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ISOGEOMETRIC ANALYSIS AND PROPER ORTHOGONAL DECOMPOSITION
FOR THE ACOUSTIC WAVE EQUATION ∗
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Abstract. Discretization methods such as finite differences or finite elements were usually employed
to provide high fidelity solution approximations for reduced order modeling of parameterized partial
differential equations. In this paper, a novel discretization technique-Isogeometric Analysis (IGA) is
used in combination with proper orthogonal decomposition (POD) for model order reduction of the
time parameterized acoustic wave equations. We propose a new fully discrete IGA-Newmark-POD ap-
proximation and we analyze the associated numerical error, which features three components due to
spatial discretization by IGA, time discretization with the Newmark scheme, and modes truncation
by POD. We prove stability and convergence. Numerical examples are presented to show the effective-
ness and accuracy of IGA-based POD techniques for the model order reduction of the acoustic wave
equation.
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1. Introduction

Proper orthogonal decomposition (POD) is a popular reduced order modeling (ROM) technique to solve
problems of Engineering interest (see e.g. [7, 44]). The method is also known as principle component analysis
in Statistics and Karhunen-Loève expansion in stochastic analysis [22]. POD techniques have been applied in
various fields of computational mechanics for ROM of physical, geometric and/or time parameterized steady
and unsteady partial differential equations (PDEs); see e.g. [19, 34, 39, 44] and the references therein.

POD-Galerkin methods for parameterized PDEs can be regarded as ROM for the solution manifolds de-
pending on parameters [21, 26, 28, 29, 31]. In this case, we will address the case of a time dependent acoustic
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wave equation and we will let the time play the role of parameter. For unsteady PDEs with time variable being
the parameter, Kunisch and Volkwein analyzed the convergence of POD-Galerkin methods under a unified
framework for problems including heat, Burgers [28], and Navier–Stokes equations [29]. The method of snap-
shots in POD-Galerkin methods chooses discrete instances in the parameter domain and uses the corresponding
field variables (i.e. the snapshots) to obtain a low-dimensional basis [28,36,43]. The generation of the snapshots
is the first crucial step in POD-Galerkin reduced modeling of PDEs. For error estimates and generation of
the POD-basis proposed in [28, 29], the snapshots are often assumed to be “exact” regardless of the spatial
discretization.

However, “exact” snapshots are usually not available in practice and instead “very accurate”, but still ap-
proximate snapshots, the so-called high fidelity solution approximations [43], are considered. Most of the existing
methods of snapshots for ROM of unsteady PDEs thus need to compute snapshots numerically by fully discrete
approximations, such as backward Euler or Crank-Nilcolson scheme for time discretization and the popular
Finite Element Method (FEM) for spatial discretization (see e.g., [9, 26–28, 31, 40]). As a popular ROM tech-
nique, POD is usually designed to capture the information contained in the set of snapshots in the sense of
least-squares. This does not necessarily imply that the reduced order space spanned by the POD basis performs
well in approximating the solution space (or manifold) of the PDE since the snapshots are “approximate” [19].
Actually, the error between the POD-Galerkin solution and the exact solution consists of two components: the
space-time full discretization and the POD eigenvalue truncation, respectively. For clarity, let us assume that
u is an exact solution of a given PDE and denote by us and ur an approximate (high fidelity) snapshot and a
POD solution, respectively. We have, in some suitable norm ‖ · ‖ [19, 45]:

‖u− ur‖︸ ︷︷ ︸
Total error

≤ ‖u− us‖︸ ︷︷ ︸
Snapshot error

+ ‖us − ur‖︸ ︷︷ ︸
POD error

(1.1)

by the triangle inequality. In this respect, POD deals with the reduction of the POD error ‖us − ur‖ by means
of modal analysis and eigenmodes truncation. Therefore, to make the snapshot error ‖u − us‖ and hence the
total error ‖u−ur‖ small, we need good “approximate” snapshots to begin with. Motivated by this request, we
choose in this paper a novel discretization technique-Isogeometric Analysis (IGA) [10,23] toward integration of
computational geometry and computational mechanics to obtain our snapshots in place of FEM. The motivation
stems from the fact that the IGA has shown advantages over FEM on accuracy in ROM [45].

Nowadays, IGA has been successfully applied in various fields including structural mechanics, fluid dynamics,
acoustics, electromagnetism; see e.g. [4,5,8,10,14,15,37,41]. IGA represents a generalization of the isoparametric
FEM for which Non-Uniform Rational B-spline (NURBS) basis functions, a standard tool in Computer-Aided
Design, can first be used for the geometrical representation of the computational domain and then as base
for the finite-dimensional trial spaces of the approximate solutions to the PDEs. It follows that IGA possesses
a significant geometrical advantage in several circumstances since several computational domains of practical
interest, such as freeform and sculptured surfaces and conic sections, are exactly represented by NURBS. In these
cases, the geometrical representation allowed by FEM typically introduces numerical errors, which may lead to
a loss of accuracy of the method [5, 10, 11, 23, 45]. Thus, in these cases the accuracy of numerical solutions is
generally enhanced by IGA compared with FEM. Then, NURBS-based IGA possesses the advantage of yielding
highly accurate approximations to the smooth solutions of PDEs when using basis functions more regular than
globally C0-continuous. In particular, the global regularity of the NURBS basis functions can be enhanced
up to Cp−1-continuous, with p denoting the degree of the piecewise polynomials used in their construction.
This can be realized by a special refinement called k-refinement (typical of NURBS) differently from h− and
p− refinements.

The considerations above motivate us to use IGA in POD-Galerkin methods for ROM of unsteady PDEs.
For IGA-ROM approximation of parabolic equations, both accuracy and effectiveness can be achieved as proven
in [45]. For the error due to spatial discretization, IGA is expected to be more accurate than FEM for approxi-
mating smooth solutions of PDEs [6,10,11,16,23,24,41]. The solutions to the acoustic wave equations are closely
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related to the corresponding elliptic eigenvalue problems by separation of variables and modal analysis [13]. In
eigenvalue problems the regular basis functions are significantly better than their C0-continuous counterpart
for modal analysis [11,15,24]. Thus, IGA with more regular basis functions is more accurate than FEM for ob-
taining high fidelity solution approximation of acoustic wave equations. This advantage may also be relevant in
the context of the POD-Galerkin method which is based on modal analysis and eigenvalue truncation as shown
in [45]. For this reason, together with the exactness of the geometrical representation, the use of IGA with
NURBS basis functions which are Cp−1-continuous can be significantly beneficial for POD-Galerkin methods
in terms of accuracy.

Acoustic wave equations, as basic hyperbolic PDEs, have many applications and thus are fundamentally
important in Engineering [13]. Reduction is operated with the purpose of lowering the computational complexity
of the numerical approximation to the acoustic wave equation. In this respect, the time variable is the only
parameter that is addressed in the reduction process; it is well-known that dealing with hyperbolic problems,
special care should be devoted to achieve efficient ROM when considering the multiparameter case [1,12,42]. For
ROM of the acoustic wave equation, POD-Galerkin approaches were developed based on spatial discretization
with FEM in [2, 9, 20]. A priori error estimates with time discretization and POD truncation were derived
therein. In this paper, we use IGA rather than FEM [2, 9, 20] to obtain high fidelity solution approximations
for ROM of acoustic wave equations and we propose a new fully IGA-Newmark-POD Galerkin scheme for their
approximation. We split the error of the POD-Galerkin solution into two parts as in equation (1.1) and show
that both the accuracy of high fidelity solution approximation and POD truncation are important for obtaining
accuracy in ROM. We analyze the stability and convergence of the discrete schemes by a priori error estimates.
Numerical experiments are performed to show advantages of IGA used as high fidelity solution approximations
both with respect to the “exact” geometrical representation of computational domains of practical interest and
the use of smooth basis functions allowed by NURBS. These advantages are shown to be useful for enhancing
accuracy in ROM by POD.

The paper is organized as follows. In Section 2, we first introduce the essential formulations of IGA for
the spatial discretization of PDEs. Then, the IGA semi-discrete and fully space-time (with Newmark scheme)
discretization methods are presented; stability and convergence analysis for acoustic wave equations are carried
out. In Section 3, we recall the POD methods for ROM of unsteady PDEs with the time variable as parameter.
In Section 4, we present the IGA-POD Galerkin scheme and show its stability and convergence properties by
performing a priori error estimates. Numerical aspects and the algorithm are detailed. In Section 5, we give
numerical examples to show effectiveness and advantages of our approach. Finally, conclusions follow.

2. IGA for acoustic wave equations

In this section, we first introduce the wave equation model in acoustics. We introduce B-splines and NURBS
for the formulation of IGA. Then, we propose a spatial discretization scheme by IGA and temporal discretization
using the Newmark-scheme. We discuss the stability and convergence of the schemes.

2.1. Problem formulations

Let Ω ⊂ R
d (d = 2, 3) be an open bounded domain with Lipschitz continuous boundary ∂Ω. We partition

∂Ω into ΓD and ΓN satisfying that ΓD ∩ΓN = ∅ and ΓD ∪ΓN = ∂Ω. We indicate by L2(Ω) the Hilbert space of
measurable functions that are square integrable. The L2 inner product and the corresponding norm are denoted
by (·, ·) and ‖ · ‖, respectively. Denote H1(Ω) := {v ∈ L2(Ω) |Div ∈ L2(Ω), i = 1, . . . , d} with Di being the
partial distributional derivative with respect to xi and H1

ΓD
(Ω) := {v ∈ H1(Ω) | v = 0 on ΓD} with dual space

denoted by H−1
ΓD

(Ω). Denote by (·, ·)k the scalar or vectorial Hk inner product and define the corresponding
norm ‖v‖k :=

√
(v, v)k. We will need the Hilbert space Hk(Ω), for k a non-negative integer. Accordingly, (·, ·)k,

‖ · ‖k and | · |k will be used as their scalar inner products, norms and semi-norms, respectively.
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We consider the acoustic wave equation⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

utt −Δu = f in Ω × (0, T ],

u = gD on ΓD × (0, T ],
∇u · n = gN on ΓN × (0, T ],
u = u0 in Ω × {0},
ut = v0 in Ω × {0},

(2.1)

with T > 0. For V := H1
ΓD

(Ω), we define the bilinear form a(·, ·): V × V → R as:

a(u, v) :=
∫

Ω

∇u · ∇v dx ∀u, v ∈ V. (2.2)

By the Cauchy−Schwarz inequality, we have that

|a(u, v)| ≤ ‖u‖1‖v‖1 ∀u, v ∈ V (2.3)

and by the Poincaré inequality there exists a constant 0 < α < 1 such that (e.g., [35]):

|a(v, v)| ≥ α‖v‖2
1 ∀v ∈ V, (2.4)

for which the interior of ΓD should not be empty. We denote with L2(0, T ;V ) the space of measurable functions
φ : (0, T ) → V , which are square integrable, i.e.,

∫ T

0
‖φ(t)‖2

V dt < ∞, where φ(t) := φ(t, ·) is considered as a
function of the space variable only for t fixed. With the notation H := L2(Ω), we define the space-time function
spaces H := L2(0, T ;H), V := {v ∈ L2(0, T ;V )|vt ∈ H} and

V̂ := {v ∈ V|v ∈ C([0, T ];V ), vt ∈ C([0, T ];H), vtt ∈ L2(0, T ;V ∗)}, (2.5)

where V ∗ denotes the dual space of V .
Given f ∈ L2(0, T ;H−1

ΓD
(Ω)), u0 ∈ V , and v0 ∈ H , the weak formulation of problem (2.1) reads: for t ∈ (0, T ],

find u ∈ V̂ such that

(utt(t), w) + a(u(t), w) = (f(t), w) + (gN , w) ∀ w ∈ V, (2.6)
(u(0), w) = (u0, w) ∀w ∈ L2(Ω), (2.7)

(ut(0), w) = (v0, w) ∀w ∈ L2(Ω), (2.8)

which admits a unique weak solution u ∈ V ∩C([0, T ];V ) with ut ∈ H∩C([0, T ];H) and utt ∈ L2(0, T ;V ∗) (see
e.g. [13]).

2.2. IGA space semi-discretization of PDE model

Let us introduce a spatial semi-discretization of (2.6) based on IGA [10]. We recall in the following some
basic definitions and properties of IGA.

2.3. B-splines and NURBS

We recall univariate B-splines and NURBS [33]. For any α (1 ≤ α ≤ d) and positive integers mα and nα,
we define the knot vector Ξα := {0 = ξ1,α, ξ2,α, . . . , ξnα+pα+1,α = 1} consisting of nondecreasing knots, i.e.,
ξ1,α ≤ ξ2,α ≤ . . . ≤ ξnα+pα+1,α. Knots may be repeated with the number of repetitions called multiplicity. A
knot vector is assumed to be open, i.e., both of the first and the last pα + 1 knots are repeated, where pα is the
polynomial degree. Denote by Bi,α (i = 1, 2, . . . , nα) the B-spline basis functions, which can be produced by the
recursive Cox-de Boor formula [33]. Each B-spline basis function is everywhere pointwise C∞-continuous except
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at knots ξi,α, where it is Cpα−κi,α-continuous if the multiplicity of the knot is κi,α with 1 ≤ κi,α < pα + 1. The
B-spline basis functions are non-negative, locally supported in (ξi,α, ξi+pα+1,α) (the knot span), and constitute
a partition of unity [23], i.e.

∑nα

i=1 Bi,α = 1. We define the space of univariate B-splines Bα ≡ B(Ξα; pα) :=
span{Bi,α}i=1,...,nα .

Multivariate tensor product B-splines are defined based on d knot vectors Ξα, α = 1, . . . , d. Let Ω̂ := (0, 1)d ⊂
Rd be an open parametric domain. The knot vectors partition Ω̂ into “mesh” elements, which constitute a mesh
Qh ≡ Qh(Ξ1, . . . , Ξd) := {Q = ⊗d

α=1(ξiα ,α, ξiα+1,α) | pα + 1 ≤ iα ≤ nα − 1}. Let us denote ĥQ := diam(Q) for
all Q ∈ Qh and the global mesh size ĥ := maxQ∈Qh

{ĥQ}. For notational convenience, we denote a multi-index
i := (i1, . . . , id) and a corresponding multi-index set I := {i = (i1, . . . , id) | 1 ≤ iα ≤ nα for 1 ≤ α ≤ d}. Then, for
each multi-index i ∈ I, we define the tensor product B-spline basis functions Bi : Ω̂ → R, Bi := Bi1,1⊗. . .⊗Bid,d

and corresponding tensor product B-splines space:

Bh ≡ Bh(Ξ1, . . . , Ξd; p1, . . . , pd) := span{Bi}i∈I . (2.9)

Notice that the functions in Bh are piecewise polynomials of degree pα along each coordinate α.
We associate the basis functions Bi with positive weights ωi and define a weighting function ω : Ω̂ → R, ω :=∑
i∈I ωiBi. The NURBS basis functions on the parameter patch are defined by projection:

Ri : Ω̂ → R, Ri =
ωiBi

ω
(2.10)

and the corresponding NURBS space reads: Sh ≡ Sh(Ξ1, . . . , Ξd; p1, . . . , pd;ω) := span{Ri}i∈I .
In order to perform a parameterization of the physical domain, we introduce the control points Ci ∈ Rd and

define the geometric mapping F : Ω̂ → Ω with F :=
∑

i∈I CiRi. Let us assume that F is invertible and possesses
smooth inverse a.e. in each element Q ∈ Qh. We define ∇F : Ω̂ → Rd and JF : Ω̂ → R to be the Jacobian matrix
and determinant of map F, respectively. By using F, we define a physical mesh in the physical domain Ω, whose
elements are obtained as the image of the elements in the parametric domain, i.e., Kh := {K = F(Q) | Q ∈ Qh}.
The corresponding mesh size in the physical domain is defined as h := maxK∈Kh

hK , where hK = ‖∇F‖L∞(Q)hQ.
Associated with a family of meshes {Qh}h in parametric domain Ω̂, we introduce a family of meshes {Kh}h in
physical domain Ω.

Furthermore, we define the space spanned by NURBS basis functions in Ω as the push-forward of the space Sh,
which reads:

Vh ≡ Vh(p1, . . . , pα) := span{Ri ◦ F−1}i∈I = span{Ri}i∈I , (2.11)

where {Ri}i∈I is the NURBS basis in the physical domain with Ri := Ri ◦ F−1 for all i ∈ I. Let the degree p
of piecewise B-spline polynomials be denoted by p and so that of NURBS be defined as p := min1≤α≤d{pα}.

We recall the interpolation theory of NURBS in [5] for obtaining interpolation error estimates of IGA. Given
a function v̂ ∈ L2(Ω̂), we define a projective operator over the B-splines space Bh as: ΠBh

: L2(Ω̂) → Bh,
ΠBh

v̂ :=
∑

i∈I 
i(v̂)Bi, where the linear functionals 
i(v̂) ∈ L2(Ω̂)′ determine the dual basis for the set of
B-splines, i.e., they are such that 
j(Bi) = δi,j for i, j ∈ I, with δ the Kronecker function. The corresponding
projective operator over the NURBS space Sh in Ω̂ is defined by means of the NURBS basis functions in (2.10)
through the weighting function ω, as:

ΠSh
: L2(Ω̂) → Sh, ΠSh

v̂ :=
ΠBh

(ωv̂)
ω

(2.12)

for all v̂ ∈ L2(Ω̂). In this manner, the projective operator over Vh, the NURBS space (2.11), is defined as the
push-forward of the operator ΠSh

ΠVh
: L2(Ω) → Vh, ΠVh

v := (ΠSh
(v̂)) ◦ F−1. (2.13)

Now let {Qh}h and {Kh}h be regular and quasi-uniform families of meshes in the parametric and physical
spaces, respectively. We recall the global interpolation error estimate of NURBS for IGA as follows ([5]).
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Lemma 2.1 (Global interpolation error estimate). Given the integers � and σ, with 0 ≤ � ≤ δ, δ = min{σ, p+1},
� ≤ km + 1, and km ≥ 0 the minimum regularity of basis functions (i.e. Ckm -continuous in Ω), we have:

|u −ΠVh
u|� ≤ C1h

δ−�‖u‖σ, (2.14)

for any u ∈ Hσ(Ω), where the positive constant C1 = C1(‖∇F‖L∞(Ω̂), km) only depends on km and the shape
of Ω, but not on its size.

Based on the local inverse inequality in [5], one obtains (see [45]):

Lemma 2.2 (Global inverse inequality). Let k and l be two integers such that 0 ≤ k ≤ l, then we have

‖vh‖l ≤ C2 h
k−l|vh|k ∀vh ∈ Vh, (2.15)

with C2 = C2(Ω, ‖∇F‖L∞(Ω̂), km) > 0.

2.4. Spatial semi-discretization of IGA for the acoustic wave equation

Let Vh be the finite-dimensional subspace of V reading Vh = V ∩ [Vh]d. Without loss of generality, consider
the case with ΓN = ∅. A general spatial semi-discrete Galerkin approximation of (2.6)−(2.8) reads: for any
given t ∈ (0, T ], find uh(t) ∈ Vh such that⎧⎪⎨⎪⎩

(uh,tt(t), vh) + a(uh(t), vh) = (f(t), vh) ∀vh ∈ Vh

uh(0) = u0,h,

uh,t(0) = v0,h,

(2.16)

where u0,h (or v0,h) is some approximation of u0 (or v0) obtained by interpolation or L2 projection onto Vh.
Let us first define an elliptic projection operator Ph : V → Vh for each v ∈ V :

a(Phv, vh) = a(v, vh) ∀vh ∈ Vh, (2.17)

from which we obtain the Galerkin orthogonality:

a(v − Phv, vh) = 0 ∀vh ∈ Vh. (2.18)

We recall the following result from [45].

Lemma 2.3. Let {Qh}h be a regular and quasi-uniform family of meshes. Then, there exists a positive constant
C3 = C3(‖∇F‖L∞(Ω̂), α, km) independent of h such that

‖v − Phv‖ + h‖v − Phv‖1 ≤ C3 h
p+1|v|p+1 ∀v ∈ Hp+1(Ω) ∩ V. (2.19)

Then, we have the error estimate between exact solution u(t) and spatial semi-discrete approximation uh(t).

Lemma 2.4. Let the hypotheses of Lemma 2.3 hold. In addition, let us assume that f ∈ C0([0, T ];L2(Ω)),
u0 ∈ Hp+1(Ω) with p ≥ 1, and that the solution u of (2.6) is such that u ∈ C0([0, T ];Hp+1(Ω)) and ut ∈
L2(0, T ;Hp+1(Ω)). Then, by using piecewise polynomials of degree less than or equal to p in definition of
NURBS space Vh, the solutions u and uh to (2.6) and (2.16), respectively, satisfy

‖u(t)−uh(t)‖+h|u(t)−uh(t)|1+‖ut(t)−uh,t(t)‖ ≤ C4h
p+1

(
‖u(t)‖p+1 + ‖ut(t)‖p+1 +

∫ t

0

‖utt‖p+1 ds
)

(2.20)

for each t ∈ [0, T ] with C4 = C4(‖∇F‖L∞(Ω̂), α, km) some positive constant independent of h.

Proof. The proof follows from the FEM version of space semi-discretization (see e.g. [18, 30, 35]). �
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2.5. Full space-time discretization of PDE model

We now apply the Newmark scheme for the time discretization of problem (2.16) (see e.g. [30]). For Nt ∈ N,
we introduce a time step τ = T/Nt and uniform discrete time instances tn = nτ for n = 0, 1, . . . , Nt. Let us
denote un := u(tn) and fn := f(tn), n = 0, . . . , Nt. For notational simplification, the superscript “n±1/2”of an
arbitrary quantity, e.g. ζ, means that ζn±1/2 := (ζn±1 + ζn)/2 with ζn := ζ(tn). Thus, (ζn−1 +2ζn + ζn+1)/4 =
(ζn−1/2 + ζn+1/2)/2. Let D+

τ and D−
τ be the forward and backward finite difference operators, respectively:

D+
τ ζ

n :=
ζn+1 − ζn

τ
and D−

τ ζ
n :=

ζn − ζn−1

τ
·

Thus, D+
τ D

−
τ u

n
h = (un−1

h − 2un
h + un+1

h )/τ2. Note that here un
h � uh(tn). Then, we have the following IGA-

Newmark full space-time discretization scheme: for n = 1, . . . , Nt − 1, find un+1
h ∈ Vh such that⎧⎨⎩

(
D+

τ D
−
τ u

n
h, wh

)
+

1
2
a
(
(un−1/2

h + u
n+1/2
h ), wh

)
= (fn, wh) ∀wh ∈ Vh

u0
h = u0,h, v0

h = v0,h,
(2.21)

where v0
h is the initial velocity approximation. We use (2.21) with n = 0 and the initial derivative approximation

(u1
h − u−1

h )/(2τ) = v0,h to cancel u−1
h and compute u1

h from u0
h. The Newmark scheme is unconditionally stable

and second order accurate in time. We propose the following a priori error estimates for the fully-discrete
approximation.

Lemma 2.5. Let the assumptions in Lemmas 2.3−2.4 be satisfied. Then, there exist positive constants C5 =
C5(α, km, T ) such that at time instances tn+1/2 := (tn + tn+1)/2 we have

‖un+1/2 − u
n+1/2
h ‖ + h|un+1/2 − u

n+1/2
h |1

≤ C5

(|Phu0 − u0
h|1 + |Phu(t1) − u1

h|1 + ‖D+
τ (Phu0 − u0

h)‖ + hp+1 + τ2
)
. (2.22)

Proof. Replacing the FEM by IGA approximation leads to the result by extending [18, 30]. �

3. POD for ROM of parameterized PDEs

ROM of parameterized PDEs aims to reduce the dimension of solution manifolds corresponding to sets of
time, physical, and geometric parameters for steady/unsteady problems; specifically, in this paper, we consider
the time variable as the unique parameter. POD-Galerkin methods for numerical solutions of PDEs usually
demand to first obtain or train a POD basis in which the number of basis functions is expected to be much
smaller than that in the full order Galerkin approximation, e.g., FEM. There are two types of POD basis
generation approaches [36, 43]: the continuous POD (C-POD) and discrete POD (D-POD), the latter is the
approach we consider in this paper.

3.1. D-POD

A continuous and accurate set of snapshots {y(t) | t ∈ [0, T ]} is usually not available in practice, while discrete
approximate snapshots can be obtained (as in our case of Eq. (2.6)) e.g. as follows:

{yj | yj = uj−1
h , j = 1, . . . , Nt + 1} ⊂ Xh. (3.1)

Here, h is the mesh parameter related to spatial IGA discretization, and Xh is a finite-dimensional subspace
of X , a Hilbert space typically chosen as L2(Ω) or H1(Ω). We compute numerical approximations of y(t) by a
full discretization method consisting of spatial IGA approximation and Newmark scheme, dicussed in detail in
Section 2. Denote Vι := span{yj | yj = uj−1

h , j = 1, . . . , Nt +1} and ι := dimVι ≤ Nt +1 < ∞ (in some instances
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ι < Nt + 1 since in principle snapshots may be linearly dependent). For r ∈ {1, . . . , ι}, the D-POD requires to
solve a finite-dimensional optimization problem

min
{ϕk}r

k=1⊂Xh

Ns∑
j=1

αj

∥∥∥∥∥yj −
r∑

k=1

(yj , ϕk)X ϕk

∥∥∥∥∥
2

X

subject to (ϕi, ϕj)X = δij for 1 ≤ i, j ≤ r (3.2)

to obtain an optimal orthonormal basis {ϕi}r
i=1 of Vr (subspace of Vι), where the number of snapshots Ns =

Nt +1 at this stage and {αj}Nt+1
j=1 denote nonnegative weights satisfying

∑Nt+1
j=1 αj = T . Specifically, we choose

trapezoidal weights as in [43], i.e.

α1 = αNt+1 =
τ

2
and αi = τ for i = 2, . . . , Nt, (3.3)

which ensures that (3.2) is an approximation of a time integral when τ is small.

3.2. Time derivatives (TD) and time derivative approximations (TDA)

Recently, TD/TDA were suggested to be included in the set of snapshots in analysis of the C-POD/D-POD
truncation errors [28,40]. For D-POD with TDA included, the set of snapshots {yj}Ns

j=1 with Ns = 3Nt consists
of numerical solutions

yj = uj−1
h , j = 1, . . . , Nt + 1

plus their TDA counterpart:
yj = D+

τ u
j−Nt−2
h , j = Nt + 2, . . . , 2Nt + 1 (3.4)

and
yj = D+

τ D
−
τ u

j−2Nt−1
h , j = 2Nt + 2, . . . , Ns. (3.5)

It is well-known that these TDA can be regarded as second order central difference approximations at ti−1/2 :=
(i − 1/2)τ for i = 1, . . . , Nt. Then, the additional weights {αj}Ns

j=Nt+2 in problem (3.2) arising from the TDA,
are αj = τ for j = Nt + 2, . . . , Ns. At this point, we set Vι ≡ span{ ¯̄yj}ι

j=1, where { ¯̄yj}ι
j=1 denote the linearly

independent basis obtained from span{yj}Ns

j=1. Notice that the inclusion of TDA approximately triples the
cardinality of snapshot-set, but does not change the dimension of the space, which is spanned by snapshots
without derivative approximations. As shown in e.g. [20,27,28], it is necessary to include TDA for convergence
analysis of POD-Galerkin schemes.

We introduce the correlation matrix

K = [Kij ] ∈ R
Ns×Ns with Kij =

1
Ns

(yj , yi)X , (3.6)

which is symmetric positive semi-definite and has rank ι since dimVι = ι. Let λ1 ≥ . . . ≥ λι > 0 denote the
nonzero eigenvalues of K and λι+1 = . . . = λNs = 0 the null ones, then, v1, . . . , vNs ∈ RNs are the associated
eigenvectors.

Lemma 3.1 ([28]). The POD basis of rank r with 1 ≤ r ≤ ι (i.e. the solution of problem (3.2) with/without
TDA) is given by

ψk =
1√
Nsλk

Ns∑
j=1

(vk)jyj, k = 1, . . . , r. (3.7)

Moreover, we have the following error formula for the general D-POD from snapshots with or without TDA:

1
Ns

Ns∑
j=1

‖yj − Pryj‖2
X =

ι∑
k=r+1

λk, (3.8)
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where the projection operator Pr : Vh → Vr is defined as

Pryj :=
r∑

k=1

(yj , ψk)Xψk, ∀yj ∈ Vh. (3.9)

Specifically, for the TDA-based D-POD, we have different versions of equation (3.8) for different choices
of the space X . Let λ̂k and λ̃k, km = 1, . . . , ι denote the nonzero eigenvalues of the correlation matrix K
with X = L2(Ω) and X = H1(Ω), respectively. For X = L2(Ω), we denote by {ψ̂k}ι

k=1 the POD basis and
equation (3.8) implies

1
3Nt

Nt∑
n=0

∥∥∥∥∥un
h −

r∑
k=1

(un
h, ψ̂k)ψ̂k

∥∥∥∥∥
2

+
1

3Nt

Nt−1∑
n=0

∥∥∥∥∥D+
τ u

n
h −

r∑
k=1

(D+
τ u

n
h, ψ̂k)ψ̂k

∥∥∥∥∥
2

+
1

3Nt

Nt−1∑
n=1

∥∥∥∥∥D+
τ D

−
τ u

n
h −

r∑
k=1

(D+
τ D

−
τ u

n
h, ψ̂k)ψ̂k

∥∥∥∥∥
2

=
ι∑

k=r+1

λ̂k.

(3.10)

For X = H1(Ω), we denote by {ψ̃k}ι
k=1 the POD-basis and equation (3.8) implies

1
3Nt

Nt∑
n=0

∥∥∥∥∥un
h −

r∑
k=1

(un
h, ψ̃k)1ψ̃k

∥∥∥∥∥
2

1

+
1

3Nt

Nt−1∑
n=0

∥∥∥∥∥D+
τ u

n
h −

r∑
k=1

(D+
τ u

n
h, ψ̃k)1ψ̃k

∥∥∥∥∥
2

1

+
1

3Nt

Nt−1∑
n=1

∥∥∥∥∥D+
τ D

−
τ u

n
h −

r∑
k=1

(D+
τ D

−
τ u

n
h, ψ̃k)1ψ̃k

∥∥∥∥∥
2

1

=
ι∑

k=r+1

λ̃k.

(3.11)

The POD basis and eigenvalues above for both the cases depend on the discretization parameters h and τ .
In the following, if we do not distinguish between the two bases in L2(Ω) and H1(Ω), we will generally write
{ψi}r

i=1 and denote by Vr := span{ψj}r
j=1 the POD space of dimension r with Vr ⊂ Vι for r < ι and Vr ≡ Vι

for r = ι. We call Vr POD space for simplicity. So far, let us point out that we have introduced the following
Hilbert spaces with inclusion relations as:

Vr ⊆ Vι ⊂ Vh ⊂ V ⊆ H1(Ω) ⊂ L2(Ω). (3.12)

Remark 3.2. Based on snapshots from full discretizations in space and time, POD modes (3.7) and eigenvalue
truncation error (3.8) differ from those of semi-discretization in time only ([21, 22, 28]), or from those different
kind of spatial discretizaton techniques, e.g. FEM ([31]).

Let us define the stiffness matrix A = [Aij ] ∈ Rι×ι with Aij := a(ψj , ψi) and mass matrix M = [Mij ] ∈ Rι×ι

with Mij := (ψj , ψi). Let μ1 ≥ μ2 ≥ . . . ≥ μι > 0 and ν1 ≥ ν2 ≥ . . . ≥ νι > 0 be the eigenvalues of Mι and
singular values of Aι, respectively; in addition, ‖ · ‖2 denotes the spectral norm of a matrix. Then, we have the
following properties in the POD space [45].

Lemma 3.3 (Inequalities in Vι). For all v ∈ Vι, we have

‖v‖ ≤
√
ν−1

ι μ1 ‖v‖1 and ‖v‖1 ≤
√
μ−1

ι ν1 ‖v‖. (3.13)

with ν1 > μι. In particular,
‖v‖ ≤

√
ν−1

ι ‖v‖1 and ‖v‖1 ≤ √
ν1‖v‖ (3.14)

with ν1 > 1 for POD basis in X = L2(Ω) and

‖v‖ ≤ √
μ1‖v‖1 and ‖v‖1 ≤

√
μ−1

ι ‖v‖ (3.15)

with μι < 1 for POD basis in X = H1(Ω).
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Proof. By Lemma 2 of [28], we have

‖v‖ ≤
√
‖M‖2‖A−1‖2‖v‖1 and ‖v‖1 ≤

√
‖A‖2‖M−1‖2‖v‖. (3.16)

By definition of matrix 2-norm, symmetry and positive definite properties of M, M−1, A and A−1, we easily
have

‖M‖2 = μ1, ‖M
−1‖2 = μ−1

ι , ‖A‖2 = ν1, and ‖A
−1‖2 = ν−1

ι . (3.17)

By means of (3.17) in (3.16), the inequalities (3.13), (3.14), and (3.15) hold.
By the second inequality of (3.13) and the fact that ‖v‖ ≤ √

1 − α‖v‖1 for any v ∈ Vι from (2.4), we obtain
(1 − α)ν1 ≥ μι and thus ν1 > μι since α ∈ (0, 1). In particular, for POD basis in L2(Ω) or H1(Ω), the mass
matrix or stiffness matrix turn out to be the identity matrix and so that ν1 > 1 or μι < 1 follows. �

Remark 3.4. The second inequality of (3.14) (resp. (3.15)) is an inverse inequality in Vι which is similar
(Lem. 2.2) for both the NURBS spaces of IGA and piecewise Lagrange polynomial spaces of FEM (Lem. 3.1 [26]).
However, the values of ν1, νι, μ1 and μι may significantly differ depending on whether we use IGA or FEM
methods.

4. IGA-Newmark-POD scheme

The POD basis can be generated by successively using the fully discrete IGA-Newmark method for computing
the snapshots and then singular value decomposition of the correlation matrix K for obtaining the POD modes.
We then use this basis to derive the POD semi-discrete scheme and POD-Newmark fully discrete scheme.

Given t ∈ (0, T ], the POD-Galerkin semi-discrete scheme consists in finding ur(t) ∈ Vr such that{(
ur,tt(t), wr

)
+ a(ur(t), wr) = (f(t), wr) ∀wr ∈ Vr

ur(0) = u0,r, vr(0) = v0,r,
(4.1)

where u0,r (or v0,r) is some projection of u0,h (or v0,h) from Vh onto Vr.
Now we present the IGA-Newmark-POD fully discrete scheme: find un

r ∈ Vr, n = 1, . . . , Nt − 1 such that⎧⎨⎩
(
D+

τ D
−
τ u

n
r , wr

)
+

1
2
a
(
(un−1/2

r + un+1/2
r ), wr

)
= (fn, wr) ∀wr ∈ Vr,

u0
r = u0,r, v0

r = v0,r,
(4.2)

for which we show the following stability property:

Theorem 4.1 (IGA-Newmark-POD Stability). Assume that τ ≤ 1. We have for problem (4.2) (n =
1, . . . , Nt − 1) the stability estimate:

‖D+
τ u

n
r ‖2 + |un+1/2

r |21 ≤ e2T

(
‖D+

τ u
0
r‖2 + |u1/2

r |21 + sup
1≤k≤Nt−1

‖fk‖2

)
. (4.3)

In the particular case f = 0, we obtain the discrete energy conservation principle:

‖D+
τ u

n
r ‖2 + |un+1/2

r |21 = ‖D+
τ u

0
r‖2 + |u1/2

r |21. (4.4)

Proof. We first prove the special case (4.4) when f = 0. Choose wr = (un+1
r − un−1

r )/(2τ) in (4.2), then

wr =
1
2
(D+

τ u
n
r +D+

τ u
n−1
r ) =

1
τ

(
un+1/2

r − un−1/2
r

)
·
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By this wr, we have(
D+

τ D
−
τ u

n
r , wr

)
=

1
2τ
(
D+

τ u
n
r −D−

τ u
n
r , D

+
τ u

n
r +D−

τ u
n
r

)
=

1
2
D−

τ ‖D+
τ u

n
r ‖2 (4.5)

and
1
2
a
(
(un−1/2

r + un+1/2
r ), wr

)
=

1
2τ

a
(
un−1/2

r + un+1/2
r , un−1/2

r − un+1/2
r

)
=

1
2
D−

τ |un+1/2
r |21.

Adding this equation to (4.5), inserting into (4.2) and recalling that f = 0, we have

D−
τ

(
‖D+

τ u
n
r ‖2 + |un+1/2

r |21
)

= 0, (4.6)

from which the result (4.4) follows.
To prove (4.3), by similar arguments as above, we have the identity

D−
τ (‖D+

τ u
n
r ‖2 + |un+1/2

r |21) = (fn, D+
τ u

n
r +D+

τ u
n−1
r ). (4.7)

By Cauchy−Schwarz inequality, we get

D−
τ (‖D+

τ u
n
r ‖2 + |un+1/2

r |21) ≤ ‖fn‖2 +
1
2
‖D+

τ u
n
r ‖2 +

1
2
‖D+

τ u
n−1
r ‖2. (4.8)

Set ςn := ‖D+
τ u

n
r ‖2 + |un+1/2

r |21, we have

ςn − ςn−1 ≤ τ‖fn‖2 +
τ

2
ςn +

τ

2
ςn−1, n = 1, . . . , Nt − 1,

i.e.,
(2 − τ)ςn ≤ (2 + τ)ςn−1 + 2τ‖fn‖2, n = 1, . . . , Nt − 1, (4.9)

As τ < 1, we set

β =
2

2 − τ
sup

1≤k≤Nt−1
‖fk‖2 ≥ 0. (4.10)

Then, (4.9) implies that
ςn ≤ θςn−1 + βτ

with θ := (2 + τ)/(2 − τ). We have by induction that

ςn ≤ θnς0 + βτ

n−1∑
k=0

θk = θnς0 + βτ
θn − 1
θ − 1

· (4.11)

Since

θn =
(

2 + τ

2 − τ

)n

=
(

1 +
2τ

2 − τ

)n

≤ e
2τ

2−τ n,

(4.11) implies that

ςn ≤ e
2τ

2−τ nς0 + β
2 − τ

2
(
e

2τ
2−τ n − 1

)
.

For nτ ≤ T , n = 0, 1, . . . , Nt and τ ≤ 1, thus

ςn ≤ e2T

(
ς0 + β

2 − τ

2

)
· (4.12)

By (4.12) and the definitions of β and ςn above, the stability estimate (4.3) holds. �
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4.1. A priori error estimates

We remark that the error bounds of the IGA-Newmark-POD Galerkin scheme include three components
arising from IGA space discretization, time discretization and POD eigenvalue truncation.

Theorem 4.2. Let the assumptions in Lemmas 2.3–2.4 hold. Moreover, we assume τ ≤ 2μι/(μι + ν1). Then,
for the IGA-Newmark-POD Galerkin scheme, there exists a constant C8 = C8(α, β, ‖∇F‖L∞(Ω̂), km, μι, ν1) > 0
independent of τ , h and p such that

1
Nt

Nt−1∑
n=1

‖un+1/2 − un+1/2
r ‖2 ≤C8

(
|Phu0 − u0

h|21 + |Phu(t1) − u1
h|21 + |Pru

0
h − u0

r|21 + |Pru
1
h − u1

r|21

+ ‖D+
τ (Phu0 − u0

h)‖2 + ‖D+
τ (Pru

0
h − u0

r)‖2 + τ4 + h2p+2 +
ι∑

k=r+1

λ̂k

)
. (4.13)

Proof. We have by the triangle inequality

‖un+1/2 − un+1/2
r ‖ ≤ ‖un+1/2 − u

n+1/2
h ‖ + ‖un+1/2

h − un+1/2
r ‖. (4.14)

The average error related to the first term on right hand side of (4.14) is bounded via the IGA fully-discrete
error estimation in Lemma 2.5:

1
Nt

Nt−1∑
n=1

‖un+1/2 − u
n+1/2
h ‖2 ≤ 4C2

5

(|Phu0 − u0
h|21 + |Phu(t1) − u1

h|21 + τ4 + h2p+2
)
. (4.15)

To estimate the second term of (4.14), we write

u
n+1/2
h − un+1/2

r = (un+1/2
h − Pru

n+1/2
h ) + (Pru

n+1/2
h − un+1/2

r )

≡ ηn+1/2 + ρn+1/2.

First, we have for ηn+1/2 the average square error

1
Nt

Nt−1∑
n=0

‖ηn+1/2‖2 ≤ 1
2Nt

Nt−1∑
n=0

‖ηn‖2 +
1

2Nt

Nt−1∑
n=0

‖ηn+1‖2

≤ 1
Nt

Nt∑
n=0

‖ηn‖2 ≤ 3
ι∑

i=r+1

λ̂i, (4.16)

where we have used Lemma 3.1 in the last inequality.
To estimate ρn+1/2, by (2.21) and (4.2), we have for any wr ∈ Vr:(

D+
τ D

−
τ (un

h − un
r ), wr

)
+

1
2
a
(
(un+1/2

h + u
n−1/2
h ) − (un+1/2

r + un−1/2
r ), wr

)
= 0. (4.17)

Then, using (4.17),

(D+
τ D

−
τ ρ

n, wr) +
1
2
a(ρn+1/2 + ρn−1/2, wr) = (D+

τ D
−
τ (ρn − un

h + un
h), wr)

+
1
2
a
(
ρn+1/2 + ρn−1/2 − (un+1/2

h + u
n−1/2
h ) + (un+1/2

h + u
n−1/2
h ), wr

)
= −(D+

τ D
−
τ η

n, wr) − 1
2
a(ηn+1/2 + ηn−1/2, wr) ∀wr ∈ Vr. (4.18)
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We now apply a superposition principle, splitting ρn = ρ̌n+ρ̄n and ρn+1/2 = ρ̌n+1/2+ρ̄n+1/2. These quantities
are defined to satisfy

(D+
τ D

−
τ ρ̌

n, wr) +
1
2
a(ρ̌n+1/2 + ρ̌n−1/2, wr) = 0 ∀wr ∈ Vrρ̌

0 = Pru
0
h − u0

r, ρ̌
1 = Pru

1
h − u1

r (4.19)

and

(D+
τ D

−
τ ρ̄

n, wr)+
1
2
a(ρ̄n+1/2 + ρ̄n−1/2, wr) = −(D+

τ D
−
τ η

n, wr)− 1
2
a(ηn+1/2 +ηn−1/2, wr) ∀wr ∈ Vrρ̄

0 = ρ̄1 = 0,

(4.20)
respectively. We apply Theorem 4.1 to (4.19) and get

‖D+
τ ρ̌

n‖2 + |ρ̌n+1/2|21 = ‖D+
τ ρ̌

0‖2 + |ρ̌1/2|21, n = 1, . . . , Nt − 1. (4.21)

The initial condition in (4.19) allows us to easily have

‖D+
τ ρ̌

n‖2 + |ρ̌n+1/2|21 ≤ 1
2
(|Pru

0
h − u0

r|21 + |Pru
1
h − u1

r|21) + ‖D+
τ (Pru

0
h − u0

r)‖2. (4.22)

To estimate ρ̄n, we take

wr =
1
2
(D+

τ ρ̄
n +D+

τ ρ̄
n−1) =

1
τ

(ρ̄n+1/2 − ρ̄n−1/2)

in (4.20) and obtain

D−
τ (‖D+

τ ρ̄
n‖2 + |ρ̄n+1/2|21) = − (D+

τ D
−
τ η

n, D+
τ ρ̄

n) − a(ηn+1/2 + ηn−1/2, D+
τ ρ̄

n)

− (D+
τ D

−
τ η

n, D+
τ ρ̄

n−1) − a(ηn+1/2 + ηn−1/2, D+
τ ρ̄

n−1)
≤‖D+

τ D
−
τ η

n‖‖D+
τ ρ̄

n‖ + ‖D+
τ D

−
τ η

n‖‖D+
τ ρ̄

n−1‖
+ ‖ηn+1/2 + ηn−1/2‖1‖D+

τ ρ̄
n‖1 + ‖ηn+1/2 + ηn−1/2‖1‖D+

τ ρ̄
n−1‖1

by the Cauchy−Schwarz inequality and continuity of a(·, ·). By using the inverse estimate in Lemma 3.3 in Vι

and the Young’s type inequality ab ≤ a2 + 1
4b

2, we further have

D−
τ (‖D+

τ ρ̄
n‖2 + |ρ̄n+1/2|21) ≤ 2(‖D+

τ D
−
τ η

n‖2 + ‖ηn+1/2 + ηn−1/2‖2
1)

+
μι + ν1

4μι
(‖D+

τ ρ̄
n‖2 + ‖D+

τ ρ̄
n−1‖2). (4.23)

Set ςn := ‖D+
τ ρ̄

n‖2 + |ρ̄n+1/2|21 for n = 0, 1, . . . , Nt − 1. By similar induction arguments as made in Theorem 4.1
showing that (4.3) from (4.7), we can obtain from (4.23) for nτ ≤ T , n = 0, 1, . . . , Nt and τ ≤ 2μι/(μι + ν1)
that

ςn ≤ e
μι+ν1

μι
T

[
ς0 + β

4μι − (μι + ν1)τ
2(μι + ν1)

]
, (4.24)

where the number β > 0 satisfies that

β

(
1 − μι + ν1

4μι
τ

)
≥ 2
(
‖D+

τ D
−
τ η

n‖2 + ‖ηn+1/2 + ηn−1/2‖2
1

)
.

By definitions of ςn and β, and the fact that ρ̄0 = ρ̄1 = 0 in (4.20), we obtain

‖D+
τ ρ̄

n‖2 + |ρ̄n+1/2|21 ≤ e
μι+ν1

μι
T

[
‖D+

τ ρ̄
0‖2 + |ρ̄1/2|21 +

4μι

μι + ν1
(‖D+

τ D
−
τ η

n‖2 + ‖ηn+1/2 + ηn−1/2‖2
1)
]

= C6(‖D+
τ D

−
τ η

n‖2 + ‖ηn+1/2 + ηn−1/2‖2
1) (4.25)
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with C6 = C6(μι, ν1, T ) := 4μιe(1+μ−1
ι ν1)T /(μι + ν1). A combination of (4.22) and (4.25) leads to

‖D+
τ ρ

n‖2 + |ρn+1/2|21 ≤ 2(‖D+
τ ρ̌

n‖2 + |ρ̌n+1/2|21) + 2(‖D+
τ ρ̄

n‖2 + |ρ̄n+1/2|21)
≤ |Pru

0
h − u0

r|21 + |Pru
1
h − u1

r|21 + 2‖D+
τ (Pru

0
h − u0

r)‖2

+ 2C6(‖D+
τ D

−
τ η

n‖2 + ‖ηn+1/2 + ηn−1/2‖2
1),

for n = 1, . . . , Nt − 1. Therefore,

1
Nt

Nt−1∑
n=1

|ρn+1/2|21 ≤ (|Pru
0
h − u0

r|21 + |Pru
1
h − u1

r|21 + 2‖D+
τ (Pru

0
h − u0

r)‖2)

+
2C6

Nt

Nt−1∑
n=1

‖D+
τ D

−
τ η

n‖2 +
2C6

Nt

Nt−1∑
n=1

‖ηn+1/2 + ηn−1/2‖2
1,

where by Lemma 3.1
1
Nt

Nt−1∑
n=1

‖D+
τ D

−
τ η

n‖2 ≤ 3
ι∑

i=r+1

λ̂i (4.26)

and

1
Nt

Nt−1∑
n=1

‖ηn+1/2 + ηn−1/2‖2
1 ≤ 2

Nt

Nt−1∑
n=1

1
4
‖ηn+1‖2

1 +
2
Nt

Nt−1∑
n=1

1
4
‖ηn−1‖2

1

≤ 1
Nt

Nt∑
n=0

‖ηn‖2
1 ≤ 1

Nt

ν1

μι

Nt∑
n=0

‖ηn‖2 ≤ 3ν1

μι

ι∑
i=r+1

λ̂i. (4.27)

Hence, we obtain

1
Nt

Nt−1∑
n=1

|ρn+1/2|21 ≤ C7

(
|Pru

0
h − u0

r|21 + |Pru
1
h − u1

r|21 + ‖D+
τ (Pru

0
h − u0

r)‖2 +
ι∑

i=r+1

λ̂i

)
(4.28)

with C7 = C7(μι, ν1, T ). Finally, a combination of (4.15), (4.16), (4.28), (3.10) and (3.11) yields the result. �
4.2. Numerical linear algebra aspects

The IGA spatial semi-discretized problem (2.16) is a system of ordinary differential equations. Let us denote by
Nx the cardinal number of the multi-index set I, i.e. the number of degrees of freedom of the finite dimensional
space Vh. Renumber the index from 1 to Nx for all i ∈ I. By writting uh(t) =

∑Nx

j=1 dj(t)Rj and u0,h =∑Nx

j=1 d0,jRj and taking vh = Ri (i = 1, . . . , Nx), problem (2.16) then turns into{
M d̈(t) +Ad(t) = f(t), t ∈ (0, T ]

d(0) = d0, ḋ(0) = d′
0,

(4.29)

where

A = [aij ] ∈ R
Nx×Nx , aij = a(Rj , Ri),

M = [mij ] ∈ R
Nx×Nx , mij =

∫
Ω

RjRidx,

d(t) = (d1(t), . . . , dNx(t))T ∈ R
Nx , d0 = (d0,1, . . . , d0,Nx)T ∈ R

Nx ,

f(t) = (f1(t), . . . , fNx(t))T ∈ R
Nx , fi(t) =

∫
Ω

f(t)Ridx

d′
0 = (d′0,1, . . . , d

′
0,Nx

)T ∈ R
Nx

with 1 ≤ i, j ≤ Nx.



ISOGEOMETRIC ANALYSIS AND POD 1211

In order to numerically apply a POD algorithm as in Lemma 3.1 of [43], we need to introduce a weighted
inner product in RNx for the IGA control variables to replace the inner products in the finite-dimensional
(Nx-dimensional) space Vh. The induced norms are also changed accordingly. Let us consider two arbitrary
vectors a, b ∈ RNx , with a = (ai)1≤i≤Nx and b = (bi)1≤i≤Nx , then we define the weighted inner product 〈·, ·〉W
in R

Nx as

〈a, b〉W := aTWb =
Nx∑
i=1

Nx∑
j=1

aiWijbj, (4.30)

where W = [wij ]1≤i,j≤Nx ∈ RNx×Nx denotes a symmetric positive definite weight matrix. We then denote the
induced norm | · |W := 〈·, ·〉1/2. Then, ∀vh, wh ∈ Vh, since vh(x) =

∑Nx

i=1 aiRi(x) and wh(x) =
∑Nx

i=1 biRi(x) are
elements of the finite-dimensional subspace Vh ⊂ RNx of V , we have (vh, wh) = 〈a, b〉W and ‖vh‖ = |a|W with
W = M . Analogously, we obtain (vh, wh)V = 〈a, b〉W and ‖uh‖1 = |a|W with W = M +A.

The algebraic form of (2.21) reads: find {dn
h}Nt

n=1 ⊂ Vh such that⎧⎨⎩MD+
τ D

−
τ dn

h +
1
2
A(dn+1/2

h + d
n−1/2
h ) = fn, n = 0, . . . , Nt − 1,

d0
h = d0,h,

(4.31)

where dn = [dn
1 , . . . ,d

n
Nx

]T for n = 0, 1, . . . , Nt.
We can define a matrix-vector form for the Galerkin POD semi-discretization:{

Mrd̈r(t) +Ardr(t) = fr(t), t ∈ (0, T ],
dr(0) = dr,0

(4.32)

where

Ar = [ar,ij ] ∈ R
r×r, ar,ij := a(ψj , ψi), Mr = [mr,ij ] ∈ R

r×r,mr,ij :=
∫

Ω

ψjψidx,

dr(t) = (dr,1(t), . . . , dr,r(t))T ∈ R
r, dr,0 = (d0r,1, . . . , d0r,r)T ∈ R

r,

fr(t) = (fr,1(t), . . . , fr,r(t))T ∈ R
r, fr,i(t) :=

∫
Ω

f(t)ψidx

with 1 ≤ i, j ≤ r.
The matrix-vector form for IGA-Newmark-POD scheme reads:⎧⎨⎩MrD

+
τ D

−
τ dn

r +
1
2
Ar(dn+1/2

r + dn−1/2
r ) = fn

r , n = 0, . . . , Nt − 1

d0
r = dr,0.

(4.33)

By solving this system, we obtain {dn
r }Nt

n=0 which leads to the POD Galerkin solution {un
r }Nt

n=0 with un
r =∑r

j=1 d
n
r,jψj . The POD mass matrix Mr, POD-stiffness matrix Ar, the inverse matrices M−1

r and A−1
r are

positive definite [26, 28].

4.3. Algorithm

We present the whole IGA-POD Galerkin methodology for ROM in the form of Algorithm 1 which contains
three modules: the snapshot computation by IGA, the POD-basis generation and the POD Galerkin approach.
Let us denote a diagonal matrix Θ = diag(α1, . . . , αNs). In Algorithm 1, we consider three approaches to
generate POD basis as suggested in [43]. These are mathematically equivalent for modal analysis, although their
computational costs are generally different from each other. The correlation matrix (3.6) and POD-basis (3.8)
correspond to Case 3.
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The choice of POD rank r is crucial since it influences the accuracy of the POD ROM in approximating
the original problem. In our IGA-POD method, we can determine it also based on a heuristic rule [43]. More
precisely, given an error tolerance ε (0 < ε � 1), we determine r such that the computed energy ratio

E(r) :=
∑r

i=1 λi∑ι
i=1 λi

> 1 − ε, (4.34)

or equivalently,

1 − E(r) =

∑ι
i=r+1 λi

trace(DTD)
< ε (4.35)

with D defined in Algorithm 1.

Algorithm 1. IGA-Newmark-POD method for ROM of acoustic wave equations.
1: procedure Snapshots (Method of snapshots based on IGA-Newmark-scheme)
2: Require: Set τ , Ns = 3[T/τ ] (or ([T/τ ] + 1) if TDA are included or not), p, km, Nx, and ε;
3: Solve acoustic wave equation by IGA-Newmark scheme to obtain snapshots {dn

h}Ns
n=0 ⊂ R

Nx ;
4: return D =

[
d1

h| . . . |dNs
h

] ∈ R
Nx×Ns ;

5: procedure POD (POD-basis of rank r)
6: Require: Weight matrix W , diagonal matrix Θ for temporal quadrature weights;
7: Case 1: if Nx = Ns

8: Compute D̄ = W 1/2DΘ1/2;
9: Perform the singular value decomposition: D̄ = Ψ̄ΣΦ̄T;

10: Determine POD rank r;
11: Compute ψi = W−1/2Ψ̄(:, i) ∈ R

Nx and set λi = Σ2
ii for i = 1, . . . , r;

12: Case 2: if Nx < Ns

13: Compute D̄ = W 1/2DΘ1/2;
14: Compute R = D̄D̄T ∈ R

Nx×Nx ;
15: Perform the eigenvalue decomposition: R = Ψ̄ΛΨ̄T;
16: Determine POD rank r;
17: Compute ψi = W−1/2Ψ̄(:, i) ∈ R

Nx and set λi = Λii for i = 1, . . . , r;
18: Case 3: if Nx > Ns

19: Compute K = Θ1/2DTWDΘ1/2 ∈ R
Ns×Ns ;

20: Perform the eigenvalue decomposition: K = Φ̄ΛΦ̄T;
21: Determine POD rank r;
22: Compute ψi = DΘ1/2Φ̄(:, i)/

√
λi ∈ R

Nx and set λi = Λii for i = 1, . . . , r;
23: return IGA-POD-basis {ψi}r

i=1 and eigenvalues {λh
i }r

i=1.

24: procedure POD Galerkin scheme (MOR)
25: Require:
26: Solve PDE by the full discrete POD-Newmark-scheme to obtain POD-basis coefficients {dn

r }Nt
n=0 ⊂ R

r;
27: Compute un

r =
∑r

j=1(d
n
r )jψj for n = 0, . . . , Nt;

28: return POD Galerkin solutions {un
r }Nt

n=0.

The time and space discretizations have direct effect on the correlation matrix and thus on its eigenvalues.
More precisely, the parameters τ , p, km and h influence the accuracy of {λi}d

i=1. Moreover, the choice of weight
W (i.e. W = M or W = M+A for X = L2(Ω) or H1(Ω), respectively) and the inclusion of TDA (i.e. Ns = 3Nt

or Ns = Nt + 1) can also affect the eigenvalue analysis. Once the eigenvalues have been computed however, we
find from (4.35) that the POD rank r only directly depends on ε. The smaller ε is, the larger r is, which leads
to more accurate POD Galerkin approximations to snapshots.

Once the POD rank and POD-basis have been determined, we set

Ψ = [ψ1| . . . |ψr] ∈ R
Nx×r.
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Then, we obtain for (4.33):

Mr = ΨTMΨ, Ar = ΨTAΨ, fn
r = ΨTfn for n = 1, . . . , Nt.

We compute dn
r by solving (4.33) and obtain un

r = Ψdn
r .

Remark 4.3. In this work we cover mainly the aspect of accuracy. When comparing IGA with FEM, the
“efficiency” advantage in obtaining snapshots here is not immediate [10]. Comparing the computational effi-
ciency of the two schemes through numerical tests is not straightforward, especially if different softwares and
implementation strategies are used. While we are aware that NURBS-based IGA may lead to larger assembly
costs of the matrices than FEM in the case Gauss−Legendre quadrature formulas are used, this is issue may
be circumvented by using instead ad hoc, more computationally efficient formulas developed for IGA, [3, 25].
Nevertheless, the accuracy per degree of freedom of IGA is generally higher (much higher) with respect to FEM
for smooth solution fields of the PDEs, for which IGA can be claimed to be more computationally efficient than
FEM in several class of problems; see e.g. [32, 38].

5. Numerical examples

We use the IGA library GeoPDEs [17] to perform numerical simulation in MATLAB. We then assume that
the error due to time discretization is relatively “small” compared with the two error components due to space
discretization and POD projection, i.e. τ2 � hp+1 (or hp) for L2-norm (or H1-norm) and τ2 � √

ε. The spatial
discretization is carried out by means of NURBS-based IGA with piecewise B-splines or NURBS of different
degrees and smoothness. For the generation of the POD basis, we consider the choices of X = H1(Ω) (or L2(Ω))
and possible including TDA. Let us first introduce some notation. The discrete average norms of total error,
snapshot error and POD error in (1.1) are denoted by

Eb :=

√√√√ 1
Nt

Nt−1∑
n=0

‖un+1/2 − u
n+1/2
r ‖2

b ,

Eh
b :=

√√√√ 1
Nt

Nt−1∑
n=0

‖un+1/2 − u
n+1/2
h ‖2

b and Er
b :=

√√√√ 1
Nt

Nt−1∑
n=0

‖un+1/2
h − u

n+1/2
r ‖2

b ,

respectively, where b denotes L2(Ω) (or H1(Ω)). By using Theorems 4.2 and (4.34), the expected error bound EL2

(resp. EH1) should behave O(τ2 + hp+1 +
√
ε) (resp. O(τ2 + hp +

√
ε)).

Example 5.1. Consider an annular domain Ω = {(ρ, θ)|1 < ρ < 2, 0 < θ < π/2}. We set T = 1 and τ = 10−3,
for which O(τ2) = O(10−6). Choose as exact solution

u(x, y, t) = e−
t
2 sin
(
πt (2x2 − xy + y2 − 3x+ y)

)
,

and impose Neumann boundary conditions on two arches and Dirichlet boundary conditions on straight lines
ΓD = ∂Ω\ΓN . In Figure 1, we show that triangular mesh required by standard FEM causes geometric modelling
errors, while exact representation of Ω can be achieved by NURBS-based geometric modelling in IGA. We show
an IGA-POD Galerkin solution at final time.

First, we check the convergence order for errors of snapshots with respect to mesh and time parameters.
For meshes used in IGA, we initialize the number of mesh elements as 4 × 8 = 32. NURBS allows an exact
representation of Ω already at the coarsest level of discretization. We then use h-refinement three times up to
an element number 32×64 = 2048. Figure 2 shows that the convergence rates for errors of snapshots Eh

b by IGA
p = 2 NURBS basis functions with km = 0 or 1 in both L2 and H1 norms, i.e. they are optimal with respect to
NURBS-based spatial discretization.
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(a) Triangular mesh in FEM (b) Control points (red)
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(c) NURBS based mesh

(d) IGA-POD solution at T = 1 with 48 ×
96 mesh elements, p = 2, km = 1, ε = 10−8

(e) Absolute error |uNt − uNt
r | (f) Computed first POD mode

Figure 1. Triangulation, control points, NURBS based mesh, POD Galerkin solution, its error
distribution and the first computed POD mode for Example 5.1.
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Figure 2. Convergence rate of IGA high fidelity solution approximations w.r.t. h (left) and τ
(right) for Example 5.1: p = 2.
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Table 1. Comparisons on errors of high fidelity solution approximations for Example 5.1.

Nx Eh
L2 Eh

H1

FEM IGA0 IGA1 FEM IGA0 IGA1 FEM IGA0 IGA1

369 341 336 1.58e-2 1.05e-2 3.03e-3 5.84e-1 4.54e-1 1.61e-1
1347 1275 1248 2.21e-3 1.47e-3 2.66e-4 1.69e-1 1.19e-1 3.53e-2
5007 4851 4800 3.35e-4 2.06e-4 4.26e-5 5.00e-2 3.17e-2 8.80e-3

Table 2. Comparisons on total errors Eb of POD solutions for Example 5.1: without TDA,
ε = 10−6.

Nx X
EL2 EH1

FEM IGA0 IGA1 FEM IGA0 IGA1 FEM IGA0 IGA1

1347 1275 1248
H1 2.21e-3 1.47e-3 2.66e-4 1.69e-1 1.19e-1 3.53e-2
L2 2.22e-3 1.47e-3 3.43e-4 1.69e-1 1.19e-1 3.65e-2

5007 4851 4800
H1 3.35e-4 2.06e-4 4.16e-5 5.00e-2 3.17e-2 8.61e-3
L2 4.40e-4 3.01e-4 2.18e-4 5.21e-2 3.30e-2 1.61e-2

Table 3. Comparisons on total errors of POD solutions Eb for Example 5.1: TDA included,
ε = 10−6.

X
r EL2 EH1

FEM IGA0 IGA1 FEM IGA0 IGA1 FEM IGA0 IGA1

Nx : 1347 (FEM), 1275 (IGA0), 1248 (IGA1)
H1 43 38 30 2.22e-3 1.48e-3 3.28e-4 1.69e-1 1.19e-1 3.61e-2
L2 24 10 10 2.25e-3 1.52e-3 5.44e-4 1.71e-1 1.22e-1 4.65e-2

Nx: 5007 (FEM), 4851 (IGA0), 4800 (IGA1)

H1 104 83 69 3.57e-4 2.59e-4 1.68e-4 5.03e-2 3.24e-2 1.06e-2
L2 64 63 52 5.34e-4 4.97e-4 4.68e-4 5.86e-2 4.57e-2 3.16e-2

We use three different levels of number of degrees of freedom (ndofs) for comparison. Denote by IGA0 and
IGA1 be IGA of p = 2 with km = 0 and km = 1, respectively. As in [45], numerical comparisons in Table 1
shows that the high fidelity solution approximations by IGA are more accurate than those by FEM, even if less
ndofs are used. Moreover, the numerical solutions for the IGA case km = 1 are more accurate than those for
km = 0 though slightly less ndofs are used. This is due to the fact that the smooth NURBS functions appear
more accurate per degree-of-freedom than their C0 counterparts [10]. From both Table 2 and Table 3 with a
same ε, total errors of POD IGA1 are most accurate and POD IGA0 is also more accurate than POD FEM due
to the accuracy advantage gained in high fidelity solution approximations.

We refer to Remark 4.3 for the computational costs in obtaining snapshots. We compare the efficiency after
snapshots being obtained. For generating POD modes from snapshots, smaller Nx in Tables 2−3 means that
less computational time being used using the Singular Value Decomposition. Once the POD modes are available
in the reduced order model, the values of r in Table 3 show that the IGA1-reduced order model case is the
most efficient one and the IGA0-reduced order model case is also more efficient than the FEM case. In Figure 3,
different high fidelity solution approximations may lead to different decay behaviors for the first few POD
eigenvalues. If no TDA are included in snapshots, it shows that the three cases visually have nearly the same
POD eigenvalues. For the TDA included case, however, both IGA-based cases decay faster than FEM-based
case and the IGA1 case decays faster than the IGA0 case. This shows that the POD rank r of either the two IGA
cases is nearly the same as that of the FEM case if no TDA included. For the TDA included case, however, the
POD ranks of the two IGA cases are smaller than that of FEM and the value r of IGA1 is smaller than that of
IGA0. Since smaller r means more efficient POD-Galerkin methods in the reduced order model, the IGA1 case
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Figure 3. Decay of first few POD eigenvalues (i: index) obtained for X = L2(Ω) (left) or
X = H1(Ω) (right) and without TDA (top) or with TDA (bottom) for Example 5.1: ε = 10−6,
Nx = 5007, 4851 and 4800 for FEM, IGA0 and IGA1, respectively.

is the most efficient and the FEM case is the slowest among three candidates. We also see that the eigenvalues
are increased if TDA are included.

Example 5.2. In this case, we show the advantage of smoothness of B-splines basis functions over FEM with
C0-continuous without any geometric approximation. We set Ω to be a unit square (0, 1)2 and set T = 1 and
τ = 10−3. We choose as exact solution

u(x, y, t) =
1
25

5∑
j=1

5∑
i=1

sin(iπx) sin(jπy) cos(
√
i2 + j2πt),

which satisfies homogeneous Dirichlet boundary conditions. We consider the degree of B-spline basis functions
p = 2, 3, and 4 with km ≥ 1.

Both square elements-based IGA and FEM allow an exact geometric representation. Considering that C0-
continuous (km = 0) B-splines still remain not interpolatory, IGA method in this case is different from the
Lagrange basis functions-based FEM for p ≥ 2. In Figure 4, we show a POD Galerkin solution. For the same
degree p in Table 4, the accuracy of high fidelity solution approximation is enhanced by increasing the smooth-
ness although less ndofs are used. We see from Table 5 that k-refinement performed by increasing p and km
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Figure 4. POD solution at final time (Left) and absolute error |uNt−uNt
r | (Right) for Example

5.2: h = 1/32, p = 4, km = 3, ε = 10−8.

Table 4. Errors of high fidelity solution approximations Eh
b by smoothness of basis functions

for Example 5.2.

p km Nx Eh
L2 Eh

H1

2
0 961 3.39e-4 3.12e-2

1 400 1.78e-4 1.99e-2

3

0 2209 2.17e-5 2.76e-3

1 1600 2.03e-5 2.01e-3

2 676 1.69e-5 1.23e-3

4

0 3969 1.538e-5 3.30e-4

1 3600 1.537e-5 3.05e-3

2 2601 1.534e-5 2.98e-4

3 1156 1.532e-5 2.95e-4

Table 5. Results by k-refinement for Example 5.2: No TDA, h = 1/32, ε = 10−6, X = H1, r = 10.

p km Nx Eh
L2 Eh

H1 EL2 EH1

1 0 961 4.47e-3 1.50e-1 4.47e-3 1.50e-1

2 1 1024 3.20e-5 7.45e-3 3.26e-5 7.45e-3

3 2 1089 1.55e-5 6.25e-4 1.68e-5 6.31e-4

4 3 1156 1.53e-5 2.95e-4 1.66e-5 3.09e-4

simultaneously can increase the accuracy of high fidelity solution approximation and so that the accuracy of
the final POD soultion at a cost of slightly more ndofs used. For both cases, with and without TDA, we find
from Figure 5 that POD eigenvalues decay very fast; POD eigenvalues with X = L2 are smaller in magnitude
than those with X = H1. POD eigenvalues of TDA case are larger than those of no TDA case.

Example 5.3. We employ both advantages of IGA shown in examples before: exact representation of geometric
domain by NURBS and smoothness of B-spline basis functions to enhance accuracy in POD model order
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Figure 5. Decay of first few eigenvalues of correlation matrix obtained in X = L2/H1 and
with/without TDQ for Example 5.2 (h = 1/32): (a) p = 3, km = 2, Nx = 1225 (No TDA);
(b) p = 3, km = 2, Nx = 1225 (TDA); (c) p = 4, km = 3, Nx = 1296; (d) p = 3, km = 1,
Nx = 4356.

Figure 6. NURBS based mesh and POD solution for Example 5.3 at T = 1.5 with p = 3, km =
2, Nx = 11 016, ε = 10−8.

reduction. Consider a wave propagation problem in a three dimensional quarter of cylindrical annulus Ω =
(1, 2) × (0, π/2) × (0, 1) in cylindrical coordinates. Set exact solution as

u(x, y, z, t) =

⎧⎨⎩ e−π2
(
t− 1

2 (x+y+
√

2z−1)−1
)2
, t ≥ 1

2
(x+ y +

√
2z − 1)

0 otherwise

satisfying Neumann boundary conditions on ∂Ω. Set T = 1.5, τ = 2.5 × 10−3. Choose p = 3, km = 2 and set
16, 32 and 16 as number of elements in direction x, y and z, respectively. See Figure 6 a NURBS based mesh
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Figure 7. POD eigenvalues for Example 5.3 with X = H1.

Table 6. Results w.r.t. ε for Example 5.3: X = H1.

ε
No TDA TDA

r Er
L2 EL2 r Er

L2 EL2

10−3 4 2.60e-3 1.30e-3 5 1.05e-2 5.28e-3

10−4 5 5.31e-4 2.70e-4 10 6.06e-4 3.06e-4

10−5 6 1.01e-4 7.63e-5 39 1.62e-4 1.00e-4

10−6 6 1.01e-4 7.63e-5 54 4.61e-5 6.12e-5

10−7 7 1.99e-5 5.76e-5 173 6.36e-6 5.71e-5

and a POD Galerkin solution with p = 3, km = 2 and Nx = 11 016. The computed error of high fidelity solution
approximation is Eh

L2 =5.68e-5. Figure 7 shows the first few POD eigenvalues with X = H1. In Table 6, we
show that the reduced order r increases as ε decreases. Thus, the POD truncation error decreases and the final
POD solution becomes more accurate.

6. Conclusions

We used IGA in POD for ROM of acoustic wave equations, which may be thought of as one dimensional
parameterized model in ROM with the time being the only parameter. We split the error of the POD-Galerkin
solution into two parts and show both the accuracy of high fidelity solution approximation and POD truncation
are important for obtaining effectiveness and accuracy of POD-Galerkin methods. We discretize the model
by IGA and the Newmark scheme and propose a new fully discrete IGA-Newmark-POD Galerkin scheme. We
analyze the stability and convergence of the discrete schemes by a priori error estimates. Numerical experiments
are performed, which show promising advantages of IGA for accuracy in ROM both with respect to the “exact”
geometrical representation of computational domains of practical interest and the use of smooth basis functions
allowed by NURBS.
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