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ON THE STEKLOV PROBLEM IN A DOMAIN PERFORATED
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Abstract. We study the asymptotic behavior of solutions and eigenelements to a 2-dimensional and
3-dimensional boundary value problem for the Laplace equation in a domain perforated along part of
the boundary. On the boundary of holes we set the homogeneous Dirichlet boundary condition and the
Steklov spectral condition on the mentioned part of the outer boundary of the domain. Assuming that
the boundary microstructure is periodic, we construct the limit problem and prove the homogenization
theorem.
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1. Introduction

The Steklov spectral problem is well known and it has been studying for several decades (see, for in-
stance [1–16]). In the paper [3] the author constructed leading terms of the asymptotic expansion of solutions
in the case of spectral Steklov-type problem in a thin domain with a nonsmooth boundary. In the paper [6]
the authors prove the connection of the first eigenvalue to a Steklov-type problem in the domain with micro
perforation and the constant in the Sobolev inequality for traces. In [7] it was studied the asymptotic behavior
of the eigenvalues and respective eigenfunctions to the Steklov-type spectral problem in micro inhomogeneous
plane domain. The paper [8] concerns the error in the final elements method for the Steklov-type spectral
problem. In [9] the author considers the Steklov-type problem for the p-Laplacian. In [10] the authors studied
the connection between the Neumann problem for the Hénon equation and the eigenvalues to one Steklov-type
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problem. The paper [11] is devoted to the influence of boundary conditions on the positiveness of the inverse
operator to the biharmonic operator in the case of Steklov-type boundary conditions. In [12] the authors inves-
tigate the Steklov spectral problem in a domain with a peak (degenerated corner point) on the boundary. The
elliptic problem with critical growth and the Steklov-type spectral conditions in bounded domain was considered
in [13]. In the paper [14] the author investigates the homogenization problem with rapidly alternating boundary
conditions (the Dirichlet and the Steklov conditions) in the case of dominating of the Steklov condition in the
limit. The papers [15, 16] concern the degenerating case of the Steklov-type problem in domains with rapidly
alternating boundary conditions.

There are numerous papers dealing with homogenization of problems in domains perforated along the bound-
ary (e.g., see [17–34]). In [17] (see also the short communication [18]), problems in domains were considered
under the assumption that the diameter of holes is much less than the distance between them. In particular, the
homogenization theorem was proved for a boundary value problem with the Neumann boundary conditions on
the exterior boundary and the Dirichlet condition on the boundary of the cavities, the first term of perturbation
theory was constructed, and the deviation of the leading terms of the asymptotic expansion from the solution
of the original problem was estimated. In addition, the spectral properties of such boundary value problem
were analyzed, and the closeness of eigenelements of the original and homogenized problems was estimated. A
degenerate quasilinear Dirichlet problem was considered in [25] in a domain with nonperiodic cavities near a
boundary. In particular, conditions for the existence of a limit problem were derived, and the weak convergence
in L2 was proved. A problem in a domain perforated along a closed curve was considered in ([26], Chap. I,
Sect. 3). It was shown that the solutions of the original problem converge uniformly to the solutions of the limit
problem in compact subdomains that do not contain that curve. The paper [27,28] deals with the Dirichlet prob-
lem in a domain with nonperiodic cavities, of which perforation along the boundary can be viewed as a special
case. The weak convergence of solutions in L2 was proved in terms of the convergence of the harmonic capacity
of cavities. The asymptotic behavior of the solution in a domain perforated randomly along the boundary was
analyzed in [29] (see also [30]). The weak convergence of the solution of the original problem with a random
structure to the solution of the nonrandom problem with homogenized boundary conditions on the boundary
of the domain was proved in the Sobolev space H1. Solutions of boundary value problems in a domain divided
into two parts by a perforated surface of variable thickness were considered in [31, 34]. In particular, the weak
convergence of solutions of the original problem to solutions of two independent problems in domains divided by
this surface was proved in L2. The asymptotic behavior of solutions of the boundary value problem in a domain
perforated along a manifold with various boundary conditions on the boundaries of cavities was analyzed in [32].
The case in which the perforation makes no contribution in the limit was considered. A problem with a random
perforation formed by the union of randomly placed balls of fixed radius multiplied by a small parameter was
studied in [33]. The case of perforation along a curve was also considered. The convergence of the eigenvalues
was proved for the case in which the perforation vanishes in the limit.

In the papers [19–24] the authors consider problems in 2-dimensional domains periodically perforated along
a part of the boundary under the assumption that the Dirichlet boundary condition is set on the boundary
of the cavities. Unlike the results of [17, 18], these papers are devoted to the case, when the diameter of the
cavities and the distance between them are of the same order of smallness. In [19, 20] the authors obtain the
limit (homogenized) problem and prove the strong convergence in H1 of solutions of the original problem to the
solutions of the limit problem. For this case in [21] the authors construct two-terms asymptotics of a solution to
a boundary value problem. In [22,23] it were constructed the leading two terms of the asymptotic expansion of
eigenvalues converging to a simple and multiple eigenvalues, respectively, of the limit problem. In the paper [24]
the authors study boundary value problem in the case, when the diameter of the cavities and the distance
between them are of the same order of smallness as well as in the case when the ratio between the diameter of
the cavities and the distance between them tends to zero.

In this paper we study spectral problems with Steklov-type boundary condition in 2D and 3D domains
periodically perforated along part of the boundary. Under the assumption that the ratio between the diameter
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Figure 1. Structure of the domain Ωε,a.

of the cavities and the distance between them tends to zero, we present different cases of the limiting behavior
of eigen-pairs.

The structure of the paper is the following. Section 2 is devoted to the settings and statements of main
results. Next Section 3 is devoted to the auxiliary propositions. In Section 4 we construct a model function in
semistrip and semi-infinite parallelepiped, which we use in the proof of Theorem 2.2. The proof is in Section 5.
Section 6 is devoted to the proof of Theorem 2.3. In Section 7 we prove variational estimate for semistrip and for
semi-infinite parallelepiped with the small hole, which we use in the proof of Theorems 2.5 and 2.6. In Section 8
one can find these proofs.

2. Setting of the problem and main results

Let Ω be a bounded domain in R
d, d = 2, 3, situated in the semi-plane x2 > 0 for d = 2 and in the semi-space

x3 > 0 for d = 3. Its boundary Γ consists of two parts: Γ = Γ1 ∪ Γ2, where Γ1 is the segment [0, 1] in the axis
x2 = 0 for d = 2 and square [0, 1]2 in the plane x3 = 0 for d = 3. For d = 2, the part Γ2 is infinitely differentiable
and in a neighborhood of the points (0, 0) and (1, 0) coincides with lines x1 = 0 and x1 = 1, respectively. For
d = 3, the part Γ2 coincides with the lateral faces of the cube [0, 1]3 in a small neighborhood of the plane x3 = 0
and in addition it is infinitely differentiable everywhere except the vertical edges.

Then assume that B is an arbitrary bounded domain with Lipschitz boundary. Denote Ba = {x :
(
a−1(x1 −

b1), a−1(x2 − c)
) ∈ B} for d = 2, Ba = {x :

(
a−1(x1 − b1), a−1(x2 − b2), a−1(x3 − c)

) ∈ B}, j = 1, 2, for d = 3,
where 0 < bj < 1, c > 0 are arbitrary fixed numbers, a is sufficiently small positive parameter, such that Ba

lies in the semi-strip Π = (0, 1) × (0,∞) for d = 2 and in the semi-infinite parallelepiped Π = (0, 1)2 × (0,∞)
for d = 3.

Denote Bk
ε,a = {x : (ε−1x1 − k, ε−1x2) ∈ Ba}, k ∈ Z for d = 2, Bk

ε,a = {x : (ε−1x1 − k1, ε
−1x2 − k2, ε

−1x3) ∈
Ba}, k = (k1, k2), kj ∈ Z for d = 3, Bε,a =

⋃
k

Bk
ε,a, Γε,a = ∂Bε,a. Hereafter ε is a small positive parameter,

ε = εN = 1
N , where N � 1 is a natural number. Define the domain Ωε,a as Ω \ Bε,a (see Fig. 1).

Remark 2.1. In fact we have three scales in the geometry. The magnitude of the diameters of the cavities
has the order O(aε), the distance between consecutive holes is equal to ε and the diameter of the domain is of
order O(1).
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Solutions of boundary value problems

−ΔUε,a = 0 in Ωε,a, Uε,a = 0 on Γε,a,

∂Uε,a

∂ν
= λUε,a + f on Γ1,

∂Uε,a

∂ν
= 0 on Γ2, (2.1)

−ΔU0 = 0 in Ω,
∂U0

∂ν
+ σdCd(B)AU0 = λU0 + f on Γ1,

∂U0

∂ν
= 0 on Γ2, (2.2)

where ν is an outer normal, λ ∈ R, and eigenfunctions of spectral problems

−Δuε,a = 0 in Ωε,a, uε,a = 0 on Γε,a,

∂uε,a

∂ν
= λε,auε,a on Γ1,

∂uε,a

∂ν
= 0 on Γ2, (2.3)

−Δu0 = 0 in Ω,
∂u0

∂ν
+ σdCd(B)Au0 = λ0u0 on Γ1,

∂u0

∂ν
= 0 on Γ2 (2.4)

are weak (see, for instance, [35], Chap. IV and the next section). Note that λε,a and λ0 are real.
Hereafter σ2 = 2π, σ3 = 4π, C2(B) = 1 and C3(B) > 0 is the capacity (see [36] and Rem. 4.6 below) of the

domain B. In particular, C3(B) = 1, if B is a unit ball.
The main goal of the paper is to prove the following statements.

Theorem 2.2. Suppose that

− 1
ε lna

−→ A �= ∞ for d = 2,
a

ε
−→ A �= ∞ for d = 3, (2.5)

f ∈ L2(Γ1) and λ is not an eigenvalue of the problem (2.4).
Then:

1) boundary value problem (2.1) has a unique solution in W 1
2 (Ωε,a) for any sufficiently small ε, and moreover

the following uniform in ε estimate:

‖Uε,a‖W 1
2 (Ω) � C‖f‖L2(Γ1) (2.6)

holds true, where the function Uε,a is extended in Bε,a by zero;
2) for the solution of problem (2.1) the following strong convergence

Uε,a →
ε→0

U0 in W 1
2 (Ω) (2.7)

takes place, if A = 0, and the weak convergence

Uε,a ⇀
ε→0

U0 in W 1
2 (Ω) (2.8)

holds true, if A �= 0, where U0 is a solution of the homogenized (limit) problem (2.2).

Theorem 2.3.

I. Suppose that the condition (2.5) holds, and the multiplicity of the eigenvalue λ0 to the problem (2.4) equals
to n. Then there exist n eigenvalues λ

(l)
ε,a of problem (2.3), l = 1, . . . , n (with respect to their multiplicities)

converging to λ0 as ε → 0.
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II. Let u
(l)
ε,a be orthonormalized in L2(Γ1) eigenfunctions of problem (2.3), corresponding to λ

(l)
ε,a. Then from

the sequence
{
εk = 1

k

}∞
k=1

and any sequence {ak}∞k=1 (for which the convergence (2.5) takes place) one can
choose subsequences {εk′}, {ak′} such that the convergence

u(l)
ε,a −→

ε→0
u

(l)
∗ in W 1

2 (Ω) (2.9)

holds, if A = 0, and weak convergence

u(l)
ε,a ⇀

ε→0
u

(l)
∗ in W 1

2 (Ω) (2.10)

holds, if A �= 0, where the functions u
(l)
ε,a are extended in Bε,a by zero, and u

(l)
∗ are orthonormalized in L2(Γ1)

eigenfunctions of problem (2.4), corresponding to λ0 (they depend on the choice of the sequence {ak}∞k=1 and
the subsequence).

Remark 2.4. From Theorem 2.3 it follows that if λ0 is a simple eigenvalue of the homogenized problem (2.4),
u0 is the respective normalized in L2(Γ1) eigenfunction, the condition (2.5) holds, then λε,a is the unique
eigenvalue of problem (2.3), converging to λ0, and for corresponding eigenfunction uε,a (normalized in L2(Γ1)
and extended by zero in Bε,a) up to the sign of uε,a (i.e. with right choice of the sign of uε,a) the convergence

‖uε,a − u0‖W 1
2 (Ω) −→

ε→0
0

holds for A = 0, and
uε,a ⇀

ε→0
u0 â W 1

2 (Ω),

holds for A �= 0.

Theorem 2.5. Assume that

ε lna −→ 0 for d = 2,
ε

a
−→ 0 for d = 3. (2.11)

Then the minimal eigenvalue λε,a of problem (2.3) converge to +∞ as ε → 0.

Theorem 2.6. Assume that the condition (2.11) holds, f ∈ L2(Γ1) and λ is fixed.
Then for the solution of problem (2.1) the strong convergence

Uε,a →
ε→0

0 in W 1
2 (Ω) (2.12)

holds, where the function Uε,a is extended in Bε,a by zero.

Remark 2.7. The assumption (2.5) (in Thms. 2.2 and 2.3) means that the cavities are distributed sufficiently
“rarely” along the part of the boundary. This assumption leads to Neumann or Fourier (Robin) type boundary
conditions on Γ1 in the homogenized problem.

The asymptotics (2.11) means that the cavities are distributed sufficiently “frequently” along the part of the
boundary. In this case the homogeneous Dirichlet condition is the limit (homogenized) boundary condition on
Γ1. Note that the asymptotics (2.11) differs for d = 2 and d = 3. For instance, in two-dimensional case the
cavities can be very small, i.e. a = O(ε�) for any  � 0, unlike the three-dimensional case, where a = O(ε�) for
0 �  < 1.

The same asymptotics as in Theorems 2.2–2.6 has been studied for similar problems (see [17, 18, 34, 37, 38]).



1322 G.A. CHECHKIN ET AL.

3. Preliminaries and auxiliary propositions

Let us remind the definition of weak solutions. Assume that f ∈ L2(Γ1). The function U0 ∈ W 1
2 (Ω) is called

a weak solution of problem (2.2), if for any v ∈ W 1
2 (Ω) the integral identity∫

Ω

(∇U0,∇v)dx + σdCd(B)A
∫
Γ1

U0vds = λ

∫
Γ1

U0vds +
∫
Γ1

fvds (3.1)

holds true.
Denote by W 1

2 (Ωε,a; Γε,a) (by W 1
2 (Ω; Γ1)) the subset of functions belonging to W 1

2 (Ωε,a) (to W 1
2 (Ω)) and

vanishing on Γε,a (on Γ1).
And finally the function Uε,a ∈ W 1

2 (Ωε,a; Γε,a) is called a weak solution of problem (2.1), if for any v ∈
W 1

2 (Ωε,a; Γε,a) the integral identity∫
Ωε,a

(∇Uε,a,∇v)dx = λ

∫
Γ1

Uε,av dx +
∫
Γ1

fvdx (3.2)

takes place.
Naturally a nontrivial weak solution u0 of problem (2.4) is called an eigenfunction of problem (2.4), and the

number λ0 is called an eigenvalue of problem (2.4).
Analogously, a nontrivial weak solution uε,a of problem (2.3) is called an eigenfunction of problem (2.3), and

the number λε,a is called an eigenvalue of this problem.

Remark 3.1. Obviously, the function W 1
2 (Ωε,a; Γε,a), extended in Bε,a by zero, belongs to W 1

2 (Ω). Then in
what follows we consider functions from W 1

2 (Ωε,a; Γε,a) as functions from W 1
2 (Ω), keeping for them the same

notation. Bearing in mind this fact, one can rewrite the integral identity (3.2) in the form∫
Ω

∇Uε,a∇vdx = λ

∫
Γ1

Uε,avds +
∫
Γ1

fvds, (3.3)

respectively.

Remark 3.2. The standard norm in W 1
2 (Ω) is equivalent to the norm in ‖u‖H1(Ω), generated by the following

scalar product:

(u, v)H1(Ω) =
∫
Ω

(∇u,∇v)dx +
∫
Γ1

uvds

(see, for instance, [35], Chap. III, Sect. 5.6).

Note that for any fixed λ ∈ R solution of problem (2.1) satisfies the uniform in ε and a a priori estimate

‖Uε,a‖H1(Ω) � C
(
‖Uε,a‖L2(Γ1)

+ ‖f‖L2(Γ1)

)
. (3.4)

In fact, substituting in the integral identity (3.3) v = Uε,a as a test-function and adding ‖Uε,a‖2
L2(Γ1) for both

parts of the identity and using the Cauchy–Bunjakovski–Schwartz and the Poincaré inequalities and also the
trace theorem, we get

‖Uε,a‖2
H1(Ω) � C

(
‖f‖L2(Γ1) ‖Uε,a‖L2(Γ1)

+ ‖Uε,a‖2
L2(Γ1)

)
� C

(
‖f‖L2(Γ1) + ‖Uε,a‖L2(Γ1)

)
‖Uε,a‖H1(Ω) .

The estimate (3.4) follows from this.
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Lemma 3.3. Assume that {m(k)}∞k=1 is an increasing sequence of natural numbers, the sequence {ak}∞k=1 is
converging, Uεm(k),ak

is a solution of problem (2.1) with f = fk,

‖Uεm(k),ak
‖L2(Γ1) = 1 (3.5)

and the inequality
‖Uεm(k),ak

‖H1(Ω) > k‖fk‖L2(Γ1) (3.6)

holds.
Then

‖fk‖L2(Γ1) −→
k→∞

0 (3.7)

and there exist a subsequence of indexes {k′} and a function U∗ ∈ W 1
2 (Ω) such that the following weak conver-

gence:

Uεm(k′),ak′ ⇀ U∗ in H1(Ω) (3.8)

holds as k′ → ∞ and the strong convergence

Uεm(k′),ak′ → U∗ in L2(Ω) (3.9)

holds, wherein
‖U∗‖L2(Γ1) = 1. (3.10)

Proof. Due to (3.4), (3.6) and (3.5) it follows that

‖Uεm(k),ak
‖H1(Ω) � C1

as k → ∞. From this estimate and (3.6) the estimate (3.7) follows. From this estimate, weak compactness
of bounded sets in Hilbert spaces and compact imbedding W 1

2 (Ω) in L2(Ω) (see, for instance, [35], Chap. II,
Sect. 8) one can prove the remaining statements of the lemma. �

4. Construction of model functions in semi-strip and in semi-infinite

parallelepiped

In accordance with the strategy suggested in [38] for the problem with rapidly changing type of boundary
conditions (see also [24] for the problem in domain perforated along part of the boundary) the following statement
is crucial for the proof of Theorems 2.2.

Lemma 4.1. There exists a function Wε,a(x) from W 1
2 (Ωε,a; Γε,a) ∩ W 2

2 (Ωε,a), such that the relations

∂Wε,a

∂ν

∣∣∣∣
Γ1

= − 2π

ε ln a
for d = 2,

∂Wε,a

∂ν

∣∣∣∣
Γ1

=
4πC3(B)a

ε
for d = 3, (4.1)

‖1 − Wε,a‖L2(Ω) −→
ε→0

0, (4.2)

‖ΔWε,a‖L2(Ωε,a) −→
ε→0

0, (4.3)

‖1 − Wε,a‖L2(Γ ) −→
ε→0

0, (4.4)∥∥∥∥∂Wε,a

∂ν

∥∥∥∥
L2(Γ2)

−→
ε→0

0, (4.5)

hold, if (2.5) is true.
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In its turn, according to the approach of [24, 38] the function Wε,a is constructed as

Wε,a(x) = Wa

(x

ε

)
,

where Wa(ξ) is 1-periodic in ξ1 for d = 2 and 1-periodic in ξ1, ξ2 for d = 3. This section is devoted to the
construction of this function Wa by the method of matching of asymptotic expansions [24, 39, 40].

For d = 2 we denote by R
2
+ the semi-plane x2 � 0, and by x

(k)
0 the points with coordinates x1 = b1 + k,

x2 = c. Here k ∈ Z. For d = 3 we denote by R
3
+ the semi-space x3 � 0, and by x

(k)
0 the points with coordinates

xj = bj + kj , j = 1, 2, x3 = c. Here k = (k1, k2) and kj ∈ Z.
Denote x0 := x

(0)
0 , y := x−x0 and Σ := {x : x1 ∈ (0, 1), x2 = 0} for d = 2, Σ := {x : x1, x2 ∈ (0, 1), x3 = 0}

for d = 3. Define G2(t) := ln t, G3(t) := −t−1.
Let us remind that Π = (0, 1) × (0,∞) for d = 2 and Π = (0, 1)2 × (0,∞) for d = 3.

Lemma 4.2. There exists a 1-periodic in x1 for d = 2 and in x1, x2 for d = 3 function gd ∈
C∞

(
R

d
+\
⋃
k

{
x

(k)
0

})
, which satisfies the problem

{
Δgd = 0 if x ∈ Π \ {x0},
∂gd

∂ν = α if x ∈ Σ

for
α = σd, (4.6)

has the differentiable asymptotics
gd(x) = O

(
e−2πxd

)
, xd → +∞

and in a neighborhood of x0 has the representation

gd(x) = Gd(|y|) + g
(1)
d (x),

where g
(1)
d (x) is an infinitely smooth function in the neighborhood of this point including this point.

Proof. Let infinitely smooth cut-off function χ(t) be equal to 1 as t � 1
3T and zero as t � 2

3T, where T =
min{b1; 1 − b1; c} for d = 2 and T = min{b1; 1 − b1; b2; 1 − b2; c} for d = 3. We look for the function g in Π in
the form

gd(x) = χ (|y|)Gd(|y|) + g
(1)
d (x). (4.7)

Acting to this function by the Laplace operator we get the problem for functions of g
(1)
d (x). We have⎧⎨⎩Δg

(1)
d = Fd as x ∈ Π,

∂g
(1)
d

∂xd
= −α as xd = 0

(4.8)

where Fd ∈ C∞
0 (Π), where C∞

0 (Π) is the set of infinitely smooth functions with compact support in Π . Using
the Fourier method of separating variables, it is easy to show that there exists a 1-periodic in x1 for d = 2 and
x1, x2 for d = 3 function g

(1)
d ∈ C∞(Rd

+) with differentiable asymptotics

g
(1)
d (x) = O

(
e−2πxd

)
, xd → +∞,

which is a solution of boundary value problem (4.8) for some α ∈ R. Hence, using (4.8) we get all the statements
of the Lemma except (4.6).
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Denote by Sδ the circle for d = 2 and the ball for d = 3 of the radius δ � 1 centered in x0. Integrating by
parts the left-hand side of the identity ∫

Π\Sδ

Δgddx = 0,

by means of the boundary conditions on gd, we deduce∫
∂(Π\Sδ)

∂gd

∂ν
ds = 0.

Therefore due to (4.7) we get
α − σd + O(δ) = 0.

Passing to the limit as δ → 0, we derive (4.6). �

Corollary 4.3. The differentiable asymptotics

gd(x) = Gd(|y|) + cΠ,d + PΠ,d
1 (y) + O

(|y|2) , y → 0, (4.9)

holds, where cΠ,d is a constant and PΠ,d
1 (y) is a homogeneous polynomial of the first order.

Remark 4.4. Note that the existence of a solution to the problem (4.8) can be proved by means of the
variational results (see Prop. 2.2 from [41] or Chap. 5 of the book [42]).

Lemma 4.5. There exist functions V
(d)
0 , V

(d)
1 ∈ C∞ (

R
d\B) ∩ C

(
R

d\B), being solutions of the problems

ΔV
(d)
i = 0, x ∈ R

d\B, V
(d)
i = 0, x ∈ ∂B,

and having differentiable asymptotics

V
(2)
0 (x) = ln |x| + cB + O(|x|−1), V

(3)
0 (x) = 1 − C3(B)|x|−1 + PB,3

1 (x)|x|−3 + O(|x|−3),

V
(2)
1 (x) = PΠ,2

1 (x) + c̃ + O(|x|−1), V
(3)
1 (x) = PΠ,3

1 (x) − C3(P, B)|x|−1 + O(|x|−2)

as |x| → ∞, where PB,3
1 (y) is a homogeneous polynomial of the first order.

Proof. It is wellknown (see, for instance, [43], Sect. 5.8), that for ϕ ∈ C(∂B) the boundary value problem

Δv = 0, x ∈ R
d\B, v = ϕ, x ∈ ∂B (4.10)

has a solution v ∈ C∞ (
R

d\B) ∩ C
(
R

d\B) with differentiable asymptotics

v(x) = C|x|−d+2 +
d∑

j=1

Cjxj |x|−d + O
(|x|−d

)
, |x| → ∞. (4.11)

Then, the functions V
(2)
0 (x) = ln |x−xB|+Ṽ

(2)
0 (x), where xB is an arbitrary point from B, V

(3)
0 (x) = 1+Ṽ

(3)
0 (x),

V
(d)
1 (x) = PΠ,d

1 (x) + Ṽ
(d)
1 (x), where Ṽ

(2)
0 (x), Ṽ

(3)
0 (x), Ṽ

(d)
1 (x) are above mentioned solutions of the boundary

value problem for ϕ(x) = − ln |x− xB |, ϕ(x) = −1, ϕ(x) = −P Π,d
1 (x), respectively, satisfy the statement of our

Lemma. �

Remark 4.6. Note that if d = 3 in (4.10) and ϕ ≡ 1, then the constant C = C3(B) in (4.11) is called the
capacity (harmonic capacity) of B. If d = 2 in (4.10) and ϕ = − ln |x|, then the constant C = cB in (4.11) is
called the logarithmic capacity of B.
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In analogous way as Lemma 4.2 one can prove the following statement.

Lemma 4.7. Let d = 3. Then there exists a 1-periodic in x1, x2 function ĝ3 ∈ C∞
(

R
3
+\
⋃
k

{
x

(k)
0

})
, which

satisfies the problem {
Δĝ3 = 0 if x ∈ Π \ {x0},
∂ĝ3
∂ν = 0 if x ∈ Σ,

has the differentiable asymptotics
ĝ3(x) = O

(
e−2πx3

)
, x3 → +∞

and in a neighborhood of x0 has the representation

ĝ3(x) = PB,3
1 (y)|y|−3 + ĝ

(1)
3 (x),

where ĝ
(1)
3 (x) is an infinitely smooth function in the neighborhood of this point including this point.

Corollary 4.8. The differentiable asymptotics

ĝ3(x) = PB,3
1 (y)|y|−3 + ĉB,Π + O (|y|) , y → 0, (4.12)

holds.

Denote Πa = Π\Ba (see Fig. 2) and define in Πa

Wa(x) :=
(

1 − χ

( |y|
aβ

))(
1 − 1

ln a
(g2(x) + cB − cΠ,2)

)
− 1

ln a
χ

( |y|
aβ

)(
V

(2)
0

(y

a

)
+ aV

(2)
1

(y

a

))
for d = 2 ,

Wa(x) :=
(

1 − χ

( |y|
aβ

))(
1 + aC3(B) (g3(x) − cΠ,3) + a2 (C3(P, B)g3(x) + ĝ3(x))

)
+ χ

( |y|
aβ

)(
V

(3)
0

(y

a

)
+ aV

(3)
1

(y

a

))
for d = 3 . (4.13)

We assume that β ∈ (0, 1) following the method of matching of asymptotic expansions.
Now, denote Bk

a = {x : (x1 − k, x2) ∈ Ba}, k ∈ Z for d = 2, Bk
a = {x : (x1 − k1, x2 − k2, x3) ∈ Ba},

k = (k1, k2), kj ∈ Z for d = 3, Ba =
⋃
k

Bk
a and extend the function Wa(x) 1-periodically in x1 for d = 2 and in

x1, x2 for d = 3, keeping the same notation Wa(x).

Theorem 4.9. The function Wa(x) ∈ C∞ (
R

d
+\Ba

)
is 1-periodic in x1 for d = 2, and in x1, x2 for d = 3, has

the differentiable asymptotics

Wa(x) =1 − 1
ln a

(
cB − cΠ,2 + O

(
e−2πx2

))
as x2 → ∞ for d = 2,

Wa(x) =1 − a
(
C3(B)cΠ,3 + O

(
e−2πx3

))
as x3 → ∞ for d = 3

(4.14)

uniform in a, and satisfies the problem⎧⎪⎨⎪⎩
ΔWa = Fa if x ∈ Πa,
∂Wa

∂ν = − 2π
lna for d = 2, ∂Wa

∂ν = a4πC3(B) for d = 3, if x ∈ Σ,

Wa = 0 if x ∈ ∂Ba,

where Fa ∈ C∞
0 (Πa).
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Figure 2. The cell of periodicity.

Moreover, as a → 0,

‖1 − Wa‖L2(Σ) = O

(
1

| ln a|
)

for d = 2, ‖1 − Wa‖L2(Σ) = O (a) for d = 3, (4.15)

∥∥∥∥1 −
(

Wa +
1

ln a
(cB − cΠ,2)

)∥∥∥∥
L2(Πa)

=O

(
1

| lna|
)

for d = 2,

‖1 − (Wa + aC3(B)cΠ,3) ‖L2(Πa) =O
(
a + a

3β
2

)
for d = 3,

(4.16)

‖Fa‖L2(Πa) = O

(
1

| ln a|
(
aβ + a1−2β

))
for d = 2, (4.17)

‖Fa‖L2(Πa) = O
(
a1+ 3

2 β + a2− 1
2 β + a3− 7

2 β
)

for d = 3. (4.18)

Proof. All the statements of the Theorem except (4.16) and (4.17) follow from the definition (4.13) of the
function Wa and Lemmas 4.2 and 4.5.

Let us prove (4.16). Suppose that

W (1)
a (x) := − 1

ln a

(
1 − χ

( |y|
aβ

))
g2(x),

W (2)
a (x) := − 1

ln a
χ

( |y|
aβ

)(
V

(2)
0

(y

a

)
+ aV

(2)
1

(y

a

)
+ ln a − cB + cΠ,2

)
for d = 2,

and

W (1)
a (x) = : a

(
1 − χ

( |y|
aβ

))
(C3(B)g3(x) + a (C3(P, B)g3(x) + ĝ3(x))) ,

W (2)
a (x) :=χ

( |y|
aβ

)(
V

(3)
0

(y

a

)
+ aV

(3)
1

(y

a

)
− 1 + aC3(B)cΠ,3

)
for d = 3.
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Then
Wa(x) +

1
ln a

(cB − cΠ,2) − 1 =W (1)
a (x) + W (2)

a (x) for d = 2,

Wa(x) + aC3(B)cΠ,3 − 1 =W (1)
a (x) + W (2)

a (x) for d = 3.

(4.19)

Due to Lemma 4.2 we get

‖W (1)
a ‖L2(Πa) =O

(
1

| ln a|
)

for d = 2, ‖W (1)
a ‖L2(Πa) = O (a) for d = 3. (4.20)

Denote

T̃a :=
{

x : |y| � 2aβ

3
T

}
.

Since supp χ
(

|y|
aβ

)
⊂ T̃a, then

supp W (2)
a (x) ⊂ T̃a.

For x ∈ T̃a, due to Lemma 4.5 we have that

− 1
ln a

(
V

(2)
0

(y

a

)
+ aV

(2)
1

(y

a

)
+ ln a − cB + cΠ,2

)
= O(1) as d = 2,

and (
V

(3)
0

(y

a

)
+ aV

(3)
1

(y

a

)
− 1 + aC3(B)cΠ,3

)
= O(1) as d = 3.

Hence, due to the definition of W
(2)
a (x) we have

‖W (2)
a ‖L2(Πa) = O

(
aβ
)
. (4.21)

From (4.19)–(4.21) we derive (4.16).
Since Fa = ΔWa, then the definition of Wa leads to

Fa = F (1)
a + F (2)

a , (4.22)

where

F (1)
a (x) = −

(
1 − 1

ln a

(
g2(x) + cB − cΠ,2 − V

(2)
0

(y

a

)
− aV

(2)
1

(y

a

)))
Δχ

( |y|
aβ

)
,

F (2)
a (x) = − 2∇

(
1 − 1

ln a

(
g2(x) + cB − cΠ,2 − V

(2)
0

(y

a

)
− aV

(2)
1

(y

a

)))
∇χ

( |y|
aβ

)
for d = 2.

and

F (1)
a (x) = −

(
1 + aC3(B) (g3(x) − cΠ,3) + a2 (C3(P, B)g3(x) + ĝ3(x)) − V

(3)
0

(y

a

)
− aV

(3)
1

(y

a

))
Δχ

( |y|
aβ

)
,

F (2)
a (x) = − 2∇

(
1 + aC3(B)

(
g3(x) − cΠ,3 + a2 (C3(P, B)g3(x) + ĝ3(x))

)− V
(3)
0

(y

a

)
− aV

(3)
1

(y

a

))
∇χ

( |y|
aβ

)
for d = 3. Keeping in mind

supp Δχ

( |y|
aβ

)
, supp∇χ

( |y|
aβ

)
⊂ Ta :=

{
x :

aβ

3
T � |y| � 2aβ

3
T

}
,
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we conclude, that
supp Fa, supp F (i)

a ⊂ Ta (4.23)

also. Bearing in mind (4.9), (4.12) and Lemma 4.5 we deduce

−
(

1 − 1
ln a

(
g2(x) + cB − cΠ,2 − V

(2)
0

(y

a

)
− aV

(2)
1

(y

a

)))
= O

(
1

ln a

(
a2β + a1−β

))
,

−2∇
(

1 − 1
ln a

(
g2(x) + cB − cΠ,2 − V

(2)
0

(y

a

)
− aV

(2)
1

(y

a

)))
= O

(
1

ln a

(
aβ + a1−2β

))
for x ∈ Ta, d = 2

and

−
(
1 + aC3(B) (g3(x) − cΠ,3) + a2 (C3(P, B)g3(x) + ĝ3(x)) − V

(3)
0

(y

a

)
− aV

(3)
1

(y

a

))
= O

(
a1+2β + a2 + a3(1−β)

)
,

−2∇
(
1 + aC3(B) (g3(x) − cΠ,3) + a2 (C3(P, B)g3(x) + ĝ3(x)) − V

(3)
0

(y

a

)
− aV

(3)
1

(y

a

))
= O

(
a1+β + a2−β + a3−4β

)
for x ∈ Ta, d = 3. Then, since

Δχ

( |y|
aβ

)
= O(a−2β), ∇χ

( |y|
aβ

)
= O(a−β),

we derive

F (i)
a (x) =O

(
1

ln a

(
1 + a1−3β

))
for x ∈ Ta, d = 2,

F (i)
a (x) =O

(
a + a2(1−β) + a3−5β

)
for x ∈ Ta, d = 3.

Therefore,

‖F (i)
a ‖L2(Ta) =O

(
1

| ln a|
(
aβ + a1−2β

))
for d = 2,

‖F (i)
a ‖L2(Ta) =O

(
a1+ 3

2 β + a2− 1
2 β + a3− 7

2 β)
)

for d = 3.

From this relation, (4.22) and (4.23) we obtain (4.17). �

5. Proof of Theorem 2.2

Before proving Theorem 2.2 we prove two auxiliary propositions.

Proof of Lemma 4.1. Then from the definition of Wε,a(x) and Theorem 4.9 one gets (4.1). Due to (4.16) we
have

‖1 − Wε,a‖2
L2(Ωε,a) �

∥∥∥∥1 −
(

Wε,a +
1

ln a
(cB − cΠ,2)

)∥∥∥∥2
L2(Ωε,a)

+
∥∥∥∥ 1

ln a
(cB − cΠ,2)

∥∥∥∥2
L2(Ωε,a)

= O

(
ε

| ln a|2 +
1

| ln a|2
)

for d = 2,

‖1 − Wε,a‖2
L2(Ωε,a) � ‖1 − (Wε,a + aC3(B)cΠ,3) ‖2

L2(Ωε,a)

+ ‖aC3(B)cΠ,3‖2
L2(Ωε,a) = O

(
ε
(
a + a

3β
2
)2 + a2

)
for d = 3, (5.1)
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Now (4.2) follows from (5.1) for any β ∈ (0, 1). Using (4.15), we get

‖1 − Wε,a‖L2(Γ ) = O

(
1

| ln a|
)

for d = 2, ‖1 − Wε,a‖L2(Γ ) = O (a) for d = 3, (5.2)

which leads to (4.4).
Assume

Γ2,ε := {x : x1 = 0, 0 < x2 < ε
1
2 } ∪ {x : x1 = 1, 0 < x2 < ε

1
2 } for d = 2,

and
Γ2,ε :=

(
∂(0, 1)2

)× (0, ε
1
2

)
for d = 3.

Since gd(x) ∈ C∞ (Π\{x0}
)
, then from the definition of Wε,a(x) and (4.14) we obtain∥∥∥∥∂Wε,a

∂ν

∥∥∥∥
L2(Γ2\Γ2,ε)

= O

(
e−2πε− 1

2

ε| lna|

)
,

∥∥∥∥∂Wε,a

∂ν

∥∥∥∥2
L2(Γ2,ε)

= O

(
ε

1
2

ε2| ln a|2
)

for d = 2,

∥∥∥∥∂Wε,a

∂ν

∥∥∥∥
L2(Γ2\Γ2,ε)

= O

(
ae−2πε− 1

2

ε

)
,

∥∥∥∥∂Wε,a

∂ν

∥∥∥∥2
L2(Γ2,ε)

= O

(
a2ε

1
2

ε2

)
for d = 3.

Due to the condition (2.5) we obtain the convergence (4.5).
From the definition of Wε,a(x) and (4.17) we have

‖ΔWε,a‖L2(Ωε,a) =O

(
1

ε
3
2 | ln a|

(
aβ + a1−2β

))
for d = 2,

‖ΔWε,a‖L2(Ωε,a) =O

((a

ε

) 3
2
(
a− 1

2+ 3
2 β + a

1
2− 1

2 β + a
3
2− 7

2 β)
))

for d = 3.
(5.3)

One can see that due to (2.5) the relations (5.3) imply (4.3) for any 1
3 < β < 3

7 . �

Lemma 5.1. Let condition (2.5) hold. Assume also that the function Uε,a ∈ W 1
2 (Ωε,a; Γε,a) converges weakly

Uε,a ⇀
ε→0

U∗ in W 1
2 (Ω). (5.4)

Then for any functions v ∈ C∞(Ω) the convergences∫
Ωε,a

Uε,a(vWε,a)dx →
∫
Ω

U∗v dx, (5.5)

∫
Ωε,a

(∇Uε,a,∇(vWε,a)
)
dx →

∫
Ω

(∇U∗,∇v)dx + σdCd(B)A
∫
Γ1

U∗vdx1 (5.6)

take place.

Proof. Since v ∈ C∞(Ω), the Lemma 4.1 implies

vWε,a ∈ W 1
2 (Ωε,a; Γε,a) ∩ W 2

2 (Ωε,a) .

Due to (4.2) we have

v(1 − Wε,a) −→
ε→0

0 in L2(Ω).

The convergence (5.5) follows from this and (5.4).



ON THE STEKLOV PROBLEM IN A DOMAIN PERFORATED ALONG A PART OF THE BOUNDARY 1331

Let us show (5.6). Integrating by parts, we get∫
Ωε,a

(∇Uε,a,∇(vWε,a)
)
dx = −

∫
Ωε,a

ΔvWε,aUε,adx −
∫

Ωε,a

2(∇v,∇Wε,a)Uε,adx

−
∫

Ωε,a

vΔWε,aUε,adx +
∫
Γ

∂v

∂ν
Wε,aUε,ads +

∫
Γ

∂Wε,a

∂ν
vUε,ads.

(5.7)

Since

Δv (1 − Wε,a) −→
ε→0

0 in L2(Ω),
∂v

∂ν
(1 − Wε,a) −→

ε→0
0 in L2(Γ )

due to (4.2) and (4.4), then from (5.4) we get

−
∫

Ωε,a

ΔvWε,aUε,adx +
∫
Γ

∂v

∂ν
Wε,aUε,ads −→

ε→0
−
∫
Ω

ΔvU∗dx +
∫
Γ

∂v

∂ν
U∗ds =

∫
Ω

(∇U∗,∇v)dx. (5.8)

By means of (4.3) and (5.4) we have ∫
Ωε,a

vΔWε,aUε,adx −→
ε→0

0. (5.9)

Bearing in mind that ∇(Wε,a − 1) = ∇Wε,a and integrating by parts, we derive∫
Ωε,a

(∇v,∇Wε,a)Uε,adx =
∫

Ωε,a

(∇v,∇(Wε,a − 1)
)
Uε,adx

= −
∫

Ωε,a

(Wε,a − 1)
(
(∇Uε,a,∇v) + Uε,aΔv

)
dx

+
∫
Γ

(Wε,a − 1)Uε,a
∂v

∂ν
ds.

Using this identity, (4.2), (4.4) and (5.4) we deduce∫
Ωε,a

(∇v,∇Wε,a)Uε,adx −→
ε→0

0. (5.10)

Due to (4.1) and (5.4) we obtain∫
Γ1

∂Wε,a

∂ν
vUε,ads = −σdCd(B)

εGd(a)

∫
Γ1

vUε,ads −→
ε→0

σdCd(B)A
∫
Γ1

vU∗ds. (5.11)

Finally, (4.5) and (5.4) lead to the convergence∫
Γ2

∂Wε,a

∂ν
vUε,ads −→

ε→0
0. (5.12)

The convergence (5.6) follows immediately from (5.7)–(5.12). �



1332 G.A. CHECHKIN ET AL.

Proof of Theorem 2.2. Since the Fredholm alternative for problem (2.1) holds (see, for instance, [35], Chap. II,
Sect. 3), then it is sufficient to show the estimate (2.6) to prove 1). If Uε,a = 0 on Γ1, then estimate (2.6) follows
from (3.4) due to Remark 3.2.

Otherwise, due to the linearity of problem (2.1) it is sufficient to prove this estimate for normalized in L2(Γ1)
functions Uε,a. In this case the proof is based on contradiction. Let the estimate (2.6) be wrong. Then, due to
Remark 3.2 there exists a sequence of natural numbers, such that the conditions of Lemma 3.3 are fulfilled. Due
to the lemma the convergence (3.7) takes place and there exist a subsequence of indexes {k′} and a function
U∗ ∈ W 1

2 (Ω), such that the convergences (3.8) and (3.9) and the identity (3.10) hold as k′ → ∞.
Hence, using Lemma 5.1 and the convergence (3.7), we get the identity∫

Ω

(∇U∗,∇v) dx + σdCd(B)A
∫
Γ1

U∗vds = λ

∫
Γ1

U∗v ds

for any v ∈ C∞(Ω). From the embedding of C∞(Ω) in W 1
2 (Ω) it follows that this identity holds for any

v ∈ W 1
2 (Ω). On the one hand U∗ �= 0 due to (3.10), and on the other hand, λ is not an eigenvalue of the limit

problem (2.4), hence we have a contradiction. This contradiction proves the estimate (2.6).
Let us now prove the statement 2). Assume that {ak}∞k=1, is a sequence, such that for ε = εk, a = ak as k → ∞

the convergence (2.5) holds, {k′} is an arbitrary subsequence of natural numbers. Then using estimate (2.6),
we conclude that there exist U∗ ∈ W 1

2 (Ω) and a subsequence of this sequence, such that the convergence (5.4)
takes place on this subsequence. Writing down the integral identity (3.2) with the test function equals to vWε,a

with arbitrary function v ∈ C∞(Ω), we obtain∫
Ωε,a

(∇Uε,a,∇(vWε,a

))
dx = λ

∫
Γ1

Uε,a

(
vWε,a

)
ds +

∫
Γ1

f
(
vWε,a

)
ds.

Then due to Lemma 5.1 the identity∫
Ω

(∇U∗,∇v) dx + σdCd(B)A
∫
Γ1

U∗v ds = λ

∫
Γ1

U∗v ds +
∫
Γ1

fv ds

holds for any function v ∈ C∞(Ω). The embedding of C∞(Ω) in W 1
2 (Ω) and the uniqueness of the solution of

the limit problem (2.2) gives U∗ = U0. This fact, the arbitrariness of the choice of the subsequence {k′} and
the convergence (5.4) lead to the weak convergence (2.8).

It remains to prove for A = 0 the strong convergence (2.7). Using the integral identity (3.1), weak conver-
gence (2.8) and the compactness of the embedding of W 1

2 (Ω) in L2(Ω) and in L2(Γ1), we derive

‖Uε,a − U0‖2
W 1

2 (Ω) = ‖∇(Uε,a − U0)‖2
L2(Ω) + ‖Uε,a − U0‖2

L2(Ω)

= ‖Uε,a − U0‖2
L2(Ω) + ‖∇Uε,a‖2

L2(Ω) + ‖∇U0‖2
L2(Ω)

−
∫
Ω

(∇Uε,a,∇U0

)
dx −

∫
Ω

(∇U0,∇Uε,a

)
dx

= ‖Uε,a − U0‖2
L2(Ω) + ‖∇Uε,a‖2

L2(Ω) + ‖∇U0‖2
L2(Ω) − 2

∫
Ω

(∇U0,∇Uε,a

)
dx

= ‖Uε,a − U0‖2
L2(Ω) +

∫
Γ1

(f + λU0)U0 ds +
∫
Γ1

(f + λUε,a)Uε,a ds

− 2
∫
Γ1

(f + λU0)Uε,a ds −→
ε→0

0.

Theorem is proved. �
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From the proof of statement 2) of Theorem 2.2 one can derive a stronger assertion.

Lemma 5.2. Let the condition (2.5) hold, assume also that λ is not an eigenvalue of problem (2.4), Uε,a is the
solution of problem (2.1) for f = fε,a, U0 is the solution of problem (2.2) for f = f0, the weak convergence

fε,a ⇀
ε→0

f0 in L2(Γ1) (5.13)

holds.
Then the convergence (2.7) and (2.8) take place.

Obviously the following proposition holds true.

Lemma 5.3. Suppose that the condition (2.5) holds and λ is not an eigenvalue of the problem (2.4), U0,ε,a

is the solution of problem (2.2) for f = fε,a, U0 is the solution of problem (2.2) for f = f0 and the weak
convergence (5.13) holds.

Then the weak convergence
U0,ε,a ⇀

ε→0
U0 in W 1

2 (Ω)

takes place.

Remark 5.4. We use these two statements to prove the convergence of eigenpairs of the problem (2.3). More
precisely, we introduce operators mapping the right-hand side of the equation to the trace of the solution and
prove the operator convergence of them.

6. Proof of Theorem 2.3

Denote by Pε,a and P0 operators Pε,a, P0 : L2(Γ1) → L2(Γ1), mapping f to the traces on Γ1 of solutions
to boundary value problems (2.1) and (2.2), respectively, for λ = −1. For such lambda these operators are
compact, selfadjoint and positive.

Lemmas 5.2 and 5.3 lead to the following statement.

Lemma 6.1. If condition (2.5) and weak convergence (5.13) hold, then

Pε,afε,a −→
ε→0

P0f0, P0fε,a −→
ε→0

P0f0 in L2(Γ1)

strongly.

Lemma 6.2. If condition (2.5) holds, then

‖Pε,a − P0‖ −→
ε→0

0

in the operator norm.

Proof. Assume the contrary. Then, without loss of generality one can say that there exists a number δ > 0 and
normalized in L2(Γ1) functions fε,a, for which the following estimate:

‖Pε,afε,a − P0fε,a‖L2(Γ1) � δ as ε → 0 (6.1)

holds. Due to the weak compactness of the Hilbert space L2(Γ1) we conclude that for some subsequence of
indexes ε, a the weak convergence (5.13) takes place. Then using Lemma 6.1 we have

‖Pε,afε,a − P0fε,a‖L2(Γ1) � ‖Pε,afε,a − P0f0‖L2(Γ1) + ‖P0f0 − P0fε,a‖L2(Γ1) −→
ε→0

0,

which contradicts (6.1). Lemma is proved. �
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Denote by Lε,a, L0 : L2(Γ1) → L2(Γ1) the operators inverse to Pε,a, P0 : L2(Γ1) → L2(Γ1). From Lemma 6.2
and ([44], Chap. 9, Sect. 4) (see also [45], Chap. IV, Thms. 2.25 and 3.16) we easily derive the following
proposition.

Lemma 6.3. Suppose that the condition (2.5) holds, and the multiplicity of the eigenvalue Λ0 to the operator
L0 equals to n. Then there exist exactly n eigenvalues Λ

(l)
ε,a of the operator Lε,a, l = 1, . . . , n (with respect to

their multiplicities) converging to Λ0 as ε → 0.

Since obviously Λ
(l)
ε,a = λ

(l)
ε,a + 1, Λ0 = λ0 + 1, then the next assertion follows.

Lemma 6.4. Suppose that the condition (2.5) holds, and the multiplicity of the eigenvalue λ0 to the prob-
lem (2.4) equals to n. Then there exist exactly n eigenvalues λ

(l)
ε,a of problem (2.3), l = 1, . . . , n (with respect to

their multiplicities) converging to λ0 as ε → 0.

Proof of Theorem 2.3. The statement I follows from Lemma 6.4.
The integral identity of problem (2.3) has the form∫

Ω

(∇u(l)
ε,a,∇v)dx = λ(l)

ε,a

∫
Γ1

u(l)
ε,avdx.

Bearing in mind λ
(l)
ε,a → λ0 and ‖u(l)

ε,a‖L2(Γ1) = 1, substituting in this identity v = u
(l)
ε,a and bearing in mind

Remark 3.2, we get
‖u(l)

ε,a‖W 1
2 (Ω) � C. (6.2)

Using this estimate (analogous to the estimate (2.6)) we complete the proof of the statement II, repeating the
proof of 2) of Theorem 2.2. �

7. Variational estimates for the semi-strip and for the semi-infinite

parallelepiped with small hole

Denote Π(t) := Σ × (0, t). Here and throughout t > 0 and a are such numbers, that Π(t)∩Ba = Ba. Denote
Πa(t) := Π(t)\Ba. Define the space H1(Πa(t); ∂Ba) is a completion by the norm

‖w‖H1(Πa(t)) :=

⎛⎜⎝ ∫
Πa(t)

|∇w|2 dx +
∫
Σ

w2ds

⎞⎟⎠
1/2

(7.1)

of functions from C∞(Πa(t)), vanishing on ∂Ba.
The aim of this Section is to prove the next statement.

Theorem 7.1. There exists a constant C > 0, such that the uniform in a estimate

inf
w∈H1(Πa(t);∂Ba)

w �=0

∫
Πa(t)

|∇w|2 dx∫
Σ

w2dx1
�C

1
| ln a| for d = 2,

inf
w∈H1(Πa(t);∂Ba)

w �=0

∫
Πa(t)

|∇w|2 dx∫
Σ

w2dx1dx2
�Ca for d = 3

(7.2)

holds.
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We emphasize that it is not necessary to have a → 0.
We use this estimate in the proofs of Lemma 8.1 and Corollary 8.2, which are crucial in proofs of Theorems 2.5

and 2.6.
The Steklov type spectral problem ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−Δwa = 0 as x ∈ Πa(t),

wa = 0 as x ∈ ∂Ba,

∂wa

∂ν = 0 as x ∈ ∂Π(t)\Σ,

∂wa

∂ν = Λ(a)wa as x ∈ Σ,

(7.3)

we consider in a weak sense. That is, a nontrivial element wa from H1(Πa(t); ∂Ba) is called a weak eigenfunction
of problem (7.3), and Λ(a) is an eigenvalue, if for any v ∈ H1(Πa(t); ∂Ba) the identity∫

Πa(t)

(∇wa,∇v) dx = Λ(a)
∫
Σ

wavds (7.4)

holds true.

Lemma 7.2. The minimal eigenvalue Λa of problem (7.3) satisfies the relation

Λa = inf
w∈H1(Πa(t);∂Ba)

w �=0

∫
Πa(t)

|∇w|2 dx∫
Σ

w2ds
· (7.5)

Proof. Define the space H1(Π(t)) as a completion by the norm

‖w‖H1(Π(t)) :=

⎛⎜⎝ ∫
Π(t)

|∇w|2 dx +
∫
Σ

w2ds

⎞⎟⎠
1/2

(7.6)

of the set of functions from C∞(Π(t)). Denote by (u, v)1 and (u, v)0 the scalar products in H1(Π(t)) and L2(Σ),
respectively. Considering functions from H1(Πa(t); ∂Ba) extended in Ba by zero, we rewrite the identity (7.4)
in the form

(wa, v)1 = (Λa + 1) (wa, v)0,

which due to the Riesz Theorem (see, for instance, [35], Chap. II, Sect. 3), can be regarded as

(wa, v)1 = (Λa + 1) (Aawa, v)1,

where the operator
Aa : H1(Πa(t); ∂Ba) → H1(Πa(t); ∂Ba)

is defined by the formula
(Aawa, v)1 = (wa, v)0 (7.7)

for any v ∈ H1(Πa(t); ∂Ba). Thus, the minimization problem for the first eigenvalue of problem (7.3) leads to
the problem for the minimal characteristic value μa for the operator Aa in H1(Πa(d); ∂Ba):

wa = μaAawa,
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where
μa = Λa + 1. (7.8)

It is easy to see, that the operator Aa defined in (7.7), is selfadjoint nonnegative linear and bounded, and
moreover,

‖Aaw −Aaz‖2
H1(Π(t)) = (Aaw −Aaz,Aaw −Aaz)1 = (w − z,Aaw −Aaz)0

� ‖w − z‖L2(Σ)‖Aaw −Aaz‖L2(Σ) � ‖w − z‖L2(Σ)‖Aaw −Aaz‖
H1(Π(t))

.

Hence,
‖Aaw −Aaz‖

H1(Π(t))
� ‖w − z‖L2(Σ).

Using this estimate, the boundedness of the operator Aa, the equivalence of the norm (7.6) and the standard
norm in W 1

2 (Π(t)), and the compactness in L2(Σ) of the traces of functions bounded in W 1
2 (Π(t)) (see, for

instance, [35], Chap. III, Sect. 5, Thms. 5 and 4), we conclude that the operator Aa is completely continuous.
Then (see, for instance, [35], Chap. 2, Sect. 5 Thm. 1) keeping in mind (7.7) we get

μa = inf
w∈H1(Πa(t);∂Ba)

w �=0

‖wa‖2
H1(Π(t))

(Aawa, wa)1
= inf

w∈H1(Πa(t);∂Ba)
w �=0

∫
Πa

|∇wa|2 dx∫
Σ

w2
ads

+ 1.

Formula (7.5) follows from this and (7.8). �

Due to Lemma 7.2 the minimal eigenvalue λa of problem (7.3) is a monotonically increasing in a function
(not only for small a). Hence, to prove Theorem 7.1 it is sufficient to prove the next theorem.

Theorem 7.3. If a → 0, then

Λa = − 2π

ln a
(1 + o(1)) for d = 2, Λa = 4πC3(B)a(1 + o(1)) for d = 3. (7.9)

The rest of the section is devoted to the proof of this Theorem.

Lemma 7.4. If a → 0, then the minimal eigenvalue Λa of problem (7.3) goes to zero.

Proof. In analogous way as it was done in [38] it is easy to show, that for any function v ∈ H1(Π(t)) there exist
functions va ∈ H1(Πa; ∂Ba), such that va → v in H1(Π(t)) as a → 0. Taking v ≡ 1, we have∫

Πa(t)

|∇va|2 dx∫
Σ

v2
ads

−→
a→0

0.

Lemma follows from this and (7.5). �

Lemma 7.5. Assume that Λ(a) is an eigenvalue of problem (7.3), converging to zero as a → 0, wa is the
respective normalized in L2(Σ) eigenfunction. Then from any sequence ak −→

k→∞
0 as k → ∞ it is possible to

choose a subsequence {ak′}, such that the strong convergence

wa −→
a→0

w∗ in L2(Σ) (7.10)

holds on this subsequence, where
w∗ = 1 or w∗ = −1. (7.11)
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Proof. Substituting v = wa as a test function in (7.4), we get

‖wa‖H1(Π(t)) � C.

Keeping in mind the equivalence of the norm (7.6) and the standard norm in W 1
2 (Π(t)), we get

‖wa‖W 1
2 (Π(t)) � C̃.

The weak compactness of bounded sequence in a Hilbert space, the compactness in L2(Σ) of traces of functions
bounded in W 1

2 (Π(t)) lead to the following: from any sequence ak −→
k→∞

0 as k → ∞ one can choose a subsequence

{ak′}, such that the strong convergence (7.10) holds on this subsequence and the weak convergence

wa ⇀
ak′→0

w∗ in H1(Π(t)) (7.12)

holds.
It remains to prove formulae (7.11). Suppose that v is an arbitrary function from H1(Π(t)), and functions

va ∈ H1(Πa; ∂Ba) extended by zero in Ba, satisfy va → v in H1(Π(t)) as a → 0. The possibility of construction
of such a sequence follows from the description of the micro inhomogeneous geometry of the domain Πa. Then,
substituting va as a test function in (7.4) and passing to the limit as a → 0 bearing in mind (7.10) and (7.12),
we obtain ∫

Π(t)

(∇w∗,∇v) dx = 0.

Due to the arbitrariness of the choice of v we have w∗ = const. Finally, this fact, the convergence (7.10), and
‖wa‖L2(Σ) = 1 prove (7.11). �

Next Corollary follows from Lemmas 7.4 and 7.5.

Corollary 7.6. The unique eigenvalue of problem (7.3), converging to zero as a → 0, is the minimal simple
eigenvalue Λa, and the respective eigenfunction wa normalized in L2(Σ), satisfies Lemma 7.5.

Proof. Assume the contrary, i.e. in addition to the minimum eigenvalue Λa → 0, there exists another eigenvalue
Λ̃a �= Λa, Λ̃a → 0 and suppose that w̃a is the respective eigenfunction normalized L2(Σ). Then from (7.4) it
follows that ∫

Πa(t)

(∇wa,∇w̃a) dx = Λ(a)
∫
Σ

waw̃ads,

∫
Πa(t)

(∇w̃a,∇wa) dx = Λ̃(a)
∫
Σ

w̃awads

and hence, wa and w̃a are orthogonal in L2(Σ), which contradicts with (7.10) and (7.11). Then the statement
of Corollary follows from Lemma 6.3. �

The proof of the next Lemma is completely analogous to the proof of Lemma 4.2.

Lemma 7.7. There exists a function g̃d ∈ C∞
(
Π(t) \ {x0}

)
, which satisfies the problem⎧⎪⎪⎨⎪⎪⎩

Δg̃d = 0 as x ∈ Π(t) \ {x0},
∂g̃d

∂ν = 0 as x ∈ ∂Π(t)\Σ,

∂g̃d

∂ν = σd as x ∈ Σ

and represents in a neighborhood of the point x0, in the form

g̃d(x) = Gd(|y|) + g̃
(1)
d (x)

where g̃
(1)
d is infinitely differentiable function in the neighborhood of this point.
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Corollary 7.8. The differentiable asymptotics

g̃d(x) =Gd(|y|) + cΠ,d + PΠ,d
1 (y) + O

(|y|2) , y → 0,

holds, where cΠ,d is a constant and PΠ,d
1 (y) is a homogeneous polynomial of the first order.

Proof of Theorem 7.3. Denote

W̃a(x) :=
(

1 − χ

( |y|
aβ

))(
1 − 1

ln a
(g̃2(x) + cB − cΠ,2)

)
− 1

ln a
χ

( |y|
aβ

)(
V

(2)
0

(y

a

)
+ aV

(2)
1

(y

a

))
for d = 2 ,

W̃a(x) :=
(

1 − χ

( |y|
aβ

))
(1 + aC3(B) (g̃3(x) − cΠ,3))

+ χ

( |y|
aβ

)(
V

(3)
0

(y

a

)
+ aV

(3)
1

(y

a

))
for d = 3 .

Obviously it belongs to W 2
2 (Πa(t)). Using Lemmas 7.7 and 4.5, we obtain in analogous way as in the proof of

Theorem 4.2, that the function W̃a satisfies the problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−ΔW̃a = Fa as x ∈ Πa(t),

W̃a = 0 as x ∈ ∂Ba,

∂W̃a

∂ν = 0 as x ∈ ∂Π(t)\Σ,

∂W̃a

∂ν = − 2π
ln a for d = 2, ∂W̃a

∂ν = a4πC3(B) for d = 3, if x ∈ Σ, ,

(7.13)

where

‖1 − W̃a‖L2(Σ) =O

(
1

ln a

)
for d = 2, ‖1 − W̃a‖L2(Σ) = O (a) for d = 3,

‖Fa‖L2(Πa(t)) =O

(
1

ln a

(
aβ + a1−2β

))
for d = 2,

‖Fa‖L2(Πa(t)) =O
(
a1+ 3

2 β + a2− 5
2 β
)

for d = 3.

Suppose that 0 < β < 1
2 . Then

‖Fa‖L2(Πa(t)) −→
a→0

0, ‖W̃a − 1‖L2(Σ) →
a→0

0. (7.14)

Substituting v = W̃a and Λ(a) = Λa in (7.4), we get∫
Πa(t)

(∇wa,∇W̃a) dx = Λa

∫
Σ

waW̃ads.

Multiplying the equation in (7.13) by wa and integrating this equation by parts over Πa(t), we derive∫
Πa(t)

(∇W̃a,∇wa) dx = −σdCd(B)
Gd(a)

∫
Σ

waW̃a ds +
∫

Πa(t)

Fawadx.
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From these two identities we deduce(
σdCd(B)
Gd(a)

+ Λa

)∫
Σ

waW̃a ds =
∫

Πa(t)

Fawadx.

The representation (7.9) follows from this, as a → 0, and also from (7.10), (7.11) and (7.14). �

8. Proof of Theorems 2.5 and 2.6

Before proving Theorems 2.5 and 2.6 we give one auxiliary proposition.

Lemma 8.1. If the condition (2.11) holds, then there exists a constant C > 0, such that for functions v ∈
W 1

2 (Ωε,a; Γε,a) the estimate

‖v‖2
L2(Γ1) �Cε | lna| ‖v‖2

W 1
2 (Ωε,a) for d = 2 ,

‖v‖2
L2(Γ1) �Cεa−1‖v‖2

W 1
2 (Ωε,a) for d = 3

(8.1)

holds.

Proof. For any functions w ∈ H1(Πa(t); ∂Ba) due to (7.2) we have

‖w‖2
L2(Σ) �C | ln a| ‖∇w‖2

L2(Π(t)) for d = 2 ,

‖w‖2
L2(Σ) �Ca−1‖∇w‖2

L2(Π(t)) for d = 3.

Denote
Γ

(j)
1,ε :={x : jε < x1 < (j + 1)ε, x2 = 0} for d = 2 ,

Γ
(j,i)
1,ε :={x : jε < x1 < (j + 1)ε, iε < x2 < (i + 1)ε, x3 = 0} for d = 3.

From these inequalities we derive for functions v belonging to W 1
2 (Ωε,a; Γε,a) the following estimates

ε−1‖v‖2

L2

(
Γ

(j)
1,ε

) � C | ln a| ‖∇v‖2

L2

(
Γ

(j)
1,ε×(0,tε)

) ,
ε−1‖v‖2

L2(Γ1) � C | ln a| ‖∇v‖2
L2(Π(tε)) � C | lna| ‖v‖2

W 1
2 (Ωε,a)

for d = 2, and

ε−1‖v‖2

L2

(
Γ

(j,i)
1,ε

) � Ca−1‖∇v‖2

L2

(
Γ

(j,i)
1,ε ×(0,tε)

) ,
ε−1‖v‖2

L2(Γ1) � Ca−1‖∇v‖2
L2(Π(tε)) � Ca−1‖v‖2

W 1
2 (Ωε,a)

for d = 3.
Finally, the estimate (8.1) follows immediately. �

Corollary 8.2. Suppose that (2.11) is true and the weak convergence

Uε,a ⇀
ε→0

U∗ in W 1
2 (Ω) (8.2)

takes place. Then U∗ ∈ W 1
2 (Ω; Γ1).
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Proof of Theorem 2.5. Suppose that the statement of Theorem is not true. Then without loss of generality we
assume that λε,a → λ0 as ε → 0. Due to the integral identity∫

Ω

(∇uε,a,∇v) dx = λε,a

∫
Γ1

uε,avds ∀ v ∈ W 1
2 (Ωε,a; Γε,a), (8.3)

of problem (2.3) we derive that

‖∇uε,a‖2
L2(Ω) = λε,a‖uε,a‖2

L2(Γ1)
= λε,a →

ε→0
λ0,

where uε,a is a normalized in L2(Γ1) eigenfunction of problem (2.3). Hence (see Rem. 3.2)

‖uε,a‖W 1
2 (Ω) � C.

Then there exists such a subsequence of indexes that the following weak convergence

uε,a ⇀
ε→0

u∗ �≡ 0 in W 1
2 (Ω) (8.4)

holds on it. Denote by C∞
0 (Ω; Γ1) the subset of functions from C∞(Ω), vanishing in a neighborhood of Γ1.

Assume that v ∈ C∞
0 (Ω; Γ1). It is easy to see, that v ∈ W 1

2 (Ωε,a; Γε,a) for sufficiently small ε. Substituting an
arbitrary v ∈ C∞

0 (Ω; Γ1) in (8.3), passing to the limit as ε → 0 and bearing in mind the convergence (8.4), we
obtain the identity ∫

Ω

(∇u∗,∇v) dx = 0. (8.5)

The dense imbedding of C∞
0 (Ω; Γ1) into W 1

2 (Ω; Γ1) leads to the validity of the identity for any functions
v ∈ W 1

2 (Ω; Γ1). Since u∗ ∈ W 1
2 (Ω; Γ1) by means of the convergence (8.4) and Corollary 8.2, substituting v = u∗

in (8.5), we derive that u∗ ≡ 0, which contradicts (8.4). Theorem is proved. �

Proof of Theorem 2.6. To prove the theorem we need the estimate (2.6) for the solution Uε,a of the problem (2.1)
also in the case (2.11). Due to the linearity of problem (2.1) it is sufficient to prove this estimate for normalized
in L2(Γ1) functions Uε,a. In this case the proof is based on the contradiction. Let estimate (2.6) be wrong.
Then due to Remark 3.2 there exists a sequence of natural numbers, such that the conditions of Lemma 3.3 are
fulfilled. Due to Lemma 3.3 the convergence (3.7) takes place and there exist a subsequence of indexes {k′} and
a function U∗ ∈ W 1

2 (Ω), such that the convergences (3.8) and (3.9) and the identity (3.10) hold as k′ → ∞.
And moreover, U∗ ∈ W 1

2 (Ω; Γ1) due to Corollary 8.2. Substituting an arbitrary v ∈ C∞
0 (Ω; Γ1) in (3.2) (as

ε = εm(k′) and a = ak′), passing to the limit as k′ → ∞ and bearing in mind the convergence (3.7), we obtain
the identity ∫

Ω

(∇U∗,∇v) dx = 0. (8.6)

The dense imbedding of C∞
0 (Ω; Γ1) into W 1

2 (Ω; Γ1) leads to the validity of the identity for any functions
v ∈ W 1

2 (Ω; Γ1). On the one hand U∗ �= 0 due to (3.10), and on the other hand from (8.6) we get U∗ ≡ const
which vanishes on Γ1, consequently U∗ ≡ 0. Hence, we obtain the contradiction. Therefore, the estimate (2.6)
holds.

Assume that {ak}∞k=1 is a sequence, such that for ε = εk, a = ak as k → ∞ the convergence (2.11) holds,
{k′} is an arbitrary subsequence of natural numbers. Then, due to estimate (2.6) there exist U∗ ∈ W 1

2 (Ω) and
a subsequence of this subsequence, such that the convergence (8.2) is valid on this subsequence, and moreover,
U∗ ∈ W 1

2 (Ω; Γ1) because of Corollary 8.2.



ON THE STEKLOV PROBLEM IN A DOMAIN PERFORATED ALONG A PART OF THE BOUNDARY 1341

Substituting an arbitrary v ∈ C∞
0 (Ω; Γ1) in (3.2) (as ε = εk′ and a = ak′), passing to the limit as k′ → ∞

and keeping in mind the convergence (8.2), we get (8.6). The embedding of C∞
0 (Ω; Γ1) into W 1

2 (Ω; Γ1) leads
to the validity of the identity (8.6) for any functions v ∈ W 1

2 (Ω; Γ1). Substituting v = U∗ in (8.6), we conclude
that U∗ ≡ 0. This fact, the arbitrariness of the choice of the subsequence {k′} and the convergence (8.2) give
the weak convergence

Uε,a ⇀
ε→0

0 in W 1
2 (Ω). (8.7)

Using the integral identity (3.2), weak convergence (8.7) and the compactness of embedding W 1
2 (Ω) into L2(Ω),

we derive
‖Uε,a‖2

W 1
2 (Ω) =‖∇Uε,a‖2

L2(Ω) + ‖Uε,a‖2
L2(Ω)

=‖Uε,a‖2
L2(Ω) −

∫
Ω

fUε,a dx −→
ε→0

0.

Hence we have the strong convergence (2.12). Theorem is proved. �
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