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Abstract. The purpose of this work is to investigate the behavior of Multiscale Finite Element type
methods for advection-diffusion problems in the advection-dominated regime. We present, study and
compare various options to address the issue of the simultaneous presence of both heterogeneity of
scales and strong advection. Classical MsFEM methods are compared with adjusted MsFEM methods,
stabilized versions of the methods, and a splitting method that treats the multiscale diffusion and the
strong advection separately.
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1. Introduction

We consider in this work an advection-diffusion equation that has both a multiscale character (encoded in
an highly oscillatory diffusion coefficient) and a dominating advection. Formally, the equation reads as

´div pAε∇uεq ` b ¨ ∇uε “ f in Ω, uε “ 0 on BΩ. (1.1)

Our self-explanatory notation will be made precise in the sequel, along with the mathematical setting that
allows to rigorously consider this equation. Our purpose is to investigate whether numerical methods dedicated
to the treatment of multiscale phenomena, such as Multiscale Finite Element Methods (henceforth abbrevi-
ated as MsFEM) and methods specifically designed to address the dominating advection, such as Streamline-
Upwind/Petrov-Galerkin (SUPG) type methods, can separately adequately address the twofold problem, or, if
need be, to discover how these methods may be combined to form the best possible approach in various regimes.

Equation (1.1) is practically relevant and interesting per se. Our study of this particular equation is nev-
ertheless rather to be seen as a step toward the study of the following much more relevant case, which will
be performed in an upcoming work [23]: an (single-scale) advection-diffusion equation, with a dominating ad-
vection term, posed on a perforated domain (in that vein, see [7]). In a previous, somewhat related couple of
studies [19, 20], we have used with much benefit the highly oscillatory case as a test-bed for designing and
studying approaches subsequently used for the more challenging perforated case.
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Methods of the MsFEM type have proved efficient in a number of contexts. In essence, they are based upon
choosing, as specific finite dimensional basis to expand the numerical solution upon, a set of functions that
themselves are solutions to a highly oscillatory local problem, at scale ε, involving the differential operator
present in the original equation. This problem-dependent basis set is likely to better encode the fine-scale
oscillations of the solution and therefore allow to capture the solution more accurately. Numerical observation
along with mathematical arguments prove that this is indeed generically the case. For the specific advection-
diffusion equation (1.1) we consider here, two natural options for the construction of the basis set are (i) to pick
as basis functions solutions to the (multiscale) diffusion operator only, or (ii) to also involve in the definition
of the functions the advection operator. These two approaches will be among the set of approaches considered
and tested below. In the former option, when the basis functions do not involve the advection operator, one
may fear that, in the presence of advection, and especially in the presence of a strong advection that dominates
the diffusion – a regime we focus on throughout this work –, the accuracy of the classical MsFEM dramatically
deteriorates. This is for instance the case, “when ε “ 1”, for classical P

1 finite element methods. Stabilization
procedures are then in order and we will indeed adapt such a procedure to the present multiscale context. On the
other hand, in the latter option, it is unclear whether the presence of the advection term also for the definition
of the basis functions allows, or not, for the method to also perform well in the advection-dominated regime.
This will be investigated below. However well such an approach performs, the fact that the advection is involved
in the definition of the finite elements might create issues, and be prohibitively expensive computationally, when
the advection varies and the equation needs to be solved repeatedly, either because the present steady state
setting of (1.1) is in fact a time iteration within the numerical simulation of a time-dependent equation, or
because equation (1.1) is part of an optimization, or inverse problem. Also, inserting the advection term in
the definition of the basis functions is a very invasive implementation, which might be problematic in some
contexts. Both observations are sufficient motivations to also consider a splitting method, separately addressing
the multiscale character with a classical MsFEM approach for the solution of the diffusion operator, and solving
a single-scale advection-dominated advection-diffusion equation with a stabilized P

1 method.
The four MsFEM-type approaches we have just mentioned (classical – that is, with basis functions constructed

from diffusion only –, classical and stabilized, advection-diffusion based, splitting the advection and the mul-
tiscale character) will be studied and compared. For reference, we will also use a P

1 finite element method,
stabilized or not, in particular to investigate when the multiscale nature of the problem and the domination of
the advection matter, or not.

In the context of HMM-type methods, multiscale advection-diffusion problems with dominating advection
have been considered e.g. in [1].

Our article is organized as follows. Section 2 briefly recalls, essentially for the sake of self-consistency, some
basic, classical and well-known facts on the building blocks (stabilization, multiscale approaches) we use, and
describes in more details the numerical approaches we consider. We next provide, in Section 3, a complete
numerical analysis of the approaches in the one-dimensional setting. We are unfortunately unable to conduct
the same analysis in higher dimensions, but some of the issues we raise and discuss in the one-dimensional
context are definitely useful to understand the approaches in a more general context. In particular, we point
out that the direct application of an SUPG stabilization on MsFEM leads to an approach that is not strongly
consistent (in sharp contrast to its single-scale, say P

1 version), because the basis functions are not known
analytically but only up to the numerical error present in the offline precomputation. We provide a solution
to that difficulty. We show that, in spite of a lack of consistency, the method we design can be certified (and
numerical observation will later show it performs efficiently). We also devote some time to the detailed study,
in any dimension, of the convergence of the splitting approach.

Our final Section 4 presents a comprehensive series of numerical tests and comparisons. An executive summary
of our main conclusions is as follows:

(i) the best possible approach among all those we consider is the stabilized version of MsFEM, unless one does
not want to be intrusive in which case the splitting approach performs approximately equally well, for an
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online computational cost that might be significantly larger, especially for problems of large size for which
iterative solvers have to employed;

(ii) the method using basis functions built upon the full advection-diffusion operator is not sufficiently stable
to perform well in the advection-dominated regime;

(iii) when advection outrageously dominates diffusion, the multiscale character of the solution (at least in the
bulk of the domain) is essentially overshadowed by the advection, and a “classical” stabilized P

1 finite
element method performs as well as a MsFEM-type approach, a somewhat intuitive fact that our study
allows to confirm.

Further details on the approaches considered are given in the body of the text.

2. Description of the numerical approaches

We describe in Section 2.1 the standard numerical tools we use throughout this work. We next present in
Section 2.2 the four numerical methods we study.

2.1. Building blocks

In this section, we briefly recall for convenience some classical elements on the two building blocks we make use
of to construct the approaches we study, namely stabilization methods (more specifically, SUPG type methods)
and Multiscale Finite Element Methods (MsFEM). The reader already familiar with these notions may easily
skip the present section and directly proceed to Section 2.2.

2.1.1. Stabilized methods

We temporarily consider the single-scale advection-diffusion problem

´αΔu` b ¨ ∇u “ f in Ω, u “ 0 on BΩ, (2.1)

where Ω is a smooth bounded domain of R
d, α ą 0, b P pL8pΩqqd and f P L2pΩq. We suppose that

div b “ 0 in Ω, (2.2)

so that problem (2.1) is coercive and amenable to standard numerical analysis techniques for coercive problems.
We shall discuss the case of non-coercive problems in Remark 2.1 below.

Let TH be a uniform regular mesh of size H discretizing Ω, and let VH be the classical P
1 Finite Element

space associated to this mesh. The classical Galerkin approximation of (2.1) reads as the following variational
formulation:

Find uH P VH such that, for any vH P VH , apuH , vHq “ F pvHq, (2.3)

where
apu, vq “

�
Ω

α∇u ¨ ∇v ` pb ¨ ∇uqv, F pvq “
�

Ω

fv. (2.4)

Since the solution u to (2.1) is in H2pΩq, we have the following error estimate as a direct consequence of Céa’s
lemma:

}u´ uH}H1pΩq ď CHp1 ` PeHq }u}H2pΩq, (2.5)

where C is independent of H and b. We have introduced, as is classical, the global Péclet number

Pe “
}b}L8pΩq

2α
(2.6)



854 C. LE BRIS ET AL.

of problem (2.1). We thus see that the larger the product PeH , the larger the potential numerical error. In-
tuitively, the problem becomes less and less coercive as advection increasingly dominates over diffusion and,
eventually, the coercivity is lost ([10], Sect. 3.5.2) when Pe goes to `8. As is well-known, the Péclet num-
ber directly affects the quality of the numerical results. With the standard P

1 finite element approximation,
oscillations polluting the solution are observed.

Stabilization is a classical subject of numerical analysis. Many works (see e.g. [15] and the textbooks [27, 28])
have been devoted to designing stabilized methods for the advection-dominated regime. They consist in consid-
ering the following problem:

Find us
H P VH such that, for any vH P VH , apus

H , vHq ` astabpus
H , vHq “ F pvHq ` FstabpvHq, (2.7)

where a and F are defined by (2.4) and astab and Fstab are defined by

astabpus
H , vHq “

ÿ
K P TH

ˆ
τKLus

H , pLss ` ρLsqvH

˙
L2pKq

, (2.8)

FstabpvHq “
ÿ

K P TH

ˆ
τKf, pLss ` ρLsqvH

˙
L2pKq

, (2.9)

where, for any u and v, pu, vqL2pKq “
�

L2pKq
u v, Lsu “ ´αΔu and Lssu “ b ¨ ∇u are the symmetric part and

the skew-symmetric part of the advection-diffusion operator Lv “ ´αΔv ` b ¨ ∇v, respectively (recall that b is

divergence free in view of (2.2)). The stabilization parameter τK is chosen, roughly, of the order of
H

}b}L8pΩq
.

The choice of ρ leads to different stabilized methods. In the sequel, we only consider the Streamline Upwind
Petrov-Galerkin method (SUPG), which corresponds to the choice ρ “ 0.

The modification of the discrete bilinear form as in (2.7) allows to obtain the estimate

}u´ us
H}H1pΩq ď CH

´
1 `

‘
PeH

¯
}u}H2pΩq, (2.10)

where again C is independent of H and b. For large Péclet numbers (that is, PeH ą 1), this estimate is better
than (2.5). Note also that, in the right-hand sides of (2.5) and (2.10), }u}H2pΩq depends on b, a fact that we
will recall in Remark 3.4 below.

More accurate numerical results are indeed obtained with the stabilized approach. One can typically distin-
guish two regions in Ω. Outside a (small) boundary layer, the P

1 SUPG method (2.7) accurately approximates
the solution. It has no spurious oscillations, in contrast to the standard P

1 method (2.3). Inside the boundary
layer, the P

1 SUPG method only poorly performs.

Estimate (2.10) is typically obtained (see [21], Appendix A) under the assumptions
|bpxq|
2α

H ě 1 for almost
all x P Ω and for the stabilization parameter

τKpxq “
H

2|bpxq|
for all K P TH . (2.11)

Remark 2.1. Notice that the above analysis assumes that problem (2.1) is coercive (see (2.2)). This is usually
the case in the literature, see [5, 28]. To the best of our knowledge, the analysis of the stabilized methods of
the type (2.7) has not been performed in the non-coercive case. A stabilized numerical method designed for
nonsymmetric noncoercive problems is proposed and studied in [6]. The method requires to solve the original
problem coupled with an adjoint problem using stabilized finite element methods. Error estimates in H1 and L2

norms are proved under the assumption of well-posedness of the problem. Least-square methods for noncoercive
elliptic problems have also been studied, see e.g. [3, 18].
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Remark 2.2. The choice of an optimal stabilization parameter τK is a difficult and sensitive question, since it
affects the quality of the numerical approximation. We refer e.g. to [4,11,15,26]. Here, we will use an expression
based on the one-dimensional analysis, namely

τKpxq “
H

2|bpxq|

ˆ
cothpPeHq ´

1
PeH

˙
¨ (2.12)

2.1.2. MsFEM approaches

We now insert a multiscale character in our problem and temporarily erase the transport field b, which we
will shortly reinstate in the next section. We consider the solution uε P H1

0 pΩq to

´div pAε∇uεq “ f in Ω, uε “ 0 on BΩ. (2.13)

We assume that the diffusion matrix Aε, encoding the oscillations at the small scale, is elliptic in the sense that
there exists 0 ă α1 ď α2 such that

@ε, @ξ P R
d, α1|ξ|2 ď pAεpxqξq ¨ ξ ď α2|ξ|2 a.e. on Ω. (2.14)

Throughout this article, we shall perform our theoretical analysis for general, not necessarily symmetric, matrix-
valued coefficients Aε, not necessarily either of the form Aε “ A p¨{εq for a fixed matrix A (although one may
consider such a case to fix the ideas). In our numerical tests, however, we only consider a scalar coefficient Aε.

The bottom line of the MsFEM is to perform a Galerkin approximation using specific basis functions, which
are precomputed (in an offline stage) and adapted to the problem considered.

On the prototypical multiscale diffusion problem (2.13), the method, in one of its simplest variant, consists
of the following three steps:

(i) Introduce a discretization of Ω with a coarse mesh; throughout this article, we work with the P
1 Finite

Element space
VH “ Span

�
φ0

i , 1 ď i ď NVH

(
Ă H1

0 pΩq; (2.15)

(ii) Solve the local problems (one for each basis function for the coarse mesh)

´div
´
Aε∇ψε,K

i

¯
“ 0 in K, ψε,K

i “ φ0
i on BK, (2.16)

on each element K of the coarse mesh, in order to build the multiscale basis functions.
(iii) Apply a standard Galerkin approximation of (2.13) on the space

V ε
H “ Span tψε

i , 1 ď i ď NVH u Ă H1
0 pΩq, (2.17)

where ψε
i is such that ψε

i |K “ ψε,K
i for all K P TH .

The error analysis of the MsFEM method in the above case (2.13), for Aε “ Aper p¨{εq with Aper a fixed periodic
matrix, has been performed in [13] (see also [8], Thm. 6.5 or [22], Thm. 4.5). The main result is stated in the
following Theorem.

Theorem 2.3. We consider the periodic case Aεpxq “ Aper px{εq. We assume that Aper is Hölder continuous
and that H ą ε. We also assume that the solution u‹ to the homogenized problem associated to (2.13), that is
the L2-limit of uε solution to (2.13) when ε Ñ 0, belongs to W 2,8pΩq. Let uε

H be the MsFEM approximation of
the solution uε to (2.13). Then

}uε ´ uε
H}H1pΩq ď C

ˆ
H `

‘
ε`

c
ε

H

˙
, (2.18)

where C is a constant independent of H and ε.
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When the coarse mesh size H is close to the scale ε, a resonance phenomenon, encoded in the term
a
ε{H

in (2.18), occurs and deteriorates the numerical solution. The oversampling method [14] is a popular technique
to reduce this effect. In short, the approach, which is non-conforming, consists in setting each local problem on a
domain slightly larger than the actual element considered, so as to become less sensitive to the arbitrary choice
of boundary conditions on that larger domain, and next truncate on the element the functions obtained. That
approach allows to significantly improve the results compared to using linear boundary conditions as in (2.16).
In the periodic case, we have the following estimate (see [9]).

Theorem 2.4. Assume the setting and the notation of Theorem 2.3. Assume additionally that the distance
between an element K and the boundary of the macro element used in the oversampling is larger than H. Then

}uε ´ uε
H}H1pTHq ď C

´
H `

‘
ε`

ε

H

¯
,

where }uε ´ uε
H}H1pTHq “

d ÿ
KPTH

}uε ´ uε
H}2

H1pKq is the H1 broken norm of uε ´ uε
H .

Remark 2.5. The boundary conditions imposed in (2.16) are the so-called linear boundary conditions. Besides
the linear boundary conditions, and the oversampling technique alluded to above, there are many other possible
boundary conditions for the local problems. They may give rise to conforming, or non-conforming approxima-
tions. The choice sensitively affects the overall accuracy. We will explore this issue, in our specific context, in
Section 4.2.5 below.

It is important to notice that the estimates of Theorems 2.3 and 2.4 hold true assuming that the multiscale
basis functions employed to compute the approximation uε

H are the exact solutions of the local problems. In
practice of course, the local problems (2.16) are only approximated numerically, using a fine mesh of size h
sufficiently small to capture the oscillations at scale ε.

As mentioned above, our purpose is to understand how to adapt the stabilization methods and the MsFEM
methods in order to efficiently approximate

´div pAε∇uεq ` b ¨ ∇uε “ f in Ω, uε “ 0 on BΩ, (2.19)

where Aε P pL8pΩqqdˆd satisfies (2.14), b P pL8pΩqqd and f P L2pΩq. Notice that the transport field b is
assumed to be independent of ε. We also choose it divergence-free as in (2.2). The variational formulation
of (2.19) is:

Find uε P H1
0 pΩq such that, for any v P H1

0 pΩq, aεpuε, vq “ F pvq, (2.20)

where
aεpu, vq “

�
Ω

pAε∇uq ¨ ∇v ` pb ¨ ∇uq v, F pvq “
�

Ω

fv. (2.21)

We now introduce in Section 2.2 below the four numerical approaches we consider.

2.2. Our four numerical approaches

2.2.1. The classical MsFEM and its stabilized version

The classical MsFEM described in Section 2.1.2 is the first approach we consider. It performs a Galerkin
approximation of (2.19) on the space (2.16)´(2.17). Notice that in this approximation, the transport term b ¨∇,
although present in the equation (2.19), is absent from the local problems (2.16) and thus from the definition of
the basis functions. It is immediate to realize that this approach coincides with the standard P

1 method on (2.1)
when Aε “ α Id. Consequently, the method is expected to be unstable in the advection-dominated regime, as
recalled in Section 2.1.1, and this is indeed observed in practice, as will be seen in Section 4.2.3.
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This motivates the introduction of a stabilized version of this method, which is the adaptation to the multiscale
context of the classical SUPG method. As we shall now see, some difficulty arises regarding the consistency of
the approach, owing to the fact that the basis functions we use in practice are only approximate.

First, we consider the exact approximation space V ε
H defined by (2.17). The SUPG stabilization, readily

applied to our problem (2.20), yields the following variational formulation:

Find uε
H P V ε

H such that, for any vε
H P V ε

H , aεpuε
H , v

ε
Hq ` astabpuε

H , v
ε
Hq “ F pvε

Hq ` Fstabpvε
Hq, (2.22)

where we recall that the SUPG stabilization terms are (see (2.8) and (2.9))

astabpuε
H , v

ε
Hq “

ÿ
KPTH

´
τK p´div pAε∇uε

Hq ` b ¨ ∇uε
Hq , b ¨ ∇vε

H

¯
L2pKq

, (2.23)

Fstabpvε
Hq “

ÿ
K P TH

ˆ
τKf, b ¨ ∇vε

H

˙
L2pKq

.

The method is, as is well known, strongly consistent (meaning that the exact solution uε solves (2.22)). Because
of the definition of the approximation space V ε

H , we have

astabpuε
H , v

ε
Hq “ aupwpuε

H , v
ε
Hq for any puε

H , v
ε
Hq P pV ε

Hq2, (2.24)

where

aupwpuε
H , v

ε
Hq “

ÿ
KPTH

pτKb ¨ ∇uε
H , b ¨ ∇vε

HqL2pKq . (2.25)

In practice however, we only know a discrete approximation ψε,h, on a fine mesh Kh, of the solution ψε to (2.16).
Put differently, we manipulate V ε

H,h “ Spantψε,h
i , 1 ď i ď NVH u instead of V ε

H . It follows that, for example
when Aε P C0pΩq and we use a P

1 approximation on a fine mesh Kh for the local problem (2.16), Aε∇uε
H,h may

be discontinuous at the edges of the mesh Kh, and ´div pAε∇uε
H,hq R L1

locpKq.
We may consider at least two ways to circumvent that difficulty. First, if the matrix coefficient Aε is locally

sufficiently regular, we may define the stabilization term as

rastabpuε
H,h, v

ε
H,hq “

ÿ
K P TH

ÿ
κPTh, κĂK

´
τK

`
´div

`
Aε∇uε

H,h

˘
` b ¨ ∇uε

H,h

˘
, b ¨ ∇vε

H,h

¯
L2pκq

.

When, as is the case here, we employ a P
1 approximation on Kh, all we need for this stabilization term to make

sense is that the vector field div pAεq belongs to L1pκq for all κ P Th. This is more demanding than the simple
classical assumption Aε P L8pΩq. Under this assumption, we obtain a strongly consistent stabilized method.
We will however not proceed in this direction and favor an alternate approach, to which we now turn.

Based upon the observation (2.24) for the “ideal” space V ε
H , we may use the stabilization term (2.25) rather

than (2.23). In contrast to (2.23), the quantity (2.25) is also well defined on V ε
H,h. And this holds true without

any additional regularity assumption on Aε. The Stab-MsFEM method we employ is hence defined by the
following variational formulation:

Find uε
H,h P V ε

H,h such that, for any vε
H,h P V ε

H,h,
aεpuε

H,h, v
ε
H,hq ` aupwpuε

H,h, v
ε
H,hq “ F pvε

H,hq ` Fstabpvε
H,hq. (2.26)

We emphasize that employing that stabilization comes at a price: we give up on strong consistency. We provide
in Section 3.2, Theorem 3.7 below, an error estimate in the one-dimensional setting for this method. Despite
the absence of consistency, we can still prove that the method is convergent.
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2.2.2. The Adv-MsFEM variant

In contrast to our first two approaches, the Adv-MsFEM approach we discuss in this section accounts for the
transport field in the local problems. For each mesh element K P TH , we indeed now consider

´div
´
Aε∇φε,K

i

¯
` b ¨ ∇φε,K

i “ 0 in K, φε,K
i “ φ0

i on BK, (2.27)

instead of (2.16), and next the approximation space

V ε,Adv
H “ Span tφε

i , 1 ď i ď NVH u Ă H1
0 pΩq

defined as in (2.17). Problem (2.27) is an advection-diffusion problem with, in principle, a high Péclet number.
Nevertheless, the problem is local and is to be solved offline, so we may easily employ a mesh size sufficiently
fine to avoid the issues presented in Section 2.1.1.

There is however a difficulty in considering (2.27) and b-dependent basis functions φε,K
i . In the context where

we want to repeatedly solve (2.19) for multiple b, for instance when b depends on an external parameter such
as time, the method becomes prohibitively expensive as we will see in Section 4.3.

We note in passing the following consistency: in the one-dimensional single-scale case, the stiffness matrix of
the Adv-MsFEM method coincides with the stiffness matrix of the P

1 SUPG method with τK given by (2.12)
(see [21], Sect. 2.2.2).

We also note that, in view of (2.23)–(2.27), we have that astabpuε,Adv
H , vε,Adv

H q “ 0 for any puε,Adv
H , vε,Adv

H q P
pV ε,Adv

H q2. Such a stabilization is therefore void on the Adv-MsFEM method. Actually, we shall see in the
numerical tests of Section 4.2 that the Adv-MsFEM method is only moderately sensitive to the Péclet number.

MsFEM type basis functions depending on the transport term for multiscale advection-diffusion problems
have already been considered in the literature. In [25], two settings are investigated. The Adv-MsFEM is first
applied to the time-dependent multiscale advection-diffusion equation

Btu
ε ´Δuε `

1
ε
b
´ ¨
ε

¯
¨ ∇uε “ 0 in R

2,

with b “ ∇Kψ where ψ pxq “ ψ px1, x2q “
1

4π2
sinp2πx1q sinp2πx2q. The field b is thus Z

2-periodic, divergence-
free and of mean zero. The purpose is then to only capture macroscopic properties of the solution uε. Also
in [25], the Adv-MsFEM is investigated on the problem

´Δuε ` bε ¨ ∇uε “ f,

with bε P pL8pΩqq2 and f P L2pΩq. Only the following L2 error estimate

}uε ´ uε
H}L2pΩq

}uε}L2pΩq
ď C

ε

H
` CH2}f}L2pΩq

is derived, and not an H1 estimate which would be sensitive to how well the fine oscillations are captured by

the numerical approach. It is completed in the periodic case, where bεpxq “
1
ε
bper

´x
ε

¯
for a fixed, periodic,

divergence-free function bper of mean zero, under some assumptions which have been numerically verified on
some examples. An experimental study of convergence is performed and shows good agreement with the above
theoretical error estimate.

A second reference we wish to cite is [24]. The author studies there the problem$&% ρεBtu
ε ´ divpAε∇uεq `

1
ε
bε ¨ ∇uε “ 0 in p0, T q ˆ p0, 1qd,

uεp0, ¨q “ u0 in p0, 1qd, uεpt, ¨q is p0, 1qd-periodic,
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where u0 P Wm,8
per pp0, 1qdq with m ě 3. The functions ρε P L8pp0, 1qdq, bε P pL8pp0, 1qdqqd and Aε P

pL8pp0, 1qdqqdˆd do not depend on time. It is assumed that there exists a constant ρm ą 0 such that ρε ě ρm

a.e. on p0, 1qd, and that bε is divergence-free. In contrast to [25], the mean of bε is not assumed to vanish (but
periodic boundary conditions are imposed on Bp0, 1qd). In the advection-dominated regime, the problem is sta-

bilized using the characteristics method for integrating the transport operator Bt `
b‹
H

ε
¨ ∇, and the multiscale

finite element method for the remaining part of the advection term, i.e.
bε ´ ρεb‹

H

ε
¨ ∇, where b‹

H |K “
�
K bε�
K
ρε

for all K P TH . The MsFEM approach which is used in [24] is inspired by the variant of the Multiscale Finite
Element approach introduced in [2] for purely diffusive problems. The multiscale basis functions are thus defined
by φε

jpxq “ φ0
j

´
wε,Hpxq

¯
for 1 ď j ď NVH , where φ0

j are the P
1 basis functions and wε,H |K “ pwε,K

1 , . . . , wε,K
d q

for each K P TH , where, for any i “ 1, . . . , d, the function wε,K
i is the solution to

´div
´
Aε∇wε,K

i

¯
`
bε ´ ρεb‹

H

ε
¨ ∇wε,K

i “ 0 in K, wε,K
i “ xi on BK.

Note that, as in (2.27), the basis functions depend on the advection field. An error estimate is established in [24]
for the periodic case.

2.2.3. A splitting approach

The fourth and last approach we consider is a splitting method that decomposes (2.19) into a single-scale,
advection-dominated problem and a multiscale, purely diffusive problem. The main motivation for considering
such a splitting approach is the non-intrusive character of the approach. In practice, one may couple legacy
codes that are already optimized for each of the two subproblems.

Of course, splitting methods have been used in a large number of contexts. To cite only a couple of works
relevant to our context, we mention [17] for a review on the splitting methods for time-dependent advection-
diffusion equations, and [31] for the introduction of a viscous splitting method based on a Fourier analysis for
the steady-state advection-diffusion equation.

Our splitting approach for (2.19) is the following. We define the iterations by" ´ αsplΔu2n`2 ` b ¨ ∇u2n`2 “ f ` b ¨ ∇pu2n ´ u2n`1q in Ω,

u2n`2 “ 0 on BΩ,
(2.28)" ´ div pAε∇u2n`3q “ ´αsplΔu2n`2 in Ω,

u2n`3 “ 0 on BΩ,
(2.29)

with αspl ą 0. The initialization is e.g. u0 “ u1 “ 0.
The functions u2n with even indices are approximations defined on a coarse mesh, using P

1 finite elements,
and, since our context is that of advection-dominated problems, obtained with a SUPG formulation, as explained
in Section 2.1.1. Note that, in the right-hand side of (2.28), the term ´b ¨ ∇u2n`1 is integrated on a fine mesh,
as we expect this term to vary at the scale ε. The discretized variational formulation of (2.28) reads

Find uH
2n`2 P VH such that, for any v P VH , a0puH

2n`2, vq ` astabpuH
2n`2, vq “ F 1pvq ` Fstabpvq, (2.30)

where astab and Fstab are defined by (2.8) and (2.9), and

a0pu, vq “
�

Ω

αspl∇u ¨ ∇v ` pb ¨ ∇uqv,

F1pvq “
�

Ω

f1v with f1 “ f ` b ¨ ∇puH
2n ´ uH

2n`1q.
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The functions u2n`1 with odd indices are obtained using a MsFEM type approach. A natural choice for the
discretization of the problem (2.29) is the MsFEM method presented in Section 2.1.2 above. The variational
formulation is

Find uH
2n`3 P V ε

H such that, for any v P V ε
H ,

�
Ω

pAε∇uH
2n`3q ¨ ∇v “

�
Ω

αspl∇uH
2n`2 ¨ ∇v, (2.31)

where V ε
H is defined by (2.17).

The termination criterion we use for the iterations is fixed as follows. Equation (2.30) is equivalent to the
linear system M0ruH

2n`2s “ F 0,H ` M2ruH
2ns ´ M3ruH

2n`1s, where ruH
2ns is the vector representing the Finite

Element function uH
2n in VH (i.e. uH

2npxq “
NVHÿ
i“1

ruH
2nsi φ0

i pxq) and likewise for ruH
2n`2s, while ruH

2n`1s is the vector

representing the function uH
2n`1 in V ε

H , that is uH
2n`1pxq “

NVHÿ
i“1

ruH
2n`1si ψε

i pxq. We stop the iterations when the

iteration residual, defined as ››M0ruH
2n`2s ´ pF 0,H `M2ruH

2n`2s ´M3ruH
2n`3sq

›› , (2.32)

is smaller than a prescribed tolerance, here 10´9.
We immediately note that, if we assume that u2n and u2n`1 converge to some ueven and uodd, respectively,

then we have

´ αsplΔueven “ f ´ b ¨ ∇uodd in Ω, ueven “ 0 on BΩ, (2.33)

´ div pAε∇uoddq “ ´αsplΔueven in Ω, uodd “ 0 on BΩ. (2.34)

Adding (2.33) and (2.34), we get that uodd is actually the solution to (2.19). A detailed analysis and a proof,
under suitable assumptions, of the actual convergence of our splitting approach is provided in Section 3.4 below.

In theory however, there is no guarantee that, in all circumstances, the naive, fixed point itera-
tions (2.28)´(2.29) above converge. In all the test cases presented in Section 4.2, the iterations indeed con-
verge. With a view to address difficult cases where the iterations might not converge, we design and study
in Section 3.4 a possible alternate iteration scheme, based on a damping, which, for a well adjusted damping
parameter, unconditionally converges. As will be shown in Section 4.2, this unconditional convergence comes
however at the price of yielding results that are generically less accurate and longer to obtain than when using
the direct fixed point iteration, when the latter converges of course. We therefore only advocate this alternate
approach in the difficult cases.

As will be seen in Section 4.2 below, the splitting method and the Stab-MsFEM method provide numerical
solutions of approximately identical accuracy. The non-intrusive character of the splitting method is somehow
balanced by its online cost which, owing to the iterations, is larger than that of the Stab-MsFEM method. This
is especially true in a multi-query context and/or for problems of large sizes only amenable to iterative linear
algebra solvers.

3. Elements of theoretical analysis

This section is devoted to the theoretical study of our four numerical approaches. Throughout the section,
we mostly work in the one-dimensional setting (in Sects. 3.1, 3.2 and 3.3), with the notable exception of the
mathematical study in Section 3.4 of the iteration scheme (2.28)–(2.29) used in our splitting method and of
an alternative unconditionally convergent iteration scheme, which is performed with all the possible generality.
Some of our results were first established in the preliminary study [29].
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The MsFEM method, the Stab-MsFEM method and the Adv-MsFEM method are studied, in Sections 3.1, 3.2
and 3.3 respectively, on the one-dimensional problem

´
d
dx

ˆ
Aε duε

dx

˙
` b

duε

dx
“ f in Ω “ p0, Lq, uεp0q “ uεpLq “ 0, (3.1)

with a constant advection field b ‰ 0, f P L2p0, Lq and a diffusion coefficient such that 0 ă α1 ď Aεpxq ď α2

a.e. on Ω. We estimate the error in terms of ε, b, the macroscopic mesh size H and possibly the mesh size h
used to solve the local problems.

For further use, we first state the following two propositions, namely Propositions 3.1 and 3.2. The proof of
Proposition 3.1 may be found in [29] and is reproduced in [21]. We refer to [21] for the proof of Proposition 3.2.

Proposition 3.1. For d ě 1, let uH be the numerical solution obtained by applying any conforming Galerkin
method to problem (2.19) (on some finite dimensional space WH). Then, if the matrix Aε is symmetric, elliptic
in the sense of (2.14) and b satisfies (2.2), we have

|uε ´ uH |H1pΩq ď inf
vHPWH

¨̊
˝c

α2

α1
|uε ´ vH |H1pΩq `

›››abT pAεq´1b
›››
L8pΩq‘

α1
}uε ´ vH}L2pΩq

‹̨‚,
where |v|H1pΩq “ }∇v}L2pΩq for any v P H1pΩq.

Proposition 3.2. Assume the ambient dimension is one. Consider uε P H1
0 pΩq the solution to (3.1). If

|b|L
α2

ě 1, then

|uε|H1pΩq ď
‘

2α2L

α1

a
|b|

}f}L2pΩq.

3.1. The MsFEM method

In the advection-dominated regime, the error bound of the MsFEM method, introduced in Section 2.2.1, is
given by the following theorem.

Theorem 3.3. Let uε be the solution to the one-dimensional problem (3.1) and uε
H P V ε

H be its approximation

by the MsFEM method. Assume that
|b|L
α2

ě 1. Then the following estimate holds:

|uε ´ uε
H |H1pΩq ď H

ˆc
α2

α1
`

|b|H
α1

˙˜
1 `

a
2α2L|b|
α1

¸
}f}L2pΩq

α1
¨ (3.2)

The proof of Theorem 3.3 may be found in [29] and is reproduced in [21].

Remark 3.4. Assume that Aεpxq “ α. Then the MsFEM method reduces to the classical P
1 method and the

estimate (3.2) then reads as

|u´ uH |H1pΩq ď H

ˆ
1 `

|b|H
α

˙˜
1 `

c
2L|b|
α

¸
}f}L2pΩq

α
¨ (3.3)
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On the other hand, the classical numerical analysis result for that problem has been recalled in (2.5). It is

|u´uH |H1pΩq ď CHp1`
|b|H
2α

q |u|H2pΩq. Since ´αu2 `bu1 “ f , |u|H2pΩq may be bounded, using Proposition 3.2,

as α|u|H2pΩq ď }f}L2pΩq ` |b| |u|H1pΩq ď }f}L2pΩq `
a

2L|b|{α }f}L2pΩq. We therefore obtain

|u´ uH |H1pΩq ď CH

ˆ
1 `

|b|H
2α

˙ ˜
1 `

c
2L|b|
α

¸
}f}L2pΩq

α
,

which exactly coincides, up to constants independent of b, α, H and f , with (3.3).

3.2. The Stab-MsFEM method

For the Stab-MsFEM method, also introduced in Section 2.2.1, we successively consider two cases. We first
consider the “ideal” approach employing the exact multiscale basis functions, solution to (2.16). Next, we account
for the discretization error when numerically solving the local problem (2.16).

When the discretization error is ignored, the error estimate is the following.

Theorem 3.5. Let uε be the solution to the one-dimensional problem (3.1) and uε
H P V ε

H be the solution

to (2.22)´(2.23) with τK “
H

2|b|
. Assume that

|b|L
α2

ě 1, and that we are in a advection-dominated regime, and

hence that
|b|H
2α1

ě 1. Then the following estimate holds:

|uε ´ uε
H |H1pΩq ď CH

˜
1 `

d
α2

2

α2
1

`
|b|H
α1

¸˜
1 `

a
2α2L|b|
α1

¸
}f}L2pΩq

α1
, (3.4)

where C is a universal constant.

Remark 3.6. In the case where Aε is constant, the Stab-MsFEM method is simply the P
1 SUPG method. In

that case, we observe, as above, that the estimate of Theorem 3.5 is similar to the estimate (2.10) obtained for
the P

1 SUPG method.

Note that the right-hand side of (3.4) is thought to be smaller than that of (3.2), as we think of |b|H{α1 as
being large. Theorem 3.5 is actually established following Steps 2, 3 and 4 of the proof of Theorem 3.7 below.

Accounting now for the discretization error in the local problems and employing the method (2.26), we have
the following error estimate.

Theorem 3.7. Let uε be the solution to the one-dimensional problem (3.1) and uε
H,h P V ε

H,h be the solution

to (2.26) with τK “
H

2|b|
. Assume that Aε P W 1,8pΩq and that

|b|L
α2

ě 1. Assume also that we are in a

advection-dominated regime, and hence that
|b|H
2α1

ě 1. Then the following estimate holds:

|uε ´ uε
H,h|H1pΩq ď C

˜
1 `

H |b|
α1

`
H |b|
α1

d
α2

2

α2
1

`
|b|H
α1

¸
errphq

` CH

˜
1 `

d
α2

2

α2
1

`
|b|H
α1

¸˜
1 `

a
2α2L|b|
α1

¸
}f}L2pΩq

α1
, (3.5)

where C only depends on Ω and where

errphq “ h

ˆc
α2

α1
`

|b|h
α1

˙˜
1 `

d
2α2L

|b|
}pAεq1 ´ b}L8pΩq

α1

¸
}f}L2pΩq

α1
¨ (3.6)



COMPARISON OF MSFEM APPROACHES FOR ADVECTION-DOMINATED PROBLEMS 863

Proof. This proof is an adaptation of the analysis in [29]. We proceed as in the proof of (2.10) (see [21]). We
decompose the error uε ´ uε

H,h in three parts:

eI
h “ uε ´ uε

h, eI “ uε
h ´RH,hu

ε
h, eI

H “ uε
H,h ´RH,hu

ε
h,

where uε
h is the Galerkin approximation of uε in Vh (the P

1 finite element space associated to the fine mesh of
size h) and RH,hu

ε
h is the Lagrange interpolant of uε

h in V ε
H,h. We successively estimate eI

h, eI and eI
H .

Step 1. Estimation of eI
h. Using Proposition 3.1 and the Poincaré inequality, we have

|eI
h|H1pΩq ď

c
α2

α1
|uε ´ Ihu

ε|H1pΩq `
|b|
α1

|uε ´ Ihu
ε|L2pΩq ď

ˆc
α2

α1
`

|b|h
α1

˙
|uε ´ Ihu

ε|H1pΩq, (3.7)

where Ihuε is the Lagrange interpolant of uε in Vh. Standard results on finite elements show that

|uε ´ Ihu
ε|H1pΩq ď Ch|uε|H2pΩq. (3.8)

Because of the equation, we have

|uε|H2pΩq ď
}f}L2pΩq ` }pAεq1 ´ b}L8pΩq|uε|H1pΩq

α1

ď

˜
1 `

d
2α2L

|b|
}pAεq1 ´ b}L8pΩq

α1

¸
}f}L2pΩq

α1
, (3.9)

where we have used Proposition 3.2. Collecting (3.7), (3.8) and (3.9), we obtain

|eI
h|H1pΩq ď C errphq, (3.10)

where errphq is defined by (3.6).

Step 2. Estimation of eI . Using the coercivity of Aε, we get

α1|eI |2H1pΩq ď
�

Ω

Aε
`
eI
˘1 `

eI
˘1 “

�
Ω

Aεpuε
hq1 `eI

˘1 ´
�

Ω

AεpRH,hu
ε
hq1 `eI

˘1
. (3.11)

Using that eI vanishes on the macroscopic mesh nodes and the variational formulation of the basis functions
ψε,h

i of V ε
H,h on K, we observe that

�
Ω

AεpRH,hu
ε
hq1 `eI

˘1 “
ÿ

K P TH

�
K

AεpRH,hu
ε
hq1 `eI

˘1 “ 0.

We thus deduce from (3.11) and the variational formulation satisfied by uε
h that

α1|eI |2H1pΩq ď
�

Ω

Aεpuε
hq1 `eI

˘1 “
�

Ω

´
f ´ bpuε

hq1
¯
eI “

�
Ω

´
f ´ bpuεq1 ` bpeI

hq1
¯
eI .

Using a Poincaré inequality for eI P H1
0 pKq and Proposition 3.2, we deduce that

α1|eI |2H1pΩq ď H
´

}f ´ bpuεq1}L2pΩq ` |b| |eI
h|H1pΩq

¯
|eI |H1pΩq

ď H

«˜
1 `

a
2α2L|b|
α1

¸
}f}L2pΩq ` |b| |eI

h|H1pΩq

ff
|eI |H1pΩq
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and thus

|eI |H1pΩq ď H

˜
1 `

a
2α2L|b|
α1

¸
}f}L2pΩq

α1
`
H |b|
α1

|eI
h|H1pΩq. (3.12)

Step 3. Estimation of eI
H . We write

α1|eI
H |2H1pΩq ` aupwpeI

H , e
I
Hq ď aεpeI

H , e
I
Hq ` aupwpeI

H , e
I
Hq

“ aεpuε
H,h, e

I
Hq ` aupwpuε

H,h, e
I
Hq ´ aεpRH,hu

ε
h, e

I
Hq ´ aupwpRH,hu

ε
h, e

I
Hq

“ F peI
Hq ` FstabpeI

Hq ´ aεpRH,hu
ε
h, e

I
Hq ´ aupwpRH,hu

ε
h, e

I
Hq

“ aεpuε
h, e

I
Hq ` FstabpeI

Hq ´ aεpRH,hu
ε
h, e

I
Hq ´ aupwpRH,hu

ε
h, e

I
Hq,

making use of the variational formulation satisfied by uε
H,h and uε

h, respectively. Using that eI “ uε
h ´RH,hu

ε
h,

we next obtain

α1|eI
H |2H1pΩq ` aupwpeI

H , e
I
Hq ď aεpeI , eI

Hq ` FstabpeI
Hq ` aupwpeI , eI

Hq ´ aupwpuε
h, e

I
Hq

“
�

Ω

´
Aε

`
eI
˘1 `

eI
H

˘1 ´ b
`
eI

H

˘1
eI
¯

`
ÿ

K P TH

ˆ
τKf, bpeI

Hq1
˙

K

`
ÿ

K P TH

ˆ
τKb

`
eI
˘1
, b
`
eI

H

˘1
˙

K

´
ÿ

K P TH

ˆ
τKbpuε

hq1, b
`
eI

H

˘1
˙

K

“
�

Ω

´
Aε

`
eI
˘1 `

eI
H

˘1 ´ b
`
eI

H

˘1
eI
¯

`
ÿ

K P TH

ˆ
τK

`
f ´ bpuε

hq1˘ , bpeI
Hq1

˙
K

`
ÿ

K P TH

ˆ
τKb

`
eI
˘1
, b
`
eI

H

˘1
˙

K

. (3.13)

We now successively estimate each term of the right-hand side of (3.13). For the first part of the first term, we
have ˇ̌̌̌�

Ω

Aε
`
eI
˘1 `

eI
H

˘1
ˇ̌̌̌

ď
�

Ω

α2

ˇ̌̌`
eI
˘1 `

eI
H

˘1
ˇ̌̌

ď
α1

4
|eI

H |2H1pΩq `
α2

2

α1
|eI |2H1pΩq.

For the second part of the first term, we obtain

´
�

Ω

b
`
eI

H

˘1
eI ď

1
4

ÿ
K P TH

}τ1{2
K b

`
eI

H

˘1 }2
L2pKq `

ÿ
K P TH

}τ´1{2
K eI}2

L2pKq

ď
1
4

ÿ
K P TH

}τ1{2
K b

`
eI

H

˘1 }2
L2pKq `

ÿ
K P TH

2|b|
H

H2|eI |2H1pKq

ď
1
4

ÿ
K P TH

}τ1{2
K b

`
eI

H

˘1 }2
L2pKq ` 2|b|H |eI|2H1pΩq,

where, in the second line, we have used the value of τK and a Poincaré inequality.
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We bound the second term as follows:

ÿ
K P TH

ˆ
τK

`
f ´ bpuε

hq1˘ , bpeI
Hq1

˙
K

ď
ÿ

K P TH

1
2

}τ1{2
K

`
f ´ bpuε

hq1˘ }2
L2pKq `

ÿ
K P TH

1
2

}τ1{2
K b

`
eI

H

˘1 }2
L2pKq

“
H

4|b|
}f ´ bpuε

hq1}2
L2pΩq `

ÿ
K P TH

1
2

}τ1{2
K b

`
eI

H

˘1 }2
L2pKq

ď
H

2|b|

´
}f}2

L2pΩq ` }bpuε
hq1}2

L2pΩq

¯
`

ÿ
K P TH

1
2

}τ1{2
K b

`
eI

H

˘1 }2
L2pKq

ď
H2

4α1

´
}f}2

L2pΩq ` }bpuε
hq1}2

L2pΩq

¯
`

ÿ
K P TH

1
2

}τ1{2
K b

`
eI

H

˘1 }2
L2pKq,

where we have used the fact that
|b|H
2α1

ě 1 in the last line, and that τK “
H

2|b|
.

For the third term, we get, using the expression of τK,

ÿ
K P TH

ˆ
τKb

`
eI
˘1
, b
`
eI

H

˘1
˙

K

ď
ÿ

K P TH

}τ1{2
K b

`
eI
˘1 }2

L2pKq `
ÿ

K P TH

1
4

}τ1{2
K b

`
eI

H

˘1 }2
L2pKq

“
|b|H

2
|eI |2H1pΩq `

ÿ
K P TH

1
4

}τ1{2
K b

`
eI

H

˘1 }2
L2pKq.

Collecting the terms, we deduce from (3.13) that

α1|eI
H |2H1pΩq ď

α1

4
|eI

H |2H1pΩq `
ˆ
α2

2

α1
` 2|b|H `

|b|H
2

˙
|eI |2H1pΩq `

H2

4α1
}f}2

L2pΩq `
H2|b|2

4α1
|uε

h|2H1pΩq,

which yields

|eI
H |H1pΩq ď C

„ˆ
α2

2

α2
1

`
|b|H
α1

˙
|eI |2H1pΩq `

H2

α2
1

}f}2
L2pΩq `

H2|b|2

α2
1

|uε
h|2H1pΩq

j1{2

, (3.14)

where C is a universal constant. Using Proposition 3.2, we have

|uε
h|H1pΩq ď |uε|H1pΩq ` |eI

h|H1pΩq ď
‘

2α2L

α1

a
|b|

}f}L2pΩq ` |eI
h|H1pΩq,

and we thus deduce from (3.14) that

|eI
H |H1pΩq ď C

«d
α2

2

α2
1

`
|b|H
α1

|eI |H1pΩq `H

˜
1 `

a
2α2L|b|
α1

¸
}f}L2pΩq

α1
`
H |b|
α1

|eI
h|H1pΩq

ff
¨ (3.15)
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Step 4. Conclusion. Successively using the triangle inequality, (3.15), (3.12) and (3.10), we obtain

|uε ´ uε
H,h|H1pΩq ď |eI

H |H1pΩq ` |eI |H1pΩq ` |eI
h|H1pΩq

ď

˜
1 ` C

d
α2

2

α2
1

`
|b|H
α1

¸
|eI |H1pΩq `

ˆ
1 `

CH |b|
α1

˙
|eI

h|H1pΩq

`CH

˜
1 `

a
2α2L|b|
α1

¸
}f}L2pΩq

α1

ď

«
1 `

CH |b|
α1

`
H |b|
α1

˜
1 ` C

d
α2

2

α2
1

`
|b|H
α1

¸ff
|eI

h|H1pΩq

`

˜
1 ` C

d
α2

2

α2
1

`
|b|H
α1

¸
H

˜
1 `

a
2α2L|b|
α1

¸
}f}L2pΩq

α1

`CH

˜
1 `

a
2α2L|b|
α1

¸
}f}L2pΩq

α1

ď C

«
1 `

H |b|
α1

`
H |b|
α1

d
α2

2

α2
1

`
|b|H
α1

ff
errphq

`CH

˜
1 `

d
α2

2

α2
1

`
|b|H
α1

¸˜
1 `

a
2α2L|b|
α1

¸
}f}L2pΩq

α1
¨

This concludes the proof of Theorem 3.7. �

3.3. The Adv-MsFEM method

The error bound of the Adv-MsFEM method (introduced in Sect. 2.2.2) is given by the following theorem.

Theorem 3.8. Let uε be the solution to the one-dimensional problem (3.1) and uε
H P V ε,Adv

H be the solution to
the Adv-MsFEM method. The following estimate holds:

|uε ´ uε
H |H1pΩq ď H

ˆc
α2

α1
`

|b|H
α1

˙
}f}L2pΩq

α1
¨

The proof of this theorem follows the same pattern as the proof of Theorem 3.3, for which we refer to [21].

3.4. Splitting approach

We now turn to the splitting method introduced in Section 2.2.3. In contrast to Sections 3.1, 3.2 and 3.3, we
do not restrict ourselves to the one-dimensional setting. In what follows, we denote CΩ the Poincaré constant
of Ω as defined by }ϕ}L2pΩq ď CΩ |ϕ|H1pΩq for any ϕ P H1

0 pΩq.

3.4.1. The method (2.28)–(2.29)

Lemma 3.9. Consider the splitting method (2.28)–(2.29). If

CΩ}b}L8pΩq

α1

ˆ
}Aε ´ αsplId}L8pΩq

αspl

˙
ă 1, (3.16)

then u2n`1 converges in H1
0 pΩq to uε solution to (2.19).
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Proof. Let run “ un`2 ´ un. We reformulate the system (2.28)–(2.29) as" ´ αsplΔru2n`2 ` b ¨ ∇ru2n`2 “ b ¨ ∇pru2n ´ ru2n`1q in Ω,ru2n`2 “ 0 on BΩ,
(3.17)" ´ div pAε∇ru2n`3q “ ´αsplΔru2n`2 in Ω,ru2n`3 “ 0 on BΩ.
(3.18)

Using the variational formulations of (3.17) and (3.18), we have

αspl|ru2n`2|H1pΩq ď CΩ}b}L8pΩq|ru2n ´ ru2n`1|H1pΩq, (3.19)
α1|ru2n`1|H1pΩq ď αspl|ru2n|H1pΩq, (3.20)

where we have used (2.2) and (2.14). Letting wn “ ru2n`1 ´ ru2n, we have

´divpAε∇wnq “ ´αsplΔru2n ` divpAε∇ru2nq in Ω, wn “ 0 on BΩ.

We deduce that

α1|wn|H1pΩq ď }Aε ´ αsplId}L8pΩq|ru2n|H1pΩq. (3.21)

Collecting (3.19) and (3.21), we get
|ru2n`2|H1pΩq ď ρ1`n|ru0|H1pΩq,

where

ρ “
CΩ}b}L8pΩq

α1

ˆ
}Aε ´ αsplId}L8pΩq

αspl

˙
¨

Because of (3.16), the sequence u2n therefore converges in H1
0 pΩq to some ueven. In view of (3.20), the sequence

u2n`1 also converges in H1
0 pΩq to some uodd. Passing to the limit n Ñ 8 in (2.28) and (2.29), we obtain that

ueven and uodd are the solutions to

´αsplΔueven “ f ´ b ¨ ∇uodd in Ω, ueven “ 0 on BΩ, (3.22)
´divpAε∇uoddq “ ´αsplΔueven in Ω, uodd “ 0 on BΩ. (3.23)

Adding (3.22) and (3.23), we get that uodd is actually the solution to (2.19). �

There are unfortunately simple situations where (3.16) is not satisfied, whatever the choice of αspl. Consider
for instance the one-dimensional setting whereAε is continuous. Then }Aε´αsplId}L8pΩq “ maxp|a`´αspl|, |a´´
αspl|q where a´ “ inf

Ω
Aε and a` “ sup

Ω
Aε. We observe that

ρ ě ρ´, (3.24)

where ρ´ “
CΩ}b}L8pΩq

α1

a` ´ a´
a` ` a´

. If ρ´ ą 1, then, for any αspl ą 0, condition (3.16) is not satisfied. Of

course, (3.16) is only a sufficient, and not a necessary condition for the convergence of the iterations. In most
cases, and even in some cases when (3.16) is not satisfied, the splitting method (2.28)–(2.29) converges, see
Section 4.2. In some cases, it does not. Lemma 3.10 below describes such a convergence failure, for a one-
dimensional example that can be easily extended to higher dimensional settings using tensor products.

Lemma 3.10. Assume that Ω “ p0, 1q, that Aε ” α‹, that the initial guess for (2.28)–(2.29) is u0 “ cosp2πxq´1
and u1 the solution to (2.29) with u0 in the right-hand side. Take α‹ and αspl such that

b

αspl
ă

b

2α‹ ´ 2π2α
‹

b
¨ (3.25)

Then the sequences pu2nqnPN and pu2n`1qnPN do not converge in H1
0 pΩq.
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Proof. We take f “ 0. Then equation (2.29) reads as u2n`1 “ pαspl{α‹qu2n, so (2.28) reduces to

´pu2n`2q2 `
b

αspl
pu2n`2q1 “ λpu2nq1 in p0, 1q, u2n`2p0q “ u2n`2p1q “ 0,

where λ “
b

αspl

´
1 ´

αspl

α‹

¯
. A simple calculation shows that, for any n P N, pu2nq1 “ cn cosp2πxq ` sn sinp2πxq,

with rcn, snsT “ p´1qnλnAnr0,´2πsT and

A “

«ˆ
b

αspl

˙2

` 4π2

ff´1 ˆ
´b{αspl ´2π

2π ´b{αspl

˙
.

If ρpλAq “ |λ|‘
pb{αsplq2`4π2

ą 1, a condition which is equivalent to (3.25), then the sequence pu2nqnPN does not

converge. �

3.4.2. An alternate splitting method

We now present an alternate splitting method, which includes some element of damping, and which, when the
damping parameter (denoted by β) is suitably adjusted, unconditionally converges. We emphasize however that
we have observed in our numerical tests that the convergence of this alternate approach, although guaranteed
theoretically, is much slower than that of the method (2.28)–(2.29). See Figure 2 below.

The iterates u2n`2 and u2n`3 are now defined by" ´ pβ ` αsplqΔu2n`2 ` b ¨ ∇u2n`2 “ f ` b ¨ ∇pu2n ´ u2n`1q ´ βΔu2n`1 in Ω,
u2n`2 “ 0 on BΩ,

(3.26)" ´ div ppβId `Aεq∇u2n`3q “ ´pβ ` αsplqΔu2n`2 in Ω,
u2n`3 “ 0 on BΩ,

(3.27)

with αspl ą 0 and β ě 0. Of course, β “ 0 yields (2.28)–(2.29).
The convergence of (3.26)–(3.27) is established in the following lemma, in the infinite dimensional setting.

The discretized, finite dimensional version will be studied next.

Lemma 3.11. Choose

β “ argmin
xě0

ˆ
CΩ}b}L8pΩq

x` αspl

}Aε ´ αsplId}L8pΩq

x` α1
`

x

x` α1

˙
, (3.28)

where α1 is such that (2.14) holds. Then u2n`1 converges in H1
0 pΩq to uε solution to (2.19).

Proof. Following the arguments of the proof of Lemma 3.9, we have

|ru2n`2|H1pΩq ď
CΩ}b}L8pΩq

β ` αspl
|ru2n ´ ru2n`1|H1pΩq `

β

β ` αspl
|ru2n`1|H1pΩq, (3.29)

|ru2n`1|H1pΩq ď
β ` αspl

β ` α1
|ru2n|H1pΩq, (3.30)

|wn|H1pΩq ď
}Aε ´ αsplId}L8pΩq

β ` α1
|ru2n|H1pΩq, (3.31)

where we recall that run “ un`2 ´ un and wn “ ru2n`1 ´ ru2n.
Collecting (3.29), (3.30) and (3.31), we have

|ru2n`2|H1pΩq ď ρ|ru2n|H1pΩq,
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where ρ “ gpβq and where the function g is defined by

gpxq “
CΩ}b}L8pΩq

x` αspl

}Aε ´ αsplId}L8pΩq

x` α1
`

x

x` α1
¨

We next observe that gpxq “ 1 ´
α1

x
`O

ˆ
1
x2

˙
. Since α1 ą 0, this implies that min

xě0
gpxq ă 1. In view of (3.28),

we have ρ “ gpβq “ min
xě0

gpxq ă 1. We next conclude the proof mimicking the argument in the proof of

Lemma 3.9. �

We now consider the discrete case. Given the approximations uH
2n and uH

2n`1, we define uH
2n`2 and uH

2n`3 as
follows. First, we discretize (3.26) on a coarse mesh and use the SUPG terms to stabilize the approach. We
hence define uH

2n`2 by the following variational formulation:

FinduH
2n`2 P VH such that, for any v P VH ,

a1puH
2n`2, vq ` aconvpuH

2n`2, vq “ rF 1pvq ` rFstabpvq ` aconvpPV ε
H

puH
2nq, vq, (3.32)

where we recall that VH is the P
1 finite element space, and where

a1pu, vq “
�

Ω

pβ ` αsplq∇u ¨ ∇v, (3.33)

aconvpu, vq “
�

Ω

pb ¨ ∇uq v `
ÿ

K P TH

pτKb ¨ ∇u, b ¨ ∇vqL2pKq, (3.34)

rF 1pvq “
�

Ω

pf ´ b ¨ ∇uH
2n`1qv `

�
Ω

β∇uH
2n`1 ¨ ∇v,

rFstabpvq “
ÿ

K P TH

pτKpf ´ b ¨ ∇uH
2n`1q, b ¨ ∇vqL2pKq.

In (3.32), PV ε
H

is the projector on the space V ε
H defined as follows. For any v P H1

0 pΩq, we define PV ε
H

pvq P V ε
H

by
@w P V ε

H , a1

´
PV ε

H
pvq, w

¯
“ a1pv, wq. (3.35)

Second, we discretize (3.27) using the MsFEM approach: we define uH
2n`3 by the following variational formu-

lation:

Find uH
2n`3 P V ε

H such that, for any w P V ε
H , a2puH

2n`3, wq “ a1puH
2n`2, wq, (3.36)

where
a2pu, vq “

�
Ω

p∇vqT pβId `Aεq∇u. (3.37)

Remark 3.12. Three remarks on (3.32) are in order. First, the term ´βΔuH
2n`1 is absent from rFstab only

because, as we use a P
1 approach, that term identically vanishes in each element K. Second, as already mentioned

in Section 2.2.3, the computation of rF 1pvq needs to be performed on a fine mesh, since uH
2n`1 belongs to the

MsFEM space V ε
H . Third, the introduction of the projector PV ε

H
in (3.32) is motivated by the need to guarantee

the convergence of the iterations (3.32)–(3.36) to an accurate approximation of the solution uε to the reference
problem (2.19). Lemma 3.13 below will clarify and establish this convergence. Note that, instead of (3.35), we
could as well have defined PV ε

H
pvq P V ε

H , for any v P H1
0 pΩq, by the relation a2

´
PV ε

H
pvq, w

¯
“ a2pv, wq for any

w P V ε
H .
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We establish in Appendix A below the convergence of (3.32)–(3.36). Formally passing to the limit n Ñ 8
in (3.32)–(3.36), we observe that, if puH

2n, u
H
2n`1q converges to some puH

even, u
H
oddq P VH ˆ V ε

H , then puH
even, u

H
oddq

satisfies

@v P VH , a1puH
even, vq ` aconvpuH

even, vq “ rF 1pv;uH
oddq ` rFstabpv;uH

oddq ` aconvpPV ε
H

puH
evenq, vq, (3.38)

and

@w P V ε
H , a2

`
uH

odd, w
˘

“ a1

`
uH

even, w
˘
, (3.39)

with rF 1pv;uH
oddq “

�
Ω

pf´b¨∇uH
oddqv`

�
Ω

β∇uH
odd ¨∇v and rFstabpv;uH

oddq “
ÿ

K P TH

pτKpf´b¨∇uH
oddq, b¨∇vqL2pKq.

This convergence is rigorously stated in Lemma 3.13 below, as well as the convergence when H Ñ 0.

Lemma 3.13. Suppose that we set the stabilization parameter to

τKpxq “
H

2|bpxq|
for any K P TH .

Choose

β “ argmin
xě0

„ˆ
CΩ `

H

2

˙ }b}L8pΩq

x` αspl

}Aε ´ αsplId}L8pΩq

x` α1
`

x

x` α1

j
(3.40)

where α1 is such that (2.14) holds.
Then, when n Ñ 8, puH

2n, u
H
2n`1q converges in H1

0 pΩq ˆ H1
0 pΩq to puH

even, u
H
oddq P VH ˆ V ε

H solutions to the
variational formulation (3.38)–(3.39).

Assume in addition that Aε P W 1,8pΩq and that

αspl ă 2α1. (3.41)

Then, when H Ñ 0, uH
odd converges in H1

0 pΩq to uε solution to (2.19).

The proof of Lemma 3.13 is postponed until Appendix A.

4. Numerical simulations

In this section, we present and discuss our numerical experiments. They have all been performed using
FreeFem++ [12]. Our aim is to compare the four approaches of Section 2.2. Section 4.1 collects some preliminary
material. Then we assess the accuracy and computational cost of our four numerical methods in Sections 4.2
and 4.3, respectively.

4.1. Test case

We work on the domain Ω “ p0, 1q2, discretized with a uniform coarse mesh TH of size H . Let VH be the
finite dimensional vector space (2.15) associated to the classical P

1 discretization. In (2.19), we set b “ p1, 1qT ,
f “ 1 and

Aεpx1, x2q “ α

ˆ
1 ` δ cos

ˆ
2π
ε
x1

˙˙
Id2, with α, δ ą 0.

We recall that the advection-dominated regime is defined by the condition PeH ą 1, where we define here the
global Péclet number Pe of problem (2.19) by (2.6). Here this regime corresponds to

α ă
H

2
¨ (4.1)



COMPARISON OF MSFEM APPROACHES FOR ADVECTION-DOMINATED PROBLEMS 871

Ω

Ωlayer

Figure 1. The domain Ω and the boundary layer Ωlayer.

In this regime, the solution exhibits the boundary layer Ωlayer “ pp0, 1q ˆ p1´ δlayer, 1qq Y pp1´ δlayer, 1q ˆ p0, 1qq,

represented on Figure 1, of approximate width δlayer “
1
Pe

logpPeq.
We choose for the splitting method the value αspl “ α. Motivated by the one-dimensional formula (2.12), the

stabilization parameter τK is chosen as

τKpxq “
|K|

2|bpxq|

´
coth pPeKpxqq ´ pPeKpxqq´1

¯
for all K P TH ,

where PeKpxq “
|bpxq|H

2α
.

4.1.1. Evaluation of the accuracy

Let Th be a uniform fine mesh of Ω of size h such that Th is a refinement of TH . The reference solution uref

is obtained by the standard P
1 finite element discretization on Th where h is such that

h ď
1
16

minpε, δlayerq and Peh ď
1

4
‘

2
ă 1.

This condition ensures that the fine mesh can both resolve the oscillations throughout the domain at scale ε
of the solution and the details within the boundary layer. It also ensures that, at scale h, the problem is not
advection-dominated. This fine mesh is also that on which the local problems are solved, in order to determine
the MsFEM basis functions.

In the sequel, the accuracies of the methods are compared using the following relative errors: eH1
in

pu1q “
}u1´uref}H1pΩlayerq

}uref}H1pΩq
inside the boundary layer, and likewise eH1

out
pu1q “

}u1´uref}H1pΩzΩlayerq

}uref}H1pΩq
outside that layer,

and, in the whole domain, eLppu1q “ }u1´uref}LppΩq
}uref}LppΩq

for p “ 2 or p “ 8, and eH1pu1q “ }u1´uref}H1pΩq
}uref}H1pΩq

. All these
relative errors are computed on the fine mesh Th.

4.1.2. Evaluation of the computational costs

The sizes of the local and global problems in the test cases we consider in Section 4.2 are sufficiently small to
allow for the use of direct linear solvers (in our case, the UMFPACK library). This clearly favors the splitting
method as opposed to the other approaches, since that method is potentially the most expensive one of all four
in its online stage. The factorization of the stiffness matrices is performed once and for all in the offline stage and
is repeatedly used in the iterative process during the online stage. When, for problems of larger sizes, iterative
linear solvers are in order, the online cost of the splitting method correspondingly increases. To evaluate this
marginal cost, we have also performed tests using iterative solvers as if the problem sizes were large. We have
used either, for non-symmetric matrices, the GMRES solver and a value of the stopping criterion equal to 10´11,
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or, for symmetric matrices, the conjugate gradient method with a stopping criterion at 10´20. Both solvers are
used with a simple diagonal preconditioner. The computations have all been performed on a Intel r© Xeon r©
Processor E5-2667 v2. The specific function used to measure the CPU time is clock gettime() with the clock
CLOCK PROCESS CPUTIME ID.

4.2. Accuracies

4.2.1. Reference test

We first consider problem (2.19), with the choices of Aε and b described in Section 4.1, and the parameters
α “ 1{128, δ “ 0.5 and H “ 1{16. Since PeH “ 4, the problem is expected to be advection-dominated and,
for ε “ 1{64, multiscale.

In order to practically check that the dominating advection is a challenge to standard approaches, we tem-
porarily set ε to one, and compare the results obtained by the P

1 method and the P
1 Upwind method [16].

Table 1 shows that, outside the boundary layer, the relative H1 error of the P
1 method is approximately 20

times as large as the error of the P
1 Upwind method. This confirms the advection-dominated regime.

Likewise, in order to practically demonstrate the relevance of accounting for the small scale, we reinstate
ε “ 1{64 and display on Table 2 the relative errors for the different methods. We indeed observe that, outside
the boundary layer, the relative H1 error of the P

1 Upwind method is about three times as large as the error
of the Stab-MsFEM method.

We now compare the accuracies of the methods. The results are shown on Table 2. We observe that all
methods have an outrageously large error within the boundary layer (close to a hundred percent). The only
exception to this is discussed in Section 4.2.5 below, where we focus on the boundary layer and show that,
specifically for the Adv-MsFEM method but not for the other methods, the accuracy (within the layer) is
significantly improved upon changing the boundary conditions in the local problem (2.27).

As shown on Table 2, the Adv-MsFEM method has a relative H1 error outside the layer about 7 times as
large as the error of the Stab-MsFEM method. On this example, the methods that provide the lowest H1 error
outside the layer are the Stab-MsFEM method and the splitting method.

4.2.2. Comparison of the splitting methods

We specifically compare here our two variants of the splitting approach: (2.30)–(2.31) and (3.32)–(3.36).

Table 1. Relative errors in the single-scale case (α “ 1{128, δ “ 0.5, ε “ 1 and H “ 1{16).

eL2 eL8 eH1 eH1
in

eH1
out

P
1 0.24 0.69 1.08 0.90 0.58

P
1 Upwind 0.21 0.57 0.85 0.84 0.03

Table 2. Relative errors in the multiscale case (α “ 1{128, δ “ 0.5, ε “ 1{64 and H “ 1{16).

eL2 eL8 eH1 eH1
in

eH1
out

P
1 Upwind 0.86 0.94 0.98 0.97 0.13

MsFEM 0.27 1.63 1.13 0.97 0.57

Stab-MsFEM 0.23 0.81 0.87 0.87 0.04

Adv-MsFEM 0.11 0.62 0.74 0.68 0.29

Splitting (2.30)–(2.31) 0.22 0.80 0.87 0.87 0.03
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Figure 2. Convergence history of the two splitting methods (α “ 1{128, δ “ 0.5, ε “ 1{64
and H “ 1{16).

Table 3. Relative errors for the two splitting methods (α “ 1{128, δ “ 0.5, ε “ 1{64 and
H “ 1{16).

eL2 eL8 eH1 eH1
in

eH1
out

Method (2.30)–(2.31) 0.22 0.80 0.87 0.87 0.03

Method (3.32)–(3.36) 0.59 0.96 0.94 0.94 0.10

In spite of the value of ρ´ “ 128 in (3.24), so that assumption (3.16) of Lemma 3.9 is violated, the
method (2.30)–(2.31) converges. For the approach (3.32)–(3.36), we choose β as in (3.40), that is β “ 1.9941.
In the numerical tests, we have not used the projection PV ε

H
(see Rem. 3.12). The contraction factor (see (A.4)

in the proof of Lem. 3.13) is ρ “ 0.99902. Given the proof of Lemma 3.13 and that value of ρ, the convergence
is expected to be slow. It is indeed very slow, as will now be seen, confirming that the approach (3.32)–(3.36)
is only advocated in the case where the convergence of (2.30)–(2.31) fails.

Figure 2 shows the error (in terms of the iteration residual (2.32) for the method (2.30)–(2.31), and a similar
quantity for the method (3.32)–(3.36)) in function of the number of iterations. The method (3.32)–(3.36) needs
100 times more iterations than the method (2.30)–(2.31) to reach the same tolerance with respect to that
criterion.

Table 3 shows the accuracy of the methods with respect to the reference solution. We see that the
method (2.30)–(2.31) is more accurate than the method (3.32)–(3.36) (outside the boundary layer). Both meth-
ods are equally inaccurate inside the boundary layer.

In all what follows, we have only used the splitting method (2.30)–(2.31), which needs fewer iterations to
converge and provides a more accurate solution.

4.2.3. Sensitivity with respect to the Péclet number

We set δ “ 0.75, ε “ 1{128, H “ 1{16 and α “ 2´k, k “ 2, . . . , 9. We let α vary in order to assess the
robustness of the approaches with respect to the Péclet number.

From (4.1), we suspect the advection-dominated regime corresponds to k ą 5. To doublecheck this is indeed
the case, we first set ε “ 1 and show in Fig. 3 the relative errors of the P

1 method and the P
1 Upwind method.

We indeed see that, for k ą 5, the relative H1 error outside the layer of the P
1 method is at least five times
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Figure 3. Relative errors in the single-scale case (δ “ 0.75, ε “ 1 and H “ 1{16).
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Figure 4. Relative error eH1 (δ “ 0.75, ε “ 1{128 and H “ 1{16).

as large as the relative H1 error outside the layer of the P
1 Upwind method. In the sequel, we go back to the

multiscale case with ε “ 1{128.

Errors in the whole domain. Results are shown on Figure 4. When α is small, all methods yield rather large
errors. The error of the MsFEM method is significantly more important than the error of the Stab-MsFEM
method. This indicates the presence of spurious oscillations on the solution obtained with the non stabilized
MsFEM method. Hence the stabilization is important in this regime. The most robust methods are the Adv-
MsFEM method, the Stab-MsFEM method and the splitting method.

When α is large, the main difficulty is to capture the oscillations at scale ε. As expected, all multiscale
methods perform better than the P

1 Upwind method. Note that the MsFEM method and the Stab-MsFEM
method perform similarly. No stabilization is indeed necessary in that regime.
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Figure 5. Relative error eH1
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(δ “ 0.75, ε “ 1{128 and H “ 1{16).
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Figure 6. Relative error eH1
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(δ “ 0.75, ε “ 1{64 and H “ 1{32).

In both regimes, we note that the Adv-MsFEM method performs the best. We also see that the errors of the
splitting method are extremely close to the errors of the Stab-MsFEM method.

Errors outside the boundary layer. It may be observed on Figure 5 that the Stab-MsFEM method and the
splitting method are the best methods outside the boundary layer. They essentially share the same accuracy.
On the other hand, the Adv-MsFEM solution is systematically less accurate than the Stab-MsFEM solution.
This suggests that encoding the advection in the multiscale basis functions is not necessary to obtain a good
accuracy in this subdomain, and that it may even deteriorate the quality of the numerical solution. The MsFEM
method is much less accurate than the stabilized Stab-MsFEM method when the coercivity constant α is small,
and has a comparable accuracy when α is larger than 0.1.
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(δ “ 0.75, ε “ 1{256 and H “ 1{32).

Table 4. Relative errors in the single-scale case (α “ 1{128, δ “ 0.75, ε “ 1 and H “ 1{32).

eL2 eL8 eH1 eH1
in

eH1
out

P
1 0.11 0.48 0.93 0.86 0.33

P
1 Upwind 0.11 0.46 0.75 0.75 0.01

When α is large (and hence the only difficulty is to capture the oscillation scale ε), the P
1 Upwind method

is less accurate than the Stab-MsFEM method, as expected, since the latter encodes the oscillations of Aε in
the multiscale basis functions. When α is moderately small (10´2 ă α ă 1{32 on Figure 5), the problem is
both advection-dominated (we indeed observe that the Stab-MsFEM method provides a better accuracy than
the MsFEM method) and multiscale (the Stab-MsFEM method is more accurate than the P

1 Upwind method).
However, when α is very small (here, α ă 10´2), the advection is so large that it overshadows the multiscale
nature of the problem. We then observe that the P

1 Upwind method and the Stab-MsFEM method share the
same accuracy.

Of course, the values of α that define these three regimes ((i) advection-dominated, (ii) both advection-
dominated and multiscale, (iii) multiscale) depend on the problem considered, and in particular on the value of
ε. We have checked this sensitivity by considering the following two test-cases: on Figures 6 and 7, we consider
the case ε “ 1{64 and ε “ 1{256, respectively. The other parameters are δ “ 0.75 and H “ 1{32. When
ε “ 1{256, we observe that the Stab-MsFEM method is more accurate than the P

1 Upwind method for any
1{512 ď α ď 1{4. In contrast, when ε “ 1{64, the P

1 Upwind method and the Stab-MsFEM method perform
equally well when α ď 1{256. The sensitivity with respect to ε is also investigated in Section 4.2.4 below (see
e.g. Fig. 9).

4.2.4. Sensitivity with respect to the oscillation scale

In this section, the sensitivity of the different numerical methods to the oscillation scale ε is assessed. We
work with the parameters δ “ 0.75, H “ 1{32, α “ 1{128 and ε “ 2´k, k “ 3, . . . , 8, so that PeH “ 2 ą 1.
Table 4 displays the relative errors of the P

1 method and the P
1 Upwind method for ε “ 1. Outside the layer,
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(α “ 1{128, δ “ 0.75 and H “ 1{32).

the relative H1 error of the P
1 method is about 30 times as large as the error of the P

1 Upwind method. The
problem is advection-dominated.

Figures 8 and 9 respectively show the relative global H1 error and the relative H1 error outside the boundary
layer. The relative globalH1 error does not seem to be sensitive to the oscillation scale, as we can see on Figure 8.
This error is dominated by the error located in the thin boundary layer due to the advection-dominated regime.

On Figure 9, two regions can be distinguished. In the region ε ă H , the Stab-MsFEM method performs better
than the P

1 Upwind method. The error of the Stab-MsFEM method decreases as ε decreases (but its offline cost
increases correspondingly, as the mesh to compute the highly oscillatory basis functions has to be finer), whereas
the error of the P

1 Upwind method remains constant at a large value as ε decreases. The Adv-MsFEM method
yields a large error (due to the mismatch between the shape of the solution outside the boundary layer and the
shape of the basis functions). The MsFEM method is also inaccurate, given the absence of any stabilization.
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Table 5. Relative errors for different boundary conditions in the local problems.

eL2 eL8 eH1 eH1
in

eH1
out

Adv-MsFEM lin 0.11 0.62 0.74 0.68 0.29

Adv-MsFEM OS 0.36 0.55 0.42 0.34 0.24

Adv-MsFEM CR 0.038 0.034 0.20 0.075 0.18
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Figure 10. Relative error eH1
in

for the Adv-MsFEM methods.

4.2.5. Influence of the boundary conditions imposed on the local problems

In all the above experiments, the boundary conditions we have supplied the local problems (2.16) and (2.27)
with are linear boundary conditions. For other choices of boundary conditions, our results remain qualitatively
unchanged. We however wish to now investigate how the choice of boundary conditions affects the accuracy
of the approaches within the boundary layer, since this is where the approaches equally poorly perform. It
is known that, in general, the oversampling method is one of the best multiscale approach available for the
multiscale diffusion problem (2.13). Whether this superiority also survives in the presence of a strong advection
is an interesting issue.

For clarity, the Adv-MsFEM method as presented above (i.e. based on the local problem (2.27)) is denoted
here the Adv-MsFEM lin method. The other boundary conditions that we consider are

‚ Oversampling boundary condition, with an oversampling ratio equal to 3 (i.e. the local problems defining
the basis functions are set on a quadrangle of size 3H ˆ 3H). This method is denoted the Adv-MsFEM OS
method;

‚ Crouzeix´Raviart type boundary condition. This method is denoted the Adv-MsFEM CR method.

The oversampling method is described in [14]. The MsFEM à la Crouzeix´Raviart has been introduced in [19,20].
Both the Adv-MsFEM OS and the Adv-MsFEM CR methods are non-conforming approaches, the purpose of
which is to allow for more flexible boundary conditions on the boundary of the elements. We recall that the
former approach achieves this by solving the local problems on a larger domain than, and usually homothetic
to, the coarse mesh element itself (see Sect. 2.1.2). The oversampling ratio is the homothetic factor. The latter
approach imposes continuity in a weak (integral) form at the edges, see [19, 20] for more details. The relative
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Figure 11. Relative error eH1
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for the Adv-MsFEM methods.

H1 error of those methods is computed with the broken H1 norm

eH1
in

pu1q “
}u1 ´ uref}H1pTHXΩlayerq

}uref}H1pΩq
,

with }u}2
H1pTHXΩlayerq “

ÿ
KPTH

}u}2
H1pKXΩlayerq.

We first study the example presented in Section 4.2.1. Table 5 shows the relative errors. We observe that
there is at least a factor 2 between the relative H1 error inside the layer of the Adv-MsFEM lin and the other
Adv-MsFEM methods. The improvement in the accuracy outside the boundary layer is less important, although
significant for the Adv-MsFEM CR method.

Second, we consider the setting presented in Section 4.2.3. Figure 10 shows the relative H1 error inside the
layer for the different Adv-MsFEM methods. We observe that the boundary conditions imposed on the local
problems affect the accuracy. The Adv-MsFEM lin method always has the largest error. In the advection-
dominated regime, the Adv-MsFEM CR is the best method. At PeH “ 16, there is a factor 8 between the
relative H1 error of the Adv-MsFEM lin method and the relative H1 error of the Adv-MsFEM CR method
(inside the layer). This shows that the convective profile should be encoded in some way in the boundary
conditions imposed on the local problem in order for the solution to be accurate in the boundary layer region
for the advection-dominated regime. For the MsFEM approaches other than the Adv-MsFEM approach, we
have also performed similar experiments, which are not included here, and which do not seem to show any
significant dependency of the accuracy inside the layer upon the boundary conditions of the local problems.

Figure 11 shows the relative H1 error outside the layer for the different Adv-MsFEM methods. It may be
observed that the Adv-MsFEM lin method and the Adv-MsFEM OS method share the same error. In the
advection-dominated regime, the error of the Adv-MsFEM CR is the smallest. However, the errors outside
the boundary layer of the various Adv-MsFEM methods are yet larger than the error outside the layer of the
Stab-MsFEM method.

4.3. Computational costs

We now turn to the computational costs of the different numerical methods. We recall that the splitting
method we consider below is (2.30)–(2.31).

4.3.1. Reference test

We consider the reference test presented in Section 4.2.1. Table 6 shows the offline cost and the online cost
(in seconds) of the different numerical methods.
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Table 6. Computational costs.

Direct solvers Offline (s) Online (s) Iterative solvers Offline (s) Online (s)
Stab-MsFEM 1.98 ˆ 102 2.24 ˆ 10´4 Stab-MsFEM 2.63 ˆ 102 5.78 ˆ 10´4

Splitting 2.29 ˆ 102 3.81 ˆ 10´3 Splitting 2.65 ˆ 102 9.03 ˆ 10´3

MsFEM 1.80 ˆ 102 2.41 ˆ 10´4 MsFEM 2.33 ˆ 102 1.63 ˆ 10´3

Adv-MsFEM 1.84 ˆ 102 2.20 ˆ 10´4 Adv-MsFEM 5.89 ˆ 102 6.99 ˆ 10´4
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Figure 12. Online costs (s) for the different numerical methods, using direct (DS) or iterative
(IS) solvers.

Direct solvers. All the methods (but the splitting method) essentially share the same offline cost. The Stab-
MsFEM method is slightly more expensive than the MsFEM variant because of the assembling of the sta-
bilization term. The splitting method has the largest offline cost because there are more computations (two
assemblings) than in the other methods.

The online cost of the splitting method is about 15 times as large as the online cost of the other methods.
This corresponds to the number of iterations of the splitting method. Note that the online cost corresponds to
solving the linear system from an already factorized matrix, which is negligible.

Iterative solvers. The online cost of the intrusive methods (Adv-MsFEM, MsFEM, Stab-MsFEM) corresponds
to calling the GMRES solver. There are some differences in these costs because the number of iterations of the
GMRES solver is sensitive to the condition number of the matrix that depends on the method. The online cost
of the splitting method is still the largest because of the iteration loop of the splitting method. It is again about
15 times larger than the online cost of the Stab-MsFEM method. In this particular case, the splitting method
needs 12 iterations to converge. The online costs are larger now than with direct solvers, of course.

The main part of the offline cost comes from solving the local problems. The MsFEM, Stab-MsFEM and
the splitting method share the same local problems, namely (2.16). This is why they essentially share the same
offline cost. In the Adv-MsFEM method, the local problem to solve is (2.27). We observe that its offline cost
is about 2 times larger than for the other methods. We thus see that the computational cost of solving with
the GMRES solver the non-symmetric linear system corresponding to the local problem (2.27) is higher that
the cost of solving with the conjugate gradient method the symmetric linear system stemming from the local
problem (2.16).

4.3.2. Dependency with respect to the Péclet number

We again consider the setting of Section 4.2.3 where we now vary the coefficient α and thus the Péclet number.
Figure 12 shows the online cost (in seconds) of the different numerical methods as a function of α. We observe
that the Adv-MsFEM method and the Stab-MsFEM method share the same online cost. The online costs of the
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two methods and the online cost of the MsFEM method (with direct solvers) do not seem to strongly depend
on the Péclet number. The online cost of the MsFEM method with iterative solvers increases as α decreases,
since the condition number of the stiffness matrix then increases. The splitting method is, overall, significantly
more expensive than the other approaches.

We have also observed (see [21], Fig. 14) that the number of iterations in the splitting method grows as α
decreases. The number of iterations is slightly larger when using iterative solvers than when using direct solvers,
although the difference fades as the advection becomes dominant.

Appendix A. Proof of Lemma 3.13

We first study the convergence when n Ñ 8, and next when H Ñ 0.

Step 1. Convergence when n Ñ 8. Let ruH
n “ uH

n`2 ´ uH
n . We directly infer from (3.36) that

|ruH
2n`1|H1pΩq ď

β ` αspl

β ` α1
|ruH

2n|H1pΩq. (A.1)

We now estimate |ruH
2n`2|H1pΩq and |ruH

2n`1 ´PV ε
H

pruH
2nq|H1pΩq. Using the variational formulations (3.32) for uH

2n`2

and uH
2n`4, we deduce a variational formulation for ruH

2n`2 “ uH
2n`4 ´ uH

2n`2. Taking ruH
2n`2 as test function in

that variational formulation, and setting wn “ PV ε
H

pruH
2nq ´ ruH

2n`1, we get

pαspl ` βq|ruH
2n`2|2H1pΩq ď

�
Ω

pb ¨ ∇wnqruH
2n`2 `

ÿ
K P TH

pτKb ¨ ∇wn, b ¨ ∇ruH
2n`2qL2pKq `

�
Ω

β∇ruH
2n`1 ¨ ∇ruH

2n`2

ď }b}L8pΩq|wn|H1pΩq}ruH
2n`2}L2pΩq

`
ÿ

K P TH

H}b}L8pΩq

2
}∇wn}L2pKq}∇ruH

2n`2}L2pKq ` β|ruH
2n`1|H1pΩq|ruH

2n`2|H1pΩq

ď }b}L8pΩq|wn|H1pΩq}ruH
2n`2}L2pΩq `

H}b}L8pΩq

2
|wn|H1pΩq|ruH

2n`2|H1pΩq

` β|ruH
2n`1|H1pΩq|ruH

2n`2|H1pΩq

ď
„ˆ
CΩ `

H

2

˙
}b}L8pΩq|wn|H1pΩq ` β|ruH

2n`1|H1pΩq

j
|ruH

2n`2|H1pΩq. (A.2)

We now estimate |wn|H1pΩq. We know that, for any ψ P V ε
H ,

a1pwn, ψq “ a1pruH
2n ´ ruH

2n`1, ψq

“ a2pruH
2n`1, ψq ´ a1pruH

2n`1, ψq

“
�

Ω

p∇ψqT pAε ´ αsplIdq∇ruH
2n`1,

where we used (3.35) in the first line and (3.36) in the second line. Using that wn P V ε
H (this is where using the

projection PV ε
H

is needed), we deduce that

|wn|H1pΩq ď
}Aε ´ αsplId}L8pΩq

β ` αspl
|ruH

2n`1|H1pΩq. (A.3)

Collecting (A.2), (A.3) and (A.1), we obtain

|ruH
2n`2|H1pΩq ď ρ|ruH

2n|H1pΩq, (A.4)
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where ρ “
ˆ
CΩ `

H

2

˙
}b}L8pΩq

β ` αspl

}Aε ´ αsplId}L8pΩq

β ` α1
`

β

β ` α1
.

As in the proof of Lemma 3.11, we introduce the function

gpxq “
ˆ
CΩ `

H

2

˙
}b}L8pΩq

x` αspl

}Aε ´ αsplId}L8pΩq

x` α1
`

x

x` α1
,

observe that gpxq “ 1 ´
α1

x
` O

ˆ
1
x2

˙
, which implies, since α1 ą 0, that min

xě0
gpxq ă 1. In view of (3.40), we

have ρ “ gpβq “ min
xě0

gpxq ă 1.

Arguing as in the proof of Lemma 3.9, we obtain that puH
2n, u

H
2n`1q converges in H1

0 pΩq ˆ H1
0 pΩq to some

puH
even, u

H
oddq P VH ˆ V ε

H . Letting n go to `8 in (3.32) and (3.36), we obtain that uH
even and uH

odd satisfy the
variational formulations (3.38) and (3.39).

Step 2. Convergence when H Ñ 0. We recast (3.38)–(3.39) as the following variational formulation:

Find
`
uH

even, u
H
odd

˘
P VH ˆ V ε

H such that, for any pv, wq P VH ˆ V ε
H ,

cH
`
puH

even, u
H
oddq, pv, wq

˘
“ BHpv, wq, (A.5)

where the bilinear form

cH
``
uH

even, u
H
odd

˘
, pv, wq

˘
“ a1puH

even, vq ` aconvpuH
even, vq

´
�

Ω

β∇uH
odd ¨ ∇v ` aconvpuH

odd, vq

´ aconvpPV ε
H

puH
evenq, vq ` a2puH

odd, wq ´ a1puH
even, wq

is defined on pH1
0 pΩqˆH1

0 pΩqq2. Recall that a1, aconv and a2 are defined by (3.33), (3.34) and (3.37), respectively,
while the operator PV ε

H
is defined by (3.35). The linear form

BHpv, wq “
�

Ω

fv `
ÿ

KPTH

pτKf, b ¨ ∇vqL2pKq

is defined on H1
0 pΩq ˆ H1

0 pΩq. Note that BHpv, wq does not depend on w.
The convergence proof when H Ñ 0 is based on the following arguments. First, we are going to show that,

if H is sufficiently small, cH satisfies an inf-sup condition uniformly in the mesh size H . For that purpose, we
adapt the arguments of ([30], Thm. 4.2.9) to our setting. We introduce the bilinear form

rcH´
pu, vq, pφ, ψq

¯
“ cH

´
pu, vq, pφ, ψq

¯
` λ

�
Ω

uφ,

defined on pH1
0 pΩq ˆH1

0 pΩqq2, where λ ą 0 is a parameter, and show in Step 2a below that rcH is coercive in the
H1pΩq ˆ H1pΩq norm, provided λ is large enough and H is sufficiently small. This allows us to next show, as
claimed above, that cH satisfies the inf-sup condition (see Step 2b), uniformly in H (as soon as H is sufficiently
small). In contrast to the setting of ([30], Thm. 4.2.9), the bilinear forms cH and rcH here depend on H .

We are then in position to use classical numerical analysis arguments (see Step 2c) for estimating the dis-
cretization error (see (A.20) below). This error is bounded from above (up to some multiplicative constants) by
the best approximation error and by the error introduced by the fact that cH and BH in (A.5) depend on H .
The end of the proof amounts to showing that these two errors converge to 0 when H Ñ 0.
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Step 2a. Coercivity of rcH . We assume that

λ ě
4}b}2

L8pΩq

αspl
`

}b}2
L8pΩq

2 pα1 ´ αspl{2q
and H}b}L8pΩq ă min

´
2α1 ´ αspl,

αspl

5

¯
(A.6)

where we recall that α1 is such that (2.14) holds and that αspl is such that 2α1 ą αspl (see (3.41)). We claim
that

Under assumption (A.6), rcH is coercive. (A.7)

Note that (A.6) does not impose any restriction on β. The assumption (3.40) is only used in Step 1 above (to
show the convergence when n Ñ 8).

For any pu, vq P H1
0 pΩq ˆH1

0 pΩq, we have

rcH´
pu, vq, pu, vq

¯
“ a1pu, uq ` a2pv, vq ` λ}u}2

L2pΩq

´
�

Ω

β∇v ¨ ∇u´ a1pu, vq

`aconvpu´ PV ε
H

puq, uq ` aconvpv, uq. (A.8)

Using the coercivity of the bilinear forms a1 and a2, we get

a1pu, uq ` a2pv, vq ě pβ ` αsplq|u|2H1pΩq ` pβ ` α1q|v|2H1pΩq. (A.9)

We now bound the terms in the last line of (A.8). Using the fact that τKpxq “
H

2|bpxq|
and |PV ε

H
puq|H1pΩq ď

|u|H1pΩq, we have that

|aconvpu ´ PV ε
H

puq, uq ` aconvpv, uq|

ď }b}L8pΩq |u´ PV ε
H

puq|H1pΩq }u}L2pΩq `
H

2
}b}L8pΩq |u´ PV ε

H
puq|H1pΩq |u|H1pΩq

`}b}L8pΩq |v|H1pΩq }u}L2pΩq `
H

2
}b}L8pΩq |v|H1pΩq |u|H1pΩq

ď 2}b}L8pΩq |u|H1pΩq }u}L2pΩq `
5H
4

}b}L8pΩq |u|2H1pΩq

`}b}L8pΩq |v|H1pΩq }u}L2pΩq `
H

4
}b}L8pΩq |v|2H1pΩq

ď
ˆ
αspl

4
`

5H
4

}b}L8pΩq

˙
|u|2H1pΩq `

˜
4}b}2

L8pΩq

αspl
`

}b}2
L8pΩq

2 pα1 ´ αspl{2q

¸
}u}2

L2pΩq

`
ˆ

1
2

´
α1 ´

αspl

2

¯
`
H

4
}b}L8pΩq

˙
|v|2H1pΩq, (A.10)

where we have used a Young inequality in the last line. We bound the terms in the second line of (A.8) byˇ̌̌̌
´
�

Ω

β∇v ¨ ∇u´ a1pu, vq
ˇ̌̌̌

ď
β

2
p|u|2H1pΩq ` |v|2H1pΩqq `

β ` αspl

2

´
|u|2H1pΩq ` |v|2H1pΩq

¯
. (A.11)

Collecting (A.8), (A.9), (A.10) and (A.11), we get

rcH´
pu, vq, pu, vq

¯
ě

ˆ
αspl

4
´

5H
4

}b}L8pΩq

˙
|u|2H1pΩq

`
ˆ

1
2

´
α1 ´

αspl

2

¯
´
H

4
}b}L8pΩq

˙
|v|2H1pΩq

`

˜
λ´

4}b}2
L8pΩq

αspl
´

}b}2
L8pΩq

2 pα1 ´ αspl{2q

¸
}u}2

L2pΩq.
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Under assumption (A.6), using a Poincaré inequality, we see that there exists η ą 0 such that

@pu, vq P H1
0 pΩq ˆH1

0 pΩq, rcH´
pu, vq, pu, vq

¯
ě η

´
}u}2

H1pΩq ` }v}2
H1pΩq

¯
. (A.12)

This concludes the proof of the claim (A.7).

Step 2b. Inf-sup condition on cH . We want to show that there exists H0 ą 0 and α ą 0 such that, for any
H ď H0,

inf
UHPVH ˆV ε

H

sup
ΦHPVH ˆV ε

H

cH
`
UH , ΦH

˘
}UH}H1pΩqˆH1pΩq }ΦH}H1pΩqˆH1pΩq

ě α. (A.13)

We prove this statement by contradiction and therefore assume that (A.13) does not hold. Then, there exists a
sequence Hn that converges to 0 and a sequence UHn “

´
uHn

even, u
Hn

odd

¯
P VHn ˆV ε

Hn
with }UHn}H1pΩqˆH1pΩq “ 1,

such that

lim
nÑ`8

sup
Φ P VHn ˆV ε

Hn

cHn

`
UHn , Φ

˘
}Φ}H1pΩqˆH1pΩq

“ 0. (A.14)

As the sequence UHn is bounded in H1pΩq ˆ H1pΩq, it weakly converges in H1
0 pΩq ˆ H1

0 pΩq to some U‹ “
pu‹

even, u
‹
oddq P H1

0 pΩq ˆ H1
0 pΩq, up to the extraction of a subsequence that we still denote UHn .

Using (3.35), we also deduce from the boundedness of uHn
even that PV ε

Hn
puHn

evenq is bounded in H1 norm. Up to
an additional extraction, we hence have that PV ε

Hn
puHn

evenq weakly converges in H1pΩq to some uΠ
even. We claim

that uΠ
even “ u‹

even. Let indeed φ P H1
0 pΩq. By density (see [21], Appendix B), there exists a sequence wn P V ε

Hn

converging strongly in H1
0 pΩq to φ. For any n, we have a1pPV ε

Hn
puHn

evenq, wnq “ a1puHn
even, wnq. Passing to the

limit n Ñ 8, we infer that a1puΠ
even, φq “ a1pu‹

even, φq, which holds true for any φ P H1
0 pΩq. This implies that

uΠ
even “ u‹

even. Consequently, PV ε
Hn

puHn
evenq ´ uHn

even weakly converges in H1
0 pΩq to 0.

We first show that U‹ “ 0. We fix some Φ “ pφ, ψq P H1
0 pΩqˆH1

0 pΩq. For any ΦHn “ pφHn , ψHnq P VHn ˆV ε
Hn

,
we write

cHn pUHn , Φq “ cHn

`
UHn , ΦHn

˘
` cHn

`
UHn , Φ´ ΦHn

˘
. (A.15)

We have that

|cHn pUHn , ΦHnq| ď

˜
sup

ΨPVHn ˆV ε
Hn

cHnpUHn , Ψq
}Ψ}H1pΩqˆH1pΩq

¸
}ΦHn}H1pΩqˆH1pΩq (A.16)

and, since cH is a continuous bilinear form,

|cHnpUHn , Φ´ ΦHnq| ď M}UHn}H1pΩqˆH1pΩq }Φ´ ΦHn}H1pΩqˆH1pΩq. (A.17)

By an argument of density (see [21], Appendix B), there exists a sequence ψHn P V ε
Hn

converging strongly in
H1

0 pΩq to ψ. Likewise, by an argument of density and classical results on finite element methods, we know
that there also exists a sequence φHn P VHn converging strongly in H1

0 pΩq to φ. We thus have built a sequence
ΦHn “

`
φHn , ψHn

˘
P VHn ˆ V ε

Hn
such that lim

nÑ`8
}Φ ´ ΦHn }H1pΩqˆH1pΩq “ 0. We infer from (A.15), (A.17),

(A.16) and (A.14) that
lim

nÑ`8
cHn pUHn , Φq “ 0.

Making use of the explicit expression of cH and using that UHn weakly converges in H1
0 pΩq ˆ H1

0 pΩq to
U‹ “ pu‹

even, u
‹
oddq and that PV ε

Hn
puHn

evenq ´ uHn
even weakly converges in H1

0 pΩq to 0, we obtain that

a1pu‹
even, φq ´

�
Ω

β∇u‹
odd ¨ ∇φ`

�
Ω

pb ¨ ∇u‹
oddqφ ` a2pu‹

odd, ψq ´ a1pu‹
even, ψq “ 0.
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This holds for any pφ, ψq P H1
0 pΩq ˆ H1

0 pΩq. Taking φ “ ψ, we deduce that u‹
odd “ 0. This next implies that

u‹
even “ 0, and hence that U‹ “ 0.

Second, we show the strong convergence in H1
0 pΩq ˆH1

0 pΩq of the sequence UHn to U‹ “ 0. Under assump-
tion (A.6), we have shown in Step 2a above that rcH is coercive. In view of (A.12), we thus have

η}UHn}2
H1pΩqˆH1pΩq ď rcHnpUHn , UHnq

“ cHnpUHn , UHnq ` λ

�
Ω

`
uHn

even

˘2
ď

˜
sup

Φ P VHn ˆV ε
Hn

cHnpUHn , Φq
}Φ}H1pΩqˆH1pΩq

¸
` λ }uHn

even}2
L2pΩq.

In view of (A.14), the first term in the above right-hand side converges to 0 when n Ñ 8. Up to the extraction
of a subsequence, uHn

even (which weakly converges to 0 in H1pΩq) strongly converges to 0 in L2pΩq. This implies
that the second term in the above right-hand side also converges to 0 when n Ñ 8.

We then deduce that lim
nÑ8

}UHn}2
H1pΩqˆH1pΩq “ 0, which is a contradiction with the fact that, by construction,

}UHn}H1pΩqˆH1pΩq “ 1. This concludes the proof of (A.13).

Step 2c. Conclusion. We are now in position to use ([10], Lem. 2.27), which states an upper bound on the
error (see (A.20) below) under three assumptions. Assumption (i) of that lemma is that the approximation
spaces are conformal. This is obviously satisfied here, as VH ˆ V ε

H Ă H1
0 pΩq ˆ H1

0 pΩq. Assumption (ii) is that
cH satisfies an inf-sup condition. It is satisfied here in view of (A.13). Assumption (iii) is that the bilinear form
cH is bounded. This is again satisfied here. The assumptions of ([10], Lem. 2.27) being satisfied, we can write
an error bound (see (A.20) below) between the solution to (A.5) and the solution to the corresponding infinite
dimensional problem, that reads

Find pueven, uoddq P H1
0 pΩq ˆH1

0 pΩq such that,
for any pv, wq P H1

0 pΩq ˆH1
0 pΩq, c

´
pueven, uoddq, pv, wq

¯
“ Bpv, wq, (A.18)

where

c
´

pueven, uoddq, pv, wq
¯

“ a1pueven, vq ´
�

Ω

β∇uodd ¨ ∇v `
�

Ω

pb ¨ ∇uoddqv ` a2puodd, wq ´ a1pueven, wq

and

Bpv, wq “
�

Ω

fv.

It is obvious that pueven, uoddq is a solution to (A.18) if and only if pueven, uoddq is a solution to the system" ´ pβ ` αsplqΔueven “ f ´ b ¨ ∇uodd ´ βΔuodd in Ω,

ueven “ 0 on BΩ,
(A.19)" ´ div ppβId `Aεq∇uoddq “ ´pβ ` αsplqΔueven in Ω,

uodd “ 0 on BΩ.

This system is well-posed: by adding the two equations, we obtain that uodd is a solution to (2.19), and is
therefore unique. This implies the uniqueness of ueven in view of (A.19). We denote by U “ pueven, uoddq the
unique solution to (A.18).
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Using ([10], Lem. 2.27), we obtain that

}U ´ UH}H1pΩqˆH1pΩq ď
1
α

sup
Φ P VHˆV ε

H

|BpΦq ´BHpΦq|
}Φ}H1pΩqˆH1pΩq

` inf
GPVHˆV ε

H

«ˆ
1 `

M

α

˙
}U ´G}H1pΩqˆH1pΩq `

1
α

sup
Φ P VH ˆV ε

H

|cpG,Φq ´ cHpG,Φq|
}Φ}H1pΩqˆH1pΩq

ff
, (A.20)

where M is the continuity constant of the bilinear form c. We successively study the two terms in the right-hand
side of (A.20).

For the first term, we write, for any Φ “ pφ, ψq P VH ˆ V ε
H , that

|BpΦq ´BHpΦq| ď
H

2

ÿ
KPTH

}f}L2pKq}∇φ}L2pKq ď
H

2
}f}L2pΩq}Φ}H1pΩqˆH1pΩq,

which implies that

lim
HÑ0

sup
Φ P VH ˆV ε

H

|BpΦq ´BHpΦq|
}Φ}H1pΩqˆH1pΩq

“ 0. (A.21)

For the second term of the right-hand side of (A.20), we write, for any Φ “ pφ, ψq P VH ˆ V ε
H and any

G “ pg, hq P VH ˆ V ε
H , that

cHpG,Φq ´ cpG,Φq “ aconvpg ´ PV ε
H

pgq, φq `
ÿ

K P TH

pτKb ¨ ∇h, b ¨ ∇φqL2pKq.

We therefore deduce, using an integration by parts in the first line, that

|cHpG,Φq ´ cpG,Φq| ď
ˇ̌̌̌�

Ω

“
g ´ PV ε

H
pgq

‰
b ¨ ∇φ

ˇ̌̌̌
`
H}b}L8pΩq

2
|g ´ PV ε

H
pgq|H1pΩq|φ|H1pΩq `

H}b}L8pΩq

2
|h|H1pΩq|φ|H1pΩq

ď }b}L8pΩq}g ´ PV ε
H

pgq}L2pΩq}Φ}H1pΩqˆH1pΩq

`H}b}L8pΩq
`
|g|H1pΩq ` |h|H1pΩq

˘
}Φ}H1pΩqˆH1pΩq.

We hence write, for the second term of the right-hand side of (A.20), thatˆ
1 `

M

α

˙
}U ´G}H1pΩqˆH1pΩq `

1
α

sup
Φ P VH ˆV ε

H

|cpG,Φq ´ cHpG,Φq|
}Φ}H1pΩqˆH1pΩq

ď C}U ´G}H1pΩqˆH1pΩq ` C}g ´ PV ε
H

pgq}L2pΩq ` CH}G}H1pΩqˆH1pΩq

where C is independent of H . Using the density of the families VH and V ε
H in H1

0 pΩq (see [21], Appendix B for
the latter property), we build GH “ pgH , hHq P VH ˆ V ε

H such that lim
HÑ0

}U ´ GH}H1pΩqˆH1pΩq “ 0. We thus

have that

inf
GPVHˆV ε

H

«ˆ
1 `

M

α

˙
}U ´G}H1pΩqˆH1pΩq `

1
α

sup
Φ P VH ˆV ε

H

|cpG,Φq ´ cHpG,Φq|
}Φ}H1pΩqˆH1pΩq

ff
ď C}U ´GH}H1pΩqˆH1pΩq ` C}gH ´ PV ε

H
pgHq}L2pΩq ` CH}GH}H1pΩqˆH1pΩq.

The above three terms converge to 0 when H Ñ 0 (for the second term, this is a consequence of the fact that,
for any bounded sequence τH P H1

0 pΩq, we have that τH ´PV ε
H

pτHq weakly converges to 0 in H1pΩq). Collecting
this result with (A.20) and (A.21), we deduce that lim

HÑ0
}U ´UH}H1pΩqˆH1pΩq “ 0. This concludes the proof of

Lemma 3.13.
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