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NUMERICAL SIMULATION OF WAVE PROPAGATION
IN INHOMOGENEOUS MEDIA USING GENERALIZED PLANE WAVES
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and Peter Monk
2

Abstract. The Trefftz Discontinuous Galerkin (TDG) method is a technique for approximating the
Helmholtz equation (or other linear wave equations) using piecewise defined local solutions of the equa-
tion to approximate the global solution. When coefficients in the equation (for example, the refractive
index) are piecewise constant it is common to use plane waves on each element. However when the co-
efficients are smooth functions of position, plane waves are no longer directly applicable. In this paper
we show how Generalized Plane Waves (GPWs) can be used in a modified TDG scheme to approxi-
mate the solution for piecewise smooth coefficients in two dimensions. GPWs are approximate solutions
to the equation that reduce to plane waves when the medium through which the wave propagates is
constant. We shall show how to modify the TDG sesquilinear form to allow us to prove convergence
of the GPW based version. The new scheme retains the high order convergence of the original TDG
scheme (when the solution is smooth) and also retains the same number of degrees of freedom per ele-
ment (corresponding to the directions of the GPWs). Unfortunately it looses the advantage that only
skeleton integrals need to be performed. Besides proving convergence, we provide numerical examples
to test our theory.
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1. Introduction

The Trefftz Discontinuous Galerkin (TDG) method proposed in [7] is a mesh based method for approxi-
mating solutions of the Helmholtz equation. This method generalizes the Ultra Weak Variational Formulation
(UWVF) of the same problem [4, 5] by allowing different weighting strategies on penalty terms in the TDG
method. Error analysis [3, 7–10] and computational experience [11] show that the method can be an efficient
way of approximating solutions of the Helmholtz equation. It has also become clear that the method works best
in an hp-mode (see [10]) where large elements are used away from boundaries in the computational domain,
together with larger numbers of plane waves.

However because of the use of simple Trefftz functions (usually plane waves element by element), it has
to be assumed that the coefficients in the governing partial differential equation are piecewise constant. Of
course smoothly varying coefficient functions could be first approximated by a piecewise constant function
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and then the resulting perturbed Helmholtz equation could be solved by TDG or UWVF. But this would
require small elements and hence defeat some of the potential advantages of using large elements in a Trefftz
based scheme.

To circumvent the difficulty with smoothly varying coefficients, we propose to use approximate solutions of
the underlying partial differential equation constructed element by element where the coefficients are variable.
In this work we use the Generalized Plane Waves (GPW) of [13, 14] as a basis for the TDG type scheme. The
basic derivation and approximation theory for GPWs can be found in [13, 14]. In this paper the novelty is
to use these elements in a provably convergent numerical scheme. In order to do this we have to prove new
approximation results for how well the equation is satisfied (Thm. 3.3) as well estimates for the approximation
of piecewise linear functions by GPWs (starting with the basic Lem. 3.1 through Cor. 3.1).

Note that smoothly varying coefficients arise in the simulation of electromagnetic wave propagation in toka-
maks where the permittivity is spatially variable and may even become negative. Indeed the original design of
GPWs in [13, 14] was motivated precisely by this application.

To describe the setting for applying GPWs in more detail let us consider the following two dimensional
model problem from [9]. Given a bounded Lipschitz polyhedron Ω ⊂ R

2 that is star shaped with respect to
the origin and a larger Lipschitz polyhedron ΩR containing ΩD, we define the computational domain to be the
annulus Ω = ΩR \ΩD. The two boundaries of Ω are ΓD = ∂ΩD and ΓR = ∂ΩR (so that dist(ΓD, ΓR) > 0) and
we use a normal n that is outwards from Ω. Because we shall use some regularity results from [9] we need to
assume that ΩR is star-like with respect to a ball of radius γRdΩ centered at the origin where γR > 0 and dΩ

is the diameter of Ω.
Suppose we are given a wave number κ > 0. In addition given a strictly positive, piecewise smooth and

bounded real function ε ∈ L∞(Ω) and another function g ∈ L2(ΓR), we want to approximate the solution u of

Δu + κ2εu = 0 in Ω, (1.1)
u = 0 on ΓD, (1.2)

∂nu + iκu = iκg on ΓR. (1.3)

As pointed out in [9] this is a model problem for scattering (for example of an s-polarized electromagnetic wave
from a perfect conductor embedded in a dielectric in two dimensions). The impedance boundary condition is
then a simple radiation boundary condition.

As we shall detail shortly, if we assume that the function ε is analytic on each element, we can approximate it
by a power series. With this in hand we shall give details of a recursive algorithm for generating the coefficients
of basis functions on each element that satisfy (1.1) to high accuracy. These are constructed so that if the
coefficient ε is constant on an element, the resulting basis function is just a plane wave. Using these generalized
plane waves we can prove convergence of a modified TDG scheme. The resulting discrete problem obtains
high order convergence for smooth solutions as is the case for the standard TDG or UWVF. We only consider
h-convergence in this paper, and the analysis only pertains to two dimensional domains.

As we shall see, the main disadvantage of the use of GPWs in the TDG method is the need to integrate over
elements in the grid. We would prefer to use them in a generalized UWVF avoiding this integration. However,
although numerical experiments are encouraging [12], we do not have a theoretical justification of this approach.

The paper proceeds as follows. In the next section we briefly outline our modification of the basic TDG
method. Then in Section 3 we show how to construct GPWs and then obtain two new error estimates for these
functions that will underlie our error analysis. We also show that piecewise linear functions can be approximated
element by element using the GPW functions. In Section 4 we derive error estimates for the new TDG scheme
with GPW basis functions. Finally in Section 5 we give some basic numerical tests of the new algorithm.

2. The plane wave discontinuous Galerkin method

Even with a variable coefficient ε, the choice of domain Ω and the conditions on ε guarantee that if g ∈ Hs(ΓR)
for some sufficiently small s > 0 (depending on the interior angles of ΓR) then u ∈ H3/2+s(Ω) ([9], Thm. 2.3).
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This regularity will allow us to develop consistent fluxes for u and its derivatives. Unfortunately, because ε
is variable, the dependence on κ of the continuity constants for estimates in this paper is not easy to track.
Therefore we note now that constants in the analysis will depend in an unspecified way on κ.

As is usual for DG schemes, we start with a mesh and continue to define the method using definitions from [9].
Suppose we cover Ω by a finite element mesh Th of regular triangular elements K of maximum diameter h (in
fact more general domains can easily be allowed). The diameter of an element K is denoted hK . To simplify
the presentation we have used parameter choices corresponding to the UWVF later in the paper, so we assume
that the mesh is also quasi-uniform. Thus there exists a constant τ > 0 such that

h

hK
≤ τ

for all elements K ∈ Th and all sufficiently small h > 0.
Let nK denote the unit outward normal to element K. Let K and K ′ denote two elements in Th meeting at

an edge e. Then, on e, we make the standard definitions of the average value and jump of functions across e of
a function u and a vector field σ:

{{u}} =
u|K + u|K′

2
, {{σ}} =

σ|K + σ|K′

2
,

[[u]] = u|KnK + u|K′nK′ , [[σ]] = σ|K · nK + σ|K′ · nK′ .

We denote by Eh the set of all edges in the mesh. Then let

• EI denote the set of all edges in the mesh interior to Ω,
• ED is the set of all boundary edges on ΓD,
• ER is the set of all boundary edges on ΓR.

We also need three positive penalty parameters that are functions of position on the skeleton of the mesh: α,
β and δ. At this point these are simply assumed to be positive functions of position on Eh and will be given
in more detail shortly. Using the above defined jumps and average values, we are lead to consider the following
standard sesquilinear form for TDG [6,9, 15]:

Ah(u, v) =
∫

Ω

(
∇hu · ∇hv − κ2εu v

)
dA −

∫
EI

({{∇hu}} · [[v]] + [[u]] · {{∇hv}}) ds

− 1
iκ

∫
EI

β[[∇hu]][[∇hv]] ds + iκ
∫
EI

α[[u]] · [[v]] ds −
∫
ER

δu∂nv ds

−
∫
ER

δ∂nuv ds − 1
iκ

∫
ER

δ∂nu∂nv ds + iκ
∫
ED

αuv ds

+iκ
∫
ER

(1 − δ)uv ds −
∫
ED

(∂nuv + u∂nv) ds. (2.1)

Here ∇h is the piecewise defined gradient and ∂nu = ∇hu · n element by element. In addition the right hand
side is given by

F (v) = − 1
iκ

∫
ER

δg ∂nv ds +
∫
ER

(1 − δ)gv ds

By virtue of the regularity of the solution of (1.1)−(1.3) noted above, it satisfies

Ah(u, v) = F (v)

for all sufficiently smooth test functions v (for example piecewise H2 is sufficient).
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Now suppose we wish to discretize the problem. Let Vh ⊂ ΠK∈Th
H2(K) be a finite dimensional space. If Vh

is chosen to consist of piecewise smooth solutions of (1.1), we have the standard TDG and seek an approximate
uh ∈ Vh that satisfies

Ah(uh, v) = F (v) for all v ∈ Vh.

For piecewise constant media, the space Vh can be chosen in many ways. One choice uses Bessel functions (good
for conditioning but bad for computational speed because of the need for quadrature), another, more standard
choice, uses plane waves (typically worse conditioned but easier to use since integrals can be computed in closed
form) [16].

However if ε(x, y) is non-constant on an element we cannot use simple solutions of the Helmholtz equation.
In this paper we assume that ε(x, y) is a smooth function on each element (but may be discontinuous between
elements). Then, as we shall shortly describe, the space Vh can be constructed using “Generalized Plane Waves”
(GPWs) that approximately satisfy the Helmholtz equation. However we have been unable to prove convergence
for the standard TDG method in this case, and instead add a stabilizing term to the sesquilinear form so define

Bh(u, v) = Ah(u, v) +
i

κ2

∫
Ω

γ(Δu + κ2εu)(Δv + κ2εv) dA.

Here γ > 0 is a new penalty parameter that is a piecewise constant function of position on the mesh. We note
that the new term vanishes on elements with constant material coefficients allowing plane waves to be used and
the method reduces to the standard TDG. Now we seek uh ∈ Vh such that

Bh(uh, v) = F (v) ∀v ∈ Vh. (2.2)

In the next section we describe how to construct GPWs element by element and hence complete the specifi-
cation of the method.

3. Generalized plane waves

In this section we focus specifically on GPWs. We will use the following notation:

(1) the parameter p is the dimension of this local approximation space (the number of GPWs per element),
(2) the parameter q is the order of approximation of the Taylor expansion for each GPW.

Firstly we describe the design process, including an explicit algorithm to build a local set of GPWs on a given
element of the mesh Th. Secondly we turn to interpolation of a solution of (1.1) and prove error estimates.
We provide various interpolation properties of such a set of local GPWs on a given element of the mesh, and
derive a global interpolation property on the whole domain Ω by piecewise GPWs. Thirdly we prove a result
on approximation of the space of bi-variate polynomials of degree 1 by GPWs. This result will be useful for the
error analysis.

The design procedure together with Theorem 3.1 were already presented in [13], but are repeated here for
the sake of completeness.

3.1. Design and interpolation properties

GPWs have been introduced in [12, 14]. They generalize the use of classical plane waves, as exact solutions
of an equation with piecewise constant coefficients, to the case of variable coefficients. The GPWs are not exact
solutions of (1.1) but approximately solve the equation element by element. Their design process is based on
a Taylor expansion and ensures that the homogeneous equation is locally satisfied up to a given order on each
element K of the mesh.

On a given element K, consider the centroid (xK , yK). A GPW on K is a function ϕ = eP where

P (x, y) =
dP∑
i=0

dP−i∑
j=0

λi,j (x − xK)i (y − yK)j
, (3.1)
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dP being the total degree of the polynomial P . A GPW is designed to be an approximate solution of the
Helmholtz equation: the polynomial coefficients {λi,j , 0 ≤ i + j ≤ dP } are computed from the Taylor expansion
of the variable coefficient ε in order for the function ϕ = eP to satisfy

[Δ + κ2ε]eP (x,y) = O (‖(x, y) − (xK , yK)‖q) . (3.2)

The parameter q is the order of approximation of the equation. Canceling all the terms of order less than q in
the Taylor expansion (3.2) is equivalent to a non linear system of q(q+1)/2 non linear equations. The unknowns
of this system are the (dP + 1)(dP + 2)/2 coefficients of P . Setting simultaneously dP = q + 1 and giving the
values of the 2q + 3 coefficients {λi,j , i ∈ {0, 1}, 0 ≤ j ≤ q + 1 − i} leads to a unique solution of the non linear
system. This solution is explicitly expressed as

∀(i, j) s.t. 0 ≤ i + j ≤ q − 1, λi+2,j =
1

(i + 2)(i + 1)

(
− κ2

∂i
x∂j

yε (xK , yK)
i!j!

− (j + 2)(j + 1)λi,j+2

−
i∑

k=0

j∑
l=0

(i − k + 1)(k + 1)λi−k+1,j−lλk+1,l

−
j∑

k=0

i∑
l=0

(j − k + 1)(k + 1)λi−l,j−k+1λl,k+1

)
, (3.3)

where ∂x = ∂/∂x and ∂y = ∂/∂y. More precisely, as defined in [13], a GPW at (xK , yK) corresponds to the
following normalization:

• λ0,0 = 0,
• (λ1,0, λ0,1) = N(cos θ, sin θ), for some N ∈ C and θ ∈ R,
• λi,j = 0 for i ∈ {0, 1} and 1 < i + j ≤ q + 1.

A local set of linearly independent GPWs is then obtained for a given value of N by considering p equi-spaced
directions θl = 2π(l − 1)/p for 1 ≤ l ≤ p. The interpolation properties of this set of functions are the main
topic of [13]. The main result of that paper provides a sufficient condition on the parameters p and q to achieve
a high order interpolation of a smooth solution of (1.1) by GPWs, as well as a high order interpolation of its
gradient. We will denote by GPW p,q

κ (K) the space spanned by the p GPWs corresponding to θl = 2π(l − 1)/p
for 1 ≤ l ≤ p and N =

√
−κ2ε(xK , yK), or N = iκ

√
ε(xK , yK). Let Ck(S) denote the set of functions with k

continuous derivatives on a set S. As a reminder, with the present notation, the interpolation result stated and
proved in [13] reads:

Theorem 3.1. Consider K ∈ Th together with n ∈ N∗. Assume that q ≥ n + 1, p = 2n + 1 and gK =
(xK , yK) ∈ K is the centroid of K. Finally suppose the coefficient ε ∈ Cq−1(K). Consider a solution u of scalar
wave equation (1.1), satisfying u ∈ Cn+1(K). Then there is a function ua ∈ GPW p,q

κ (K) implicitly depending
on ε and its derivatives, and a constant C(κ, K, n), implicitly depending on ε and its derivatives as well, such
that: for all m ∈ K ⎧⎨

⎩
|u (m) − ua (m)| ≤ C(κ, K, n) |m − gK |n+1 ‖u‖Cn+1(K) ,

‖∇u (m) −∇ua (m)‖ ≤ C(κ, K, n) |m − gK |n ‖u‖Cn+1(K) .
(3.4)

The following interpolation property of higher order derivatives stems directly from the proof of the previous
theorem.

Theorem 3.2. Consider K ∈ Th together with n ∈ N such that n > 0. Assume that q ≥ n + 1, p = 2n + 1
and gK = (xK , yK) ∈ K is the centroid of K. Finally suppose the coefficient ε ∈ Cq−1(K).Consider a solution
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u of scalar wave equation (1.1), satisfying u ∈ Cn+1(K). Then the function ua ∈ GPW p,q
κ (K) and the constant

C(κ, K, n) provided by Theorem 3.1 also satisfies: for all m ∈ K and all j such that 0 ≤ j ≤ k

∣∣∂j
x∂k−j

y u (m) − ∂j
x∂k−j

y ua (m)
∣∣ ≤ C(κ, K, n)

(n + 1)!
(n + 1 − k)!

|m − gK |n+1−k ‖u‖Cn+1(K) , (3.5)

where k ≤ n. Moreover there is a constant C(κ, K, n) such that for all m ∈ K

∣∣[Δ + κ2ε]ua (m)
∣∣ ≤ C(κ, K, n) |m − gK |q ‖u‖Cn+1(K) . (3.6)

Proof. The interpolation property of GPWs for any derivative of u directly stems from the Taylor expansion
of u − ua, exactly as for the gradient and this proves (3.5).

The design of GPWs directly yields that for all l such that 1 ≤ l ≤ p the corresponding GPW satisfies

∣∣[Δ + κ2ε]ϕl

∣∣ ≤ Cl |m − gK |q .

Moreover ua =
2n+1∑
l=1

Xlϕl and it was already noticed in [13] that |Xl| ≤ C(κ, K, n)‖u‖Cn+1. As a result

∣∣[Δ + κ2ε]ua (m)
∣∣ =

∣∣∣∣∣
2n+1∑
l=1

Xl[Δ + κ2ε]ϕl

∣∣∣∣∣ ≤ C(κ, K, n)‖u‖Cn+1 |m − gK |q
2n+1∑
l=1

Cl

and so (3.6) holds C(κ, K, n) = C(κ, K, n)
2n+1∑
l=1

Cl. �

The last step is to build, from the local function spaces GPW p,q
κ (K), a set of GPWs on the whole domain Ω:

the GPWs space Vh is naturally defined as
∏

K∈Th
GPW p,q

κ (K). Note that p and q could vary from element to
element but are here considered fixed on every elements.

As a result, we have the following estimates on the whole domain Ω:

Theorem 3.3. Consider n ∈ N∗. Assume that q ≥ n + 1 and p = 2n + 1. Finally suppose the coefficient
ε ∈ Cq−1(K). Suppose that u is a solution of scalar wave equation (1.1) which belongs to Cn+1(Ω). Then the
function vh ∈ Vh =

∏
K∈Th

GPW p,q
κ (K), provided element by element by Theorem 3.1, satisfies: there exists a

constant C independent of h such that

‖[Δ + κ2ε](u − vh)‖L2(Ω) ≤ Carea(Ω)1/2

(
max
K∈Th

hK

)q

‖u‖Cn+1(Ω)

‖∇(u − vh)‖L2(Ω) ≤ Carea(Ω)1/2

(
max
K∈Th

hK

)n

‖u‖Cn+1(Ω)

where hK is the radius of K.

Remark 3.4. If the order of approximation q were allowed to vary from element to element, the local number
of basis functions p(K) = 2q(K) − 1 would provide the following estimate:

‖[Δ + κ2ε](u − vh)‖L2(Ω) ≤ Carea(Ω)1/2 max
K∈Th

(
h

q(K)
K

)
‖u‖Cn+1(Ω).
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3.2. Approximation of linear polynomials

The result ([7], Lem. 3.10) addresses the approximation of bi-variate polynomials of degree 1 by classical
plane waves, and here we are interested in the approximation of bi-variate polynomials of degree 1 by GPWs.
This result is needed to apply the h-based analysis of [7] or [15]. Even though we use triangular elements in the
numerical algorithm, the next lemma uses a square reference element (as in [7]). This is needed because affine
transformations do not preserve solutions of the Helmholtz equation, and the connection to triangular elements
is explained in the proof of Corollary 3.8.

Lemma 3.5. Consider K̂ ∈ [0, 1]2 the reference element. Suppose n ∈ N is such that n ≥ 2. For p = 2n + 1
and q ≥ n + 1 there is a constant C independent of κ (but not of p) such that

inf
v∈GPW p,q

κ (K̂)
‖f − v‖0,K̂ ≤ Cκ2|ε(xK̂ , yK̂)|‖f‖0,K̂ , ∀f ∈ P1(R2).

Remark 3.6. The proof strongly relies on the fact that the GPW space is designed with the normalization
(λk

1,0, λ
k
0,1) = iκ

√
ε(xK̂ , yK̂)(cos θk, sin θk), for equi-spaced angles θk, for 1 ≤ k ≤ p.

Proof. For the sake of clarity we define κ̃ = κ
√

ε(xK̂ , yK̂). Consider

bj := (iκ̃)−[j/2]

p∑
k=1

α
(j)
k ϕk

where the ϕks are the GPWs, α
(j)
k = (Mp)−1, p = 2n + 1 and Mp ∈ Rp,p is defined for 1 ≤ k, l ≤ p by

(Mp)kl :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 for l = 1

cos
(

l

2
θk

)
for l even

sin
(

l − 1
2

θk

)
for l ≥ 3 odd

We know that
p∑

k=1

α
(j)
k ϕk =

∞∑
n=0

1
n!

p∑
k=1

α
(j)
k (Pk(x, y))n,

and, if x̂ = (x̂, ŷ) = (x − xK̂ , y − yK̂), then

(Pk(x, y))n =
((

λk
1,0

λk
0,1

)
·
(

x̂
ŷ

)
+ κ̃2fk,q(x)

)n

see Lemma 3.7

=
((

λk
1,0

λk
0,1

)
·
(

x̂
ŷ

))n

+ κ̃n
n−1∑
j=0

(
n
j

)
κ̃n−2j

((
λk

1,0

λk
0,1

)
·
(

x̂
ŷ

))j

fk,q(x)n−j

=
((

λk
1,0

λk
0,1

)
·
(

x̂
ŷ

))n

+ κ̃n+1gk,q(x),

the function gk,q, defined as gk,q(x) =
n−1∑
j=0

(
n
j

)
κ̃n−1−2j(

(
λk

1,0

λk
0,1

)
·
(

x̂
ŷ

)
)jfk,q(x)n−j , being uniformly bounded

for x = (x, y) ∈ K̂ as κ̃ → 0.
We assume that (λk

1,0, λ
k
0,1) = iκ̃(cos θk, sin θk). Define

Kn
0 (x) =

1
2π

∫ π

−π

((
λk

1,0

λk
0,1

)
·
(

x̂
ŷ

))n

dθ and ∀1 ≤ j ≤ n :
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Kn
2j(x) =

1
π

∫ π

−π

((
λk

1,0

λk
0,1

)
·
(

x̂
ŷ

))n

cos(jθ)dθ, Kn
2j+1(x) =

1
π

∫ π

−π

((
λk

1,0

λk
0,1

)
·
(

x̂
ŷ

))n

sin(jθ)dθ.

The leading order term of (Pk(x, y))n as κ̃ → 0 is (
(

λk
1,0

λk
0,1

)
·
(

x̂
ŷ

)
)n. As shown in [7], it can be written (

(
λk

1,0

λk
0,1

)
·(

x̂
ŷ

)
)n = (iκ̃)n

∑2n+1
l=1 Kn

l (x)Mlk so that

∞∑
n=0

1
n!

p∑
k=1

α
(j)
k

((
λk

1,0

λk
0,1

)
·
(

x̂
ŷ

))n

=
∞∑

n=0

(iκ̃)n

n!

2n+1∑
l=1

Kn
l (x)

p∑
k=1

α
(j)
k Mlk

=
m∑

n=0

(iκ̃)n

n!

2n+1∑
l=1

Kn
l (x)

p∑
k=1

α
(j)
k Mlk +

∞∑
n=m+1

(iκ̃)n

n!

2n+1∑
l=1

Kn
l (x)

p∑
k=1

α
(j)
k Mlk,

and since Kn
j = 0 if [j/2] > n and

∑p
k=1 α

(j)
k Mlk = δjl for 1 ≤ l, j ≤ p, it yields

∞∑
n=0

1
n!

p∑
k=1

α
(j)
k

((
λk

1,0

λk
0,1

)
·
(

x̂
ŷ

))n

=
m∑

n=[j/2]

(iκ̃)n

n!

⎛
⎝Kn

j (x) +
2n+1∑
l=p+1

Kn
l (x)

p∑
k=1

α
(j)
k Mlk

⎞
⎠

+
∞∑

n=m+1

(iκ̃)n

n!

⎛
⎝Kn

j (x) +
2n+1∑
l=p+1

Kn
l (x)

p∑
k=1

α
(j)
k Mlk

⎞
⎠

=
m∑

n=[j/2]

(iκ̃)n

n!
Kn

j (x) + κ̃m+1Rj(κ̃,x)

since l/2 ≥ m + 1 ⇒ [Kn
l = 0 for n ≤ m], and where the remainder function Rj defined by

Rj(κ,x) =
1

κ̃m+1

∞∑
n=m+1

(iκ̃)n

n!

⎛
⎝Kn

j (x) +
2n+1∑
l=p+1

Kn
l (x)

p∑
k=1

α
(j)
k Mlk

⎞
⎠

is uniformly bounded on K̂. So

p∑
k=1

α
(j)
k ϕk =

m∑
n=[j/2]

(
(iκ̃)n

n!
Kn

j (x) + κ̃n+1gk,q(x)
)

+ κ̃m+1Rj(κ̃,x)

Since bj(x) = (iκ̃)−[j/2]
∑p

k=1 α
(j)
k ϕk it clearly shows that

lim
κ̃→0

bj(x) =
1

[j/2]!
K

[j/2]
j (x).

As a consequence, the definition of K
[j/2]
j combined with ((λk

1,0, λ
k
0,1) = iκ̃(cos θk, sin θk)) lead to

b1(x) = 1 + O(κ̃2), b2(x) = x − xK + O(κ̃2), b3(x) = y − yK + O(κ̃2). �

To complete the proof of Lemma 3.5, we need to prove the following result.

Lemma 3.7. Suppose n ∈ N is such that n ≥ 2. For p = 2n + 1 and q ≥ n + 1, consider the basis of p

functions ϕk ∈ GPW p,q
κ

(
K̂
)

approximating (1.1) at the point gK̂ = (xK̂ , yK̂) at order q, and, for all k
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such that 1 ≤ k ≤ p, the corresponding polynomials Pk(x, y) =
∑

0≤i+j≤q+1

λk
i,j(x − xK̂)i(y − yK̂)j satisfying

ϕk = exp Pk. These polynomials satisfy

Pk(x, y) =
(

λk
1,0

λk
0,1

)
·
(

x̂
ŷ

)
+ κ2ε(xK , yK)fk,q(x)

where x = (x, y), (x̂, ŷ) = (x − xK̂ , y − yK̂) and the remainder function fk,q is uniformly bounded on K̂.

Proof. The normalization (λk
1,0, λ

k
0,1) = iκ

√
ε(xK , yK)(cos θk, sin θk) implies that λk

2,0 = 0 so that the induction
formula (3.3) reads:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λk
2,j = −1

2
κ2∂j

yε(xK , yK)
j!

λk
3,j = −1

6

(
κ2∂x∂j

yε(xK , yK)
j!

+ 4λk
2,jλ

k
1,0

)

λk
i+2,j = − 1

(i + 2)(i + 1)

(
κ2∂i

x∂j
yε(xK , yK)
i!j!

+ (j + 2)(j + 1)λk
i,j+2λ

k
1,0 ∀i > 1,

+
i−1∑
k=1

j∑
l=0

(i − k + 1)(k + 1)λk
i−k+1,j−lλ

k
k+1,l

+
i−1∑
l=1

j∑
k=0

(j − k + 1)(k + 1)λk
i−l,j−k+1λ

k
l,k+1

)

(3.7)

This clearly completes the proof by induction. �

More precisely, the result needed is the following result that corresponds to Lemma 3.12 from [7]. We state
it here to specify the GPWs parameters, and provide no more than a sketch of the proof since it relies on
Lemma 3.5 but not specifically on the basis function set.

Corollary 3.8. Suppose that n ∈ N is such that n ≥ 2. For p = 2n + 1 and q ≥ n + 1, suppose wc
h is a linear

function on a triangle K then there is a GPW function wh ∈ GPW p,q
κ (K) such that

‖wc
h − wh‖L2(K) ≤ Ch2

K‖wc
h‖L2(K).

Proof. By translation and dilation by 1/hK we can map an element K to an element K̃ ⊂ K̂ = (0, 1)2. Let
ŵc denote the transformed polynomial and note that ŵc

h ∈ P1(R2). Let P̂ the L2(K̂)-projection onto the plane
wave space GPW p,q

κ̂ (K̂) where κ̂ = hKκ. Applying Lemma 3.5, we get

‖(I − P̂ )ŵc
h‖0,K̂ ≤ Cκ̂2|ε(xK̂ , yK̂)|‖ŵc

h‖0,K̂ . (3.8)

The conclusion then follows by transforming back to K using the fact that the transformation from a triangle
K to the reference triangle K̃ changes the frequency into κ̂ = hKκ and the bound ‖ŵc

h‖0,K̂ ≤ C‖ŵc
h‖0,K̃ with

C independent of K̃ which holds because ŵc
h is a linear polynomial and the mesh is regular. �

4. Error estimates

In this section we start by establishing a straightforward error estimate using the coercivity and boundedness
of the sesquilinear form Bh(·, ·), and then prove convergence in the global L2 norm.
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We define the obvious modification of the DG norm from [9] by

‖u‖2
DG =

1
κ
‖β1/2[[∇hu]]‖2

L2(EI) + κ‖α1/2[[u]]‖2
L2(EI) +

1
κ
‖δ1/2∂nu‖2

L2(ER)

+κ‖(1 − δ)1/2u‖2
L2(ER) + κ‖α1/2u‖2

L2(ED) +
1
κ2

‖γ1/2(Δhu + κ2εu)‖2
L2(Ω)

where Δh is the Laplacian defined piecewise element by element. Obviously this is a semi-norm, but due to the
new term it is also a norm even on functions that do not exactly satisfy the Helmholtz equation.

Lemma 4.1. The semi-norm ‖ · ‖DG is a norm.

Proof. Suppose ‖u‖DG = 0 then u satisfies Δu+κ2εu = 0 element-wise, and the normal derivatives and function
values have no jump across interior edges. So Δu + κ2εu = 0 in Ω. In addition the Cauchy data vanishes and
so u = 0 in Ω. Hence ‖ · ‖DG is a norm. �

We also need a new DG+ norm:

‖u‖2
DG+ = ‖u‖2

DG + κ‖β−1/2{{u}}‖2
L2(EI) +

1
κ
‖α−1/2{{∇hu}}‖2

L2(EI) + κ‖δ−1/2u‖2
L2(ER)

+
1
κ
‖α−1∂nu‖2

L2(ED) + κ2‖γ−1/2u‖L2(Ω).

The following estimates hold:

Lemma 4.2. Under the assumption that α > 0, β > 0, 1 > δ > 0 and γ > 0 in the generalized TDG, and
provided u is such that ‖u‖DG is finite,

�(Bh(u, u)) ≥ ‖u‖2
DG.

Provided ‖u‖DG+ and ‖v‖DG are finite, there exists a constant C independent of κ, u and v such that

|Bh(u, v)| ≤ C‖u‖DG+‖v‖DG.

Proof. The coercivity estimate follows from in the usual way by considering �(Bh(u, u)) and using the assump-
tion that ε is real [8].

To obtain the desired continuity, we integrate the term ∇hu · ∇hv term in the definition of Ah(·, ·) by parts
to obtain, for any u, v ∈ Vh,

Ah(u, v) = −
∫

Ω

u(Δhv + κ2εv) dA +
∫
EI

{{u}}[[∇hv]] ds −
∫
EI

{{∇hu}}[[v]] ds

+
∫
ER

(1 − δ)u∂nv ds − 1
iκ

∫
EI

β[[∇hu]][[∇hv]] ds

+ iκ
∫
EI

α[[u]][[v]] ds − 1
iκ

∫
ER

δ∂nu∂nv ds

+ iκ
∫
ER

(1 − δ)uv ds −
∫
ER

δ∂nu v ds

−
∫
ED

∂nuv + iκ
∫
ED

αuv. (4.1)

The result now follows from the definition of Bh(u, v) and the Cauchy−Schwarz inequality. �
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The following result is now a standard consequence of the above estimates [6, 9]:

Lemma 4.3. There is a unique solution uh ∈ Vh that satisfies (2.2), and the following error estimate holds
with constant C independent of κ, u, and uh:

‖u − uh‖DG ≤ C‖u − v‖DG+ for all v ∈ Vh. (4.2)

To obtain an order estimate, we need to make specific choices of the parameters α, β, δ and γ. There are
several choices in the literature depending on the precise setting of the problem (see for example [3,7,9,10]). In
this paper we shall make the classical UWVF choice [3]:

α = β = δ = 1/2, (4.3)

so that we can use results from [15]. Then we choose for γ

γ = γ0h
r
K

where γ0 is constant and r ≥ 0. We shall examine the role of r later.
Using the estimates from Section 3 we can then prove the following error estimate.

Theorem 4.4. Suppose n ∈ N is such that n ≥ 2 and consider p = 2n+1 and q ≥ n+1. Suppose Vh is formed
from qth order GPWs element by element using p directions. Then the solution uh ∈ Vh of (2.2) exists for all
h > 0 independent of κ and it satisfies the following estimate with constant C independent of κ and uh:

‖u − uh‖DG ≤ C(hn−1/2 + hq+r/2).

Here C depends on the ‖u‖Cmax(n+1,q)(Ω) norm of u.

Remark 4.5. Since we need q ≥ n + 1 in the GPW theory, we see that the choice q = n + 1 guarantees that
the approximation of the Helmholtz equation is high enough order.

Proof. We pick v ∈ Vh in equation (4.2) element by element to be the approximation by GPWs denoted by ua

in Theorem 3.3. We now need to estimate each term in ‖u− v‖DG+. Using Theorem 3.3 the volume term in the
DG norm reads

‖γ1/2(Δh(u − v) + κ2ε(u − v))‖L2(Ω) = ‖γ1/2(Δhv + κ2εv)‖L2(Ω) ≤ Chq+r/2‖u‖Cq . (4.4)

The remaining terms can be estimated using Theorem 3.2. For example

‖α−1/2{{∇h(u − v)}}‖2
L2(EI) ≤ C

∑
K

‖α−1/2∇h(u − v)‖2
L2(∂K)

≤ C
∑
K

max
e∈∂K

α−1(e)‖∇h(u − v)‖2
L2(∂K)

≤ C
∑
K

max
e∈∂K

α−1(e)
[
h−1

K ‖∇h(u − v)‖2
L2(K) + hK‖∇h∇h(u − v)‖2

L2(K)

]

where we have used the standard trace estimate on ∂K. Using Theorem 3.2 with k = 2 and Theorem 3.1 we
obtain

‖α−1/2{{∇h(u − v)}}‖2
L2(EI) ≤ C

∑
K

max
e∈∂K

α−1(e)h2n−1
K h2

K‖u‖2
Cn+1(K)

≤ C max
e∈EI

α−1(e)h2n−1‖u‖2
Cn+1(Ω).

Of course under our assumptions α = 1/2. The remaining terms are estimated in the same way. �
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We now use the standard duality approach to prove an L2(Ω) norm estimate on the error.

Theorem 4.6. Suppose we choose r = 3 in the penalty parameter γ, p = 2n + 1, n ≥ 2 and q = n + 1. Then
there exists a constant C depending on κ but independent of h such that

‖u − uh‖L2(Ω) ≤ Chs‖u − uh‖DG

for some s with 0 < s ≤ 1/2 depending on Ω (given in [9], Thm. 2.3).

Under best possible conditions we then have the following convergence estimate:

Corollary 4.7. Suppose u is a smooth solution of the Helmholtz equation, that r = 3, p = 2n + 1, n ≥ 2 and
q = n + 1 then

‖u − uh‖L2(Ω) ≤ Chn+s−1/2

Remark 4.8. Since s ≤ 1/2 the maximum rate of convergence predicted for the method assuming a smooth
solution and best regularity is O(hn).

Proof. Define the dual variable z ∈ H1(Ω) to satisfy

Δz + κ2εz = u − uh in Ω,

∂nz − iκz = 0 on ΓR,

z = 0 on ΓD.

Under the geometric assumptions on the domain given in the introduction, it can be shown that z ∈ H3/2+s(Ω),
s > 0, [9] and so z is sufficiently regular that

Ah(ξ, z) =
∫

Ω

ξ(u − uh) dA

for all test function ξ that are H2 piecewise smooth. This follows from (4.1). Hence, by the definition of Bh

Bh(ξ, z) =
1
κ2

∫
Ω

γ(Δhξ + κ2εξ)(u − uh) dA +
∫

Ω

ξ(u − uh) dA

so choosing ξ = u − uh and letting zh ∈ Vh be arbitrary

‖u − uh‖2
L2(Ω) = B(u − uh, z − zh) − 1

κ2

∫
Ω

γ(Δh(u − uh) + κ2ε(u − uh))(u − uh) dA.

The second term on the right hand side can be estimated using the Cauchy−Schwarz and arithmetic-geometric
mean inequality to give∣∣∣∣

∫
Ω

γ(Δh(u − uh) + κ2ε(u − uh))(u − uh) dA

∣∣∣∣ ≤ 1
k
‖u − uh‖DG‖γ1/2(u − uh)‖L2(Ω)

≤ γmax

2κ2
‖u − uh‖2

DG +
1
2
‖u − uh‖2

L2(Ω),

where γmax = maxx∈Ω γ = O(hr).
To estimate Bh(u − uh, z − zh) we integrate the grad-grad term in Ah(u, v) by parts onto u to obtain

Ah(u, v) = −
∫

Ω

(Δhu + κ2εu)v dA +
∫
EI

([[∇hu]]{{v}} − [[u]] · {{∇hv}}) ds − 1
iκ

∫
EI

β[[∇hu]][[∇hv]] ds

+iκ
∫
EI

α[[u]] · [[v]] ds −
∫
ER

δ

iκ
(iκu − ∂nu)∂nv ds

+
∫
ER

(1 − δ)(∂nu − iκu)v ds +
∫
ED

u(iκαv − ∂nv) ds. (4.5)

Using this in the definition of Bh(u, v) shows that

|Bh(u, v)| ≤ C‖u‖DG‖v‖DG+
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where C is independent of u and v so that we have the estimate

‖u − uh‖2
L2(Ω) ≤ C‖u − uh‖DG‖z − zh‖DG+ +

γmax

2κ2
‖u − uh‖2

DG· (4.6)

It is now necessary to choose zh. Following the proof of ([15], Thm. 5.6), let zc
h denote the continuous piecewise

linear finite element interpolant of z. We choose zh ∈ Vh to be the GPW approximation of zc
h constructed in

Lem. 3.8). Of course
‖z − zh‖DG+ ≤ ‖z − zc

h‖DG+ + ‖zc
h − zh‖DG+

and it remains to estimate each term. Estimates from the proof of ([15], Thm. 5.6) show that on each interior
edge in the mesh

‖α−1/2{{∇h(z − zc
h)}}‖L2(e) ≤ C

2∑
j=1

hs
Kj

|z|H3/2+s(Kj)

‖β−1/2{{z − zc
h}}‖L2(e) ≤ C

2∑
j=1

h1+s
Kj

|z|H3/2+s(Kj),

with corresponding results for the jumps in the above quantities and for boundary terms. In addition

‖γ1/2(Δh(z − zc
h) + κ2ε(z − zc

h)‖L2(Ω) = ‖γ1/2(u − uh − (Δhzc
h + κ2εzc

h))‖L2(Ω)

≤ Chr/2‖u − uh‖L2(Ω) + ‖γ1/2(Δhzc
h + κ2εzc

h)‖L2(Ω).

On an element K we can use the regularity of the mesh to establish local inverse estimates and prove:

‖γ1/2Δhzc
h‖L2(K) ≤ Ch

r/2−1
K ‖zc

h‖H1(K) ≤ Ch
r/2−1
K (‖zc

h − z‖H1(K) + ‖z‖H1(K)) ≤ Ch
r/2−1
K ‖z‖H3/2+s(K).

Proceeding similarly for the lower order term, we conclude that provided r/2 > 1 we have

‖γ1/2(Δh(z − zc
h) + κ2ε(z − zc

h))‖L2(Ω) ≤ Chr/2−1‖z‖H3/2+s(Ω).

In addition we must estimate

‖γ−1/2(z − zc
h)‖2

L2(Ω) =
∑
K

∫
K

γ−1(z − zc
h)2 dA ≤ C

∑
K

h3+2s−r
K ‖z‖2

H3/2+s(K)

≤ Ch3+2s−r‖z‖2
H3/2+s(Ω).

Taken together, if 3 + 2s ≥ r ≥ 2 we have

‖z − zc
h‖DG+ ≤ C(hr/2−1 + h3/2+s−r/2)‖z‖H3/2+s(Ω)

A good choice is then r = 3 since in that case r/2 − 1 ≥ s and using the a priori estimate for z from ([9],
Thm. 2.3)

‖z − zc
h‖DG+ ≤ Chs‖u − uh‖L2(Ω).

It now remains to estimate ‖zc
h − zh‖DG+. As we have seen there are two troublesome terms: ‖γ−1/2(zc

h −
zh)‖2

L2(Ω) and ‖γ1/2(Δh(zc
h − zh) + κ2ε(zc

h − zh))‖L2(Ω) with the remaining terms following using Lemma 3.5 as
in [15]. Using first a local inverse estimate, then Lemma 3.5,

‖γ1/2(Δh(zc
h − zh) + κ2ε(zc

h − zh))‖L2(K) ≤ Ch
r/2−2
K ‖zc

h − zh‖L2(K) ≤ Ch
r/2
K ‖zc

h‖L2(K)

so that, squaring and adding, and using the a priori estimate for z from ([9], Thm. 2.3)

‖γ1/2(Δh(zc
h − zh) + κ2ε(zc

h − zh))‖L2(Ω) ≤ Ch
r/2
K ‖zc

h‖L2(Ω)

≤ Ch
r/2
K (‖z − zc

h‖L2(K) + ‖z‖L2(K))

≤ Chr/2‖u − uh‖L2(Ω).
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To estimate the global L2 term, again using Lemma 3.5,

‖γ−1/2(zc
h − zh)‖2

L2(K) ≤ Ch
−r/2
K ‖(zc

h − zh)‖2
L2(K) ≤ Ch

2−r/2
K ‖zc

h‖2
L2(K)

Adding over all elements and using the a priori estimate for z from ([9], Thm. 2.3)

‖γ−1/2(zc
h − zh)‖2

L2(Ω) ≤ Ch2−r/2‖u − uh‖2
L2(K)

We have thus proved that when r = 3 and noting 0 < s < 1/2 we have

‖z − zh‖ ≤ Chs‖u − uh‖L2(Ω).

so we conclude the desired result using this result in (4.6). �

5. Numerical tests

We now test the GPW based TDG method on two test problems with a known solution: Airy waves (linear
variation in ε) and Weber Waves (quadratic variation in ε). In Figure 2 we plot the relative L2(Ω) error in
the computed solution against a parameter labeled C/h. This is computed, using the total number of degrees
of freedom Ndof and the number of directions per element p = 2n + 1, as C/h =

√
Ndof/p. We choose this

parameter since, in our theorems, convergence is in terms of mesh size rather than total number of degrees of
freedom.

Our basic convergence results Lemma 4.3 and Theorem 4.6 are proved within the geometric assumptions
stated in the introduction (from [9]) allowing corners on the scatterer or external domain. In the upcoming
examples the domain is convex and so full regularity ensues with s = 1/2 in the L2 norm estimate. The
convergence rates predicted from our theory in Corollary 4.7 then depend on the regularity of the computed
solution which in our examples is smooth. Thus we can expect the full order O(hn) convergence rate in the
L2 norm. If reentrant corners were present the convergence rate of the GPW solution would be limited by the
smoothness of the solution and the appropriate choice of s. The construction of GPW’s near singularities is not
considered that case here.

5.1. Airy Waves

The simplest example of a spatially dependent refractive index is ε(x, y) = −y on the domain [−1, 1]× [−1, 1].
We can then choose Dirichlet boundary data (for our theory we need an impedance boundary condition, but
the same result holds in the case provided κ is not an eigenvalue of the domain) such that the exact solution is

u(x, y) = Ai(κ2/3y)

where Ai(r) is the Airy function as shown in the left panel of Figure 1.

Figure 1. Left: Exact Airy function solution. Right: Initial mesh.
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Figure 2. Airy Waves. L2(Ω) norm convergence when γ = h3 (left panels), γ = h (middle
panels) and γ = 0 (right panels). The results are sorted with respect to the value of q: q = 1 on
the first row, 3 on the second row, 4 on the third row and 5 on the last row, while values of n
vary from 1 to 4. The dashed lines in each figure are reference lines showing O(h3), O(h4), and
O(h5) convergence. Reference lines and axes limits are identical on all panels.
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Table 1. Predicted and measured convergence rate for plane wave propagation when γ = h3

(see Fig. 2 left column of panels). Our convergence results are stated assuming q = n + 1
and here s = 1/2. For q < n + 1 we state “No Theory”. For q > n + 1 we predict the same
convergence rate as for q = n + 1.

q n Predicted Convergence Rate Measured Convergence Rate

1 1 No theory No convergence
1 2 No theory 3
1 3 No theory 3
1 4 No theory 3

3 1 No theory No convergence
3 2 2 3
3 3 No theory 4
3 4 No theory 5

4 1 No theory No convergence
4 2 2 3
4 3 3 4
4 4 No theory 5

5 1 No theory No convergence
5 2 2 3
5 3 3 4
5 4 4 5

This solution is oscillatory for y < 0 and exponentially decaying for y > 0. In all the experiments, we make
the choice

α = β = δ = 1/2,

The initial mesh for the experiments is shown Figure 1 right panel.
Starting with the mesh in Figure 1 and using uniform refinement, we have computed the error in approxi-

mating the Airy function solution for κ = 15, and for different values of γ. The order of approximation of the
Helmholtz equation q is set to 1, 3, 4, and 5 and the corresponding results are displayed in separated graphs.

5.1.1. The case γ = h3

We focus here on the case γ = h3, corresponding to the hypothesis of Theorem 4.6. Our goal is to demonstrate
that an appropriate choice of n and q can produce high order convergence. Indeed our theory predicts that we
should choose q = n + 1, n ≥ 2 and expect O(hn) convergence in the L2(Ω) norm since the Airy function
solution is smooth and the domain is convex (see Cor. 4.7). Results are shown in Figure 2.

The left panels of Figure 2 demonstrate the need for GPWs in order to obtain high order convergence. When
q = 1 (first row), the GPWs are plane waves and we see no obvious convergence when n = 1 (three plane
waves per element), but at most third order convergence for n > 1. This suggests that one approach using an
h-refinement strategy is to use simple plane waves with n = 3 to obtain third order convergence under mesh
refinement (it appears that n = 3 offers a useful improvement in accuracy over n = 2 even if the order of
convergence is the same). To obtain fourth or higher order convergence we need true GPWs with q > 1.

The case n = 1 is also interesting. Regardless of q we do not see obvious convergence when n = 1, whereas
for a constant medium the plane wave basis with n = 1 gives O(h2) convergence [4]. The variable refractive
index seems to require n > 1.

For n = 2 regardless of the choice q = 1, . . . , 5 we see O(h3) convergence, and for n = 3 we get O(h4)
convergence provided q > 1, while if q = 1 we get O(h2) convergence. Finally for n = 4 we only have O(h3)
convergence when q = 1, but O(h5) convergence for q > 1 (with some deterioration on the finest mesh when q = 3
or q = 5). These results are summarized in Table 1. This deterioration may be due to the usual conditioning
problem experienced by plane wave type methods since when n = 4 the condition number of the system
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Figure 3. Exact solution for Weber’s equation with a = 5.

is roughly 1020 which may impact convergence. The last cases n = 3, 4 confirms that q must increase as n
increases although apparently more slowly than we predict. In addition, with an adequate choice of q we appear
to see O(hn+1) convergence for n > 1. This is the same order as has been found experimentally using 2n + 1
plane waves when ε is constant! [4]. Even in that case, an optimal error analysis in that case is also elusive [3].

5.1.2. The case γ = h.

In this section we describe numerical results obtained by increasing the parameter γ from h3 to γ = h, and
we compare convergence rates obtained for different combinations of the order of approximation of the equation
by the basis functions, q, and the number of basis functions per element, p = 2n + 1. This choice for γ violates
the hypothesis of Theorem 4.6, but should result in greater stability.

The middle column of panels of Figure 2 display series of results for several choices of q, while n varies from 1
to 4. The results are broadly similar to those in the left panels of the same figure, although the case n = 4 shows
a slowing of convergence on fine meshes for q = 3 and q = 4. In this case it appears that q = n + 1 is indeed a
good choice.

These convergence studies emphasize the fact that the three choices n = q, n = q − 1, and n = q + 1 seem
to result in approximately the same rate of convergence, suggesting that, in practice, q = n − 1 would be the
best choice for a fixed value of n. The best rates of convergence obtained are 3 for n = 2, 4 for n = 3, and 5
for n = 4. Although the convergence rates are similar to those when γ = h3, the accuracy attained on a given
mesh is slightly worse. This suggests that choosing γ larger than O(h3) is not useful (other tests, not shown,
with γ = 1 and γ = 103 show similar results but even worse error at a particular mesh).

5.1.3. The case γ = 0.

Our theoretical analysis requires that γ > 0 even to obtain convergence in the DG norm but this term requires
integration over the interior of all the elements (unlike the standard PWDG or UWVF) and we would prefer
to drop it. In addition we saw that γ = O(h3) gives better results than γ = O(h) so we want to test if an even
smaller penalty is better. In the right column of panels of Figure 2 we show results when γ = 0.

Overall the results are similar to previous results. Provided q is chosen large enough, we can obtain O(hn+1)
convergence. In fact the mesh now seems slightly more stable!
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Figure 4. Analogues of Figure 2 for the Weber wave example. L2(Ω) norm convergence when
γ = h3. The results are sorted with respect to the value of q: q = 1 on the first row, 3 on the
second row, 4 on the third row and 5 on the last row, while values of n vary from 1 to 4. The
dashed lines in each figure are reference lines showing O(h3), O(h4), and O(h5) convergence.
Reference lines and axes limits are identical on all panels.
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5.2. Weber waves

In this section we approximate what we term Weber waves. These are solutions of the following problem

Δu + κ2

(
x2

2

4
− a

κ

)
u = 0

in the domain Ω = [−1, 1]2 subject to

u(x2, y2) = Po(
√

κx2, a) on ∂Ω

where w(x2) = Po(x2, a) is the odd solution of Weber’s differential equation

d2w

dx2
2

+
(

x2
2

4
− a

)
= 0

defined in [2] and implemented in [1]. We choose a = 5 and κ = 50 which gives the solution in Figure 3. For
this choice of a, κ and domain, the solution is evanescent for |x2| <

√
(2/5) and oscillatory otherwise. So this

example again tests how well GPWs can approximate both traveling and evanescent solutions.
Results are shown in Figure 4. Broadly the same picture emerges for the Weber example as for the Airy

example. We see O(hn+1) convergence (this is not completely clear when n = 4) provided q is large enough.

6. Conclusion

We have provided a modification to the TDG approach that allows the approximation of solutions of the
Helmholtz equation in which the refractive index is piecewise smooth using Generalized Plane Waves. The
resulting numerical scheme maintains one advantage of TDG: the number of degrees of freedom per element
increases linearly with the order of approximation of the method. But the method looses one advantage of pure
TDG: there is now a need to perform numerical integration element by element. This is required because we
introduce a new stabilization term, and also because the GPW basis functions are not exact solutions of the
adjoint problem.

Theory suggests a choice of parameters that balances polynomial degree with the number of GPWs in the
basis element by element. This is examined in detail using Airy’s equation to provide an exact solution, and
substantiated further by using Weber’s example. In the Airy case we have also studied if our new stabilization
term is necessary: the numerical results in this one simple case suggest that it can be ignored, but much more
testing (for example with less smooth solutions with curved wavefronts) and theoretical backup would be needed
to confirm this. Our testing also suggests that our predicted choice of polynomial degree q = n + 1 may be
excessive.

In summary, we have achieved a first theoretical convergence result for GPWs in a TDG setting. Our numerical
investigations suggest that the theory is not optimal so far, but do show examples where GPWs can provide
accurate solutions to wave propagation problems in which the coefficients are smooth functions of position.
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