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EXISTENCE AND UNIQUENESS OF A SOLUTION FOR A FIELD/CIRCUIT
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1

and Vladiḿır Vrábel’
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Abstract. In this paper we show unique solvability of an abstract coupled problem which originates
from a field/circuit coupled problem. The coupled problem arises in particular from modified nodal
analysis equations linked with an eddy current problem via solid conductor model. The proof technique
in the paper relies on Rothe’s method and the theory of monotone operator. We also provide error
estimates for time discretization.
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1. Introduction

The growing complexity of electrical devices calls for more refined mathematical models for their simulation.
This can give rise to various coupled problems. A field/circuit coupled model, for instance, consists of lumped-
element circuit equations coupled with a distributed field model. Mathematically, it is a coupling between a
differential-algebraic system of equations and a partial differential equation model. Such problems have attracted
some attention.

In [18] the author focuses on the time-transient simulation of device/circuit coupled problems using multiscale
models. A coupled system of circuit and Maxwell’s equations was also studied in [2]. In [20] the author studies the
coupled device/circuit problem for a semiconductor device and shows the existence and uniqueness of a solution
together with a perturbation result using a Galerkin approach in an abstract setting. A similar approach is
employed in the work [12], where a system of nonlinear partial differential-algebraic equations is studied. A
time-harmonic case for a field-circuit coupling has been studied in [14].

In this paper, we study an abstract nonlinear parabolic coupled problem of the form

Su′(t) + Au(t) + SKy(t) = 0
(My)′(t) + K∗Su′(t) + B(t)y + K∗SKy(t) = g(t),

(1.1)

which arises from of a certain type of field/circuit coupled problem. Here, the first equation can represent
the eddy current approximation of Maxwell’s equations. The second equation then corresponds to a circuit
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sub-problem coming from the so-called modified nodal analysis. Both sub-problems are linked together via the
solid-conductor model for field/circuit coupling.

We prove the unique solvability of the problem (1.1) and provide error estimates for its time discretization,
which is the highlight of this study. Our proof-technique relies on the theory of monotone operators [13,21,23],
which has already been applied to more standard evolution problems, cf. e.g. [15–17]. The paper is organized as
follows. Section 2 is devoted to a short presentation of the field/circuit coupled problem. In Section 3 we prove
unique solvability of the resultant abstract coupled problem in appropriate functional spaces. The abstract
formulation will allow us to keep the focus on the monotone structure of the coupled problem and ease the
otherwise lengthy notation. In Section 4 we derive some error estimates for time discretization.

2. Field/circuit coupled problem

2.1. Electric network model

We will briefly go over an electric network model as presented in [6, 20]. Let us consider an electric network
with the nodes 1, . . . , n and branches 1, . . . , b. The (reduced) incidence matrix A ∈ R

n×b between the nodes and
edges is defined by its elements

A = (Aij)
j=1,...,b
i=1,...,n , Aij =

⎧⎨
⎩

1 if branch j leaves the node i
−1 if branch j enters the node i
0 otherwise.

In the reduced incidence matrix (again denoted as) A, one node is selected as the ground node and its row is
skipped. The reduced matrix A can be split into the incidence matrices associated with capacitive branches,
inductive branches, resistive branches, branches of voltage sources and branches of current sources, respectively,
i.e. A = (AC AR AL AV AI). Let i = (iC , iR, iL, iV , iI)T denote the vector of all branch currents. Kirchhoff’s
current law states that

ACiC + ARiR + ALiL + AV iV + AI iI = 0. (2.1)

One can then apply the constitutive equations for the branch currents i = i(v) and Kirchhoff’s voltage law
v = AT e, where v denotes the vector of all branch voltages and e denotes the vector of all node potentials. This
eventually yields the modified nodal analysis equations

AC
dqC(AT

Ce)
dt

+ ARgR(AT
Re, t) + ALiL + AV iV = −AI is(t)

dφL(iL, t)
dt

− AT
Le = 0 and AT

V e = vs(t)
(2.2)

with the initial data for e and iL. Natural conditions for an field/circuit model have been formulated in ([20],
p. 16). They are referred as (A1) Smoothness, (A2) Local Passivity, and (A3) Consistency. (A1) describes the
continuity and differentiability of qC , gR and φL. (A2) reflects the positive definiteness of ∂qC(v,t)

∂v , ∂gR(v,t)
∂v and

∂φL(j,t)
∂j . Assumption (A3) is necessary for a consistent model description to guarantee the unique solvability.
The vector functions qC and φL are continuously differentiable and strongly monotone in the first arguments.

These properties follows from the smoothness and the local passivity hypotheses ([20], p. 16). The function gR

is Lipschtiz continuous and strongly monotone in the first argument and continuous in the second one, see (A1)
and (A2) at ([20], p. 16). The dimension of the above differential-algebraic system is n1+ nL +nV , where nL is
the number of inductive branches and by nV the number of voltage source branches. Adding certain topological
assumptions on the network, one can prove the unique solvability of the above problem for the given data is
and vs, see for instance [12].
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2.2. Eddy current problem with nonlocal voltage excitation

In this subsection we discuss a generalized eddy current problem with nonlocal voltage excitation. We state
its magnetic potential formulation for a simple case with a single conductor. We have drawn the model from
the article [9]. We refer the reader to this article for a detailed treatment and an in-depth discussion of current
and voltage excitations for the eddy current model.

Let us begin with the following eddy current model

curlhhh = σeee in Ω curleee = −∂tbbb in Ω

div bbb = 0 in Ω hhh = ν(|bbb|)bbb in Ω,

where eee and hhh stand for the electric and magnetic field, respectively, and bbb denotes the magnetic induction. The
electric conductivity σ = σ(xxx) is bounded and strictly positive in ΩC and it equals zero in ΩI . The reluctivity
ν is a positive constant in ΩI and strictly positive and bounded function in ΩC . The function s �→ ν(s)s is
assumed to be strictly monotonically increasing with the Gâteaux potential (see [21]) Φν , i.e. dΦν

ds = ν(s)s, and
it describes the nonlinear response of material to a magnetic field. Please note that the monotone behavior of
ν(s)s implies the strong monotonicity of ν(|bbb|)bbb. The presumptions on ν(s)s are reflected in Assumption 3.2(ii).

A typical example of such a field could be ν(|bbb|)bbb = bbb + β(|bbb|)bbb, where the real function β obeys:

0 ≤ β(s) ≤ C, 0 ≤ (β(s)s)′ ≤ C.

One can easily check in this situation that

(ν(|xxx|)xxx − ν(|yyy|)yyy) · (xxx − yyy) = |xxx − yyy|2 + (β(|xxx|)xxx − β(|yyy|)yyy) · (xxx − yyy)
= |xxx − yyy|2 + β(|xxx|) |xxx|2 + β(|yyy|) |yyy|2 − β(|xxx|)xxx · yyy − β(|yyy|)yyy · xxx
≥ |xxx − yyy|2 + β(|xxx|) |xxx|2 + β(|yyy|) |yyy|2 − β(|xxx|) |xxx| |yyy| − β(|yyy|) |xxx| |yyy|
= |xxx − yyy|2 + (β(|xxx|) |xxx| − β(|yyy|) |yyy|) (|xxx| − |yyy|)
≥ |xxx − yyy|2 ,

which proves the strong monotonicity of ν(|bbb|)bbb. The Gâteaux potential in this case is

Φν(xxx) =
∫ |xxx|

0

ν(s)s ds =
∫ |xxx|

0

(1 + β(s)) s ds =
1
2
|xxx|2 +

∫ |xxx|

0

β(s)s ds.

Indeed for the Gâteaux derivative [21] in the direction yyy we have

grad Φν(xxx) · yyy = lim
t→0

Φν(xxx + tyyy) − Φν(xxx)
t

= xxx · yyy + β(|xxx|)xxx · yyy = ν(|xxx|)xxx · yyy.

Let us denote the time frame by [0, T ]. The domain Ω ⊂ R
3 is a bounded domain with outward unit normal

vector field nnn on its smooth boundary ∂Ω. The domain Ω will consist of two disjoint sub-domains ΩC and
ΩI , ΩC ∪ ΩI = Ω, where ΩC represents the conductors and ΩI the insulating air region. Figure 1 shows two
simplest topologies under consideration. In both cases the nonlocal excitation is supplied through by voltages
imposed at contacts Σ.

Since bbb is divergence free, we can write

bbb = curlaaa and eee = −∂taaa − gradφ

for the magnetic potential aaa and the scalar potential φ. We recall that the potential aaa is not unique (neither
is φ) and an additional gauging condition is required, e.g. Coulomb’s gauge divaaa = 0, [7]. The scalar potential
can be used to introduce a non-local voltage excitation. One can write the electric field as the sum

eee = −∂taaa − vppp,
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Figure 1. Case (a): conductor ΩC touching ∂Ω with ∂ΩC ∩ ∂Ω = Σ+ ∪ Σ− = Σ. Case (b):
conducting loop away from ∂Ω with cutting surface Σ.

where v = v(t) is a given voltage and ppp = ppp(xxx)∈ L2(Ω) is a known vector function such that ppp = 000 in ΩI .
In case (a), ppp = ∇θ for the function θ ∈ H1(ΩC) with Σ+ = 1 and Σ− = 0. In case (b), one chooses (a
representative of the first co-homology space for ppp, i.e.) ppp = ∇θ where θ ∈ H1(ΩC \Σ) and [θ]Σ = 1. Note that
there is no curl-free extension of ppp|ΩC to HHH(curl; Ω) neither in case (a) nor in case (b).

The resultant boundary value problem for aaa = aaa(xxx, t) reads as

σ∂taaa + curl (ν(|curlaaa|)curlaaa) = −vσppp in Ω

aaa ×nnn = 000 on ∂Ω
(2.3)

with the divergence-free initial condition aaa(0) = aaa0(xxx). For the given voltage v in the above problem, the
associated electric current i = i(t) can be recovered using the power balance formula p = iv and Poynting’s
theorem. One obtains

i =
∫

ΩC

[σ∂taaa · ppp + vσppp · ppp] dxxx. (2.4)

More complicated topologies are treated analogously, see e.g. [5].
It is easy to see that the parabolic problem (2.3) is degenerate. The conductivity σ vanishes in the sub-

domain ΩI , where we are left with an elliptic problem which requires the additional divergence-free condition
on aaa. The authors in [3] proved the unique solvability of this problem, see also [11]. Their main idea is to restrict
the eddy current problem (2.3) only to the conducting domain ΩC with making use of the harmonic extension
from ΩC to “degenerate” domain ΩI .

This leads to the variational formulation2 for aaa ∈ L2 ((0, T ),H0H0H0(curl; ΩC)) ∩ C
(
[0, T ],LLL2 (ΩC)

)
with ∂taaa ∈

L2
(
(0, T ),LLL2 (ΩC)

)
∫

ΩC

[σ∂taaa ·ϕϕϕ + ν(|curlaaa|)curlaaa · curlϕϕϕ] dxxx +
∫

ΩI

curlH(aaa) · curlH(ϕϕϕ) dxxx

=
∫

ΩC

−vσppp ·ϕϕϕ dxxx for all ϕϕϕ ∈ H0H0H0(curl; ΩC),
(2.5)

where the function space H0H0H0(curl; ΩC) is a standard Sobolev space of square-integrable vector functions and
their curls with vanishing tangential trace. The mapping H : HHH(curl; ΩC) → HHH(curl; ΩI) is defined as the

2Please note that the variational spaces in an abstract network formulation will change, see Theorem 3.3.
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solution aaaI of the problem

curl curlaaaI = 000 and divaaaI = 0 in ΩI ,

aaaI × nnn = aaaC ×nnn on ∂ΩI/∂Ω and aaaI × nnn = 000 on ∂Ω
(2.6)

for a given aaaC . Unique solvability needs certain topology assumption, cf. [1].

2.3. The coupled problem

To obtain the field/circuit coupled problem, one simply adds the field-sub-problem currents iF given by (2.4)
into the current balance equation (2.1) (or equivalently to (2.2))

AC iC + ARiR + ALiL + AV iV + AI iI + AF iF = 0,

and set v = AT
F e in (2.3). This coupling is also called a solid-conductor model, see [19].

In presence of no voltage sources, we can use the following (operator) notation for (2.2)

y =
(

e
iL

)
, M =

(
ACqC(AT

C•, t) 0
0 φL(•, t)

)
, B =

(
ARgR(AT

R•, t) AL

−AT
L 0

)
,

and g = (−AI is, 0)T . This leads to

My =
(

ACqC(AT
Ce, t)

φL(iL, t)

)
, By =

(
ARgR(AT

Re, t) + ALiL
−AT

Le

)
.

The vector functions qC and φL are continuously differentiable and strongly monotone in the first arguments.
This is reflected in Assumption 3.2(iii). The properties of gR are reflected in Assumption 3.2(iv). We next
introduce the coupling operator K as

K : R
n+nL → LLL2(Ω), y �→ AT

F yppp with

K∗ : LLL2(Ω) → R
n+nL , uuu �→ AF

∫
ΩC

ppp ·uuudxxx,
(2.7)

where LLL2(Ω) is the space of square-integrable vector functions on Ω. The problem (2.3) can be rewritten in a
similar manner so that we can derive that the coupled field/circuit problem has indeed the form of the abstract
problem (1.1).

In the next sections we will analyze the abstract model as it provides an elegant way to study existence of a
solution and convergence of numerical approximations. We will introduce the vector spaces V and H which will
correspond to H0H0H0(curl; Ω) and LLL2(Ω) respectively. The operator S will correspond to the multiplication by σ.
The assumptions on the operator A will reflect the properties of the second and third term in the equation (2.5)
which can be written as one.

Given standard assumptions on the electric network topology, the equations (2.2) will be a system of ordinary
differential equations or (more realistically) first order differential-algebraic equations (see [12]). In the later
case the system can be still rewritten into an ODE form if gR is strongly monotone in the first argument. The
assumptions on M , B and K will reflect theses properties.

3. Abstract coupled problem

In this section, we use the Rothe method and the theory of monotone operators (e.g. [16]) to show that the
abstract problem (1.1) has a unique solution under certain standard assumptions.

We first introduce some notation and at the same time summarize basic assumptions about the function
spaces, see ([22], Chap. 23) for more details. We use standard notation for the scalar product xT y and the
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associated Euclidean norm |x| =
√

xT x, where x, y ∈ R
N . We work with the evolution triple in the follow-

ing sense:

Assumption 3.1. Assume that:

(i) V is a real, separable and reflexive Banach space with the norm ‖u‖V for u ∈ V . The space V ∗ is its dual
space with the norm ‖v‖V ∗ and the dual pairing 〈v, u〉 for v ∈ V ∗ and u ∈ V .

(ii) H is a real, separable Hilbert space with the scalar product (h, k) for h, k ∈ H and the induced norm
‖h‖ :=

√
(h, h).

(iii) V is dense in H and
‖v‖V = ‖v‖ + |v|V for all v ∈ V,

where |v|V is a seminorm on V .

The space H is identified with its dual H∗ by the Riesz theorem. We also identify h ∈ H with the functional
h ∈ V ∗

〈h, v〉 = (h, v) for all v ∈ V with ‖h‖V ∗ ≤ ‖h‖ , (3.1)

and so in this sense H ⊆ V ∗. The same identification will be often used for u ∈ V ⊂ H . We make use of the
standard parabolic space W 1,2((0, T ), V, H) equipped with the norm

‖u‖W 1,2((0,T ),V,H) =

(∫ T

0

‖u(t)‖2
V dt +

∫ T

0

‖u′(t)‖2
V ∗ dt

)1/2

,

which is continuously embedded into the space C([0, T ], H) and

max
t∈[0,T ]

‖u‖ ≤ const ‖u‖W 1,2((0,T ),V,H) . (3.2)

The formula
〈u′(t), v〉 =

d
dt

(u(t), v) (3.3)

holds true in weak sense for given u ∈ W 1,2((0, T ), V ) and v ∈ V . In particular, we have the integration by
parts formula

(u(T ), v(T )) − (u(0), v(0)) = 〈u′, v〉(0,T ) + 〈v′, u〉(0,T ) , (3.4)

where 〈·, ·〉(0,T ) denotes the dual pairing between L2((0, T ), V ∗) and L2((0, T ), V ).
As it is usual, C will stand for a generic positive constant later on in the estimates.

Here follows the assumptions on the operators and the data.

Assumption 3.2. Assume the following:

(i) The operator S : H → H is bounded linear, self-adjoint and strongly positive3.
(ii) The operator A : V → V ∗ is hemicontinuous, monotone and moreover there exists a constant c1 > 0 such

that
〈Au − Av, u − v〉 ≥ c1|u − v|2V for all u, v ∈ V.

It satisfies the growth estimate

‖Av‖V ∗ ≤ C (1 + |v|V ) for all v ∈ V.

A(0) = 0 and there exists the potential PA : V → R such that P ′
A = A, i.e. A is the Gâteaux derivative

of PA, see [21].

3Then we can write S = (S1/2)∗S1/2 and there exists S−1.
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(iii) The vector function M : R
N × [0, T ] → R

N is continuously differentiable, and strongly monotone in the
first argument4, i.e.

(x − y)T (M(x, t) − M(y, t)) ≥ c1|x − y|2 for all x, y ∈ R
N and t ∈ [0, T ].

M(0, t) = 0 and there exists the potential PM : V × [0, T ] → R such that P ′
M = M , i.e. M is the Gâteaux

derivative of PM with respect to the first variable and the second variable t is taken as a parameter.
(iv) The vector function B : R

N × [0, T ] → R
N is Lipschitz continuous in the first argument5, continuous in the

second one, and B(0, t) = 0.
(v) The operator K : R

N → H is bounded linear with the adjoint K∗ : H → R
N associated via the scalar

product identity
(u, Ky) = yT K∗u

for any y ∈ R
N and u ∈ H .

(vi) The data u0 ∈ V , y0 ∈ R
N and g ∈ C([0, T ], RN) are given.

The monotone behavior of A in natural for a single conductor. The coupling of a single device to a network is
sparse and it gives rise to a solid-conductor model, see [19]. Certain topological assumptions on the network
ensure the positiveness of S and the monotonicity of M . We recall that the above operators S, A and K are
time independent. One can always suppose that PA(0) = 0 and PM (0) = 0.

It follows then from the Hadamard lemma that

PA(u) = PA(u) − PA(0) =
∫ 1

0

〈A(θu), u〉 dθ =
∫ 1

0

〈A(θu), θu〉
θ

dθ ≥ c1

2
|u|2V · (3.5)

Furthermore, it is easy to see that

xT M ′(y)x = lim
h→0

[
y + hx − y

h

]T [M(y + hx) − M(y)]
h

≥ c1|x|2,

and so by a similar argument as above

yT M(y) − PM (y) ≥ c1

2
|y|2. (3.6)

The Lipschitz continuity assumption on B directly provides the growth estimate |B(u, t)| ≤ C|u| for t ∈ [0, T ].
We will state now the main result of this section.

Theorem 3.3. Let Assumptions 3.1 and 3.2 hold. Then there exists a unique solution (u, y) ∈
(W 1,2((0, T ), V, H) ∩C1([0, T ], H)) × C([0, T ], RN) of the problem

Su′(t) + Au(t) + SKy(t) = 0 in V ∗

(My)′(t) + By(t) + K∗SKy(t) + K∗Su′(t) = g(t)
on (0, T ) (3.7)

with the initial data u(0) = u0 and y(0) = y0

Remark 3.4. The first equation in (3.7) should be understood as the variational problem

(Su′, v) + 〈Au, v〉 = −(SKy, v) for a.e. t ∈ (0, T ) and for any v ∈ V.

However, it will be shown from the continuous data g that the time derivative u′ in (3.7) is strong and both
equations indeed hold not only for almost all t ∈ (0, T ), but on the whole time interval.

4 We will regularly shorten the notation M(y, t) to M(y) or even My.
5 We will regularly shorten the notation B(y, t) to By.
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Proof of uniqueness. Assume that there are two solutions (ui, yi) for i = 1, 2. We subtract the associated
problems (3.7) for index i = 1, 2 from each other. We apply then the first equation to u1 −u2 ∈ V and use (3.3)
to get

1
2

d
dt

∥∥∥S1/2(u1 − u2)
∥∥∥2

+ 〈Au1 − Au2, u1 − u2〉 = −(u1 − u2, SK(y1 − y2)),

for almost all t ∈ (0, T ). The integration in time yields

‖u1(t) − u2(t)‖2 +
∫ t

0

|u1 − u2|2V ≤ C

∫ t

0

(
‖u1 − u2‖2 + |y1 − y2|2

)
, (3.8)

where we have used the strong positivity of S, monotonicity of A and the Young inequality with the boundedness
of the operator SK.

Similarly, we integrate the second equation in time and multiply by y1 − y2 to see that

(y1 − y2)T

(
My1 − My2 + K∗S(u1 − u2) +

∫ t

0

[By1 − By2 + K∗SK(y1 − y2)]
)

= 0,

and so the assumptions show

c1|y1(t) − y2(t)|2 ≤ C|y1(t) − y2(t)|
(
‖u1(t) − u2(t)‖ +

∫ t

0

|y1 − y2|
)

.

It follows thus from the Grönwall Lemma [4] that

|y1(t) − y2(t)| ≤ C

(
‖u1(t) − u2(t)‖ +

∫ t

0

‖u1 − u2‖
)

for any t ∈ [0, T ].

We use the above result in (3.8) to conclude again by the Grönwall argument that u1 = u2 in
W 1,2((0, T ), V, H). This implies in return that also y1 = y2. Thus both solutions are identical. �

The rest of this section is devoted to the proof of existence of the solution.

3.1. Time discretization

Let the grid points ti = iτ for i = 0, . . . , n with τ = T/n, n ∈ N be a discretization of the time interval (0, T ).
We adopt the standard notation for time discretized functions and its backward time difference,

ui = u(ti) and δui =
ui − ui−1

τ
,

and discretize the problem (3.7) in time using the backward Euler method

Sδui + Aui + SKyi = 0
δMi + Byi + K∗SKyi + K∗Sδui = gi

for i = 1, . . . , n, (3.9)

where Mi = M(yi).

Lemma 3.5 (Unique solvability of the discrete problem). Given Assumptions 3.1 and 3.2, there exists n0 ∈ N

such that for all integers n > n0 the system (3.9) has a unique solution (ui, yi) ∈ V × R
N , i = 1, . . . , n.

Proof. We multiply the second equation in (3.9) by τ and consider the equivalent system

S
ui

τ
+ Aui + SKyi = S

ui−1

τ
Mi + τByi + τK∗SKyi + K∗Sui = τgi + Mi−1 + K∗Sui

(3.10)
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for i = 1, . . . , n. Set V = V × R
N . The left-hand side of (3.10) defines the operator

Aτ : V → V∗ (u, y) �→
(
S

u

τ
+ Au + SKy, My + τBy + τK∗SKy + K∗Su

)
.

The operator Aτ is strongly monotone. Indeed, we can derive step by step by the monotonicity assumptions
and the ε-Young inequality that

〈Aτ (u, y) −Aτ (v, x), (u − v, y − x)〉L(V,V∗)

=
1
τ

∥∥∥S1/2(u − v)
∥∥∥2

+ 〈Au − Av, u − v〉 + (SK(y − x), u − v)

+(y − x)T (My − Mx) + τ(y − x)T (By − Bx)

+τ
∥∥∥S1/2K(y − x)

∥∥∥2

+ (SK(y − x), u − v)

≥
1
τ

∥∥∥S1/2(u − v)
∥∥∥2

+ c1|u − v|2V + c1|y − x|2 + τ
∥∥∥S1/2K(y − x)

∥∥∥2

−ε|y − x|2 − Cε

∥∥∥S1/2(u − v)
∥∥∥2

− Cτ |y − x|2

≥
C0

(
|y − x|2 + ‖u − v‖2 + |u − v|2V

)
for sufficiently small ε > 0 and sufficiently large n > n0.

One can easily verify that the operator Aτ is hemicontinuous and so according to the monotone operator
theory (see [23], Thm. 26.A), there exists a unique solution (ui, yi) of the operator problem (3.10), for any
i = 1, . . . , n, which was to be proved. �

Lemma 3.6 (First a priori estimate). If (ui, yi) is the solution from Lemma 3.5, then there exists C > 0
independent on n such that

max
i=1,...,n

(|yi| + |ui|V ) < C.

Proof. We apply the first equation in (3.9) to δui, multiply the second one by yT
i and add them up to get

∥∥∥S1/2δui

∥∥∥2

+ 〈Aui, δui〉 + 2(SKyi, δui) + yT
i δMi + yT

i Byi +
∥∥∥S1/2Kyi

∥∥∥2

= yT
i gi.

Obviously,

−|2(SKyi, δui)| +
∥∥∥S1/2Kyi

∥∥∥2

+
∥∥∥S1/2δui

∥∥∥2

≥ 0

and so we can write
j∑

i=1

τ 〈Aui, δui〉 +
j∑

i=1

τyT
i δMi ≤

j∑
i=1

τyT
i gi + Cτ

j∑
i=1

|yi|2. (3.11)

Convexity of the functional PA follows from the monotonicity of the operator A (cf. [21], Thm. 5.1). Therefore
we have

j∑
i=1

τ 〈Aui, δui〉 ≥
j∑

i=1

PA(ui) − PA(ui−1) = PA(uj) − PA(u0). (3.12)
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The summation by parts yields in a similar way

j∑
i=1

τyT
i δMi =

[
yT

j Mj − yT
0 M0

]− j∑
i=1

τδyT
i Mi−1 ≥ yT

j Mj − PM (yj) −
[
yT
0 M0 − PM (y0)

]
.

The right hand side of (3.11) can be estimated from above by the Young inequality. Gathering all the results
and using (3.5) with (3.6) shows that

|yj|2 + |uj |2V ≤ C + Cτ

j∑
i=1

|yi|2.

We use the discrete Grönwall inequality ([8], Lem. 5.1) and take maximum over j = 1, . . . , n to conclude the
proof. �

Lemma 3.7 (Second a priori estimate). If (ui, yi) is the solution from Lemma 3.5, then there exists C > 0
independent on n such that

(i)

max
i=1,...,n

‖ui‖ +
n∑

i=1

τ |ui|2V < C,

(ii)
n∑

i=1

τ ‖δui‖2 +
n∑

i=1

τ2|δui|2V +
n∑

i=1

τ |δyi|2 < C.

Proof.

(i) Applying the first equation in (3.9) to τui gives

τ(Sδui, ui) + τ 〈Aui, ui〉 = τ(−SKyi, ui).

We add it up for i = 1, . . . , n, use the Abel summation and monotonicity of A with A(0) = 0 to obtain

1
2

(∥∥∥S1/2uj

∥∥∥2

−
∥∥∥S1/2u0

∥∥∥2

+
j∑

i=1

∥∥∥S1/2(ui − ui−1)
∥∥∥2
)

+
j∑

i=1

τc1|ui|2V ≤
j∑

i=1

τ(−SKyi, ui),

and so by the Young inequality

1
2

∥∥∥S1/2uj

∥∥∥2

+
j∑

i=1

τc1|ui|2V ≤ 1
2

∥∥∥S1/2u0

∥∥∥2

+
j∑

i=1

τ

∥∥S1/2Kyi

∥∥2
+
∥∥S1/2ui

∥∥2

2
·

We use then the discrete Grönwall argument together with Lemma 3.6 and the assumptions on S. Taking
maximum over j = 1, . . . , n concludes the proof.

(ii) We apply the first equation in (3.9) to τδui, then we add it up for i = 1, . . . , n and use the Young inequality
to obtain

n∑
i=1

τ
∥∥∥S1/2δui

∥∥∥2

+
n∑

i=1

τ 〈Aui ± Aui−1, δui〉 ≤
n∑

i=1

τ(SKyi, δui). (3.13)

It follows from the Young inequality that and estimate on Lemma 3.6 that

n∑
i=1

τ(SKyi, δui)2 ≤ C +
1
2

n∑
i=1

τ
∥∥∥S1/2δui

∥∥∥2

.
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Combining the growth estimate for A –see Assumption 3.2(ii)– with (3.5)

|PA(u)| =
∣∣∣∣
∫ 1

0

〈A(θu), u〉 dθ

∣∣∣∣ ≤
∫ 1

0

‖A(θu)‖V ∗ ‖u‖V dθ ≤ C

∫ 1

0

(1 + |θu|V ) ‖u‖V dθ ≤ C (1 + |u|V ) ‖u‖V .

Using this together with the convexity of PA and Lemmas 3.6 and 3.7 we deduce that

n∑
i=1

τ 〈Aui−1, δui〉 ≤
n∑

i=1

PA(ui) − PA(ui−1) = PA(un) − PA(u0) ≤ C,

and so we can move this term to the right hand side of (3.13). The strong positivity of S and strong monotonicity
of A finally leads to

n∑
i=1

τ ‖δui‖2 +
n∑

i=1

τ2|δui|2V ≤ C. (3.14)

We now multiply the second equation in (3.9) by τδyi to get

τc1|δyi|2 ≤ τδyT
i (−Byi − K∗SKyi − K∗Sδui + gi),

where we have already used the monotonicity of M . A clever use of the ε-Young inequality together with
Lemma 3.6 and the assumption s on B, S and K shows for the right hand side that

τδyT
i (−Byi − K∗SKyi − K∗Sδui + gi) ≤ τ

c1

2
|δyi|2 + τC

(
1 + ‖δui‖2 + |gi|2

)
The estimate (3.14) and the assumption on g yield

c1

2

n∑
i=1

τ |δyi|2 ≤
n∑

i=1

τC
(
1 + ‖δui‖2 + |gi|2

)
≤ C,

which finishes the proof. �

3.2. Rothe’s method and existence of a solution

Let us introduce the piecewise-linear-in-time functions un and yn

un(t) = ui−1 + δui(t − ti−1) for t ∈ (ti−1, ti], un(0) = u0,

yn(t) = yi−1 + δyi(t − ti−1) for t ∈ (ti−1, ti], yn(0) = u0

(3.15)

and the piecewise-constant-in-time functions ūn

ūn(t) = ui and ȳn(t) = yi for t ∈ (ti−1, ti], (3.16)

where (ui, yi) is the solution of (3.9). The functions un and yn have the right-hand derivative u′
n(t) = δui and

y′
n(t) = δyi for t ∈ (ti−1, ti]. It holds that

ūn − un = δui(ti − t) and ȳn − yn = δyi(ti − t) on (ti−1, ti]. (3.17)

The discrete system (3.9) reads in this notation as

Su′
n + Aūn + SKȳn = 0

M ′
n + Bȳn + K∗SKȳn + K∗Su′

n = ḡn.
(3.18)

We will prove that the sequence of Rothe’s functions {(un, yn)} converges to the unique solution (u, y) of the
original problem (3.7) for n → ∞.
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Lemma 3.8 (Convergence). Let Assumptions 3.1 and 3.2 hold. Assume that un and yn solve the problem (3.18).
Then there exists a subsequence

(i) un ⇀ u in W 1,2((0, T ); V, H) and un → u in C([0, T ], H),
(ii) ūn ⇀ u in L2(0, T ), V ),
(iii) Aūn ⇀ w in L2(0, T ), V ∗),
(iv) yn → y and ȳn → y uniformly for all t ∈ [0, T ].

Proof. We remark that the uniqueness of the solution justifies keeping the same subscript n for all subsequences
we will choose.

(i) and (ii): Lemmas 3.6 and 3.7 imply that

∫ T

0

[
‖ūn‖2

V + ‖un‖2
V + ‖u′

n‖2
]

dt ≤ C.

and so un ⇀ u and ūn ⇀ ū in the above Sobolev spaces, since every bounded sequence in a reflexive space has
a weakly convergent subsequence. Moreover, it follows from (3.17)

∫ T

0

‖un − ūn‖2
V dt =

n∑
i=1

∫ ti

ti−1

‖δui(t − ti−1)‖2
V dt ≤

n∑
i=2

τ3 ‖δui‖2
V ≤ Cτ,

which clearly forces u = ū. The convergence of un to u follows from the continuous embedding (3.2), see also
([15], Lem. 1.3.13).

(iii): The growth estimate on A yields

∫ T

0

‖Aūn‖2
V ∗ dt < C,

hence the weak compactness argument as above provides the assertion.
(iv): It is easy to see from Lemmas 3.6 and 3.7 that the sequence {yn} is equi-bounded and equi-continuous.

The uniform convergence yn → y is then direct consequence of Arzela−Ascoli theorem (e.g. [10], Thm. 1.5.3).
Moreover, we see from (3.17) that

|ȳn(t) − yn(t)| ≤ (τ |δyi|2)τ1/2 ≤ Cτ1/2 for t ∈ (ti−1, ti], (3.19)

and so the uniform convergence for ȳn to y follows from the triangle inequality. �

We can take n → ∞ in (3.18) and apply Lemma 3.8 to obtain

Su′ + w + SKy = 0
(My)′ + By + K∗SKy + K∗Su′ = g.

(3.20)

in the weak sense.
We now use the Minty−Browder trick to show that w = Au, compare with ([23], Lem. 30.6).

Lemma 3.9 (Monotonicity trick). Let Assumptions 3.1 and 3.2 hold. Assume that un and yn solve the prob-
lem (3.18). Then

(i) lim supn→∞ 〈Aūn, ūn〉(0,T ) = 〈w, u〉(0,T )

(ii) w = A(u).
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Proof.

(i) Integration by parts (3.4) applied to (3.18) yields

1
2

(∥∥∥S1/2un(T )
∥∥∥2

−
∥∥∥S1/2un(0)

∥∥∥2
)

=
〈
S1/2u′

n, S1/2un

〉
(0,T )

= 〈−SKȳn − Aūn, un〉(0,T ) ,

and hence

〈Aūn, un〉(0,T ) = 〈−SKȳn, un〉(0,T ) +
1
2

(∥∥∥S1/2un(0)
∥∥∥2

−
∥∥∥S1/2un(T )

∥∥∥2
)

.

Taking the limit n → ∞ and then using the first equation in (3.20) leads to

lim sup
n→∞

〈Aūn, ūn〉(0,T ) = lim sup
n→∞

(
〈Aūn, ūn − un〉(0,T ) + 〈Aūn, un〉(0,T )

)

= 〈−SKy, u〉(0,T ) +
1
2

(∥∥∥S1/2u0

∥∥∥2

−
∥∥∥S1/2u(T )

∥∥∥2
)

= 〈w, u〉(0,T ) ,

where we have used the fact that ūn − un ⇀ 0 in L2(0, T ), V ).

(ii) We start with
〈Aūn − Av, ūn − v〉(0,T ) ≥ 0,

and take the limit n → ∞. With help of the result (i), we obtain

〈w − Av, u − v〉(0,T ) ≥ 0

for any function v ∈ L2((0, T ), V ). If v = u − εh with ε > 0, we have

−ε 〈w − A(u − εh), h〉(0,T ) ≥ 0.

Therefrom
〈w − Au, h〉(0,T ) ≤ 0 as well as 〈w − Au, h〉(0,T ) ≥ 0

for any h ∈ L2((0, T ), V ), which implies the assertion. �
Finally, we note that the data g in (3.7) and the solution (u, y) are well defined for all t ∈ [0, T ] and so is in
return its time derivative (u′, y′), which means that (3.7) holds true for all t ∈ [0, T ]. We have thus proved
Theorem 3.3.

4. Time error estimates

This section deals with the convergence rate of Rothe’s method.

Theorem 4.1. Let u be the solution from Theorem 3.3 and (un, yn) be its Rothe approximation defined in (3.15).
Then there is a constant C > 0 such that

max
t∈[0,T ]

(
‖u(t) − un(t)‖2 + ‖y(t) − yn(t)‖2

)
+
∫ T

0

|u − ūn|2V dt ≤ Cτ.

Proof. We follow a standard technique and consider the difference between the second equations in (3.7)
and (3.18)

(My − Mn)′ + By − Bȳn + K∗S(u′ − u′
n) + K∗SK(y − ȳn) = g − ḡn.

We integrate it time and multiply it by the difference (y − yn)T to derive that

c1|y(t) − yn(t)|2 ≤ C|y(t) − yn(t)|
(
‖(u(t) − un(t))‖ + τ +

∫ t

0

|y − ȳn| +
∫ t

0

|g − ḡn|
)
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by the monotonicity of M and the Lipschitz continuity of K∗S and B + K∗SK. Let us estimate the last two
terms above. The triangle inequality and Lemma 3.7 give

∫ t

0

|y ± yn − ȳn| ≤
∫ t

0

|y − yn| + T 1/2

(∫ T

0

|yn − ȳn|2
)1/2

≤
∫ t

0

|y − yn| + Cτ.

The 1-mean continuity argument for the continuous function g on a compact interval shows that∫ t

0

|g − ḡn| ≤
∫ T

0

|g − ḡn| ≤ Cτ. (4.1)

Collecting both results leads to

|y(t) − yn(t)| ≤ C

(
‖(u(t) − un(t))‖ + τ +

∫ t

0

|y − yn|
)

,

hence the Grönwall lemma yields

|y(t) − yn(t)| ≤ C

(
‖u(t) − un(t)‖ +

∫ t

0

‖u − un‖ + τ

)
. (4.2)

Let us now consider the difference between the first equations in (3.7) and (3.18)

u′ − u′
n + Au − Aūn + SK(y − ȳn) = 0 on (0, T ). (4.3)

We apply it to the difference u − ūn and integrate in time to obtain∫ t

0

(u′ − u′
n, u ± un − ūn) +

∫ t

0

〈Au − Aūn, u − ūn〉 +
∫ t

0

(SK(y − ȳn), u − ūn) = 0,

and so by the monotonicity of A

1
2
‖u(t) − un(t)‖2 +

∫ t

0

c1|u − ūn|2V ≤
∫ t

0

−(u′ − u′
n, un − ūn) −

∫ t

0

(SK(y − ȳn), u − ūn).

We deduce from Lemma 3.8 that

−
∫ t

0

(u′ − u′
n, un − ūn) ds ≤

[
‖u′‖L2((0,T ),H) + ‖u′

n‖L2((0,T ),H)

]
‖un − ūn‖L2((0,T ),H)

≤ Cτ.

(4.4)

It follows next from the assumptions and (4.2) that

(SK(y − ȳn), un − ūn) ≤ C|y − ȳn| ‖un − ūn‖ ≤ C (|y − yn| + |yn − ȳn|) ‖un − ūn‖

≤ C

(
‖u(t) − un(t)‖ +

∫ t

0

‖u − un‖ + τ + |∂tyn|τ
)
‖∂tun‖ τ,

and subsequently

−
∫ t

0

(SK(y − ȳn), un − ūn) ≤ C

(
τ2 +

∫ t

0

‖u − un‖2

)
.

Combining both results and using the Grönwall lemma, we get

max
t∈[0,T ]

‖u(t) − un(t)‖2 +
∫ T

0

|u − ūn|2V dt ≤ Cτ,

which implies the same convergence rate for yn, see (4.2). �
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The sub-linear convergence in Theorem 4.1 results from the estimate 4.4. To obtain the linear convergence
of the Rothe scheme, we will additionally need the Lipschitz continuity assumption on A and g.

Assumption 4.2. Assume the following:

(i) The operator A : V ∗ → V is Lipschitz continuous in the sense that

‖Au − Av‖V ∗ ≤ C ‖u − v‖V for all v, u in V.

(ii) The data g ∈ C([0, T ], RN) is Lipschitz continuous.

We will first need the following a priori estimate to prove it.

Lemma 4.3 (Third a priori estimate). Let ui be the solution from Lemma 3.5 and let Assumption 4.2 hold.
Assume that u0 ∈ D(A). Then there exists C > 0 independent of n such that

max
i=1,...,n

‖δui‖ + τ

n∑
i=1

|δui|2V ≤ C.

Proof. Consider the following operator equation

Sδ2ui +
Aui − Aui−1

τ
= −SKδyi for i = 1, . . . , n, (4.5)

which is in fact the difference between two consecutive first equations in (3.9). For i = 1 we set δu0 = Au0 + f0.
We will proceed in the same fashion as in the proof of Lemma 3.7. Applying (4.5) to τδui gives

τ(Sδ2ui, δui) +
〈Aui − Aui−1, ui − ui−1〉

τ
= (−τSKδyi, δui).

We add it up for i = 1, . . . , n, use the Abel summation and monotonicity of A to obtain

1
2

(∥∥∥S1/2δuj

∥∥∥2

−
∥∥∥S1/2δu0

∥∥∥2

+
j∑

i=1

∥∥∥S1/2(δui − δui−1)
∥∥∥2
)

+
j∑

i=1

τc1|δui|2V ≤
j∑

i=1

τ(−SKδyi, δui),

which becomes

‖δuj‖2 +
j∑

i=1

τ |δui|2V ≤ C + C

j∑
i=1

τ
(
‖δyi‖2 + ‖δui‖2

)
.

To conclude the proof, we use Lemma 3.7, apply the discrete Grönwall argument and take maximum over
j = 1, . . . , n. �

Theorem 4.4. Let u be the solution from Theorem 3.3 and (un, yn) be its Rothe approximation defined in (3.15)
and let Assumption 4.2 hold. Then there is a constant C > 0 such that

max
t∈[0,T ]

(
‖u(t) − un(t)‖2 + ‖y(t) − yn(t)‖2

)
+
∫ T

0

|u − ūn|2V dt ≤ Cτ2.

Proof. In the view of the estimate, (4.2), it is sufficient to show the linear convergence of un. We consider again
the difference (4.3). We apply it to u − un and integrate in time to obtain

1
2
‖u(t) − un(t)‖2 +

∫ t

0

〈Au ± Aun − Aūn, u − un〉 +
∫ t

0

(SK(y − ȳn), u − un) = 0.
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and so by the monotonicity of A

1
2
‖u(t) − un(t)‖2 + c1

∫ t

0

|u − un|2V ≤
∫ t

0

〈SK(y − ȳn), u − un〉 −
∫ t

0

〈Aun − Aūn, u − un〉 .

Let us estimate the right-hand side. By Lemma 3.7 and (4.2)
∫ t

0

〈SK(y − ȳn), u − un〉 ≤ C

∫ t

0

‖(y ± yn − ȳn)‖2 + ‖u − un‖2

≤ Cτ2 + C

∫ t

0

‖u − un‖2
.

The c1/2-Young inequality for the second term yields

−
∫ t

0

〈Aun − Aūn, u − un〉 ≤
∫ t

0

(
2
c1

‖Aun − Aūn‖2
V ∗ +

c1

2
‖u − un‖2

V

)
,

and subsequently by the Lipschitz continuity of A and Lemma 4.3 we have

∫ t

0

‖Aun − Aūn‖2
V ∗ ≤

∫ T

0

C ‖un − ūn‖2
V ≤ C

n∑
i=1

τ3 ‖δui‖2
V ≤ Cτ2.

Collecting all the results shows that

‖u(t) − un(t)‖2 +
∫ t

0

|u − un|2V ds ≤ Cτ2 + C

∫ t

0

‖u − un‖2 ds.

We finally apply the Grönwall argument and take maximum over t ∈ [0, T ] to complete the proof. �
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