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NEW TRANSMISSION CONDITION ACCOUNTING FOR DIFFUSION
ANISOTROPY IN THIN LAYERS APPLIED TO DIFFUSION MRI
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Abstract. The Bloch−Torrey Partial Differential Equation (PDE) can be used to model the diffusion
Magnetic Resonance Imaging (dMRI) signal in biological tissue. In this paper, we derive an Anisotropic
Diffusion Transmission Condition (ADTC) for the Bloch−Torrey PDE that accounts for anisotropic
diffusion inside thin layers. Such diffusion occurs, for example, in the myelin sheath surrounding the
axons of neurons. This ADTC can be interpreted as an asymptotic model of order two with respect
to the layer thickness and accounts for water diffusion in the normal direction that is low compared
to the tangential direction. We prove uniform stability of the asymptotic model with respect to the
layer thickness and a mass conservation property. We also prove the theoretical quadratic accuracy
of the ADTC. Finally, numerical tests validate these results and show that our model gives a better
approximation of the dMRI signal than a simple transmission condition that assumes isotropic diffusion
in the layers.
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1. Introduction

Diffusion Magnetic Resonance Imaging (dMRI) gives a measure of the average distance travelled by water
molecules in a medium and can give useful information on cellular structure and structural change when the
medium is biological tissue. A large number of works have appeared in recent years that show that dMRI
measurements can be correlated with various physiological or pathological conditions such as cell swelling, de-
myelinating disorders or the presence of tumors (see, e.g., [18, 20, 21, 23, 27] and references therein). In particular,
dMRI can be used to detect and quantify abnormalities in the myelin sheath surrounding the axons of neurons
(see [4, 7, 12, 13]). The loss of or damage to the myelin sheath can be correlated with many diseases of brain
function.

A commonly used mathematical model for water proton magnetization in tissue is the Bloch−Torrey (see [35])
Partial Differential Equation (PDE), where intrinsic diffusion tensors are defined in different cellular geometri-
cal compartments. In this paper, we start with a three-compartment geometrical model: the three geometrical
compartments are (1) the axons, (2) myelin sheath surrounding the axons, (3) the extra-cellular space. We want
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Figure 1. Illustration of the myelin sheath, composed of layers of lipids, surrounding the axon.

to approximate this original three-compartment model by a two-compartment geometrical model: the two ge-
ometrical compartments are (1) the axons and (2) the extra-cellular space. These two compartments will be
linked via a transmission condition.

To obtain asymptotic two-compartment models, we rely on a methodology based on classical scaled asymp-
totic expansions for thin structures (see [8, 10, 30]) and on an appropriate scaling of tangential and normal
diffusion inside the myelin layer. This methodology has been extensively used to model thin coatings (see,
e.g., [6, 15] and references therein), rough boundaries (see, e.g., [1, 19] and references therein) and imperfectly
conducting obstacles (see, e.g., [16,17] and references therein). We can also mention here the recent works [11,29].

A simple and well-known transmission condition can be used when the diffusion inside the layer is isotropic.
However, since the myelin sheath is composed of layers of lipids or proteins [31] (see Fig. 1 for an illustration),
it is expected that the diffusion tensor in the myelin sheath will have a normal component that is much smaller
than the tangential component (see discussion about diffusion inside the myelin sheath in [5, 22, 24]).

To account for low diffusion normal to the layer, we make the following choice for the diffusion inside the
layer:

(1) for the tangential direction, we use the same scaling as for diffusion in the axons and in the extra-cellular
space;

(2) for the normal direction, we use a scaling proportional to the layer thickness.

This choice leads to asymptotic transmission conditions. The first order approximation (in the layer thickness)
leads to a transmission condition that has the same form as the classical transmission condition associated
with isotropic layer diffusion. Anisotropy appears in the second order approximation and gives rise to our new
Anisotropic Diffusion Transmission Condition (ADTC). This ADTC couples volumetric diffusion equations with
surface diffusion equations. We note that the natural expression of the second order transmission condition does
not exhibit uniform time stability with respect to the layer thickness, but this well-known phenomenon for
higher order asymptotic models can be corrected by the use of a Padé expansion, as in [8,14], and our ADTC is
corrected in this way. Thus, in its final form, our ADTC has a mass-conservation property, which is important
for dMRI modeling. We also give a proof of error estimates for the obtained second order approximate model.

We implemented a finite elements discretization of the new ADTC in two dimensions and conducted numerical
tests that confirm second order accuracy with respect to layer thickness. The ADTC that we propose here
simplifies the numerical solution of the dMRI model (i.e. solving the Bloch−Torrey equation at a microscopic
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scale) by removing the need to discretize the myelin sheath, which results in a computational saving that may
be significant in three dimensions when simulating arbitrarily oriented white matter fibers.

The paper is organized as follows. We first explain the problem setting and describe the Bloch−Torrey
equation in Section 2. Then, in Section 3, we detail the asymptotic method to obtain the new ADTC and prove
uniform stability of the new model with respect to the layer thickness and a mass conservation property. Our
numerical results are presented in Section 4. Conclusions are in Section 5. We present in an appendix the error
analysis for the asymptotic model obtained in Section 3.3.2.

2. Bloch−Torrey equation to model the diffusion MRI signal

A classic dMRI experiment consists of applying two pulsed gradient magnetic fields with a 180 degree spin
reversal between the two pulses in order to encode the displacement of the water molecules between the two
pulses (see, e.g., [34]). The complex transverse water proton magnetization M can be modeled by the following
Bloch−Torrey PDE (see, e.g., [35]):

∂M(x, t)
∂t

+ iq · xf(t)M(x, t) − div (σ(x)∇M(x, t)) = 0, (2.1)

where i :=
√−1, σ(x) is the intrinsic diffusion tensor, q contains the amplitude and direction information of the

applied diffusion-encoding magnetic field gradient multiplied by the gyro-magnetic ratio of the water proton,
and f , where maxt f(t) = 1, is the normalized time profile of the diffusion-encoding magnetic field gradient
sequence. The time profile of the classic Pulsed Gradient Spin Echo (PGSE) [34] sequence (simplified to include
only the parameters relevant to diffusion, i.e., the imaging gradients are ignored) is the following:

f(t) :=

⎧⎪⎨⎪⎩
1, 0 < t ≤ δ,

−1, Δ < t ≤ Δ+ δ,

0, elsewhere,
(2.2)

where 0 ≤ δ ≤ Δ and where we made f(t) negative in the second pulse to include the effect of the 180 degree
spin reversal between the pulses. The time at which the signal is measured is called the echo time TE > δ+Δ.

The dMRI signal is the total magnetization:

S(q) :=
∫
M(x, δ +Δ)dx, (2.3)

where M is the solution of equation (2.1). The signal is usually plotted against a quantity called the b−value,
given by

b(q) := ‖q‖2δ2
(
Δ− δ

3

)
, (2.4)

because for a homogeneous domain, where σ(x) = σ is constant, the signal has the analytical expression

S(q) = exp
(
−
(

qT σq
‖q‖2

)
b(q)
)
, (2.5)

where the quantity before the b-value is the diffusion coefficient in the direction of q.

2.1. Geometrical compartments

A standard geometrical model of the brain white matter (for an early example, see [3]) divides the tissue into
three compartments:

(1) Ωη
i is the axons (with associated intrinsic diffusion tensor σi);
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Figure 2. Notations for the three compartment model (left) and the two compartment model
(right).

(2) Ωη
e is the extra-cellular space (with associated intrinsic diffusion tensor σe);

(3) Ωη
m is the myelin sheath (with associated intrinsic diffusion tensor σm).

We denote by η the thickness of the layer (which is assumed to be constant) and by Γ a fictitious interface inside
the myelin layer at equal distance from the two boundaries of the layer. We denote by Ω the domain formed by
union of Ωη

� , � = e, i,m. We also introduce some notations as we consider the geometrical compartments when
η → 0: we denote the remaining two compartments by Ωi and by Ωe (see Fig. 2). For the ease of notation, we
restrict the diffusion tensor, σ(x), for the tissue to be piece-wise constant:

σ(x) :=

⎧⎪⎨⎪⎩
σi(x), x ∈ Ωη

i ,

σe(x), x ∈ Ωη
e ,

σm(x), x ∈ Ωη
m.

(2.6)

For the three compartment model, the natural continuity conditions (of the magnetization and the flux) on
the compartment interfaces result is the following Interface Conditions (IC) on the boundaries Γ η

i and Γ η
e of

Ωη
i and Ωη

e :

IC on Γ η
e and Γ η

i :

{
[σ∇M · n] = 0,
[M ] = 0,

(2.7)

where n is the normal to Γ η
e or Γ η

i . The symbol [·] denotes the jump relative to the direction of n.
Finally, the anisotropy inside the layer is assumed to be such that

σm :

{
σmn = σn

m n,
σmτ = στ

m τ ,
(2.8)

where σn
m and στ

m indicate respectively the transverse diffusion coefficient and tangential diffusion coefficient
in the layer and τ represents the unit tangential vector. The important assumption we make in this paper
(see (3.4) below) implies that

σn
m � στ

m. (2.9)
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2.2. Classical asymptotic model for isotropic diffusion in layer

If the diffusion inside the layer is isotropic, i.e. σn
m = στ

m, it is well-known that the following asymptotic
transmission condition, which we denote the Isotropic Diffusion Transmission Condition (IDTC), can be imposed
on the interface Γ (see, e.g., [9]):

IDTC on Γ :

{
[σ∇M · n] = 0,

σ∇M · n = κ0 [M ] ,
(2.10)

where κ0 is a given permeability coefficient. We recall that in addition to equation (2.10), the PDE (2.1) is
assumed to hold on Ωi and Ωe. As we shall see, this type of transmission condition corresponds to a first order
asymptotic model when the diffusion tensor inside the membrane scales like η. Our goal is to improve this
condition by taking into account the O(1) tangential diffusion.

3. Formal derivation of transmission conditions

The methodology we shall adopt to derive transmission conditions is similar to the one in [6, 15, 16] and is
based on a scaling of the layer with respect to its thickness η and an asymptotic expansion of the fields with
respect to η. We shall restrict ourselves in this section to a formal obtention of these conditions (in the sense
that no convergence proof will be established). The latter is technical and is usually valid (for linear problems)
as long as the obtained model is proved to be uniformly stable with respect to the thickness. This is why we
shall only discuss this last point in the present section. For a sketch of the convergence proof, we refer the
reader to the appendix. The following formal technical details in space dimension 2 are largely inspired by [2]
(see also [16] for space dimension 3).

3.1. Expression of the differential operators in curvilinear coordinates

We assume that Γ is a regular curve (at least C2) and is the boundary of a simply connected domain Ωi

(independent from η). Notice that we can treat the case of multiply connected domains by treating separately
each connected component. Then, the boundary Γ can be parametrized in terms of the curvilinear abscissa s as
s 	→ xΓ (s), s ∈ [0, L[, with |dxΓ (s)/ds| = 1, where L is the length of Γ . We assume that this parametrization
defines a clockwise orientation. Let n(s) be the unitary normal vector at xΓ (s) directed to the exterior of Ωi

and set τ (s) = dxΓ (s)/ds which is a unitary vector tangential to Γ at xΓ (s). The curvature c can be defined by

c(s) := τ (s) · dn(s)/ds.

Let ν0 := inf
0≤s≤L

1/|c(s)|. Then, for η < ν0,

∀x ∈ Ωη
m, ∃!(s, ν) ∈ [0, L[×]− η/2, η/2[, x = xΓ (s) + ν n(s). (3.1)

Notice that xΓ is the orthogonal projection of x on Γ . The couple (s, ν) will be referred to as curvilinear
(or parametric) coordinates of x ∈ Ωη

m (with respect to Γ ). Let u be a function defined on Ωη
m and let

ũ : [0, L[×]− η/2, η/2[ be defined by
ũ(s, ν) := u(x),

where x and (s, ν) satisfy equation (3.1). Then, we have

∇u(x) =
1

1 + νc
∂sũ τ + ∂ν ũn =

1
1 + νc

∇τ ũ+ ∂ν ũn (3.2)
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and for a tensor A such that Aτ = Aττ and An = Ann, we have

div
(
A∇u(x)

)
=

1
1 + νc

∂s

(
1

1 + νc
Aτ∂s ũ

)
+

1
1 + νc

∂ν ((1 + νc)An∂ν ũ)

=
1

1 + νc
divτ

(
1

1 + νc
Aτ∇τ ũ

)
+

1
1 + νc

∂ν ((1 + νc)An∂ν ũ) . (3.3)

3.2. Scaling and formal asymptotic expansion

In order to take into account the relatively small values of the diffusion tensor along the normal coordinate
we choose the scaling

σn
m = κ0 η (3.4)

while we assume that σe, σi and στ
m are independent from η. Physically, the condition (3.4) may be an appropri-

ate choice for dMRI modeling in the case of thin myelin layers and high b-values (at high b-values, permeability ef-
fects/water exchange become more prominent). We also scale the membrane Ωη

m with respect to η and transform
this domain into (the η independent domain) Γ×]−1/2, 1/2[ through the mapping x 	→ (xΓ (s), ν/η). Let us de-
note byM� the restriction ofM to the domainΩ� for � = e, i,m. We then define M̃m on Γ×]−1/2, 1/2[×[0,∞) as

M̃m(xΓ , ξ, t) := Mm(x, t)

with ξ := ν
η and x, xΓ and ν satisfy (3.1). Since the time plays only the role of a parameter in the process of

establishing membrane transmission condition, we shall omit indicating this variable in the notation. We first
observe

div (σm∇Mm) =
1

1 + ηξc
divτ

(
1

1 + ηξc
στ

m∇τM̃m

)
+

1
η2

1
1 + ηξc

∂ξ

(
(1 + ηξc)ηκ0∂ξM̃m

)
and also notice that

iq · x f(t)M = i(q · xΓ + qnηξ)f(t)M̃ .

Assuming that M̃m has the asymptotic expansion

M̃m(xΓ , ξ) =
∞∑

k=0

ηkMk
m(xΓ , ξ)

for some functions Mk
m defined on Γ×]−1/2, 1/2[, the Bloch−Torrey equation (multiplied by the factor (1+ηξ)3)

implies

∞∑
k=0

ηk

[
(1 + ηξ)3∂tM

k
m + (1 + ηξ)3i(q · xΓ + qnηξ)f(t)Mk

m − (1 + ηξ)divτ

(
στ

m∇τM
k
m

)
+ ηξστ

m∇τM
k
m∇τ c− κ0

η
(1 + ηξ)3∂2

ξξM
k
m − (1 + ηξ)2κ0c∂ξM

k
m

]
= 0.

Then, by formal identification of powers of η, we obtain in particular for the first two terms

κ0∂
2
ξξM

0
m = 0, (3.5)

κ0∂
2
ξξM

1
m = ∂tM

0
m + iq · xΓ f(t)M0

m − divτ

(
στ

m∇τM
0
m

)− κ0c∂ξM
0
m. (3.6)
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3.3. Derivation of ADTC

The expression of ADTC will be obtained from explicit expression of the solutions of (3.5) and (3.6) in terms
of ξ and using the continuity conditions (2.7) that can be written in terms of M̃m as

M̃m

(
xΓ ,−1

2

)
=Mi

(
xΓ − η

2
n
)
, M̃m

(
xΓ ,

1
2

)
= Me

(
xΓ +

η

2
n
)
,

κ0∂ξM̃m

(
xΓ ,−1

2

)
= σi∇Mi

(
xΓ − η

2
n
)
· n, κ0∂ξM̃m

(
xΓ ,

1
2

)
= σe∇Me

(
xΓ +

η

2
n
)
· n. (3.7)

In order to relate these boundary conditions to the asymptotic expansion of M̃m we postulate that for � = i, e

M� =
∞∑

k=0

ηkMk
�

where the functions Mk
� are defined on Ω� and satisfy the Bloch−Torrey equation in Ω�. We shall distinguish

two families of ATC according to the way we choose to match the three asymptotic expansions.

3.3.1. A first family of ADTC

A first family of ADTC is obtained by imposing the continuity conditions

Mk
m

(
xΓ ,−1

2

)
= Mk

i

(
xΓ − η

2
n
)
, Mk

m

(
xΓ ,

1
2

)
= Mk

e

(
xΓ +

η

2
n
)

(3.8)

and

κ0∂ξM
k
m

(
xΓ ,−1

2

)
= σi∇Mk

i

(
xΓ − η

2
n
)
· n, κ0∂ξM

k
m

(
xΓ ,

1
2

)
= σe∇Mk

e

(
xΓ +

η

2
n
)
· n (3.9)

for all k, which is obtained from (3.7) by formal identification of powers of η. We remark that in this way the
functions Mk

m depends also on η. Let us introduce the notations

l
〈
Mk
〉

η
(xΓ ) :=

Mk
e

(
xΓ +

η

2
n
)

+Mk
i

(
xΓ − η

2

)
2[

Mk
]
η
(xΓ ) :=Mk

e

(
xΓ +

η

2

)
−Mk

i

(
xΓ − η

2
n
)

(3.10)

and similar definitions for
〈
σ∇Mk · n〉

η
and
[
σ∇Mk · n]

η
. We shall first express Mk

m (for k = 0, 1) in terms
of
〈
Mk
〉

η
and
[
Mk
]
η

by solving with respect to ξ equations (3.5) and (3.6) using the two boundary conditions
in (3.8). We then obtain an interface condition by using the two boundary conditions in (3.9). We can already
remark that the obtained interface condition will not be a standard interface condition on Γ but will correspond
to a condition that couples the boundary values at ∂Ωη

e and ∂Ωη
i .

First order term. From (3.5) and the boundary conditions in (3.8) one readily sees that

M0
m =

〈
M0
〉

η
+ ξ
[
M0
]
η
. (3.11)

We then immediately get from (3.9)[
σ∇M0 · n]

η
= 0 and

〈
σ∇M0 · n〉

η
= κ0

[
M0
]
η
. (3.12)
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Second order term. From (3.5) and (3.8) and using the expression (3.11) one gets

M1
m(xΓ , ξ) = D0(xΓ ) +D1(xΓ )ξ +D2(xΓ )ξ2 +D3(xΓ )ξ3 (3.13)

where

D0(xΓ ) :=
〈
M1
〉

η
− 1

8κ0

(
(∂t + iq · xΓ f(t))

〈
M0
〉

η
− divτ

(
στ

m∇τ

〈
M0
〉

η

)
− κ0c

[
M0
]
η

)

D1(xΓ ) :=
[
M1
]
η
− 1

24κ0

(
(∂t + iq · xΓ f(t))

[
M0
]
η
− divτ

(
στ

m∇τ

[
M0
]
η

))
D2(xΓ ) :=

1
2κ0

(
(∂t + iq · xΓ f(t))

〈
M0
〉

η
− divτ

(
στ

m∇τ

〈
M0
〉

η

)
− κ0c

[
M0
]
η

)
D3(xΓ ) :=

1
6κ0

(
(∂t + iq · xΓ f(t))

[
M0
]
η
− divτ

(
στ

m∇τ

[
M0
]
η

))
.

We then conclude from (3.9)[
σ∇M1 · n]

η
=(∂t + iq · xΓ f(t))

〈
M0
〉

η
− divτ

(
στ

m∇τ

〈
M0
〉

η

)
− cκ0

[
M0
]
η〈

σ∇M1 · n〉
η

=κ0

[
M1
]
η

+
1
12

(∂t + iq · xΓ f(t))
[
M0
]
η
− 1

12
divτ

(
στ

m∇τ

[
M0
]
η

)
. (3.14)

A first ADTC of order two. According to the conditions (3.12) and (3.14) and since M� = M0
� +ηM1

� +O(η2)
for � = e, i, we obtain the following interface approximate conditions

[σ∇M · n]η = η
(
(∂t + iq · xΓ f(t)) 〈M〉η − divτ

(
στ

m∇τ 〈M〉η
)
− cκ0 [M ]η

)
+ O(η2)

〈σ∇M · n〉η =κ0 [M ]η +
η

12

(
(∂t + iq · xΓ f(t)) [M ]η − divτ

(
στ

m∇τ [M ]η
))

+ O(η2). (3.15)

A membrane transmission condition of order 2 with respect to η is then obtained from (3.15) by dropping
the O(η2) terms. However, it turns out that the obtained expression does not lead to a diffusion problem that
respect an energy identity similar to the original problem. This energy identity is important as it is supposed to
provide uniform stability with respect to η. This stability is the main ingredient that guarantee the convergence
rate at the consistency order (see, e.g., [10, 15, 16] for similar problems).

In order to obtain an expression of ADTC that respects an uniform stability with respect to η, we shall
replace the term ηκ0 [M ]η by η 〈σ∇M · n〉η in the first equation of (3.15) and add η

4 c [σ∇M · n]η to the left
hand side of the second equation (3.15). These substitutions, that have been suggested by the following energy
proof, indeed do not change the formal O(η2) order of the reminders. We therefore propose as second order
ADTC the following conditions⎧⎪⎨⎪⎩

[σ∇M · n]η + ηc 〈σ∇M · n〉η = η

(
(∂t + iq · xΓ f(t)) 〈M〉η − divτ

(
στ

m∇τ 〈M〉η
))

〈σ∇M · n〉η + η
4 c [σ∇M · n]η = κ0 [M ]η +

η

12

(
(∂t + iq · xΓ f(t)) [M ]η − divτ

(
στ

m∇τ [M ]η
))

.
(3.16)

Stability of ADTC (3.16). We shall outline the proof of an energy identity of the Bloch−Torrey equation

∂tM(x, t) + iq · x f(t)M(x, t) − div (σ(x)∇M(x, t)) = 0 in Ωη
i ∪Ωη

e × (0, T ) (3.17)

with the second order membrane transmission condition (3.16) on Γ . We only consider (for notation simplicity)
the case where the diffusion in the axons and the extra-cellular space is isotropic, that is σe = σeI and σi = σiI
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(where I denotes the identity). Using the variational formulation with the conjugate M of M as test function,
we obtain, denoting Ωη := Ωη

i ∪Ωη
e ,

1
2

d
dt

∫
Ωη

|M |2 +
∫

Ωη

σ |∇M |2 +
∫

Γ η
e

Re
(
(σe∇M e · n)M e

)− ∫
Γ η

i

Re
((
σi∇M i · n)M i

)
= 0,

where Re(z) denotes the real part of a complex number z. Using the changes of variables y = xΓ + η
2 n and

y = xΓ − η
2 n, we obtain the following equalities for a smooth enough function f (and small enough η)∫

∂Ωη
e

fds(y) =
∫

Γ

f̃
(
1 +

η

2
c
)

ds(x) and
∫

∂Ωη
i

fds(y) =
∫

Γ

f̃
(
1 − η

2
c
)

ds(x).

Hence, we obtain

1
2

d
dt

∫
Ωη

|M |2 +
∫

Ωη

σ |∇M |2 +
∫

Γ

Re
((

1 +
η

2
c
)

(σe∇M e · n)M e
)
−
∫

Γ

Re
((

1 − η

2
c
) (
σi∇M i · n)M i

)
= 0.

(3.18)
Using the fact that

aebe − aibi = (ae − ai)
(
be + bi

2

)
+ (be − bi)

(
ae + ai

2

)
,

we obtain

1
2

d
dt

∫
Ωη

|M |2 +
∫

Ωη

σ |∇M |2 +
∫

Γ

Re
((

[σ∇M · n]η + ηc 〈σ∇M · n〉η
) 〈
M
〉

η

)
+
∫

Γ

Re
((

〈σ∇M · n〉η +
η

4
c [σ∇M · n]η

) [
M
]
η

)
= 0. (3.19)

Using the ADTC (3.16), we end up with

1
2

d
dt

∫
Ωη

|M |2 +
∫

Ωη

σ |∇M |2 + κ0

∫
Γ

∣∣∣[M ]η
∣∣∣2

+ η

(
1
2

d
dt

∫
Γ

∣∣∣〈M〉η
∣∣∣2 +

∫
Γ

στ
m

∣∣∣〈∇τM〉η
∣∣∣2)+

η

12

(
1
2

d
dt

∫
Γ

∣∣∣[M ]η
∣∣∣2 +

∫
Γ

στ
m

∣∣∣[∇τM ]η
∣∣∣2) = 0. (3.20)

Finally, using this energy estimate, we obtain the following proposition:

Proposition 3.1. If σe = σeI and σi = σiI, then the energy estimate (3.20) holds. Moreover, if the ini-
tial data M(·, 0) = Minit belongs to H1(Ωη

� ), for � = i, e, then the Bloch−Torrey equation (3.17) with the
ADTC (3.16) admits a unique solution M� ∈ L2(0, T ; H1(Ωη

� )) ∩ C0(0, T ; L2(Ωη
� )) such that [M ]η and 〈M〉η

belong to L2(0, T ; H1(Γ )) ∩ C0(0, T ; L2(Γ )).

Proof. Let us denote by

H(Ωη) :=
{
ϕ ∈ H1(Ωη

i ∪Ωη
e ); [ϕ]η ∈ H1(Γ ) and 〈ϕ〉η ∈ H1(Γ )

}
.

Proceeding as above, we obtain the following variational formulation of problem (3.17)–(3.16): for all ϕ ∈ H(Ωη):∫
Ωη

∂tM ϕ+
∫

Ωη

iq · xM ϕ+
∫

Ωη

(σ∇M) · ∇ϕ+ κ0

∫
Γ

[M ]η [ϕ]η

+ η

∫
Γ

∂t 〈M〉η 〈ϕ〉η + η

∫
Γ

(
iq · xΓ 〈M〉η 〈ϕ〉η + στ

m∇τ 〈M〉η · ∇τ 〈ϕ〉η
)

+
η

12

∫
Γ

∂t [M ]η [ϕ]η +
η

12

∫
Γ

(
iq · xΓ [M ]η [ϕ]η + στ

m∇τ [M ]η · ∇τ [ϕ]η
)

= 0.
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This problem can be seen as a heat type equation for the triple (M, 〈M〉η , 〈ϕ〉η) by identifying the variational
space H(Ωη) with the space{

(ϕ, ψ, χ) ∈ H1(Ωη
i ∪Ωη

e ) × H1(Γ ) × H1(Γ ); [ϕ]η = ψ and 〈ϕ〉η = χ
}
.

We then conclude using the classical variational theory for evolution equations of Lions (see for instance [26],
Chap. 3, Thm. 4.1 and Rem. 4.3 or [25]). �

A conservation property for the ADTC (3.16). In dMRI, the measured signal corresponds to
∫

Ω
M and

the application of a diffusion-encoding magnetic field gradient (q �= 0) induces attenuation of this quantity
compared to the case q = 0 (no attenuation). It is therefore important to check that our approximate model
does not induce artificial attenuation when q = 0.

When q = 0, we easily obtain that∫
Ωη

e

∂tMe +
∫

Ωη
i

∂tMi +
∫

∂Ωη
e

σ∇Me n −
∫

∂Ωη
i

σ∇Mi n = 0.

Using the changes of variables y = xΓ + η
2 n and y = xΓ − η

2 n in the boundary integrals, we obtain∫
Ωη

e

∂tMe +
∫

Ωη
i

∂tMi +
∫

Γ

[σ∇M · n]η + η

∫
Γ

c 〈σ∇M · n〉η = 0.

Therefore, using ADTC (3.16), ∫
Ωη

e

∂tMe +
∫

Ωη
i

∂tMi +
∫

Γ

η ∂t 〈M〉η = 0.

In conclusion, we have the following mass conservation property, for all t > 0,∫
Ωη

e ∪Ωη
i

M(x, t) + η

∫
Γ

〈M(x, t)〉η =
∫

Ωη
e ∪Ωη

i

M(x, 0) + η

∫
Γ

〈M(x, 0)〉 . (3.21)

3.3.2. A second family of ADTC

We have to notice that the previous ADTC (3.16) has to be imposed numerically on each interface ∂Ωη
m∩∂Ωη

e

and ∂Ωη
m∩∂Ωη

i . However, in this case, we have to numerically manage a difficulty: the vertices on these interfaces
would have to be aligned. Given that making powerful finite element mesh generation tools is an active area of
research, this is a difficulty that may be resolved by choosing a good mesh generator. For example the mesh
generator “TetGen” [32] allows the specification of element vertices. To overcome this difficulty in another way,
we present here some additional computations based on Taylor expansion of Me and Mi in order to obtain new
ADTC imposed on the middle Γ of the membrane.

The second family of ADTC is obtained by using the previous postulate, for � = i, e,

M� =
∞∑

k=0

ηkMk
�

and by using Taylor expansions of Mk
� for all k, that is

Mk
�

(
xΓ +

η

2
n
)

= Mk
� (xΓ ) +

η

2
∇Mk

� (xΓ ) · n +
η2

4
∇2Mk

� (xΓ ) · n · n + O(η3)

Mk
�

(
xΓ − η

2
n
)

= Mk
� (xΓ ) − η

2
∇Mk

� (xΓ ) · n +
η2

4
∇2Mk

� (xΓ ) · n · n + O(η3).



TRANSMISSION CONDITION ACCOUNTING FOR DIFFUSION ANISOTROPY 1289

Hence, using the continuity conditions (3.7) and a formal identification of powers of η, we obtain (for k = 0, 1):

M0
m

(
xΓ ,−1

2

)
= M0

i (xΓ )

M0
m

(
xΓ ,

1
2

)
= M0

e (xΓ )

M1
m

(
xΓ ,−1

2

)
= M1

i (xΓ ) − 1
2
∇M0

i (xΓ ) · n

M1
m

(
xΓ ,

1
2

)
= M1

e (xΓ ) +
1
2
∇M0

e (xΓ ) · n (3.22)

and

κ0∂ξM
0
m

(
xΓ − 1

2

)
= σi∇M0

i (xΓ ) · n

κ0∂ξM
0
m

(
xΓ +

1
2

)
= σe∇M0

e (xΓ ) · n

κ0∂ξM
1
m

(
xΓ − 1

2

)
= σi∇M1

i (xΓ ) · n − 1
2
σi∇2M0

−(xΓ ) · n · n

κ0∂ξM
1
m

(
xΓ +

1
2

)
= σe∇M1

e (xΓ ) · n +
1
2
σe∇2M0

+(xΓ ) · n · n. (3.23)

We recall the notations

〈
Mk
〉
(xΓ ) :=

Mk
e (xΓ ) +Mk

i (xΓ )
2[

Mk
]
(xΓ ) :=Mk

e (xΓ ) −Mk
i (xΓ ). (3.24)

We then follow the same strategy than in the previous subsection: we first express Mk
m (for k = 0, 1) in terms of〈

Mk
〉

and
[
Mk
]

by solving with respect to ξ equations (3.5) and (3.6) using the previous boundary conditions
in (3.22). We then obtain an interface condition by using the boundary conditions (3.23).
First order term. From (3.5) and the boundary conditions in (3.22) one finds exactly the same conditions as
in Section 3.3.1:

M0
m =

〈
M0
〉

+ ξ
[
M0
]

(3.25)

and, from (3.23), [
σ∇M0 · n] = 0 and

〈
σ∇M0 · n〉 = κ0

[
M0
]
. (3.26)

Second order term. Proceeding as in Section 3.3.1, one gets from (3.5) and (3.22) and using the
expression (3.25),

M1
m(xΓ , ξ) = F0(xΓ ) + F1(xΓ )ξ + F2(xΓ )ξ2 + F3(xΓ )ξ3 (3.27)
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where

F0(xΓ ) :=
〈
M1
〉

+
1
4
[∇M0 · n]− 1

8κ0

(
(∂t + iq · xΓ f(t))

〈
M0
〉

−divτ

(
στ

m∇τ

〈
M0
〉)− κ0c

[
M0
])

F1(xΓ ) :=
[
M1
]
+
〈∇M0 · n〉− 1

24κ0

(
(∂t + iq · xΓ f(t))

[
M0
]− divτ

(
στ

m∇τ

[
M0
]))

F2(xΓ ) :=
1

2κ0

(
(∂t + iq · xΓ f(t))

〈
M0
〉− divτ

(
στ

m∇τ

〈
M0
〉)− κ0c

[
M0
])

F3(xΓ ) :=
1

6κ0

(
(∂t + iq · xΓ f(t))

[
M0
]− divτ

(
στ

m∇τ

[
M0
]))

.

One can notice that F2 = D2 and F3 = D3, where D2 and D3 are defined in (3.13).
We then conclude from (3.23)[

σ∇M1 · n]+ 〈σ∇2M0 · n · n〉 = (∂t + iq · xΓ f(t))
〈
M0
〉− divτ

(
στ

m∇τ

〈
M0
〉)− cκ0

[
M0
]

〈
σ∇M1 · n〉+

1
4
[
σ∇2M0 · n · n] =κ0

[
M1
]
+ κ0

〈∇M0 · n〉
+

1
12

(
(∂t + iq · xΓ f(t))

[
M0
]− divτ

(
στ

m∇τ

[
M0
]) )

. (3.28)

Moreover, we have on Γ , for � = i, e,

σ�∇2M0
� · n · n = ∂tM

0
� + iq · xΓ f(t)M0

� − divτ

(
σ�∇τM

0
�

)− cσ�∇M0
� · n.

Hence, using (3.26), we obtain[
σ∇M1 · n] = divτ

(〈
(σ − στ

mI)∇τM
0
〉)

〈
σ∇M1 · n〉 = κ0

[
M1
]
+ κ0

〈∇M0 · n〉− 1
6

(
(∂t + iq · xΓ f(t))

[
M0
]
+

1
2
divτ

(
στ

m∇τ

[
M0
]))

+
1
4
divτ

([
σ∇τM

0
])
.

In order to obtain an energy identity (see below), we rewrite these conditions as[
σ∇M1 · n] = divτ

(〈
(σ − στ

mI)∇τM
0
〉)

〈
σ∇M1 · n〉 = κ0

[
M1
]
+ κ0

〈∇M0 · n〉− 1
6

(
(∂t + iq · xΓ f(t))

[
M0
]

− divτ

(
στ

m∇τ

[
M0
]))

+
1
4
divτ

([
(σ − στ

mI)∇τM
0
])
. (3.29)

A second ADTC of order two. According to the conditions (3.26) and (3.29) and since M� = M0
� + ηM1

� +
O(η2) for � = e, i, we obtain the following interface approximate conditions

[σ∇M · n] = η divτ (〈(σ − στ
mI)∇τM〉) + O(η2)

〈σ∇M · n〉 = κ0 [M ] − η

6
P ([M ]) +

η

4
divτ ([(σ − στ

mI)∇τM ]) + O(η2), (3.30)

where
P ([M ]) := (∂t + iq · xΓ f(t)) [M ] − divτ (στ

m∇τ [M ]) .
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The ADTC resulting from (3.30) turns out to be unconditionally unstable (similarly to what observed
in [10, 15] for a different problem). In order to obtain a stable problem we shall replace the operator κ0 [M ]− η

6P
by a Padé approximation up to O(η2) terms (which is compatible with the ADTC order). More precisely, we
introduce an auxiliary unknown Ψ on Γ that satisfies(

1 +
η

6κ0
P

)
Ψ = [M ]

in such a way that

〈σ∇M · n〉 = κ0Ψ +
η

4
divτ ([(σ − στ

mI)∇τM ]) − 1
2
η2

62κ2
0

P (P (Ψ)) + O(η2).

By neglecting all O(η2) terms, we end up with a second order membrane transmission condition on Γ in the
following form:

[σ∇M · n] = η divτ (〈(σ − στ
mI)∇τM〉) ,

〈σ∇M · n〉 = κ0Ψ +
η

4
divτ ([(σ − στ

mI)∇τM ]) , (3.31)

where ⎧⎨⎩
(

1 +
η

6κ0
P

)
Ψ = [M ] ,

Ψ = 0 at t = 0.
(3.32)

Remark 3.2. We can note that, in the specific case where σe = σi = στ
mI, the second order ADTC has the

simple form
[σ∇M · n] = 0

〈σ∇M · n〉 = κ0Ψ.
(3.33)

where Ψ satisfies (3.32).

Stability of ADTC (3.31)–(3.32). Here again, for notation simplicity, we assume that σe = σeI and σi = σiI
in this paragraph. Then, proceeding similarly to Section 3.3.1 (notice that here the volumetric equations are
valid in Ωi ∪Ωe), we obtain

1
2

d
dt

∫
Ω

|M |2 +
∫

Ω

σ |∇M |2 − η

∫
Γ

Re
(〈(σ − στ

m)∇τM〉 · 〈∇τM
〉)

+ κ0

∫
Γ

|Ψ |2

+
η

6
1
2

d
dt

∫
Γ

|Ψ |2 +
η

6

∫
Γ

στ
m |∇τΨ |2 − η

4

∫
Γ

Re
(
[(σ − στ

m)∇τM ] · [∇τM
])

= 0.

Hence, using the fact that

aebe + aibi = 2
(
ae + ai

2

)(
be + bi

2

)
+

1
2
(ae − ai)(be − bi)

aebe − aibi = (ae − ai)
(
be + bi

2

)
+
(
ae + ai

2

)
(be − bi),

we have ∫
Γ

〈(σ − στ
m)∇τM〉 · 〈∇τM

〉
=
∫

Γ

〈σ − στ
m〉 |〈∇τM〉|2 +

1
4

∫
Γ

[σ − στ
m] [∇τM ] · 〈∇τM

〉
∫

Γ

[(σ − στ
m)∇τM ] · [∇τM

]
=
∫

Γ

[σ − στ
m] 〈∇τM〉 · [∇τM

]
+
∫

Γ

〈σ − στ
m〉 |[∇τM ]|2
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and then, we obtain

1
2

d
dt

∫
Ω

|M |2 +
∫

Ω

σ |∇M |2 + κ0

∫
Γ

|Ψ |2 +
η

12
d
dt

∫
Γ

|Ψ |2 +
η

6

∫
Γ

στ
m |∇τΨ |2

+ η

∫
Γ

〈στ
m − σ〉 |〈∇τM〉|2 +

η

4

∫
Γ

〈στ
m − σ〉 |[∇τM ]|2 − η

2

∫
Γ

Re
(
[σ] [∇τM ] · 〈∇τM

〉)
= 0. (3.34)

Therefore, the stability is guaranteed as soon as the positivity of the terms in the second line of the above
identity is ensured. This holds if

〈στ
m − σ〉 ≥ 0 and 4 〈στ

m − σ〉2 − [σ]2 ≥ 0. (3.35)

Remark 3.3. We can notice that the stability is ensured if σe = σi = στ
m. We also notice that in the case

σe = σi = σ the stability requires στ
m ≥ σ, which is compatible with the observations in [10] for the case of the

wave equation.

Let us set
H(Ω) :=

{
ϕ ∈ H1(Ωi ∪Ωe); [ϕ] ∈ H1(Γ ) and 〈ϕ〉 ∈ H1(Γ )

}
.

Then, we obtain the following proposition (proceeding in a similar manner as in the proof of Prop. 3.1):

Proposition 3.4. If σe = σeI and σi = σiI, then the energy estimate (3.34) holds. Moreover, if the condi-
tions (3.35) hold and if the initial data M(·, 0) = Minit belongs to L2(Ω), then the Bloch−Torrey equation (3.17)
with the ADTC (3.31)–(3.32) admits a unique solution (M,Ψ) ∈ L2(0, T ; H(Ω)) × L2(0, T ; H1(Γ )) such that
(M,Ψ) ∈ C0(0, T ; L2(Ω)) × C0(0, T ; L2(Γ )).

A conservation property for the ADTC (3.31)–(3.32). Let us check again that our approximate model
does not induce artificial attenuation in the case q = 0. Indeed if q = 0,∫

Ωe

∂tMe +
∫

Ωi

∂tMi +
∫

∂Ωe

σ∇Me · n −
∫

∂Ωi

σ∇Mi · n = 0.

According to the new ADTC (3.31)–(3.32), [σ∇M · n] = η divτ (〈(σ − στ
mI)∇τM〉). We therefore immediately

obtain by integration by parts on Γ ∫
Ωe

∂tMe +
∫

Ωi

∂tMi = 0.

In conclusion, for all t > 0, ∫
Ωe∪Ωi

M(x, t) =
∫

Ωe∪Ωi

M(x, 0). (3.36)

4. Numerical validation

We numerically solve three models of the dMRI signal in the presence of thin layers:

(1) The original three-compartment model where Ωη
i , Ωη

m, Ωη
e are linked by the interface conditions on Γ η

i and
Γ η

e (see Eq. (2.7));
(2) The classical asymptotic two-compartment model where Ωe and Ωi are linked by the Isotropic Diffusion

Transmission Condition (IDTC, see Eq. (2.10));
(3) The new asymptotic two-compartment model where Ωe and Ωi are linked by the Anisotropic Diffusion

Transmission Condition (ADTC, see Eqs. (3.31)–(3.32)).
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(a) (b)

Figure 3. The three-compartment model (left) and the corresponding two-compartment model
(right) for an irregular shaped axon.

We compute the dMRI signal associated with each of the three models. We compare the accuracy of the two
asymptotic models in approximating the dMRI signal of the original three-compartment model as η → 0. We
note here that to implement the “ADTC”, at each time step, we solve equation (3.32) on the interface (in
d − 1 dimension) with given jump [M ] to obtain Ψ . Then, we solve the Bloch−Torrey equation (2.1) with the
Neumann boundary conditions (3.31) (in d dimensions).

The simulations were performed in d = 2 dimensions and the numerical method proposed in [28] was used and
modified to solve the PDEs, where linear finite elements are coupled with the explicit Runge−Kutta Chebyshev
(RKC) time stepping (see, e.g., [33,36]). The numerical code is implemented on FEniCS C++ platform and we
used Salome 6.6.0 to generate finite element meshes. All simulations were performed on a Lenovo workstation
(Intel(R) Xeon(R) CPU X3430@2.40GB), running the program as a serial code on Linux Ubuntu 10.04 LTS.

The computational domain C is chosen to be [−5 μm, 5 μm]2, containing an irregularly shaped axon. The
thickness of the myelin sheath, η, is varied between 0.1 μm and 1.5 μm. We set the maximum finite element
diameter to 0.05 μm. The absolute tolerance 10−12 and relative tolerance 10−10 were set for the iterative linear
solver GMRES, and the absolute and relative tolerance used for the RKC time stepping was 10−8. We define Γ
as the curve smoothly interpolated from 11 points in the xy-plane:

v1 = (4, 0.1), v2 = (4, 0.2), v3 = (4, 0.3), v4 = (4, 0.4), v5 = (2.3196, 2.3883),

v6 = (−0.26237, 2.0646), v7 = (−2.4999, 1.5231), v8 = (−3.8547,−1.4071),

v9 = (−1.1845,−3.5318), v10 = (1.2217,−1.8909), v11 = (4,−0.33238).

Tangential and normal directions can be defined for each point of Γ . The myelin layer is defined by going from
Γ along the inward and outward normal directions a distance of η/2 (see Fig. 3).

The diffusion in the axons and the extra-cellular space is supposed to be isotropic. The same intrinsic diffusion
coefficient σi = σe = 3×10−3 mm2/s is set for both compartments. Diffusion inside the layer is anisotropic with
the tangential diffusion coefficient στ

m = 3 × 10−3 mm2/s and transverse diffusion coefficient σn
m. We simulated

two different values of κ0 and varied the thickness η between 0.1 μm and 1.5 μm for each value of κ0. The
transverse diffusion coefficient σn

m is then computed from κ0 and η by equation (3.4).
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(a) (b)

(c) (d)

Figure 4. The signal of the new two compartment model with ADTC quadratically converges
to that of the corresponding three-compartment model whereas the two compartment model
with IDTC only gives the first order convergence. This result is shown at δ = Δ = 10 ms
and b = 15 000 s/mm2 (‖q‖ ≈ 4.74 mm−1 s−1), for two different permeabilities κ0 = 10−5 m/s
(Fig. 4a and κ0 = 10−6 m/s (Fig. 4b). For δ = Δ = 2 ms, κ0 = 10−5 m/s, the quadratic
convergence using ADTC and first order convergence using IDTC are shown for two b−values,
1000 s/mm2 (Fig. 4c) and 2000 s/mm2 (Fig. 4d).

The diffusion-encoding sequence is PGSE (see Eq. (2.2)), the gradient direction is
q

‖q‖ =
[1, 1]√

2
. The uniform

distribution of water protons is used for the initial condition:

M(x, 0) = 1. (4.1)

Reflecting boundary conditions are applied for the exterior boundaries of the computational domain C:

σ∇M · n = 0 on ∂C. (4.2)

First, we fix δ = Δ = 10 ms and b = 15 000 s/mm2 (‖q‖ ≈ 4.74 mm−1 s−1), and simulated κ0 = 10−5 m/s
(Fig. 4a) and κ0 = 10−6 m/s (Fig. 4b). As expected, the signal of the two-compartment model with the ADTC
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converges quadratically to that of the corresponding three-compartment model whereas the two-compartment
model with the IDTC only has first order convergence. Similarly, at δ = Δ = 2 ms, κ0 = 10−5 m/s, we simulated
two b−values, 1000 s/mm2 (Fig. 4c) and 2000 s/mm2 (Fig. 4d), and we can see that quadratic convergence is
obtained using ADTC whereas the convergence is first order for IDTC. There appears to be a phenomenon of
more rapid convergence than predicted by the theory as eta goes to 0 (as evidenced by a fit of 2.1 to 2.3 in
the convergence order in Figs. 4b−4d). The reasons of this phenomenon is probably due to the fact that our
“exact” solution is not computed with sufficient accuracy since the used mesh is not sufficiently fine (resulting
in a positive cancellation).

5. Conclusions

In this paper, we derived and validated a new transmission condition that accounts for anisotropic diffusion
in thin layers. We showed theoretically that this condition is second order accurate in the layer thickness,
whereas a more classical transmission condition is only first order accurate. The numerical simulations that we
presented validate these results and show that our new model gives a better approximation of the dMRI signal
than a simple transmission condition. We illustrated these transmission conditions in application to diffusion
MRI where the diffusion inside the myelin sheath surrounding axons is smaller in the normal direction than the
tangential direction.

The ADTC that we propose here simplifies the numerical solution of the dMRI model (i.e. solving the
Bloch−Torrey equation at a microscopic scale) by removing the need to discretize the myelin sheath, which
results in a computational saving that may be significant in three dimensions when simulating arbitrarily
oriented white matter fibers.

Appendix A. Justification of the asymptotic model of Section 3.3.2

We sketch here the proof of convergence for transmission problems established in previous sections which is
somewhat technical but rather standard. We refer to [10, 15, 16] for the investigation of more complex config-
urations. Our case is easier since one can rely on energy estimates to prove convergence results. The plan is
the following. Firstly we establish error estimate between the exact solution of the problem and the truncated
asymptotic expansion. Secondly we establish that, for the asymptotic model, an asymptotic expansion exists
and provide error estimate with respect to truncated asymptotic expansions. Comparing the two asymptotic
expansions, one observes that they match up to the order of consistency of the effective model. This provides,
using a triangular inequality, the desired error estimate. We shall develop this only for the effective model of
Section 3.3.2 which is the hardest case.

In the following, 0 < T <∞ is a fixed time and C denotes a generic constant that may have different values but
is independent from the small parameter η if the latter is taken sufficiently small. In the following, we assume
that M0 is a C∞ function on Ω and that Γ is a C∞ boundary. We also prescribe a homogeneous Dirichlet
boundary condition on ∂Ω (other type of boundary conditions such as Neumann or Fourier homogeneous
boundary conditions do not change the subsequent analysis).

A.1. Error estimate between the exact solution and its truncated asymptotic expansion

The formal identification of the asymptotic expansion terms allows the definition (by induction) of M j
� ,

� = i, e, and M̃ j
m as smooth functions in time and space in respectively Ω� and ] − 1/2, 1/2[×Γ . This technical

step can be checked without any difficulty. Let us define the truncated series, for � = i, e,m,

Mk
� (x, t) =

k∑
j =0

ηjM j
� (x, t) x ∈ Ωη

�
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where M j
m(x, t) = M̃ j

m(xΓ , ν/η, t) (see Sect. 3.2). Let us set ek
� := M −Mk

� in Ωη
� for � = i, e,m. Indeed, from

the formal expansion, one obtain, for � = e, i,

∂ek
� (x, t)
∂t

+ iq · xf(t)ek
� (x, t) − div

(
σ(x)∇ek

� (x, t)
)

= 0 in Ωη
� , (A.1)

while
∂ek

m(x, t)
∂t

+ iq · xf(t)ek
m(x, t) − div

(
σ(x)∇ek

m(x, t)
)

= ηkJη
� in Ωη

m, (A.2)

with zero initial data and boundary data on ∂Ω, where Jη
� as well as its time derivatives (that can be expressed

in terms of M̃ j
m, j ≤ k) are bounded function in time and space uniformly with respect to η. Moreover, the

jump conditions are such that, for � = i, e,

ek
m − ek

� = ηk+1θη
� on Γ η

� (A.3)
σm∇ek

m · n− σ�∇ek
� · n = ηk+1βη

� on Γ η
� (A.4)

where again θη
� and βη

� as well as their time derivatives are bounded in time and space uniformly with respect
to η.

Then the main ingredients in deriving error estimates are the use of classical energy (stability) estimates for
the heat equation, a Gronwall lemma type estimate and the following lemma.

Lemma A.1. There exists a constant C independent from η such that, for � = i, e,

‖v‖H1/2(Γ η
� ) ≤ Cη−1/2‖v‖H1(Ωη

m) ∀ v ∈ H1(Ωη
m) (A.5)

and
‖v · n‖H−1/2(Γ η

� ) ≤ Cη−1/2
(‖v‖L2(Ωη

m) + ‖divv‖L2(Ωη
m)

) ∀v ∈ H(div, Ωη
m). (A.6)

Proof. Consider ṽ defined on ] − 1/2, 1/2[×Γ from v ∈ H1(Ωη
m) using the change of variable (see (3.1))

x 	→ (ξ,xΓ ) ; x = xΓ (s) + ηξn(s).

The first claim directly follows from the classical trace estimate

‖ṽ(±1/2, ·)‖H1/2(Γ ) ≤ C‖ṽ‖H1(]−1/2,1/2[×Γ )

and the change of variable.
Consider � = i or � = e and v ∈ H(div, Ωη

m). Let ϕ ∈ H1/2(Γ η
� ) and extend ϕ by 0 to the other part of the

boundary of Ωη
m. Using the same technique as before, we also get the existence of a lifting R(ϕ) ∈ H1(Ωη

m),
such that

‖R(ϕ)‖H1(Ωη
m) ≤ Cη−1/2‖ϕ‖H1/2(Γ η

� ).

The second claim of the lemma then follows from the identity

〈v · n, ϕ〉 =
∫

Ωη
m

(v · ∇R(ϕ) −R(ϕ)div v)

and the definition of H−1/2(Γ η
� ) by duality. �

Let us recall that by Ω := Ωη
e ∪Ωη

i ∪Ωη
m. We are now in position to prove the first error estimate.
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Theorem A.2. For k ≥ 2, there exists a constant C independent from η such that

‖ek‖H1(0,T ;L2(Ω)) +

(∫ T

0

∫
Ω

σ∇ek(x, t) · ∇ek(x, t)

)1/2

≤ Cηk

for sufficiently small η.

Proof. Let us denote by

E1(t) :=
1
2

∫
Ω

|ek(x, t)|2 dx +
∫ t

0

∫
Ω

σ∇ek(x, τ) · ∇ek(x, τ) dxdτ

and

E2(t) :=
1
2

∫
Ω

σ∇ek(x, t) · ∇ek(x, t) dx +
∫ t

0

∫
Ω

∣∣∣∣∂ek(x, τ)
∂t

∣∣∣∣2 dxdτ.

The first energy identity of the heat equation (obtained by multiplying the equations by ek then integrating by
parts and integrating in time) applied to (A.1)−(A.4) implies

E1(t) ≤ Cηk

((∫ t

0

E1(τ)dτ
)1/2

+ η

(∫ t

0

∥∥〈ek
〉
(τ)
∥∥2

H1/2(∂Ωη
m)

dτ
)1/2

+η
(∫ t

0

∥∥〈σ∇ek · n〉 (τ)∥∥2
H−1/2(∂Ωη

m)
dτ
)1/2

)
. (A.7)

The second energy identity of the heat equation (obtained by multiplying the equations by the time derivative
of ek then integrating by parts in space and taking the integral in time, where integration by parts in time is
performed for one of the boundary terms) applied to (A.1)−(A.4) implies

E2(t) ≤C

(∫ t

0

E1(τ)dτ
)1/2√

E2(t) + Cηk

(√
E2(t) + η

(∫ t

0

∥∥〈ek
〉
(τ)
∥∥2

H1/2(∂Ωη
m)

dτ
)1/2

+η
(∫ t

0

∥∥〈σ∇ek · n〉 (τ)∥∥2
H−1/2(∂Ωη

m)
dτ
)1/2

+ η
∥∥〈ek
〉
(t)
∥∥

H1/2(∂Ωη
m)

)
. (A.8)

From Lemma A.1, and since σ is proportional to η in Ωη
m, we get∥∥〈ek

〉
(t)
∥∥2

H1/2(∂Ωη
m)

≤ C
(
η−2E2(t) + η−1E1(t)

)
(A.9)

and ∫ t

0

∥∥〈ek
〉
(τ)
∥∥2

H1/2(∂Ωη
m)

dτ ≤ C

(
η−2E1(t) + η−1

∫ t

0

E1(t)
)
. (A.10)

On the other hand, from (A.1) and (A.2), we obtain∫ t

0

‖div
(
σ∇ek

)
(τ)‖2

L2(Ω)dτ ≤ C

(
E2(t) +

∫ t

0

E1(τ)dτ + η2k

)
.

From Lemma A.1 we then deduce∫ t

0

∥∥〈σ∇ek · n〉 (τ)∥∥2
H−1/2(∂Ωη

m)
dτ ≤ Cη−1

(
E2(t) + E1(t) +

∫ t

0

E1(τ)dτ + η2k

)
. (A.11)
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After inserting (A.9), (A.10) and (A.11) into (A.7) and (A.8), one deduces that

E1(t) ≤ Cηk

((∫ t

0

E1(τ)dτ
)1/2

+
√
E2(t) +

√
E1(t) + ηk

)
(A.12)

and

E2(t) ≤ C

(∫ t

0

E1(τ)dτ
)1/2√

E2(t) + Cηk

((∫ t

0

E1(τ)dτ
)1/2

+
√
E2(t) +

√
E1(t) + ηk

)
. (A.13)

Setting

Ẽ1(t) :=
∫ t

0

E1(τ)dτ and Ẽ2(t) :=
∫ t

0

E2(τ)dτ,

we respectively get, after integrating (A.12) and (A.13) between 0 and t and using the fact that
∫ t

0

Ẽ1(τ)1/2dτ ≤
t Ẽ1(t)1/2,

Ẽ1(t) ≤ Cηk

(√
Ẽ2(t) +

√
Ẽ1(t) + ηk

)
and

Ẽ2(t) ≤ C

√
Ẽ1(t)

√
Ẽ2(t) + Cηk

(√
Ẽ2(t) +

√
Ẽ1(t) + ηk

)
.

We then deduce that √
Ẽ1(t) +

√
Ẽ2(t) ≤ Cηk.

Plugging this estimate in (A.12) and (A.13) to bound
√
Ẽ1(t) we then also deduce that√

E1(t) +
√
E2(t) ≤ Cηk

which yields the desired estimate. �

A.2. Error estimate between the approximated solution and its truncated asymptotic
expansion

Let us now consider the solution of the asymptotic problem that we shall denote with a wide hat (in order
to distinguish this solution from the solution of the original problem). The solutions M̂ and Ψ satisfy

∂M̂(x, t)
∂t

+ iq · xf(t)M̂(x, t) − div
(
σ(x)∇M̂ (x, t)

)
= 0

inΩi∪Ωe together with the same initial conditions as the original solution and the jump conditions (3.31)−(3.32).
For simplicity we shall assume that σe = σeI and σi = σiI. Then, using the stability estimate (3.34) of the

approximate problem, we shall prove that this problem admits an asymptotic expansion of the form (for � = i, e)

M̂(x, t) =
∞∑

j = 0

ηjM̂ j
� (x, t), x ∈ Ω� (A.14)

and

Ψ =
∞∑

j =0

ηjΨ j
� (x, t), x ∈ Γ. (A.15)
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Indeed the insertion of these ansatz into the equations of the asymptotic problem and formal identification of
the same powers in η allow the identification of the set of equations satisfied by M̂ j

� and Ψ j
� . These equations

are inductive and allow the definition of these terms as regular functions independent from η. It is very easy to
observe that M̂ j

� verifies the same set of equations as M j
� for � = i, e and k = 0, 1. We then conclude

M̂0
� = M0

� and M̂1
� = M1

� . (A.16)

Consider now the truncated series, for � = i, e,

M̂k
� (x, t) =

k∑
j =0

ηjM̂ j
� (x, t), x ∈ Ωη

� ,

and

Ψk(x, t) =
k∑

j =0

ηjΨ j(x, t), x ∈ Γ.

Let us set êk
� := M̂� − M̂k

� in Ωη
� for � = i, e and ψk := Ψ − Ψk on Γ . From the formal expansion one can check

that, for � = e, i and k ≥ 2,

∂êk
� (x, t)
∂t

+ iq · xf(t)êk
� (x, t) − div

(
σ(x)∇êk

� (x, t)
)

= 0 in Ω�, (A.17)

with zero initial data and boundary data on ∂Ω and on Γ⎧⎨⎩
[
σ∇êk · n] = η divτ (〈(σ − στ

mI)∇τ ê〉) + ηk+1θη
1 ,〈

σ∇êk · n〉 = κ0ψ
k +

η

4
divτ

([
(σ − στ

mI)∇τ ê
k
])

+ ηk+1θη
2 ,

(A.18)

⎧⎨⎩
(

1 +
η

6κ0
P

)
ψk =

[
êk
]
+ ηk+1θη

3 ,

ψk = 0 at t = 0,
(A.19)

hold for some boundary terms θη
i that are regular and uniformly bounded with respect to η as well as their time

derivatives.

Theorem A.3. Assume that (3.35) is verified, then, for k ≥ 0, there exists a constant C independent from η
such that

‖êk‖L2(0,T ;H1(Ω\Γ )) ≤ Cηk+1

for sufficiently small η.

Proof. Let us consider the energy

E(t) :=
1
2

∫
Ω

∣∣êk
∣∣2 +

∫ t

0

∫
Ω

σ
∣∣∇êk

∣∣2 + κ0

∫ t

0

∫
Γ

∣∣ψk
∣∣2 +

η

12

∫
Γ

∣∣ψk
∣∣2 +

η

6

∫ t

0

∫
Γ

στ
m

∣∣∇τψ
k
∣∣2

+ η

∫ t

0

∫
Γ

〈στ
m − σ〉 ∣∣〈∇τ ê

k
〉∣∣2 +

η

4

∫ t

0

∫
Γ

〈στ
m − σ〉 ∣∣[∇τ ê

k
]∣∣2

− η

2

∫ t

0

∫
Γ

Re
(
[σ]
[∇τ ê

k
] · 〈∇τ êk

〉)
.
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Then, using the same calculations as those for establishing (3.34), we get from (A.17)–(A.19)

dE
dt

(t) = Re

(∫
Γ

ηk+1
(
θη
1

[
êk
]

+ θη
2

〈
êk
〉

+ θη
3ψ

k
))

,

where Re(z) denotes the real part of a complex number z. Moreover, since (3.35) holds, then∫ t

0

‖êk(τ)‖2
H1(Ω\Γ ) + ‖ψk(τ)‖2

L2(Γ )dτ ≤ C

(∫ t

0

E(τ)dτ + E(t)
)
.

We then deduce, from trace theorems that,

E(t) ≤ Cηk+1

((∫ t

0

E(τ)dτ
)1/2

+
√
E(t)

)
.

We finally conclude, using similar arguments as at the end of the proof of Theorem A.2, that for sufficiently
small η that √

E(t) ≤ Cηk+1

which allows us to finish the proof of the theorem (using that (3.35) is verified). �

A.3. Error estimate between the exact solution and the approximated solution

We are now in position to state the final convergence theorem.

Theorem A.4. Assume that (3.35) is verified, then for sufficiently small η,∥∥∥M − M̂
∥∥∥

L2(0,T ;H1(Ωe∪Ωi))
≤ Cη2.

Proof. Using Theorem A.2 with k = 2 we indeed deduce, using the triangular inequality, that∥∥M� −M0
� + ηM1

�

∥∥
L2(0,T ;H1(Ωη

� ))
≤ Cη2

for � = i, e. We then easily conclude using Theorem A.3 with k = 1 and (A.16). �
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