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DOMAIN DECOMPOSITION PRECONDITIONERS FOR THE DISCONTINUOUS
PETROV–GALERKIN METHOD ∗
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Abstract. In this paper, we design some efficient domain decomposition preconditioners for the dis-
continuous Petrov–Galerkin (DPG) method. Due to the special properties of the DPG method, the
boundary condition becomes crucial in both of its application and analysis. We mainly focus on one of
the boundary conditions: the Robin boundary condition, which actually appears in some useful model
problems like the Helmholtz equation. We first design a two-level additive Schwarz preconditioner for
the Poisson equation with a Robin boundary condition and give a rigorous condition number estimate
for the preconditioned algebraic system. Moreover we also construct an additive Schwarz precondi-
tioner for solving the Helmholtz equation. Numerical results show that the condition number of the
preconditioned system is independent of wavenumber ω and mesh size h.
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1. Introduction

In recent years, the discontinuous Petrov-Galerkin (DPG) method become a very popular numerical tool
for solving partial differential equations (PDEs). Different from the standard discontinuous Galerkin (DG)
methods, the DPG method is based on the so-called “ultra-weak” variational formulation. In [11], Demkowicz
and Gopalakrishnan firstly introduced the idea of optimal test space and viewed the DPG method as the
minimization of the residual in a dual norm. Furthermore, by using the concept of the optimal test norm and
its equivalent norm, one may analyze the DPG method in a norm of interest. In [19], using an approximated
test space, Gopalakrishnan and Qiu introduced a practical DPG method for solving the Laplace equation and
linear elasticity. In this paper, we shall adopt their approximated test space both in the analysis and in the
numerical experiments.

Nowadays this method has been successfully applied to various problems. For instance, application to the
Laplace equation was developed in [12]. A new type of DPG method for the Poisson’s equation, which avoids
reformulating the problem as a first order system, was designed in [13]. The DPG method for the singularly
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perturbed problems was discussed in [14]. There also exist the DPG methods for the Helmholtz equation [15],
the Friedrichs’ systems [4], and the Stokes problem [27]. Recently, a hp-adaptive DPG method was designed for
the convection-dominated diffusion problem in [16]. Meanwhile, in [6], a general a posteriori error analysis for
the DPG method was established. Moreover, the DPG method was also applied to some nonlinear problems,
like the Burgers and compressible Navier-Stokes equations [7, 8, 28].

Although there are lots of works on applying the DPG method to a wide range of PDEs in the literature,
only few works [2,20] relate to the fast solvers of the algebraic systems resulting from the DPG method. In the
authors’ opinion, one reason may be that the complicated structure of DPG, especially the optimal test norm,
is not easy to deal with. Another reason is that the boundary condition of the original PDEs, which becomes
essential for the DPG method, also brings many difficulties.

In this paper, we shall consider domain decomposition (DD) methods for the DPG method for solving the
Poisson equation and the Helmholtz equation. A pioneering work in this area was proposed by Barker et al. in [2],
where, with the help of two extension operators, a one-level overlapping Schwarz preconditioner was designed for
the Poisson equation. This DD preconditioner was shown to be efficient, however this DD preconditioner cannot
be directly extended to two-level case. As a result, the convergence of this preconditioned system may become
slow when the overlap of the subdomains becomes small. Moreover this preconditioner was only designed for a
Dirichlet boundary problem and is not readily applicable to other boundary conditions like the Robin boundary
condition. For the Helmholtz equation, in [20], Gopalakrishnan and Schöberl designed a fast solver for the DPG
method. Numerical results showed that their fast solver was independent of the wavenumber ω.

For the Laplace equation, through introducing a special coarse space, in this paper we shall extend the one-
level domain decomposition preconditioner in [2] to two-level case. Furthermore under a new framework, we may
prove that our two-level solver is efficient for various kinds of boundary conditions. We give a rigorous condition
number estimate for the case of the Robin boundary condition. There are two reasons why we focus on the model
problem with Robin boundary condition. First, similar to many least-square type methods, the DPG method
treats all boundary conditions as essential boundary conditions. The essential boundary condition makes a big
difference both in the analysis and in application for least-square type methods. Furthermore the case of Robin
boundary condition becomes the most difficult case for the theoretical analysis of our DD method. Actually, the
Robin boundary condition makes a coupling of the trace spaces of the velocity field and the pressure field, thus
we need to derive analysis in this coupled space. To overcome this difficulty, we shall construct some special
discrete and continuous Helmholtz decompositions in this paper. More details may be found in Section 4. The
second reason is that Robin boundary condition is an important boundary condition for some useful model
problems like the Helmholtz equation. In this case, the Robin boundary condition is also called the Sommerfeld
condition. We also construct a one-level additive Schwarz preconditioner for the Helmholtz equation. Numerical
results show that the number of iteration given by the preconditioned CG is independent of wavenumber ω and
mesh size h. Moreover our DD fast solver is easy to parallelize. This parallelization property is very important
for solving the Helmholtz equation with high wave number.

The remaining part of this paper is organized as follows: the DD preconditioner for the Poisson equation
is introduced in Sections 2–4. Section 2 is an introduction of the corresponding model problem. In Section 3,
we shall give a framework for the DD method. We shall estimate the condition number of the preconditioned
system in Section 4. For the Helmholtz equation, we shall introduce a one-level preconditioner in Section 5.
Numerical results for the both cases shall be given in Section 6.

2. The discontinuous Petrov–Galerkin (DPG) method

Let Ω ∈ R
d (d = 2, 3) be a convex polyhedral domain with a Lipschitz continuous boundary and Ωh be a

geometrically conforming, shape regular triangulation consisting of simplicial elements. Element ofΩh is denoted
by K, Ω = {K : K ∈ Ωh}. The diameter of each element K is O(h). We denote by ∂Ωh the collection of all the
element boundaries, i.e. ∂Ωh :=

⋃{∂K : K ∈ Ωh}.
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Although it is not difficult to extend our analysis to some more complicated problems, for simplicity, we only
consider the following model problem: ⎧⎨⎩

−Δu = f in Ω,

∂u

∂n
+ u = 0 on ∂Ω.

The ultra-weak variation formulation of the DPG method may be defined as: find U = (�σ, u, û, σ̂n) ∈ U such
that

b (U ,V) := b ((�σ, u, û, σ̂n), (�τ , v)) = (f, v)Ω ∀ V = (�τ , v)) ∈ V, (2.1)

where

b ((�σ, u, û, σ̂n), (�τ , v)) := (�σ, �τ )Ωh
− (u, �∇ · �τ )Ωh

− (�σ, �∇v)Ωh

+ 〈v, σ̂n〉∂Ωh
+ 〈û, �τ · �n〉∂Ωh

,

here (u, v)Ωh
=
∑

K∈Ωh
(u, v)K and 〈û, v̂〉∂Ωh

=
∑

K∈Ωh
〈û, v̂〉∂K , (·, ·)D denotes the L2(D) inner product,

〈û, ·〉∂K denotes the action of a linear functional û ∈ H− 1
2 (∂K), �n stands for the outer unit normal of K.

To deal with the Robin boundary condition, define spaces S and Q as

S := {(�σ, u) ∈ H(div;Ω) ×H1(Ω) : (�σ · �n− u)|∂Ω = 0},
Q := {(û, σ̂n) : ∃(�σ, u) ∈ S such that tr∂Ωh

(�σ, u) = (σ̂n, û)},

here tr∂Ωh
stands for the traces of every element K, tr∂Ωh

(�σ, u) = (σ̂n, û) means that

�σ · �n|∂K = σ̂n|∂K and u|∂K = û|∂K ∀ K ∈ Ωh.

For the convenience of our proof, we view Q as a subspace of H
1
2 (∂Ωh) ×H− 1

2 (∂Ωh), where

H
1
2 (∂Ωh) := {η : ∃u ∈ H1(Ω) such that u|∂K = η|∂K ∀ K ∈ Ωh},

H− 1
2 (∂Ωh) := {η ∈

∏
K∈Ωh

H− 1
2 (∂K) : ∃ �σ ∈ H(div;Ω) such that

�σ · �n|∂K = η|∂K ∀ K ∈ Ωh}.

The norms in H
1
2 (∂Ωh) and H− 1

2 (∂Ωh) are defined as:

‖û‖
H

1
2 (∂Ωh)

= inf{‖u‖H1(Ω) : u ∈ H1(Ω), u|∂K = û|∂K ∀ K ∈ Ωh}, (2.2)

‖σ̂n‖
H− 1

2 (∂Ωh)
= inf{‖�σ‖H(div;Ω) : �σ ∈ H(div;Ω), �σ · �n|∂K = σ̂n|∂K ∀ K ∈ Ωh}. (2.3)

We also define the “broken” spaces H(div;Ωh) and H1(Ωh) as:

H(div;Ωh) :=
∏

K∈Ωh

H(div;K), H1(Ωh) :=
∏

K∈Ωh

H1(K),

which are Hilbert spaces with inner products

(�σ, �τ )H(div;Ωh) :=
∑

K∈Ωh

((�σ, �τ )K + (div�σ, div�τ)K),

(u, v)H1(Ωh) :=
∑

K∈Ωh

((u, v)K + (�∇u, �∇v)K).
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With these notations, we may set the trial space U and the test space V in weak formulation (2.1) by

U := (L2(Ω))d × L2(Ω) ×Q, V := H(div;Ωh) ×H1(Ωh),

and the inner product in V is defined as:

((�σ, u), (�τ , v))V := (�σ, �τ )H(div;Ωh) + (u, v)H1(Ωh).

Remark 2.1. We may find by the definition of Q that the Robin boundary condition becomes an essential
boundary condition in the trace space Q. For the case of other boundary conditions, the restrictions are also
needed in Q. For example, the restriction of Q should be û = 0 on ∂Ω for the homogeneous Dirichlet boundary
condition, and σ̂n = 0 on ∂Ω for the homogeneous Neumann boundary condition.

With the help of the weak formulation (2.1), we may derive the ideal DPG method, which is to calculate
an approximation of U in a trial space Uh(⊆ U). The test space may be chosen as TUh(⊆ V ), here T is the
trial-to-test operator defined as:

T : Uh → V, (TUh,V)V = b(Uh,V) ∀ V ∈ V.

However, in practical computation, in most cases we cannot calculate such test functions in V . Instead,
according to [19], we may define a discrete trial-to-test operator Th and do the calculation in a subspace Uh

and an enriched space Vh. One proper choice of the discrete spaces Uh and Vh may be

Qh := (P̃m+1(∂Ωh) × Pm(∂Ωh)) ∩ Q,

Uh :=
∏

K∈Ωh

(Pm(K))d ×
∏

K∈Ωh

Pm(K) ×Qh

Vh :=
∏

K∈Ωh

(Pm+d(K))d ×
∏

K∈Ωh

Pm+d(K),

where Pm(K) is the space of polynomials in K with total degree ≤m. Spaces P̃m(∂Ωh) and Pm(∂Ωh) are
defined by

P̃m(∂Ωh) := {p ∈
∏

F∈Fh

Pm(F ) : p is continuous on ∂Ωh},

Pm(∂Ωh) :=
∏

F∈Fh

Pm(F ),

here Pm(F ) is the space of piecewise polynomials on each face F with total degree ≤m and Fh is the set of
faces in triangulation Ωh:

Fh := {F : ∃K ∈ Ωh such that F is an face of K}.
It is worth mentioning that, in each element K,

∏
F∈K Pm(F ) may be viewed as the trace space of

Raviart−Thomas element space RTm+1(K) (cf . [25, 26]).
The discrete trial-to-test operator Th may be defined as:

Th : Uh → Vh, (ThUh,Vh)V = b(Uh,Vh) ∀ Vh ∈ Vh,

then the test space of this practical DPG is ThUh, which is a subspace of Vh. Now we may derive the DPG form
for the model problem: find Uh ∈ Uh such that

b (Uh,Vh) = (f, vh) ∀ V = (�τh, vh) ∈ ThUh. (2.4)
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Note that if V = TU ′, the bilinear form b (U ,V) may be viewed as b (U ,V) = (TU , TU ′)V . Moreover, since
the DPG system is uniquely solvable (cf . [12]), we may define a positive definite form a(U ,U ′) := b (U , TU ′).

For practical DPG, we may also define ah(Uh,U ′
h) := b(Uh, ThU ′

h), thus practical DPG method also produces
a symmetric positive definite system.

According to (2.1) and the definition of our test space, the variational form of the DPG method for our model
problem may be rewritten as: find Uh ∈ Uh such that

ah(Uh,U ′
h) = 〈f̃ ,U ′

h〉 ∀ U ′
h ∈ Uh, (2.5)

where f̃ belongs to U ′
h (the dual space of Uh), f̃ is defined as:

〈f̃ ,U ′
h〉 = (f, vh) ∀ ( �τh, vh) = ThU ′

h.

Actually (2.5) is the discrete system of our model problem.
In the following parts of our paper, for simplicity we use A � B and A � B instead of A ≤ CB and A ≥ CB,

where C is a constant which only depends on shape of Ωh and polynomial degree m. A ≈ B means that A � B
and A � B.

Lemma 2.2 is an equivalent result given in [12, 19], which shall play an essential role in our analysis.

Lemma 2.2. For all U = (�σ, u, û, σ̂n) ∈ U, Uh = (�σh, uh, ûh, σ̂n,h) ∈ Uh, we have

a(U ,U) ≈ ‖�σ‖2
L2(Ω) + ‖u‖2

L2(Ω) + ‖û‖2

H
1
2 (∂Ωh)

+ ‖σ̂n‖2

H− 1
2 (∂Ωh)

,

ah(Uh,Uh) ≈ ‖�σh‖2
L2(Ω) + ‖uh‖2

L2(Ω) + ‖ûh‖2

H
1
2 (∂Ωh)

+ ‖σ̂n,h‖2

H− 1
2 (∂Ωh)

.

3. Domain decomposition algorithm

Let {Ωi}N
i=1 be a family of subdomains of Ω. The triangulation of Ωi is aligned with Ωh. Define the trian-

gulation of {Ωi}N
i=1 by {Ωi,h}N

i=1. Similar to the function spaces defined in Ω and Ωh, we may define function
spaces on Ωi and Ωi,h, such as H1(Ωi,h), H(div;Ωi,h), H

1
2 (∂Ωi,h) and H− 1

2 (∂Ωi,h). The overlap of {Ωi}N
i=1 is

measured by δ such that there exists a partition of unity {θi}N
i=1 ∈ (W 1,∞(Ω))N which satisfies

supp(θi) ⊆ Ωi,

N∑
i=1

θi = 1 in Ω, 0 ≤ θi ≤ 1, and ‖∇θi‖L∞(Ωi) � 1
δ
· (3.1)

According to Chapter 3 in [30], we may also obtain a modified partition of unity by interpolating {θi}N
i=1 on

the fine triangulation Ωh and the above properties still hold. A proper choice of such interpolation is the nodal
piecewise linear interpolation, which makes the modified partition of unity piecewise linear and continuous. We
shall use this modified partition of unity instead of the original one in the proofs that follow, and still denote it
by {θi}N

i=1. Moreover we shall also limit the intersections between the subdomains {Ωi}N
i=1, i.e.,

Assumption 3.1. The partition {Ωi}N
i=1 can be colored using at mostN c colors, in such a way that subdomains

with the same color are disjoint.

Next, we shall define a shape regular coarse triangulation ΩH , which is also aligned with Ωh. We assume
that Ωh is a refinement of ΩH . Each element KH ∈ ΩH has a diameter of O(H). Similarly, we may define the
spaces like H1(ΩH) and H(div;ΩH) on the coarse triangulation. Since Ωh is a refinement of ΩH , those spaces
defined on ΩH are subspaces of the corresponding spaces defined on Ωh (for example H1(ΩH) ⊆ H1(Ωh)). The
coarse space UH for our domain decomposition preconditioner shall be based on the triangulation ΩH . For the
convenience of indexing, we also denote Ω0 := ΩH .
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Let {Ui}N
i=0 be a family of spaces defined in {Ωi}N

i=0, which are restrictions of Uh on {Ωi}N
i=0. All

(�σi, ui, ûi, σ̂n,i) ∈ Ui should satisfy
ûi = 0, σ̂n,i = 0, on ∂Ωi \ ∂Ω.

Define the inner product in {Ui}N
i=0 as:

ai(Ui,U ′
i) = ah(RT

h,iUi, R
T
h,iU ′

i) ∀ Ui,U ′
i ∈ Ui,

here we choose {RT
h,i : Ui → Uh}N

i=1 as the trivial extension operator. Since {Ωi,h}N
i=0 are all aligned with Ωh,

we use exact solvers in all subspaces in our DD algorithm.
To construct our preconditioner, define operator P̃i : U → Ui by

ai(P̃iU ,U ′
i) = ah(U , RT

h,iU ′
i) ∀ U ∈ U, U ′

i ∈ Ui.

Moreover, define Pi := RT
h,iP̃i, then Pi : U → RT

h,iUi satisfies

ah(PiU , RT
h,iU ′

i) = ah(U , RT
h,iU ′

i) ∀ U ∈ U, U ′
i ∈ Ui.

Now we may construct an additive Schwarz preconditioner for our model problem (2.5). Actually the precondi-
tioned system may be written in an operator form:

N∑
i=0

PiU =
N∑

i=0

f̃i,

where f̃i is defined as:
f̃i ∈ RT

h,iUi, ah(f̃i, R
T
h,iUi) = 〈f̃ , RT

h,iUi〉 ∀ Ui ∈ Ui.

Following [30], we may use the abstract theory of Schwarz methods to estimate the condition number of the
above preconditioned system. Since we use an exact solver in each subspace, we only need to show that the
following two assumptions are satisfied:

(A1) (Stable space decomposition). For all Uh ∈ Uh, there exists Ui ∈ Ui, i = 0, . . . , N such that

Uh =
N∑

i=0

RT
h,iUi,

N∑
i=0

ai(Ui,Ui) � C0ah(U ,U).

(A2) For all Ui ∈ Ui,Uj ∈ Uj , i, j = 1, . . . , N , there exists εij such that

ah(RT
h,iUi, R

T
h,jUj) ≤ εijah(RT

h,iUi, R
T
h,iUi)

1
2 ah(RT

h,jUj , R
T
h,jUj)

1
2 .

We denote the spectral radius of Ep = {εij} by ρ(Ep).
It is known [30] that given assumptions (A1) and (A2), condition number κ of the preconditioned system

satisfies κ(
∑N

i=0 Pi) � C0(1 + ρ(Ep)).
In the following, we first verify assumption (A1). Instead of inner product ah(·, ·), we shall verify the

stable space decomposition in the equivalent norm given in Lemma 2.2, i.e., we shall verify that for all
Uh = (�σ, u, û, σ̂n) ∈ Uh, there exists Ui = (�σi, ui, ûi, σ̂n,i) ∈ Ui, i = 0, . . . , N such that Uh =

∑N
i=0R

T
h,iUi

and

N∑
i=0

(
‖�σi‖2

L2(Ωi)
+ ‖ui‖2

L2(Ωi)
+ ‖ûi‖2

H
1
2 (∂Ωi,h)

+ ‖σ̂n,i‖2

H− 1
2 (∂Ωi,h)

)
� C0

(
‖�σ‖2

L2(Ω) + ‖u‖2
L2(Ω) + ‖û‖2

H
1
2 (∂Ωh)

+ ‖σ̂n‖2

H− 1
2 (∂Ωh)

)
.
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u Eu

iu iu
(a) Decomposition of û

n E

,n i i

(b) Decomposition of σ̂n

Figure 1. Decompositions of the quotient spaces.

In our case, actually C0 = N c(1 + H2

δ2 ), however we still use C0 in this section for simplicity and one may
check for details in Section 4.

Note that the equivalent norm only consists of L2 norms and two quotient norms. Due to the definition
of our subspaces, the stable space decomposition for the L2 spaces is trivial, we only need to construct a
stable decomposition for the quotient space Qh ⊆ H

1
2 (∂Ωh) × H− 1

2 (∂Ωh). To derive such decomposition, we
shall extend functions in such quotient space into a discrete subspace W ⊆ H1(Ω) × H(div;Ω), which is
defined as follows: let P̃m+1(Ωh) be the space of continuous polynomials for triangulation Ωh with total degree
≤ (m + 1), and define RTm+1(Ωh) by the (m + 1)th order Raviart–Thomas space for Ωh (cf . [25, 26]). Since
P̃m+1(Ωh) ⊆ H1(Ω) and RTm+1(Ωh) ⊆ H(div;Ω), according to the Robin boundary condition, we define
space W as

W :=
{
(u, �σ) ∈ P̃m+1(Ωh) × RTm+1(Ωh)) : �σ · �n = u on ∂Ω

}
.

For simplicity, we denote Ŵ := Qh. We may similarly define spaces in the subdomains, such as W0, {Wi}N
i=1,

Ŵ0 and {Ŵi}N
i=1 by restricting W and Ŵ to the corresponding subspaces. Essential boundary conditions should

also be satisfied on ∂Ω. Moreover functions in Ŵi and Wi should vanish on ∂Ωi \ ∂Ω, which allows us to define
trivial extension operators {RT

i : Wi → W}N
i=0 and {R̂T

i : Ŵi → Ŵ}N
i=0. An example of this space setting may

be found in Section 4.
Now we may derive the stable decomposition for Ŵ with the help of two extension operators E and �E.

First we extend (û, σ̂n) to (Eû, �Eσ̂n), which belongs to W , then decompose (Eû, �Eσ̂n) into {(ui, �σi)}N
i=0, which

belongs to {Wi}N
i=0. The traces of {(ui, �σi)}N

i=0 may become the stable decomposition component in the quotient
spaces {Ŵi}N

i=0. We have shown the procedures in Figure 1.
Now we introduce the extension operators E and �E. We shall first define these extension operators in an

element K ∈ Ωh. Actually, for each element K, these extension operators have already been constructed in [2].
As shown in Lemmas 1 and 2 of [2], the extension operators shall satisfy the following two Lemmas.

Lemma 3.2 (Lem. 1 of [2]). There exists an extension operator EK : P̃m+1(∂K) → P̃m+1(K) such that for all
û ∈ P̃m+1(∂K),

‖û‖2

H
1
2 (∂K)

≈ ‖EK û‖2
H1(K) ≈ h‖û‖2

L2(∂K) + h
∑

F∈∂K

|û|2H1(F ),

‖EK û‖2
L2(K) ≈ h‖û‖2

L2(∂K),

here F ∈ ∂K stands for the faces of element K.
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Lemma 3.3 (Lem. 2 of [2]). There exists an extension operator �EK :
Pm(∂K) → RTm+1(K) such that for all σ̂n ∈ Pm(∂K),

‖σ̂n‖2

H− 1
2 (∂K)

≈ ‖ �EK σ̂n‖2
H(div;K) ≈ h‖σ̂n‖2

L2(∂K) + h−d

(∫
∂K

σ̂ndS
)2

,

‖ �EK σ̂n‖2
L2(K) ≈ h‖σ̂n‖2

L2(∂K).

According to the definitions of these operators in [2], the two operators �EK and EK only consists of operators
like averaging and L2 projection, thus they are linear operators. Moreover, in the case of m = 1, according to [2],
�EK extends functions in P 1(∂K) to a subspace of RT 2(K), which is {�σ ∈ RT 2(K) : div�σ is constant in K}.
According to [3], introducing the first order Brezzi−Douglas−Marini (BDM) element space as:

BDM1(ΩH) :=

{
�σ ∈

∏
K∈ΩH

(P 1(K))2 : �σ · �n is continuous accoss ∂K ∀ K ∈ ΩH

}
,

we may see that space {�σ ∈ RT 2(K) : div�σ is constant in K} is actually the BDM1 space in K. This means
that when m = 1, the extension operator �EK may be defined from the space P 1(∂K) to BDM1(K). Thus we
may reduce the coarse space from RT 2(ΩH) to BDM1(ΩH), more details may be found in Section 4.

For all û ∈ P̃m+1(∂Ωh), σ̂n ∈ Pm(∂Ωh), we may define E : P̃m+1(∂Ωh) → P̃m+1(Ωh) and �E : Pm(∂Ωh) →
RTm+1(Ωh) as:

(Eû)|K := EK(û|∂K), ( �Eσ̂n)|K := �EK(σ̂n|∂K) ∀ K ∈ Ωh.

Summing up the inequalities in Lemma 3.2, we may derive that

‖û‖2

H
1
2 (∂Ωh)

≈ ‖Eû‖2
H1(Ω) ≈ h

∑
K∈Ωh

‖û‖2
L2(∂K) + h

∑
F∈Fh

|û|2H1(F ), (3.2)

‖EK û‖2
L2(Ω) ≈ h

∑
K∈Ωh

‖û‖2
L2(∂K). (3.3)

Similarly we may derive from Lemma 3.3 that

‖σ̂n‖2

H− 1
2 (∂Ωh)

≈ ‖ �Eσ̂n‖2
H(div;Ω) ≈ h

∑
K∈Ωh

‖σ̂n‖2
L2(∂K) + h−d

∑
K∈Ωh

(∫
∂K

σ̂ndS
)2

, (3.4)

‖ �Eσ̂n‖2
L2(Ω) ≈ h

∑
K∈Ωh

‖σ̂n‖2
L2(∂K). (3.5)

In the same way, we may also denote the corresponding extension operators for triangulation ΩH (resp.
{Ωi,h}N

i=1) by �EH (resp. { �Ei}N
i=1) and EH (resp. {Ei}N

i=1). Since the extension operators do not change the
numerical trace û and the numerical flux σ̂n, the coupling condition on ∂Ω is trivially kept. Now we are prepared
to derive the the stable decomposition in the quotient spaces.

Theorem 3.4. Assume that W has a stable space decomposition {Wi}n
i=0, which means that for all (u, �σ) ∈ W ,

there exist (ui, �σi) ∈ Wi, i = 0, . . . , N such that

N∑
i=0

RT
i (ui, �σi) = (u, �σ),

N∑
i=0

(
‖�σi‖2

H(div;Ωi)
+ ‖ui‖2

H1(Ωi)

)
� C0

(
‖�σ‖2

H(div;Ω) + ‖u‖2
H1(Ω)

)
.
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Then Ŵ also has a stable space decomposition {Ŵi}N
i=0, which means that for all (û, σ̂n) ∈ Ŵ , there exist

(ûi, σ̂n,i) ∈ Ŵi such that
N∑

i=0

R̂T
i (ûi, σ̂n,i) = (û, σ̂n),

N∑
i=0

(
‖σ̂n,i‖2

H− 1
2 (∂Ωi,h)

+ ‖ûi‖2

H
1
2 (∂Ωi,h)

)
� C0

(
‖σ̂n‖2

H− 1
2 (∂Ωh)

+ ‖û‖2

H
1
2 (∂Ωh)

)
.

Proof. For all (û, σ̂n) ∈ Ŵ , we extend (û, σ̂n) to (Eû, �Eσ̂n) ∈ W , by the assumption of this theorem, there
exists (�σi, ui) ∈ Ui such that

N∑
i=0

RT
i (ui, �σi) = (Eû, �Eσ̂n),

N∑
i=0

(
‖�σi‖2

H(div;Ωi)
+ ‖ui‖2

H1(Ωi)

)
� C0

(
‖ �Eσ̂n‖2

H(div;Ω) + ‖Eû‖2
H1(Ω)

)
.

Since the trace space of Wi is Ŵi, we may define (ûi, σ̂n,i) ∈ Ŵi as the trace of (ui, �σi) in Wi, then (ûi, σ̂n,i)
satisfies

N∑
i=0

R̂T
i (ûi, σ̂n,i) = (û, σ̂n),

and
N∑

i=0

‖σ̂n,i‖2

H− 1
2 (∂Ωh)

+ ‖ûi‖2

H
1
2 (∂Ωh)

�
N∑

i=0

(
‖�σi‖2

H(div;Ωi)
+ ‖ui‖2

H1(Ωi)

)
� C0

(
‖ �Eσ̂n‖2

H(div;Ω) + ‖Eû‖2
H1(Ω)

)
� C0

(
‖σ̂n‖2

H− 1
2 (∂Ωh)

+ ‖û‖2

H
1
2 (∂Ωh)

)
,

here the first inequality follows from the definition of the quotient norms and the last inequality holds from (3.2)
and (3.4). �

4. Condition number estimate

In this section we shall derive condition number estimate for the above model problem. Theorem 3.4 tells us
that Assumption (A1) in the DPG system may be verified if we are able to find a stable space decomposition
for W ⊆ H1(Ω) ×H(div;Ω). In this section we shall construct a stable subspace decomposition for the model
problem with Robin boundary condition. As shown in the above sections, due to the Robin boundary condition,
the space in which we need to derive a stable subspace decomposition is coupled on the boundary. In this paper,
we only verify assumptions (A1) and (A2) when m = 1, and d = 2. For 3D case, some comments shall be given
when there are significant differences to the 2D case.

When m = 1 and d = 2, according to Section 3, the quotient spaces Ŵ , Ŵi and Ŵ0 are defined as

Ŵ := {(û, σ̂n) ∈ P̃ 2(∂Ωh) × P 1(∂Ωh) : û = σ̂n on ∂Ω},
Ŵi := {(ûi, σ̂n,i) ∈ P̃ 2(∂Ωi,h) × P 1(∂Ωi,h) : ûi = σ̂n,i on ∂Ωi ∩ ∂Ω,

(ûi, σ̂n,i) = 0 on ∂Ωi \ ∂Ω}, i = 1, . . . , N,

Ŵ0 = ŴH := {(û, σ̂n) ∈ P̃ 1(∂Ωh) × P 1(∂Ωh) : ∃(�σ, u) ∈W0 such that
û|∂K = u|∂K , �σ · �n|∂K = σ̂n|∂K ∀ K ∈ Ωh}.
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In order to derive the stable decomposition, we shall also introduce the following spaces on Ω and {Ωi}N
i=1.

W := {(u, �σ) ∈ P̃ 2(Ωh) ×RT 2(Ωh) : u = �σ · �n on ∂Ω},
Wi := {(ui, �σi) ∈ P̃ 2(Ωi,h) ×RT 2(Ωi,h) : ui = �σi · �n on ∂Ωi ∩ ∂Ω,

(ui, �σi) = 0 on ∂Ωi \ ∂Ω}, i = 1, . . . , N,

W0 := WH := {(uH , �σH) ∈ P̃ 1(ΩH) ×BDM1(ΩH) : uH = �σH · �n on ∂Ω}.
Before constructing stable decompositions for spaces Ŵ and W , we first present Lemma 4.1, which states

some well-known results for the stable subspace decompositions for the finite element approximation spaces.
One may check for the case of H1(Ω) in [17], the case of H(div;Ω) in [1] and the case of H(curl;Ω) in [22].

Define RT
i,H1 : H1(Ωi) → H1(Ω), �RT

i,curl : H(curl;Ωi) → H(curl;Ω) and �RT
i,div : H(div;Ωi) → H(div;Ω) as

the corresponding trivial extension operators, then we have

Lemma 4.1. There are stable decompositions for the discrete spaces P̃m(Ωh) ⊆ H1(Ω), NDm(Ωh) ⊆
H(curl;Ω) and RTm(Ωh) ⊆ H(div;Ω), such that

(1). For all u ∈ P̃m(Ωh) ⊆ H1(Ω), there exist ui ∈ P̃m(Ωi,h), i = 1, . . . , N, u0 ∈ P̃ 1(ΩH) such that ui vanish
on ∂Ωi \ ∂Ω, and

u =
N∑

i=0

RT
i,H1ui,

N∑
i=0

‖ui‖2
H1(Ωi)

� N c

(
1 +

H

δ

)
‖u‖2

H1(Ω).

(2). For all �σ ∈ NDm(Ωh) ⊆ H(curl;Ω), there exist �σi ∈ NDm(Ωi,h), i = 1, . . . , N, �σ0 ∈ ND1(ΩH) such that
�σi vanish on ∂Ωi \ ∂Ω, and

�σ =
N∑

i=0

�RT
i,curl�σi,

N∑
i=0

‖�σi‖2
H(curl;Ωi)

� N c

(
1 +

H2

δ2

)
‖�σ‖2

H(curl;Ω).

(3). For all �σ ∈ RTm(Ωh) ⊆ H(div;Ω), there exist �σi ∈ RTm(Ωi,h), i = 1, . . . , N, �σ0 ∈ RT 1(ΩH) such that �σi

vanish on ∂Ωi \ ∂Ω, and

�σ =
N∑

i=0

�RT
i,div�σi,

N∑
i=0

‖�σi‖2
H(div;Ωi)

� N c

(
1 +

H2

δ2

)
‖�σ‖2

H(div;Ω),

here NDm(Ωh) is the mth order Nédélec element space (cf . [24]) defined in Ωh.
Moreover, we consider the boundary condition and define

H0(div;Ω) := {�σ ∈ H(div;Ω) : �σ · �n = 0 on ∂Ω},
H0(curl;Ω) := {�σ ∈ H(curl;Ω) : �σ × �n = 0 on ∂Ω},

P̃m
0 (Ωh) := P̃m(Ωh) ∩H1

0 (Ω),
RTm

0 (Ωh) := RTm(Ωh) ∩H0(div;Ω),

NDm
0 (Ωh) := NDm(Ωh) ∩H0(curl;Ω).

According to [1,17,22], same results in Lemma 4.1 are also true for the spaces P̃m
0 (Ωh) ⊆ H1

0 (Ω), NDm
0 (Ωh) ⊆

H0(curl;Ω) and RTm
0 (Ωh) ⊆ H0(div;Ω).

By Theorem 3.4, we know that our goal is to prove the following decomposition: For all (u, �σ) ∈ W , there
exist (ui, �σi) ∈Wi, i = 0, . . . , N, such that

(u, �σ) = RT
i

N∑
i=0

(ui, �σi),

N∑
i=0

(
‖�σi‖2

H(div;Ωi)
+ ‖ui‖2

H1(Ωi)

)
� N c

(
1 +

H2

δ2

)(
‖�σ‖2

H(div;Ω) + ‖u‖2
H1(Ω)

)
.
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First of all, we shall give two Lemmas on continuous and discrete Helmholtz decomposition, which shall play
a very important role in the proofs that follow.

Lemma 4.2 (Continuous Helmholtz decomposition). If �σ ∈ H(div;Ω) satisfies �σ · �n ∈ H
1
2 (∂Ω), we may

decompose �σ into �σ = �∇p+ �∇× ψ, where p ∈ H2(Ω), ψ ∈ H1
0 (Ω), and

‖p‖H2(Ω) � ‖�∇ · �σ‖L2(Ω) + ‖�σ · �n‖
H

1
2 (∂Ω)

,

‖�∇× ψ‖L2(Ω) � ‖�σ‖H(div;Ω) + ‖�σ · �n‖
H

1
2 (∂Ω)

.

Proof. Let p solve (�∇p, �∇q) = (�σ, �∇q) ∀q ∈ H1(Ω), it is equivalent to say that p is the weak solution of the
following problem (cf ., e.g., p. 216, Eq. (1.43) in [10])⎧⎨⎩−Δp = �∇ · �σ in Ω,

∂p

∂n
= �σ · �n on ∂Ω.

Recall that Ω is convex, by a regularity result of the Poisson equation with a Neumann boundary condition
(cf ., Cor. 23.5 in [9]), we know that there exists p in the quotient space H2(Ω) \ R such that

‖p‖H2(Ω) � ‖�∇ · �σ‖L2(Ω) + ‖�σ · �n‖
H

1
2 (∂Ω)

.

Since (�σ− �∇p) ·�n = 0 on ∂Ω and �∇· (�σ− �∇p) = 0 weakly in Ω, we have that �σ− �∇p is in the kernel of the div
operator in H0(div;Ω). Lemma A.25 in [30] says that if d = 2, then {�σ ∈ H0(div;Ω) : div�σ = 0} = �∇×H1

0 (Ω),
thus there exists a ψ ∈ H1

0 (Ω) such that �σ − �∇p = �∇ × ψ. By the triangle inequality, we prove that another
inequality in Lemma 4.2 also holds. �

Remark 4.3. For 3D case, we may also get a similar result in Lemma 4.2, the only difference is that ψ ∈
(H1

0 (Ω))3. In this case we may use Lemma A.27 in [30], which says that {�σ ∈ H0(div;Ω) : div�σ = 0} =
�∇× (H1

0 (Ω))3 when d = 3.

Let ΠRT m+1

h be the interpolation operator in RTm+1(Ωh) (cf . [18,24] for details), we may introduce a discrete
Helmholtz decomposition.

Lemma 4.4 (Discrete Helmholtz decomposition). If �σ ∈ RTm+1(Ωh) satisfies that �σ · �n is continuous on ∂Ω,
i.e., �σ · �n ∈ H

1
2 (∂Ω), we may decompose �σ into

�σ = ΠRT m+1

h (�∇p) + �∇× ψh,

where

p ∈ H2(Ω), ΠRT m+1

h (�∇p) ∈ RTm+1(Ωh), ψh ∈ P̃m+1
0 (Ωh).

Moreover we have

‖ΠRT m+1

h (�∇p)‖L2(Ω) � ‖�∇ · �σ‖L2(Ω) + ‖�σ · �n‖
H

1
2 (∂Ω)

,

‖�∇× ψh‖L2(Ω) � ‖�σ‖H(div;Ω) + ‖�σ · �n‖
H

1
2 (∂Ω)

,

‖�∇p−ΠRT m+1

h (�∇p)‖L2(Ω) � h|�∇p|H1(Ω).



1032 X. LI AND X. XU

Proof. Note that �σ ∈ H(div;Ω) and �σ · �n ∈ H
1
2 (∂Ω), so that we may use the continuous decomposition

�σ = �∇p + �∇ × ψ introduced in Lemma 4.2. Moreover, since �∇p · �n = �σ · �n is a mth order polynomial on ∂Ω,
by the definition of RT interpolation in [25], we know that the RT interpolation reproduces such �∇p · �n on the
boundary. Meanwhile we have

ΠRT m+1

h (�∇p) · �n = �∇p · �n = �σ · �n on ∂Ω.

By a commuting-diagram property (Thm. 2.3 of [21]), we also have

�∇ ·ΠRT m+1

h (�∇p) = Πh
P̃ m (�∇ · �∇p) = Πh

P̃ m (�∇ · �σ) = �∇ · �σ,

here Πh
P̃ m

is the L2 projection into P̃m(Ωh), thus the last equality holds for all �σ ∈ RTm+1(Ωh) since ∇ ·
RTm+1(Ωh) belongs to P̃m(Ωh).

Moreover, since div(�σ−ΠRT m+1

h (�∇p)) = 0, Theorem 2.36 of [21] tells us that for 2D case, {�σ ∈ RTm+1
0 (Ωh) :

div�σ = 0} = �∇× P̃m+1
0 (Ωh), thus there exists a ψh ∈ P̃m+1

0 (Ωh) such that �∇× ψh := �σ −ΠRT m+1

h (�∇p).
Since �∇ · �∇p = �∇ · �σ ∈ P̃m(Ωh), by an error estimate of RT interpolation (Lem. 10.11 of [30]), we may get

‖ΠRT m+1

h (�∇p) − �∇p‖L2(Ωh) � h|�∇p|H1(Ωh),

which, combining Lemma 4.2 together, we may obtain

‖ΠRT m+1

h (�∇p)‖L2(Ωh) � ‖�∇p‖L2(Ωh) + ‖ΠRT m+1

h (�∇p) − �∇p‖L2(Ωh)

� ‖�∇ · �σ‖L2(Ω) + ‖�σ · �n‖
H

1
2 (∂Ω)

. �

Remark 4.5. For 3D case, we may also derive a similar result. The only difference is that if d = 3, then
{�σ ∈ RTm+1

0 (Ωh) : div�σ = 0} = �∇×NDm+1
0 (Ωh) (Thm. 2.36 of [21]), thus ψh belongs to NDm+1

0 (Ωh).

Define H(curl0;Ω) := {�σ ∈ H(curl;Ω) : curl�σ = 0}, we introduce an imbedding property which shall be used
in the proofs that follow.

Lemma 4.6. If �σ ∈ H(div;Ω) ∩H(curl0;Ω), �σ · �n ∈ H
1
2 (∂Ω), then �σ ∈ (H1(Ω))2, and

‖�σ‖2
H1(Ω) � ‖�∇ · �σ‖2

L2(Ω) + ‖�σ · �n‖2

H
1
2 (∂Ω)

.

Proof. According to ([10], Cor. 1, p. 212), for all �σ ∈ H(div;Ω) ∩H(curl0;Ω), we have

‖�σ‖2
H1(Ω) � ‖�σ‖2

L2(Ω) + ‖�∇ · �σ‖2
L2(Ω) + ‖�σ · �n‖2

H
1
2 (∂Ω)

. (4.1)

Next we shall give an estimation for ‖�σ‖L2(Ω), according to Lemma 10.10 of [30], for all �σ ∈ H0(div;Ω) ∩
H(curl0;Ω),

‖�σ‖L2(Ω) � ‖�∇ · �σ‖2
L2(Ω).

Similar to the proof of ([10], Cor. 1, p. 12), by constructing a stable trace lifting from H
1
2 (∂Ω) to H(div;Ω),

we may extend this conclusion from H0(div;Ω) ∩H(curl0;Ω) to H(div;Ω) ∩H(curl0;Ω) such that

‖�σ‖L2(Ω) � ‖�∇ · �σ‖2
L2(Ω) + ‖�σ · �n‖2

H
1
2 (∂Ω)

. (4.2)

Then the result of the lemma may be obtained by combining (4.1) and (4.2). �

The next Lemma gives a stable decomposition for one of the components in the discrete Helmholtz decom-
position, i.e., �∇× ψh.
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Lemma 4.7. For all ψh ∈ P̃ 2
0 (Ωh), there exists ψi ∈ P̃ 2

0 (Ωi,h), i = 1, . . . , N , ψ0 ∈ P̃ 1
0 (ΩH) such that ψh =∑N

i=0 ψi, moreover

‖�∇× ψ0‖L2(Ω) � ‖�∇× ψh‖L2(Ω), (4.3)
N∑

i=0

‖�∇× ψi‖2
H(div;Ωi)

=
N∑

i=0

‖�∇× ψi‖2
L2(Ωi)

� N c

(
1 +

H

δ

)
‖�∇× ψh‖2

L2(Ωi)
(4.4)

Proof. Since we only consider the 2D case, �∇ × u = γ(�∇u), where γ(a, b) = (b,−a). This decomposition may
be derived by constructing a stable decomposition in H1

0 (Ω). �

Remark 4.8. For 3D case, a stable decomposition for ψh ∈ ND2
0(Ω) may be found in [23]. Term N c(1 + H

δ )
in (4.4) should be replaced by N c(1 + H2

δ2 ).

4.1. Component in coarse space

In this section, we shall construct a (u0, �σ0) ∈ W0, which is a part of the stable decomposition (u, �σ) =∑N
i=0 R

T
i (ui, �σi). To do this, we first introduce the Scott–Zhang interpolation operator, which is given in [29],

then give some extension operators. All these operators help us construct �σ0 and u0.
According to [29], the Scott–Zhang interpolation operator ΠSZ

h is defined by

ΠSZ
h u :=

∑
xi

(Πiu)φi, (4.5)

where the sum is taken over all xi, each xi stands for a vertex of K ∈ Ωh. The function φi denotes the (linear)
basis function nodal at xi and Πiu is defined by Πiu :=

∫
Fij

uθidS, here Fij is an edge with vertices xi and xj ,
which is not uniquely chosen, but if xi ∈ ∂Ω, we choose Fij ⊆ ∂Ω. Function θi satisfies

∫
Fij

θiφjdS = δij , where
δij is the Kronecker symbol. Lemma 4.9 is a well-known property of Scott–Zhang interpolation (cf . [29] for
details).

Lemma 4.9. Let ΠSZ
h : H1(Ω) → P̃ 1(Ωh) denote the Scott–Zhang operator defined in (4.5), then for each

u ∈ H1(Ω), we have

‖u−ΠSZ
h u‖L2(Ω) � h|u|H1(Ω), ‖ΠSZ

h u‖H1(Ω) � ‖u‖H1(Ω),

moreover, for all uh ∈ P̃ 1(Ωh), we have ΠSZ
h uh = uh.

For a vector space (H1(Ωh))2, we apply the Scott–Zhang interpolation in each dimension respectively, denote
by �ΠSZ

h the corresponding interpolation operator. Denote the corresponding interpolation operators in H1(ΩH)
and (H1(ΩH))2 by ΠSZ

H and �ΠSZ
H .

Define P 1(∂Ω ∩ ∂ΩH) :=
∏

F∈∂Ω∩∂ΩH
P 1(F ), where F stands for the element edges in ΩH . The next lemma

introduces a trace extension operator �EH : P 1(∂Ω∩∂ΩH) → BDM1(ΩH), which ensures the coupling condition
on ∂Ω in our coarse subspace.

Lemma 4.10. For all σ̂n,H ∈ P 1(∂Ω ∩ ∂ΩH), there exists an extension operator �EH : P 1(∂Ω ∩ ∂ΩH) →
BDM1(ΩH) such that

‖�EH σ̂n,H‖H(div;Ω) � H−1‖σ̂n,H‖L2(∂Ω), (4.6)

‖�EH σ̂n,H‖L2(Ω) � H‖σ̂n,H‖L2(∂Ω). (4.7)
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Proof. Define a trivial extension operator Rvec
H : P 1(∂Ω ∩ ∂ΩH) → P 1(∂ΩH) such that

Rvec
H σ̂n = σ̂n on ∂Ω, else Rvec

H σ̂n = 0,

then the extension operator �EH may be defined as �EH := Rvec
H

�EH , where �EH is the extension operator introduced
in Section 3. In each element K ∈ ΩH , according to Lemma 3.3, we have

‖ �EHR
vec
H σ̂n,H‖2

H(div;K) � H‖Rvec
H σ̂n,H‖2

L2(∂KH) +H−2

(∫
∂KH

Rvec
H σ̂n,HdS

)2

� H−1‖Rvec
H σ̂n,H‖2

L2(∂KH) (inverse inequality)

� H−1‖σ̂n,H‖2
L2(∂KH∩∂Ω), (trivial extension)

and

‖ �EHRH σ̂n,H‖2
L2(KH) � H‖RH σ̂n,H‖2

L2(∂KH) � H‖σ̂n,H‖2
L2(∂KH∩∂Ω).

Note that ‖σ̂n,H‖L2(∂KH∩∂Ω) vanishes when K has no edges on ∂Ω, we may complete the proof by summing
up the above two inequalities for all K ∈ ΩH . �

Next we may construct the coarse space components for (u, �σ) ∈ P̃ 2(Ωh) × RT 2(Ωh). By Lemma 4.4, we
know

�σ = ΠRT 2

h (�∇p) + �∇× ψh.

Define the coarse space components (u0, �σ0) as{
�σ0 := �ΠSZ

H (�∇p) + �∇× ψ0 + �EH(ΠSZ
H u− �ΠSZ

H (�∇p) · �n),

u0 := ΠSZ
H u.

(4.8)

Lemma 4.2 tells us that p ∈ H2(Ω), thus �∇p ∈ (H1(Ω))2 and the Scott–Zhang interpolation of �∇p is well-
defined. The term �EH(ΠSZ

H u − �ΠSZ
H (�∇p) · �n) is a fixing term which ensures u0 = �σ0 · �n on ∂Ω. For the above

definitions, we may prove Lemma 4.11.

Lemma 4.11. For the coarse space components (u0, �σ0) ∈ W , it holds that

‖�σ0‖2
H(div;Ω) � ‖�σ‖2

H(div;Ω) + ‖u‖2
H1(Ω), (4.9)

‖u0‖2
H1(Ω) � ‖u‖2

H1(Ω), (4.10)

and

‖�EH(ΠSZ
H u− �ΠSZ

H (�∇p) · �n)‖2
L2(Ω) � H2(‖�σ‖2

H(div;Ω) + ‖u‖2
H1(Ω)), (4.11)

‖ΠRT 2
(�∇p) − �ΠSZ

H (�∇p)‖2
L2(Ω) � H2(‖�σ‖2

H(div;Ω) + ‖u‖2
H1(Ω)), (4.12)

‖u− u0‖2 � H2|u|2H1(Ω). (4.13)

Proof. Combining Lemmas 4.9 and 4.2, we may derive

‖�∇ · �ΠSZ
H (�∇p)‖2

H(div;Ω) � ‖�∇p‖2
H1(Ω) � ‖�σ‖2

H(div;Ω) + ‖�σ · �n‖2

H
1
2 (∂Ω)

,

and

‖u0‖2
H1(Ω)‖ = ‖ΠSZ

H u‖2
H1(Ω) � ‖u‖2

H1(Ω).
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Moreover, by (4.3), we have

‖�∇× ψ0‖2
H(div;Ω) = ‖�∇× ψ0‖2

L2(Ω) � ‖�∇× ψ‖2
L2(Ω) � ‖�σ‖2

H(div;Ω) + ‖�σ · �n‖2

H
1
2 (∂Ω)

.

For the “fixing term” �EH(ΠSZ
H u− �ΠSZ

H (�∇p) · �n), with the help of Lemma 4.10, we may obtain

‖ �EHR
vec
H ((ΠSZ

H u− �ΠSZ
H (�∇p) · �n))‖2

H(div;Ω) � H−1‖ΠSZ
H u− �ΠSZ

H (�∇p) · �n‖2
L2(∂Ω).

Meanwhile, by the coupling condition �σ · �n = u on ∂Ω, we have

H−1‖ΠSZ
H u− �ΠSZ

H (�∇p) · �n‖2
L2(∂Ω) � H−1‖ΠSZ

H u− u‖2
L2(∂Ω) +H−1‖�∇p · �n− �ΠSZ

H (�∇p) · �n‖2
L2(∂Ω)

� H−1‖ΠSZ
H u− u‖2

L2(∂Ω) +H−1‖�∇p− �ΠSZ
H (�∇p)‖2

(L2(∂Ω))2 .

Using trace inequality ‖u‖2
L2(∂Ω) � ‖u‖L2(Ω)‖u‖H1(Ω), Lemma 4.2 and Scott–Zhang error estimate, we have

H−1‖ΠSZ
H u− u‖2

L2(∂Ω) �H−1‖u−ΠSZ
H (u)‖L2(Ω)‖u−ΠSZ

H (u)‖H1(Ω) � ‖u‖2
H1(Ω),

and

H−1‖�∇p− �ΠSZ
H (�∇p)‖2

(L2(∂Ω))2 � H−1‖�∇p− �ΠSZ
H (�∇p)‖(L2(Ω))2‖�∇p− �ΠSZ

H (�∇p)‖(H1(Ω))2

� ‖�∇p‖2
H1(Ω) � ‖�∇ · �σ‖2

L2(Ω) + ‖�σ · �n‖2

H
1
2 (∂Ω)

.

By the Robin boundary condition and the trace theorem, we get

‖�σ · �n‖2

H
1
2 (∂Ω)

= ‖u‖2

H
1
2 (∂Ω)

� ‖u‖2
H1(Ω).

Combining the above inequalities, we may derive the stability estimates of (u0, �σ0), which are (4.9) and (4.10).
Using Lemma 3.3, we may also prove that

‖ �EHRH((ΠSZ
H u− �ΠSZ

H (�∇p) · �n))‖2
L2(KH) � H‖RH(ΠSZ

H u− �ΠSZ
H (�∇p) · �n)‖2

L2(∂KH)

� H‖ΠSZ
H u− �ΠSZ

H (�∇p) · �n‖2
L2(∂KH∩∂Ω)

� H2(‖�σ‖2
H(div;Ω) + ‖u‖2

H1(Ω)),

which is (4.11).
Using Lemmas 4.9 and 4.2, together with the triangle inequality, we may prove that

‖�∇p− �ΠSZ
H (�∇p)‖2

L2(Ω) � H2|�∇p|2H1(Ω) � H2(‖�σ‖2
H(div;Ω) + ‖u‖2

H1(Ω)),

and

‖ΠRT 2

h (�∇p) − �ΠSZ
H (�∇p)‖2

L2(Ω) �‖ΠRT 2

h (�∇p) − �∇p‖2
L2(Ω) + ‖�∇p− �ΠSZ

H (�∇p)‖2
L2(Ω)

�H2(‖�σ‖2
H(div;Ω) + ‖u‖2

H1(Ω)),

which is (4.12). Equation (4.13) is a direct consequence of Lemma 4.9.
Finally by the definition of our coarse triangulation components, we have u0 = �σ0 · �n = ΠSZ

H u on ∂Ω,
moreover since Ωh is a refinement of ΩH , we have (u0, �σ0) ∈W . �
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4.2. Components in fine subspaces

In this section, we shall construct (ui, �σi) ∈ Wi, i = 1, . . . , N , which are the parts of the stable decomposition
(u, �σ) =

∑N
i=0R

T
i (ui, �σi). To help us obtain these components, first we shall define two extension operators,

then we shall introduce two interpolation operators.
Let F denote element edges of Ωi,h, define

P 2(∂Ω ∩ ∂Ωi,h) :=
∏

F∈Ωi,h∩∂Ω

P 2(F ),

P̃ 2(∂Ω ∩ ∂Ωi,h) := {û ∈ P 2(∂Ω ∩ ∂Ωi,h) : û is continuous along ∂Ω}.

In the following we shall introduce two extension operators on the fine triangulation and give their properties.

Lemma 4.12. For all σ̂n,i ∈ P 2(∂Ω ∩ ∂Ωi,h), there exists an extension operator �Ei,h : P 2(∂Ω ∩ ∂Ωi,h) →
RT 3(Ωi,h) such that

‖�Ei,hσ̂n,i‖H(div;Ωi) � h−1‖σ̂n,i‖L2(∂Ωi∩∂Ω), (4.14)

‖�Ei,hσ̂n,i‖L2(Ωi) � h‖σ̂n,i‖L2(∂Ωi∩∂Ω). (4.15)

Proof. Similar to the proof of Lemma 4.10, define a trivial extension operatorRvec
i,h : P 2(∂Ω∩∂Ωi,h) → P 2(∂Ωi,h)

such that

Rvec
i,h σ̂n = σ̂n on ∂Ω ∩Ωi,h, else Rvec

i,h σ̂n = 0.

Then the extension operator �Ei,h may be defined as �Ei,h := �EiR
vec
i,h , where �Ei is the extension operator

in Ωi,h introduced in Section 3. Properties of �Ei,h may be derived by the same procedure in the proof of
Lemma 4.10. �

Lemma 4.13. For all ûi ∈ P̃ 2(∂Ω∩∂Ωi,h), there exists an extension operator Ei,h : P̃ 2(∂Ω∩∂Ωi,h) → P̃ 2(Ωi,h))
such that

‖Ei,hûi‖2
H(div;Ωi)

� h−1‖ûi‖2
L2(∂Ωi∩∂Ω), (4.16)

‖Ei,hûi‖2
L2(Ωi)

� h‖ûi‖2
L2(∂Ωi∩∂Ω). (4.17)

Proof. Similarly we shall first define an extension operator Rsca
i,h : P̃ 2(∂Ω ∩ ∂Ωi,h) → P̃ 2(∂Ωi,h). In each

triangle K, let N(K) be the set of nodal points of the P 2 Lagrange finite element associated with K (actually
N(K) only contains the vertices of K and the midpoints of the edges of K). Since each function in P̃ 2(∂K)
may be determined by the nodal values on N(K), define N(∂Ωi,h) :=

⋃
K∈Ωi,h

N(K), we may define Rsca
i,h û by:

∀x ∈ N(∂Ωi,h), (Rsca
i,h û)(x) =

{
û(x) x ∈ ∂Ωi ∩ ∂Ω,
0 otherwise.

Then Ei,h may be defined as Ei,h := EiR
sca
i,h , here Ei : P̃ 2(∂Ωi,h) → P̃ 2(Ωi,h) is the extension operator introduced

in Lemma 3.2. In each K ∈ Ωi,h, due to the inverse inequality and norm equivalence in the finite dimension
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spaces, it holds that

‖Ei,hû‖2
H1(K) � h‖Rsca

i,h û‖2
L2(∂K) + h

∑
F∈∂K

|Rsca
i û|2H1(F )

� ‖Rsca
i û‖2

L2(∂K) (inverse inequality)

� h−1
∑

x∈N(K)

h(Rsca
i û)(x)2 (norm equivalence)

= h−1
∑

x∈N(K)∩∂Ω

hû(x)2.

Summing up the above inequality over all K ∈ Ωi,h, we have

‖Ei,hû‖2
H1(Ω) � h−1

∑
x∈N(∂Ωi,h)

hû(x)2

� h−1‖ûi‖2
L2(∂Ωi∩∂Ω). (norm equivalence)

Similarly, we may get (4.17). �

Next we introduce two interpolation operators which keep the space coupling condition.

Lemma 4.14. For all (u, �σ) ∈ P̃ 3(Ωi,h) × RT 3(Ωi,h) which satisfies �σ · �n = u on ∂Ωi ∩ ∂Ω, there exist
interpolation operators Πh

i , �Πh
i such that (Πh

i u,
�Πh

i �σ) ∈ Wi, moreover

‖ �Πi
h�σ‖2

H(div;Ωi)
� ‖�σ‖2

H(div;Ωi)
+ ‖u‖2

H1(Ωi)
, (4.18)

‖Πi
hu‖2

H1(Ωi)
� ‖u‖2

H1(Ωi)
. (4.19)

Proof. Define Π P̃ m

h , m = 1, 2 as the nodal interpolation into P̃m(Ωh). When applying Π P̃ 2

m to a function u

that belongs to a proper finite dimension space (e.g. u ∈ P̃ 3(Ωi,h)), by an interpolation error estimate and the
inverse inequality, we have

‖u−Π P̃ m

h (u)‖2
L2(Ωi)

� h4
∑

K∈Ωi,h

‖u‖2
H2(K) � h2‖u‖2

H1(Ωi)
.

Define the interpolation operators as⎧⎨⎩ Πi
hu := Π P̃ 2

h (u− Ei,h(u−Π P̃ 1

h u)),

�Πi
h�σ := ΠRT 2

h (�σ − �Ei,h(�σ · �n−Π P̃ 1

h (�σ · �n)).

Note that although �σ · �n is not continuous on ∂Ωh,i, we only define Π P̃ 1

h (�σ · �n) on ∂Ωi ∩ ∂Ωh. By the Robin
boundary condition, �σ · �n = u on ∂Ωi ∩ ∂Ωh, we may find that the interpolation operator �Πi

h is well-defined.
By the stability of ΠRT 2

h interpolation, we have

‖ �Πi
h�σ‖2

H(div;Ωi)
= ‖ΠRT 2

h (�σ − �Ei,h(�σ · �n−Π P̃ 1

h (�σ · �n))‖2
H(div;Ωi)

� ‖�σ − �Ei,h(�σ · �n−Π P̃ 1

h (�σ · �n))‖2
H(div;Ωi)

� ‖�σ‖2
H(div;Ωi)

+ ‖�Ei,h(�σ · �n−Π P̃ 1

h (�σ · �n))‖2
H(div;Ωi)

. (4.20)
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Since �σ · �n = u on ∂Ωi ∩ ∂Ω, according to (4.14) and the trace inequality, we may obtain

‖�Ei,h(�σ · �n−Π P̃ 1

h (�σ · �n))‖2
H(div;Ωi)

� h−1‖�σ · �n−Π P̃ 1

h (�σ · �n)‖2
L2(∂Ωi∩∂Ωi)

= h−1‖u−Π P̃ 1

h (u)‖2
L2(∂K∩∂Ω)

� h−1‖u−Π P̃ 1

h (u)‖L2(Ωi)‖u−Π P̃ 1

h (u)‖H1(Ωi)

� ‖u‖2
H1(Ωi)

.

With the help of (4.16), stability (4.19) may be derived similarly. Moreover, by definition we may find that
Πi

hu = ( �Πi
h�σ) · �n = Π P̃ 1

h u on ∂Ωi ∩ ∂Ω, thus (Πi
hu,

�Πi
h�σ) ∈Wi �

Now we may define the components in the fine subspaces, using (4.8), (3.1) and (4.4), we may define the fine
subspace components (ui, �σi) as{

�σi := �Πh
i (θi(ΠRT 2

h (�∇p) −GpH)) + �∇× ψi,

ui := Πh
i (θi(u − u0)),

(4.21)

here GpH := �ΠSZ
H (�∇p) + �EH(ΠSZ

H u− �ΠSZ
H (�∇p) · �n) and {θi}n

i=1 is the modified partition of unit introduced in
Section 3. The following lemma gives the stability estimates of the fine subspace components.

Lemma 4.15. For (ui, �σi), it holds that (ui, �σi) ∈Wi, moreover

‖�σi‖2
H(div;Ωi)

�
(

1 +
H2

δ2

)
(‖�σ‖2

H(div;Ωi)
+ ‖u‖2

H1(Ωi)
) (4.22)

‖ui‖2
H1(Ωi)

�
(

1 +
H2

δ2

)
‖u‖2

H1(Ωi)
(4.23)

Proof. Since �∇× ψi ∈ H0(div;Ωi), by Lemma 4.14, we have (ui, �σi) ∈Wi. By the triangle inequality we know

‖�σi‖2
H(div;Ωi)

� ‖ �Πh
i (θi(ΠRT 2

h (�∇p) −GpH))‖2
H(div;Ωi)

+ ‖�∇× ψi‖2
H(div;Ωi)

.

By inequality (3.1) (4.18), Lemmas 4.7 and 4.11, we may derive

‖ �Πh
i (θi(ΠRT 2

h (�∇p)−GpH))‖2
H(div;Ωi)

� ‖θi(ΠRT 2

h (�∇p) −GpH)‖2
H(div;Ωi)

(inequality (4.18))

� ‖�∇θi‖2
L∞(Ωi)

‖ΠRT 2

h (�∇p)−GpH‖2
L2(Ωi)

+‖div(ΠRT 2

h (�∇p)−GpH)‖2
L2(Ωi)

�
(

1 +
H2

δ2

)
(‖�σ‖2

H(div;Ωi)
+ ‖u‖2

H1(Ωi)
), (Lem. 4.11, Eq. (3.1))

and

‖�∇× ψi‖2
H(div;Ωi)

�
(

1 +
H

δ

)(
‖�σ‖2

H(div;Ωi)
+ ‖u‖2

H1(Ωi)

)
. (Lem. 4.4)

By inequality (3.1) (4.19) and Lemma 4.11, we may obtain

‖ui‖2
H1(Ωi)

= ‖Πh
i (θi(u− u0))‖2

H1(Ωi)

� ‖θi(u− u0)‖2
H1(Ωi)

(inequality (4.19))

� ‖�∇θi‖2
L∞(Ωi)

‖u− u0‖2
L2(Ωi)

+ ‖�∇(u− u0)‖2
L2(Ωi)

�
(

1 +
H2

δ2

)
‖u‖2

H1(Ωi)
. (Lem. 4.11, Eq. (3.1))

�

Now we are in a position to give our main result.



DOMAIN DECOMPOSITION PRECONDITIONERS FOR THE DISCONTINUOUS PETROV–GALERKIN METHOD 1039

Theorem 4.16. For all (u, �σ) ∈W , there exists a stable decomposition {(ui, �σi) ∈Wi}N
i=0 such that

�σ =
N∑

i=0

�σi, u =
N∑

i=0

ui, (4.24)

and
N∑

i=0

(
‖�σi‖2

H(div;Ωi)
+ ‖ui‖2

H1(Ωi)

)
�
(

1 +
H2

δ2

)
N c
(
‖�σ‖2

H(div;Ω) + ‖u‖2
H1(Ω)

)
. (4.25)

Proof. According to Assumption 3.1, we find that each point x(∈ Ω) belongs to at most N c subdomains.
Summing up inequalities (4.9), (4.10), (4.22), and (4.23) over each subdomain, we may derive (4.25).

Now we shall check if (4.24) is true. Note that since �σ · �n ∈ P 1(∂Ω ∩ ∂Ωh), u ∈ P̃ 2(∂Ω ∩ ∂Ωh) and σ̂ · �n = u

on ∂Ω, both σ̂ · �n and u belong to the intersection of P 1(∂Ω ∩ ∂Ωh) and P̃ 2(∂Ω ∩ ∂Ωh), i.e., P̃ 1(∂Ω ∩ ∂Ωh).
Similarly, we may also find that (ΠRT 2

h (�∇p) −GpH) · �n ∈ P̃ 1(∂Ω ∩ ∂Ωh) and u− u0 ∈ P̃ 1(∂Ω ∩ ∂Ωh).
By the definition of �σi, we may derive

N∑
i=1

�σi =
N∑

i=1

( �Πh
i (θi(ΠRT 2

h (�∇p) −GpH)) + �∇× ψi

= �Πh
i

(
N∑

i=1

θi(ΠRT 2

h (�∇p) −GpH)

)
+

N∑
i=1

�∇× ψi

= �Πh
i

(
(ΠRT 2

h (�∇p) −GpH)
)

+
N∑

i=1

�∇× ψi.

Since ΠRT 2

h (�∇p) −GpH ∈ RT 2
h(Ωh), and (ΠRT 2

h (�∇p) −GpH) · �n ∈ P̃ 1(∂Ω ∩ ∂Ωh), we have

�Πh
i ((ΠRT 2

h (�∇p) −GpH)) = ΠRT 2

h ((ΠRT 2

h (�∇p) −GpH) − Ei,h((ΠRT 2

h (�∇p) −GpH) · �n
−Π P̃ 1

h ((ΠRT 2

h (�∇p) −GpH) · �n))

= ΠRT 2

h (ΠRT 2

h (�∇p) −GpH) = ΠRT 2

h (�∇p) −GpH .

Using the discrete Helmholtz decomposition (Lem. 4.4), we may get

N∑
i=0

�σi = ΠRT 2

h (�∇p) −GpH +GpH +
N∑

i=0

�∇× ψi

= ΠRT 2

h (�∇p) + �∇× ψh = �σ.

Similarly,

N∑
i=1

ui =
N∑

i=1

Πh
i (θi(u − u0)) = Πh

i

(
N∑

i=1

θi(u − u0)

)
= Πh

i (u− u0).

Meanwhile u− u0 ∈ P̃ 2
h (Ωh) and u− u0 ∈ P̃ 1(∂Ω ∩ ∂Ωh), we have

Πh
i (u − u0) = Π P̃ 2

h ((u − u0) − Ei,h(u−Π P̃ 1

h (u− u0)))

= Π P̃ 2

h (u− u0) = u− u0.

Then we obtain
∑N

i=0 ui = u. �
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Next we shall verify assumption (A2).
It is easy to check that if supp{Uh} ⊆ Ωu ⊆ Ω, then supp{ThUh} ⊆ Ωu. Actually, since (ThUh,Vh)V =

b (Uh,Vh) = 0 for all Vh ∈ Vh which satisfy supp{Vh} ∩ Ωu = ∅, and since the function TUh (∈ Vh) is
discontinuous, we may find that supp{ThUh} ⊆ Ωu. Thus if Ωi and Ωj do not overlap, then

(RT
h,iT

hUi, R
T
h,jT

hUj)V = 0, ∀ Ui ∈ Ui, Uj ∈ Uj .

Assumption 3.1 also ensures that if supp{Ui} ⊆ Ωi, supp{Uj} ⊆ Ωj , Ωi and Ωj are of different colors, then we
have (RT

h,iT
hUi, R

T
h,jT

hUj)V = 0, thus we may deduce ρ(Ep) � N c in assumption (A2).
Finally we get

Theorem 4.17. The condition number κ of the preconditioned algebraic system, which is given by our two-level
additive Schwarz preconditioning method for the DPG method, is bounded by κ � (N c)2(1 + H2

δ2 ).

Remark 4.18. Our analysis in this paper is for the Robin boundary condition case, however, by our framework
introduced in Section 3, we may also deal with other boundary conditions, such as Dirichlet and Neumann
boundary conditions. These boundary conditions also give essential boundary conditions, but there is no coupling
between the space of the numerical trace û and the space of the numerical flux σ̂n, thus we may extend the
trace space into a proper subspace of H1(Ω)×H(div;Ω), and construct the stable decomposition in H1(Ω) and
H(div;Ω) respectively. These decompositions are well-known results in e.g. [17, 23]. Following our framework
introduced in Therorem 3.4, we know that the analysis of such boundary cases become trivial.

5. One-level preconditioner for the Helmholtz equation

In this section we design a one-level additive Schwarz preconditioner for the Helmholtz equation. To avoid
using complex notations, we still use the same notations as above section, such as (�σ, u).

The Helmholtz equation we want to solve is

−Δu− ω2u = f in Ω

with a homogeneous Robin boundary condition

∂u

∂n
+ iωu = 0 on ∂Ω,

here we use the same geometry of Ω as Section 2, i =
√−1.

Following [15], we consider the following first order systems:⎧⎪⎨⎪⎩
iω�σ + �∇u = �0 in Ω,

iωu+ �∇ · �σ = f in Ω,
�σ · �n− u = 0 on ∂Ω.

Define u as the complex conjugation of u, the ultra-weak form of DPG reads: find U = (�σ, u, σ̂n, û) ∈ U such
that

b (U ,V) := b ((�σ, u, σ̂n, û), (�τ , v)) = (f, v) ∀ V = (�τ , v)) ∈ V,

where

b ((�σ, u, σ̂n, û), (�τ , v)) := iω(�σ, �τ )Ωh
− (u, �∇ · �τ )Ωh

+ 〈û, �τ · �n〉∂Ωh

+ iω(u, v)Ωh
− (�σ, �∇v)Ωh

+ 〈v, σ̂n〉∂Ωh
.

Different from Section 2, here (u, v)Ωh
:=
∑

K∈Ωh
(u, v)K , (·, ·)D denotes the (sesquilinear) L2(D) inner product.
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Define spaces S and Q as:

S := {(�σ, u) ∈ H(div;Ω) ×H1(Ω) : �σ · �n− u = 0},
Q := {(σ̂n, û) : ∃(�σ, u) ∈ S such that (σ̂n, û) = tr∂Ωh

((�σ, u))}
with norms

‖(�σ, u)‖2
S = ‖�σ‖2

Ω + ‖u‖2
Ω + ‖iω�σ + �∇u‖2

Ωh
+ ‖iωu+ �∇ · �σ‖2

Ωh
,

‖(σ̂n, û)‖Q = inf{‖(�σ, u)‖S : ∀ (�σ, u) such that tr∂Ωh
(�σ, u) = (σ̂n, û)},

then spaces U and V may be defined as:

U := (L2(Ω))2 × L2(Ω) ×Q,

V := H(div;Ωh) ×H1(Ωh).

The norms on U and V are defined by

‖(�σ, u, σ̂n, û)‖2
U = ‖�σ‖2

Ω + ‖u‖2
Ω + ‖(σ̂n, û)‖2

Q,

‖(�τ, v)‖2
V = ‖�τ‖2

Ω + ‖v‖2
Ω + ‖iω�τ + �∇v‖2

Ωh
+ ‖iωv + �∇ · �τ‖2

Ωh

The discrete spaces Uh and Vh may be chosen as:

Qh := (P 1(∂Ωh) × P̃ 2(∂Ωh)) ∩Q,
Uh :=

∏
K∈Ωh

(P 1(K))2 ×
∏

K∈Ωh

P 1(K) ×Qh,

Vh :=
∏

K∈Ωh

(P 3(K))2 ×
∏

K∈Ωh

P 3(K).

Using the same scheme introduced in Section 2, we may construct the test space TU and T hUh similarly and
derive the corresponding inner product a(·, ·), ah(·, ·) for the Helmholtz equation. We use the same partition
{Ωi}N

i=1 as Section 2, along with the triangulation {Ωi,h}N
i=1, we may define subspaces {Ui}N

i=0 as a family of
spaces, which are the restriction of Uh in {Ωi}N

i=1, the numerical flux and trace (σ̂n,i, ûi) should satisfy

ûi − σ̂n,i = 0 on ∂Ωi ∩ ∂Ω, ûi = 0, σ̂n,i = 0 on ∂Ωi \ ∂Ω.
We may obtain the preconditioned system as

N∑
i=1

PiU =
N∑

i=1

f̃i.

The procedure to derive the system is similar to the case of the Poisson equation (cf . Sect. 3), the only differ-
ence is that we do not have a coarse space. Though there is no rigorous analysis for this case, numerical results
in the next section show that the preconditioner is efficient, and the condition number of the preconditioned
system is independent of mesh size h and wavenumber ω.

6. Numerical experiments

We first solve the Poisson problem in a unit square (0, 1)2, with exact solution u = x(1− x)y(1− y) for both
the Dirichlet and Robin boundary conditions. In our numerical experiments, we use a uniform triangulation
consisting of right triangles oriented so that the hypotenuses have slope −1, and use the Lagrange nodal basis.
Our code is developed from a MATLAB package named Finite Element Frameworks (cf . [5]).
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Table 1. Number of iterations for the Laplace equation with Dirichlet boundary condition,
64 subdomains, δ = 1/16.

h No. coarse space H = 1/2 H = 1/4
1/32 49 39 33
1/64 49 38 33
1/128 49 38 33

Table 2. Number of iterations for the Laplace equation with Robin boundary condition, 64 sub-
domains, δ = 1/16.

h No. coarse space H = 1/2 H = 1/4
1/32 57 41 35
1/64 56 41 34
1/128 54 40 33

Table 3. Number of iterations for the Laplace equation with Dirichlet boundary condition,
64 subdomains, H/δ = 4.

No. coarse space, h = 1/128 h = 1/64 h = 1/128
H = 1/2, δ = 1/8 31 30 30
H = 1/4, δ = 1/16 49 33 33
H = 1/8, δ = 1/32 57 33 33

For the Dirichlet boundary condition case, the trial and test spaces are chosen as:

Uh :=
∏

K∈Ωh

(P 1(K))2 ×
∏

K∈Ωh

P 1(K) × P̃ 2
0 (∂Ωh) × P 1(∂Ωh),

Vh :=
∏

K∈Ωh

(P 3(K))2 ×
∏

K∈Ωh

P 3(K),

For the Robin boundary condition case, the trial and test spaces are chosen as:

Uh :=
∏

K∈Ωh

(P 1(K))2 ×
∏

K∈Ωh

P 1(K) × Ŵ ,

Vh :=
∏

K∈Ωh

(P 3(K))2 ×
∏

K∈Ωh

P 3(K),

Since we use preconditioned CG in our algorithm, the iteration stops when the residual measured in the l2

norm is smaller than 10−10. Different subdomain size, coarse triangulation size and overlapping δ are considered
in our test. We compare the number of iterations with and without a coarse triangulation for both cases in
Tables 1 and 2. When H

δ is fixed, number of iterations are given in Table 3, we may see that the convergence
rate of the one-level additive Schwarz preconditioner deteriorates when δ becomes small, but our two-level
additive Schwarz preconditioner is scalable, that is what we expect from our theoretical analysis. Moreover, by
the authors’ observation, the calculating time is significantly shortened when a coarse space is added into the
preconditioned system.

Tables 4–7 show some results for the one-level additive Schwarz preconditioner for the Helmholtz equation.
We solve the Helmholtz equation with a Robin boundary condition on a unit square (0, 1)2, the triangulation is
the same as the Laplace case. We use Lagrange nodal basis in trial and test spaces Uh and Vh, which are defined
in Section 5. The exact solution of the equation is set to be sin(ω(3

5x + 4
5y)), which is part of the plane wave
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Table 4. Number of iterations for the Helmholtz equation without preconditioner.

h = 1/4 h = 1/8 h = 1/16 h = 1/32

ω = π 538 1210 2274 4326

ω = 2π 750 1540 2990 5633

ω = 4π 847 2364 4577 7307

ω = 8π 338 1573 5381 10626

Table 5. Number of iterations for the Helmholtz equation, 4 subdomains, δ = 1/4.

h = 1/4 h = 1/8 h = 1/16 h = 1/32

ω = π 15 15 15 14

ω = 2π 14 14 14 14

ω = 4π 11 13 15 15

ω = 8π 10 9 11 11

Table 6. Number of iterations for the Helmholtz equation, 4 subdomains, δ = 1/8.

h = 1/8 h = 1/16 h = 1/32

ω = π 20 20 20

ω = 2π 22 23 20

ω = 4π 18 21 22

ω = 8π 10 15 20

Table 7. Number of iterations for the Helmholtz equation, 16 subdomains, δ = 1/4.

h = 1/8 h = 1/16 h = 1/32

ω = π 43 38 38

ω = 2π 44 41 40

ω = 4π 41 38 40

ω = 8π 21 28 37

eiω( 3
5 x+ 4

5 y). We also use preconditioned CG and iteration stops until the residual measured in the l2 norm is
smaller than 10−8. We first show the number of CG iteration without using our preconditioner in Table 4. We
give the number of CG iteration with our preconditioner in Tables 5–7. Different number of subdomains and
different δ are chosen in Tables 5–7. We may find that if our preconditioner is not used, as the wavenumber ω
increases and as the mesh size h decreases, the steps of iterations increases heavily, thus the condition number
of the original system is sensitive to ω and h. However when the additive Schwarz preconditioner is applied, the
number of iteration only depends on the overlap δ and the number of subdomains, but it is independent of ω
and h.

We should mention that although the DPG method is stable for all ω and h, we should still suggest ωh ≤ π
2

so that our numerical solution may resolve the wave. Those numerical results that do not satisfies ωh ≤ π
2 are

written in bold.

7. Conclusions

In this paper we constructed a two-level additive Schwarz preconditioners for the DPG method for solving the
Poission equation and gave a rigorous condition number estimate. Furthermore we designed a one-level additive
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preconditioner for the Helmholtz equation. Numerical tests have shown that our preconditioners for both PDE
systems perform very well.

Acknowledgements. We thank the anonymous referees for their many helpful comments and suggestions which led to an
improved presentation of this paper.
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