh − U ,V h

)
+Bstab (U − Uh,V h)

≤ CE (h) ‖V h‖W

using Lemma 4.2 and (4.16) in Lemma 4.3, from where∥∥∥Ũh − Uh

∥∥∥
W

≤ CE (h)



1422 E. CASTILLO AND R. CODINA

The theorem follows using this bound in the triangle inequality

‖U − Uh‖W ≤
∥∥∥U − Ũh

∥∥∥
W

+
∥∥∥Ũh − Uh

∥∥∥
W

and (4.17) in Lemma 4.3. �

Clearly, this convergence result is optimal.

4.3. Stability and convergence in natural norms

The next step will be to prove stability and convergence in a natural norm, that is yo say, in the norm of
the space where the continuous problem is posed, and not in the mesh dependent norm (4.3). Even though the
results to be presented are the expected ones, the analysis presented up to this point has highlighted the role
played by the stabilization terms of the formulation. Obviously, since the natural norm does not include any
control on the convective terms, stability and convergence in this norm is only meaningful in the case of small
cell Reynolds numbers and small cell Weissenberg numbers. This is the situation considered in the following.

Theorem 4.5 (Stability and convergence in natural norms). Suppose that the assumptions of Theorem 4.1
hold and the cell Reynolds numbers and cell Weissenberg numbers are small. Then, the solution of the discrete
problem Uh = [uh, ph,σh] ∈ X h can be bounded as

√
μ ‖uh‖H1(Ω) +

1√
μ
‖σh‖ +

1√
μ
‖ph‖ ≤ C√

μ
‖f‖H−1(Ω)

Moreover, if the solution of the continuous problem U = [u, p,σ] ∈ X is regular enough, the following error
estimate holds: √

μ ‖u − uh‖H1(Ω) +
1√
μ
‖σ − σh‖ +

1√
μ
‖p− ph‖ ≤ CE (h)

Proof. It is clear that

〈f ,vh〉 ≤ C√
μ
‖f‖H−1(Ω)

√
μ ‖vh‖H1(Ω) ≤

C√
μ
‖f‖H−1(Ω) ‖V h‖W

where V h = [vh, qh, τ h] ∈ X h is arbitrary. Therefore the inf-sup condition proved in Theorem 4.1 implies that:

‖Uh‖W ≤ C√
μ
‖f‖H−1(Ω)

that is to say,

2βμ (1 − β) ‖∇suh‖2 +
1
2μ

‖σh‖2 +
∑
K

αp ‖∇ · uh‖2
K +

∑
K

αu ‖ρah · ∇uh + ∇ph −∇ · σh‖2
K

+ (1 − β)
∑
K

αu

∥∥P⊥
u (∇ · σh)

∥∥2

K
+
∑
K

αu

∥∥P⊥
u (∇ph)

∥∥2

K
+
∑
K

αu

∥∥P⊥
u (ρah · ∇uh)

∥∥2

K

+
δ0h

2μ
(1 − β)

∑
E

‖ [[ nph − n · σh ]]‖2
E +

∑
K

ασ

∥∥∥∥− (1 − β)∇suh +
λ

2μ
(ah · ∇σh − σ̇∗∗

h )
∥∥∥∥

2

K

≤ C√
μ
‖f‖H−1(Ω) (4.18)

Using an inverse inequality we can write:∑
K

αu ‖ρah · ∇uh + ∇ph‖2
K ≤

∑
K

αu ‖(ρah · ∇uh + ∇ph) −∇ · σh‖2
K +

∑
K

αu
μ

h2

C

μ
‖σh‖2

K
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In this expression we only have control on ρah · ∇uh + ∇ph. However, we do not have explicit bounds over
these two terms (and their errors) separately. Nevertheless, there is the possibility of bounding the pressure
gradient making use of the control over the viscous term (viscous dominate case), since

∑
K

αu ‖∇ph‖2
K ≤

∑
K

αu ‖ρah · ∇uh + ∇ph‖2
K +

∑
K

αu
μ2

h2

(
ρ ‖ah‖K h

μ

)2

‖∇uh‖2
K

Note that this expression explodes with the cell Reynolds number Reh := ρ ‖ah‖K hμ−1. We assume hereafter
that this is bounded.

Using the trace inequality we can write

(1 − β)
δ0h

2μ

∑
E

‖ [[ nph ]]‖2
E ≤ (1 − β)

δ0h

2μ

∑
E

‖ [[ nph − n · σh ]]‖2
E + (1 − β)

δ0
2μ

2ctr ‖σh‖2

Thus, from (4.18), using Korn’s inequality, the expression of αu and noting that 0 < β < 1, we have

μ ‖uh‖2
H1(Ω) +

1
μ
‖σh‖2 +

h2

μ

∑
K

‖∇ph‖2
K +

h

μ

∑
E

‖[nph]‖2
E � 1

μ
‖f‖2

H−1(Ω)

To prove the L2-stability for the pressure we rely on the inf-sup condition between the velocity and pressure
spaces that holds for the continuous problem, as in [18]. Details can be found in this reference. This concludes
the proof of the first part of the Theorem.

Let us proceed to prove convergence in natural norms. Theorem 4.4 implies that

μ ‖u − uh‖2
H1(Ω) +

1
μ
‖σ − σh‖2 +

∑
K

αu ‖ρah · ∇ (u − uh) + ∇ (p− ph) −∇ · (σ − σh)‖2
K

+
h

μ

∑
E

‖ [[ n (p− ph) − n · (σ − σh) ]]‖2
E +

h

μ

∑
E

‖ [[ μn · ∇s (u − uh) ]]‖2
E � E2 (h)

We may use now the same procedure as for proving stability. Assuming the cell Reynolds number to be small,
using (4.1) and classical inverse estimates, we obtain

h2

μ

∑
K

‖∇(p− ph)‖2
K �

∑
K

αu ‖ρah · ∇ (u − uh) + ∇ (p− ph) −∇ · (σ − σh)‖2
K

+ μ ‖u − uh‖2
H1(Ω) +

1
μ
‖σ − σh‖2

h

μ

∑
E

‖ [[ n (p− ph) ]]‖2
E � h

μ

∑
E

‖ [[ n (p− ph) − n · (σ − σh) ]]‖2
E +

1
μ
‖σ − σh‖2

and therefore we have that

μ ‖u − uh‖2
H1(Ω) +

1
μ
‖σ − σh‖2 +

h2

μ

∑
K

‖∇(p− ph)‖2
K +

h

μ

∑
E

‖ [[ n (p− ph) ]]‖2
E � E2 (h)

The error estimate in Theorem 4.5 can now be obtained using the same procedure as in [18], which relies
once again on the inf-sup condition between the velocity and the pressure spaces that holds at the continuous
level. �

To complete the analysis of the problem, let us obtain an L2-error estimate for the velocity field. As usual,
this can be proved using a duality argument and an elliptic regularity condition assuming the forcing term
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to be in L2(Ω). The result we have is the following:

Theorem 4.6 (L2-error estimate for the velocity). Assume that the hypothesis of Theorem 4.5 hold and suppose
that the continuous problem satisfies the elliptic regularity condition

√
μ ‖u‖H2(Ω) +

1√
μ
‖σ‖H1(Ω) +

1√
μ
‖p‖H1(Ω) ≤

C√
μ
‖f‖

Then
√
μ ‖u − uh‖ � h

(√
μ ‖u − uh‖H1(Ω) +

1√
μ
‖σ − σh‖ +

1√
μ
‖p− ph‖

)

Proof. The key point is to set the appropriate adjoint problem in our case. Let [w, π,S] ∈ X be the solution of
the following problem:

−βμΔw − ρa · ∇w + (1 − β)∇ · S −∇π =
μ

l2
(u − uh)

−∇ · w = 0
1
2μ

S + ∇sw − λ

2μ

(
a · ∇S + S · (∇a)T + ∇a · S

)
= 0

with w = 0 on ∂Ω and where l is a characteristic length scale of the problem that has been introduced to keep the
dimensionality, but that will play no role in the final result. Let also

[
w̃h, π̃h, S̃h

]
be the best approximation to

[w, π,S] in X h. Testing with [u − uh, p− ph,σ − σh], [uh, ph,σh] being the solution of the problem, we obtain

μ

l2
‖u − uh‖2 = B ([u − uh, p− ph,σ − σh] , [w, π,S])

= Bstab ([u − uh, p− ph,σ − σh] , [w, π,S])

−
∑
K

ασ

〈
P⊥

σ

(
1
2μ

S + ∇sw − λ

2μ

(
a · ∇S + S · (∇a)T + ∇a · S

))
,

P⊥
σ

(
∇s (u − uh) − λ

2μ

(
ah · ∇ (σ − σh) + (σ − σh) · (∇ah)T + ∇ah · (σ − σh)

))〉
K

−
∑
K

αp

(
P⊥

p (∇ · w) , P⊥
p (∇ · (u − uh))

)
K

−
∑
K

αu

〈
P⊥

u (∇π) , P⊥
u (∇ (p− ph))

〉
K
−
∑
K

αu

〈
P⊥

u (ρah · ∇w) , P⊥
u (ρah · ∇ (u − uh))

〉
K

−
∑
K

αu

〈
P⊥

u (∇ · S) , P⊥
u ((1 − β)∇ · (σ − σh))

〉
K

− δ0h

2μ

∑
E

〈 [[ n (p− ph) − (1 − β) n · (σ − σh) + 2βμn · ∇s (u − uh) ]] , [[ nπ − n · (S + 2βμ∇sw) ]] 〉E

The second and the third row terms are zero because of the definition of the problem. The last term is zero
because of the weak continuity of the stresses associated to the problem. Therefore only the first and the fourth
terms need to be bounded. We have that

μ

l2
‖u − uh‖2 = Bstab ([u − uh, p− ph,σ − σh] , [w, π,S])

−
∑
K

αu

〈
P⊥

u (∇π) , P⊥
u (∇ (p− ph))

〉
K
−
∑
K

αu

〈
P⊥

u (ρah · ∇w) , P⊥
u (ρah · ∇ (u − uh))

〉
K

−
∑
K

αu

〈
P⊥

u (∇ · S) , P⊥
u ((1 − β)∇ · (σ − σh))

〉
K

(4.19)
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Using the interpolation properties and the shift assumption it follows that

‖w − w̃h‖H1(Ω) � h ‖w‖H2(Ω) � h
1
l2

‖u − uh‖∥∥∥S − S̃h

∥∥∥ � h ‖S‖H1(Ω) � h
μ

l2
‖u − uh‖

‖π − π̃h‖ � h ‖π‖H1(Ω) � h
μ

l2
‖u − uh‖

From these expressions we obtain

Bstab ([u − uh, p− ph,σ − σh] , [w, π,S])

= Bstab

(
[u − uh, p− ph,σ − σh] ,

[
w − w̃h, π − π̃h,S − S̃h

])
−
∑
K

αu

〈
P⊥

u (∇ (π − π̃h)) , P⊥
u (∇ (p− ph))

〉
K

−
∑
K

αu

〈
P⊥

u (ρah · ∇ (w − w̃h)) , P⊥
u (ρah · ∇ (u − uh))

〉
K

−
∑
K

αu

〈
P⊥

u

(
∇ ·

(
S − S̃h

))
, P⊥

u ((1 − β)∇ · (σ − σh))
〉

K
(4.20)

The following bounds can be easily obtained using inverse estimates and the stability of the adjoint problem:

∑
K

αu

〈
P⊥

u (∇ (π − π̃h)) , P⊥
u (∇ (p− ph))

〉
K

�
∑
K

αu
μ

l2
‖u − uh‖K

1
h
‖p− ph‖K∑

K

αu

〈
P⊥

u (ρah · ∇ (w − w̃h)) , P⊥
u (ρah · ∇ (u − uh))

〉
K

�
∑
K

αu (ρ ‖ah‖K)2
h

l2
‖u − uh‖K ‖u − uh‖H1(K)

∑
K

αu

〈
P⊥

u

(
∇ ·

(
S − S̃h

))
, P⊥

u ((1 − β)∇ · (σ − σh))
〉

K

� (1 − β)
∑
K

αu
μ

l2
‖u − uh‖K

1
h
‖σ − σh‖K

Finally we need a bound for

Bstab

(
[u − uh, p− ph,σ − σh] ,

[
w − w̃h, π − π̃h,S − S̃h

])
in (4.20). It can be bounded in terms of similar bounds as above, again using inverse and error estimates on the
boundary, the stability of the adjoint problem and the expression of the stabilization parameters. We omit the
details. When all these bounds are combined in (4.20) and finally used in (4.19) we obtain

μ

l2
‖u − uh‖2 � h

√
μ

l2
‖u − uh‖

(
√
μ ‖u − uh‖H1(Ω) +

∑
K

(
ρ ‖ah‖K h

μ

)√
μ ‖u − uh‖H1(K) +

1√
μ
‖σ − σh‖

+
1√
μ

∑
K

(
λ ‖ah‖K

h

)
‖σ − σh‖K +

1√
μ
‖p− ph‖

)

and the theorem follows. Note that the bound obtained explodes with the cell Reynolds and the cell Weissenberg
numbers. �
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5. Conclusions

In this paper we have presented the numerical analysis of a finite element approximation of the linearized
viscoelastic flow problem. The formulation in the nonlinear case was presented in the stationary case in [13]. This
analysis has confirmed what it was already known from the numerical experiments, namely, that the method
provides stable solutions that converge to the exact solutions at an optimal rate of convergence. In particular,
we have shown this using a mesh dependent norm especially tailored for the stabilized problem and also the
norm of the space where the continuous problem is posed. What is relevant from the analysis presented is that
it clearly displays how the estimates obtained deteriorate as the cell Reynolds number and the cell Weissenberg
number increase. The former decreases when the mesh size is reduced, but having a bound on the latter imposes
the relaxation time to be very small, which is an indication of the existence of the so called high Weissenberg
number problem.
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[28] T.J. Hughes, G.R. Feijóo, L. Mazzei and J.-B. Quincy, The variational multiscale method-a paradigm for computational
mechanics. Comput. Methods Appl. Mech. Eng. 166 (1998) 3–24.

[29] M.A. Hulsen, R. Fattal and R. Kupferman, Flow of viscoelastic fluids past a cylinder at high Weissenberg number: Stabilized
simulations using matrix logarithms. J. Non-Newtonian Fluid Mech. 127 (2005) 27–39.

[30] P. Knobloch and L. Tobiska, On Korn’s first inequality for quadrilateral nonconforming finite elements of first order approxi-
mation properties. Int. J. Numer. Anal. Model. 2 (2005) 439–458.

[31] J. Kwack and A. Masud, A three-field formulation for incompressible viscoelastic fluids. Special Issue in Honor of K.R.
Rajagopal. Inter. J. Eng. Sci. 48 (2010) 1413–1432.

[32] H. Lee, A multigrid method for viscoelastic fluid flow. SIAM J. Numer. Anal. 42 (2004) 109–129.

[33] P.L. Lions and N. Masmoudi, Global solutions for some Oldroyd models of non-Newtonian flows. Chinese Ann. Math. 21
(2000) 131–146.

[34] J. Marchal and M. Crochet, A new mixed finite element for calculating viscoelastic flow. J. Non-Newtonian Fluid Mech. 26
(1987) 77–114.

[35] M. Picasso and J. Rappaz, Existence, a priori and a posteriori error estimates for a nonlinear three-field problem arising from
Oldroyd-B viscoelastic flows. ESAIM: M2AN 35 (2001) 879–897.

[36] M. Renardy, Existence of slow steady flows of viscoelastic fluids with differential constitutive equations. ZAMM J. Appl. Math.
Mech. 65 (1985) 449–451.

[37] M. Renardy, Mathematical Analysis of Viscoelastic Flows. CBMS-NSF Regional Conference Series in Applied Mathematics
(1989).

[38] M. Renardy, Asymptotic structure of the stress field in flow past a cylinder at high Weissenberg number. J. Non-Newtonian
Fluid Mech. 90 (2000) 13–23.

[39] M. Renardy, W. Hrusa and J. Nohel, In Mathematical Problems in Viscoelasticity. John Wiley & Sons, Inc., New York (1987).

[40] D. Sandri, Finite element approximation of viscoelastic fluid flow: existence of approximate solutions and error bounds.
continuous approximation of the stress. SIAM J. Numer. Anal. 31 (1994) 362–377.


	Introduction
	Problem statement and Galerkin finite element discretization
	Boundary value problem
	Variational form of the problem
	Stability of the Galerkin finite element discretization

	Stabilized finite element method
	Numerical analysis
	Preliminaries 
	Stability and convergence in a mesh-dependent norm
	Stability and convergence in natural norms

	Conclusions
	References

