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STABILITY ANALYSIS AND ERROR ESTIMATES OF LAX–WENDROFF
DISCONTINUOUS GALERKIN METHODS FOR LINEAR CONSERVATION
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Abstract. In this paper, we analyze the Lax–Wendroff discontinuous Galerkin (LWDG) method for
solving linear conservation laws. The method was originally proposed by Guo et al. in [W. Guo, J.-M.
Qiu and J. Qiu, J. Sci. Comput. 65 (2015) 299–326], where they applied local discontinuous Galerkin
(LDG) techniques to approximate high order spatial derivatives in the Lax–Wendroff time discretiza-
tion. We show that, under the standard CFL condition τ ≤ λh (where τ and h are the time step and
the maximum element length respectively and λ > 0 is a constant) and uniform or non-increasing
time steps, the second order schemes with piecewise linear elements and the third order schemes with
arbitrary piecewise polynomial elements are stable in the L2 norm. The specific type of stability may
differ with different choices of numerical fluxes. Our stability analysis includes multidimensional prob-
lems with divergence-free coefficients. Besides solving the equation itself, the LWDG method also gives
approximations to its time derivative simultaneously. We obtain optimal error estimates for both the
solution u and its first order time derivative ut in one dimension, and numerical examples are given to
validate our analysis.
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1. Introduction

In this paper, we present stability analysis and error estimates for the Lax–Wendroff discontinuous Galerkin
(LWDG) method solving linear conservation laws. We concentrate our attention in the scalar case, although the
analysis can be easily generalized to one-dimensional linear hyperbolic systems and multidimensional symmetric
linear systems. To be more specific, we are interested in the following initial value problem{

ut = ∇ · (βββu), (xxx, t) ∈ Ω × (0, T ),
u(xxx, 0) = u0(xxx), xxx ∈ Ω.

(1.1)

For simplicity, periodic boundary conditions are assumed, but our analysis does not depend on periodicity and
can be extended to other types of boundary conditions. Here, βββ = βββ(xxx) is a vector-valued function with the
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divergence-free condition ∇ · βββ(xxx) = 0. In this setting, the L2 energy of the solution to (1.1) is conserved,
which facilitates the study of LWDG schemes using energy methods. Note that the divergence-free condition
forces the coefficient in (1.1) to be constant in the one-dimensional case, but it allows variable coefficients in
multidimensions.

The discontinuous Galerkin (DG) methods are a class of finite element methods using discontinuous piecewise
polynomial spaces, which were originally designed and most suitable for solving hyperbolic conservation laws.
The discontinuity at cell interfaces brings extra degrees of freedom to the choice of numerical fluxes and to
enforce conservation locally. On the other hand, the finite-element nature allows the methods to suit complicated
geometries and boundary conditions. A major development of DG methods for solving time-dependent nonlinear
conservation laws was carried out by Cockburn et al. in a series of papers [3–5, 8, 9]. Later on, to adapt the
methods to equations with diffusion terms, Cockburn and Shu developed local discontinuous Galerkin (LDG)
methods [6], based on the successful numerical experiments of Bassi and Rebay in [1], in which they introduced
auxiliary variables to transform the original high order equation into a first order system. The LDG technique
can be used to handle even higher order spatial derivatives, more related work can be found in, e.g. [14, 15].

The DG spatial discretization can be combined with different time integrators. The most widely used ones
are the strong-stability-preserving Runge–Kutta methods [10]. As an alternative, one can also choose the Lax–
Wendroff type time discretization, which relies on converting time derivatives in a truncated Taylor expansion
into spatial derivatives by using the differential equation repeatedly, resulting in LWDG methods. The first
LWDG method for solving hyperbolic conservation laws was proposed by Qiu et al. in [13]. In their schemes,
the high order derivatives are approximated by directly differentiating the numerical polynomials. In [11], Guo
et al. pointed out that this method does not exhibit the superconvergence property, so they developed a new
LWDG method by applying the LDG techniques. More specifically, they introduced new auxiliary variables
and used DG spatial discretization to approximate the spatial derivatives converted from time derivatives in
the Lax–Wendroff procedure. In this paper, we focus on the LWDG method in [11] and study its stability and
accuracy properties for solving linear scalar conservation laws.

Firstly, let us remark that there exist close relationships between the LWDG method and the Runge–Kutta
discontinuous Galerkin (RKDG) method. Both of these methods introduce auxiliary or intermediate variables.
In the RKDG method, the stage variables correspond to the solution u at different internal time stages between
two time levels; while in the LWDG method, the intermediate variables approximate time derivatives of u. In
general, these two sets of variables do not contain the same information. But for linear conservation laws not
explicitly depending on time (including multidimensional systems), if we use the same fluxes throughout the
LWDG scheme, then it will be equivalent to the RKDG method after one full time step. More specifically, in
this case, the approximations of time derivatives in a LWDG scheme and the stage variables in a RKDG scheme
can be expressed as a linear combination of each other, and they lead to the same numerical solution at the
next time level. More details are given in the appendix. Therefore, there are strong connections between our
analysis and the work by Zhang and Shu in [17, 19, 20], where they have provided the stability analysis and a
prior error estimates for the second and third order RKDG schemes. We will comment on these connections
later in the paper.

Next, we move on to the stability analysis. In the LWDG schemes in [11], Guo et al. applied alternating
fluxes as that in [6, 15]. However, it can be shown that the LWDG schemes based on these alternating fluxes
cannot preserve strong stability under the standard CFL condition τ ≤ λh, where τ and h are the time step
and the maximum element length respectively and λ > 0 is a constant. This reminds us of the well-known fact
that the choice of numerical fluxes has an essential influence on the types of stability. We assume the numerical
fluxes can be either upwind or downwind for each variable. After a detailed analysis, we find that, if uniform
or non-increasing time steps are used, for the second order schemes (LW2DG) with piecewise linear elements,
and the third order schemes (LW3DG) with arbitrary Pk elements, as long as we apply the upwind flux for
u, then the schemes will be stable in the L2 norm. Furthermore, if we also use the upwind flux for the second
variable p (which approximates ut), then the schemes will be strongly stable, that is ‖un+1

h ‖ ≤ ‖un
h‖. Notice

that, for the linear cases, the RKDG method belongs to this class. However, if we use the downwind flux for
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p (e.g. according to the choice of alternating fluxes), then the scheme is only stable in a weaker sense, namely
‖un

h‖ ≤ C‖u0
h‖, where C is a constant which depends on the CFL number and the inverse estimate constants,

but is independent of the total time T . Therefore, with both choices of the fluxes, the energy of the solution is
well-controlled after long time integration.

Finally, we perform error estimates under the same framework of the stability analysis in one dimension.
We highlight that optimal error estimates of both uh and ph can be obtained, where uh and ph are numerical
approximations to u and ut respectively. To be more precise, assuming u is a smooth solution to the one-
dimensional problem, under a proper CFL condition τ ≤ λh, we have both ‖u − uh‖L2 ≤ C(τ2 + h2) and
‖ut−ph‖ ≤ C(τ2 +h2) for the LW2DG schemes with piecewise linear elements; and ‖u−uh‖L2 ≤ O(τ3 +hk+1)
and ‖ut − ph‖ ≤ O(τ3 + hk+1) for the LW3DG schemes with Pk elements. The error estimates hold for both
choices of the numerical fluxes.

The organization of this paper is as follows. In Section 2, the notations and preliminaries are introduced for
the one-dimensional analysis. In Section 3, we present the stability analysis of the LW2DG schemes and the
LW3DG schemes for one-dimensional advection equations, as well as the extension to multidimensions with
divergence-free coefficients. In Section 4, we state the error estimates for one-dimensional problems and give a
detailed proof only for the second order schemes. In Section 5, numerical examples are given to validate our
error estimates.

2. Notations and preliminaries

2.1. Model problem and notations

We study the following model problem in our one-dimensional analysis{
ut = ux, (x, t) ∈ (0, 2π) × (0, T ),

u(x, 0) = u0(x), x ∈ (0, 2π).
(2.1)

with periodic boundary conditions.
Let Ij = (xj− 1

2
, xj+ 1

2
) be a regular partition of the domain. We denote the cell length by hj = xj+ 1

2
− xj− 1

2
,

and define h = maxj hj . We use the notation (w, v)j =
∫

Ij
wv dx for the L2 inner product on Ij , and define

(w, v) =
∑

j(w, v)j . Without specification, the notation ‖ · ‖ refers to the L2 norm.
The associated discontinuous finite element space is defined as

Vh = {v ∈ L2(Ω) : v|Ij ∈ Pk(Ij), ∀j},

where Pk(Ij) is the space of polynomials on Ij of degree at most k. Note that functions in Vh can be double-
valued at cell interfaces, so we use v+ and v− to represent the right and left limits of v respectively. The jump
is denoted by [v] = v+ − v−. We define the jump semi-norm on Vh as �v� =

√∑
j [v]

2
j+ 1

2
, and the associated

bilinear form as [w, v] =
∑

j [w]j+ 1
2
[v]j+ 1

2
.

One has the inverse estimate for polynomials, which states ∀v ∈ Pk(Ij),

h‖vx‖Ij + h
1
2 ‖v‖∂Ij ≤ μ‖v‖Ij ,

where ‖v‖∂Ij =
√

(v+
j− 1

2
)2 + (v−

j+ 1
2
)2 and μ is the inverse estimate constant, which is independent of h. We

denote a constant independent of h but depending on μ by Cμ. Similarly, we may use Cμ,λ, Cμ,λ,βββ and so on.
The subscripts indicate the dependency of the constant C on these parameters.
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2.2. The LWDG method

For simplicity, we assume the time step τ is a constant for different time levels throughout this paper. The
strong stability results however do not need this restriction, while the weaker stability results (the energy is
bounded but not necessarily non-increasing) do need the restriction that the time steps are non-increasing, for
which the constant time step is a special case.

For the second order LWDG method, we first approximate the original equation (2.1) with the following first
order system

un+1 = un + τun
x +

τ2

2
pn

x,

pn = un
x. (2.2)

Then the fully discretized scheme can be obtained by replacing the spatial derivatives by their DG discretizations.
For convenience, we introduce the linear operators H+ and H−,

H±(w, v) =
∑

j

H±
j (w, v) =

∑
j

(
(w, vx)j − w±

j+ 1
2
v−

j+ 1
2

+ w±
j− 1

2
v+

j− 1
2

)
.

As a convention, H±1 = H±. Then, the schemes will take the form

(un+1
h , ϕh) = (un

h, ϕh) − τHαu (un
h, ϕh) − τ2

2
Hαp(pn

h, ϕh),

(pn
h , ψh) = −Hα̂u(pn

h, ψh), (2.3)

where ϕh, ψh ∈ Vh, and αu, αp and α̂u are equal to +1 or −1, corresponding to different numerical fluxes, to
be specified later.

In our analysis, we consider different choices of the numerical fluxes, and require αu = α̂u. When αu = α̂u =
+1 and αp = −1, we recover the alternating fluxes used in [11]; when αu = α̂u = αp = +1, we can easily verify
that this is actually the classical second order RKDG scheme. The only superficial difference is that, for the
RKDG scheme, one introduces the stage variable u(1)

h = un
h + τpn

h instead of pn
h in our context.

Similarly, one can write down the third order schemes,

(un+1
h , ϕh) = (un

h, ϕh) − τHαu(un
h, ϕh) − τ2

2
Hαp(pn

h, ϕh) − τ3

6
Hαq(qn

h , ϕh),

(pn
h , ψh) = −Hα̂u(un

h, ψh),

(qn
h , ηh) = −Hα̂p(pn

h , ηh), (2.4)

where ϕh, ψh and ηh are test functions from Vh, and αu, αp, α̂u and α̂p are equal to +1 or −1, corresponding to
different numerical fluxes. We would again require αu = α̂u and αp = α̂p. When αu = +1 and αp = αq = −1, we
restore the alternating fluxes in [11]; while if αu = αp = αq = +1, we can easily verify that this is actually the
classical third order RKDG scheme, where the stage variables are u(1)

h = un
h + τpn

h and u(2)
h = un

h + τ
2p

n
h + τ2

4 q
n
h .

We are interested in the stability of these schemes. We call a scheme to be stable, if there is a constant C
independent of τ and h, but may depend on the total time T = nτ , such that ‖un

h‖ ≤ C‖u0
h‖. We say a scheme

is strongly stable, if ‖un+1
h ‖ ≤ ‖un

h‖ for any n. As a corollary, we have C = 1 for a strongly stable scheme in
‖un

h‖ ≤ C‖u0
h‖.

2.3. Properties of H
In this subsection, we familiarize the readers with the properties of the operator pair H+ and H−, which are

fundamental for the analyses later.
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The first two lemmas focus on the operators themselves. Lemma 2.1 describes the relationships between H+

and H−. It states the anti-symmetry, the semi-definiteness and the difference of the operator pair. Lemma 2.2
estimates the L2 operator norms of H±(w, ·) and H±(·, v) on Vh. These lemmas are classical and can be proved
straightforwardly, we refer interested readers to, e.g. [16].

Lemma 2.1. Suppose w, v ∈ Vh, then

H−(w,w) = −1
2
�w�2, (2.5)

H−(w, v) = −H+(v, w), (2.6)
H+(w, v) = H−(w, v) + [w, v]. (2.7)

Lemma 2.2. Suppose w, v ∈ Vh, then

|H±(w, v)| ≤ (‖wx‖ + Cμh
− 1

2 �w�)‖v‖, (2.8a)

|H±(w, v)| ≤ (‖vx‖ + Cμh
− 1

2 �v�)‖w‖. (2.8b)

The next two lemmas describe the numerical spatial derivatives fromDG and LDG discretizations. Lemma 2.3
gives a crude bound for the first order derivative, and it follows directly from Lemma 2.2 and the inverse estimate.
Lemma 2.4 establishes the connections among different orders of derivatives, which is essentially the discretized
version of integration by parts. To cover different choices of fluxes, we introduce undetermined parameters α’s
in this lemma, which can be either +1 or −1. The detailed proof is omitted, as it just amounts to repeatedly
using Lemma 2.1.

Lemma 2.3. Let u, p ∈ Vh. For any test functions ψ ∈ Vh, (p, ψ) = −Hαu(u, ψ). Then

‖p‖ ≤ Cμh
−1‖u‖. (2.9)

Lemma 2.4. Let u, p, q, r ∈ Vh, such that for any test functions ψ, η, ζ ∈ Vh,

(p, ψ) = −Hαu(u, ψ), (2.10a)
(q, η) = −Hαp(p, η), (2.10b)
(r, ζ) = −Hαq(q, ζ), (2.10c)

where αu, αp, αq = −1,+1. Then we have,

(i)

(p, u) = −αu

2
�u�2, (2.11a)

(q, u) = −‖p‖2 − αup

2
[u, p], (2.11b)

(r, u) =
αp

2
�p�2 − αuq

2
[u, q], (2.11c)

(ii)

(q, p) = −αp

2
�p�2, (2.12a)

(r, p) = −‖q‖2 − αpq

2
[p, q], (2.12b)

where αwv = αw + αv, w, v = u, p, q.
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3. Stability analysis

3.1. Second order schemes

The LW2DG schemes can be rewritten as follows. Given un
h, find un+1

h ∈ Vh, such that

(un+1
h , ϕh) = (un

h, ϕh) + τ(pn
h, ϕh) +

τ2

2
(qn

h , ϕh), (3.1a)

(pn
h , ψh) = −Hαu(un

h, ψh), (3.1b)
(qn

h , ηh) = −Hαp(pn
h, ηh), (3.1c)

for any ϕh, ψh, ηh ∈ Vh. Here αu = +1 and αp = ±1.
Note that (3.1a) implies

un+1
h = un

h + τpn
h +

τ2

2
qn
h . (3.2)

In our analysis, we restrict the finite element space to be piecewise linear. This is because when one uses
upwind fluxes for both un

h and pn
h, the scheme is equivalent to the second order RKDG scheme, which, according

to the von Neumann analysis in [7], is unstable with high order (k > 1) piecewise polynomial spaces when τ/h
is a constant.

The key ingredient for the stability analysis is to use the specialty of piecewise linear elements. In this case,
the L2 norm of (pn

h)x can be bounded by the jump of un
h, which is not necessarily true in general. Zhang and

Shu first used this technique in [19] to analyze the second order RKDG scheme, but for a different auxiliary
variable.

Here is the outline for the stability analysis of (3.1). We first prove Lemma 3.1 to connect ‖(pn
h)x‖ with�un

h�. Then, with this lemma, precise estimates for ‖un+1
h − un

h − τpn
h‖ and ‖pn+1

h − pn
h‖ can be obtained, which

are stated in Lemmas 3.2 and 3.3 respectively. Finally, we carry out the proof of Theorem 3.4 to establish the
stability of the LW2DG schemes. The first part of this theorem, which essentially rebuilds the result by Zhang
and Shu in [19], only uses Lemma 3.2. For the second part with alternating fluxes, Lemma 3.3 is used as well.

Lemma 3.1. With P1 elements, ‖(pn
h)x‖j = 6h−

3
2

j |[un
h]j+ αu

2
|.

Proof. We only prove the lemma for αu = +1, the case αu = −1 follows along the same line.
For simplicity, we drop all the subscripts h and superscripts n. Let {φ0, φ1} be the normalized Legendre

polynomials basis on Ij , and φi is of degree i. Suppose p = p0φ
0 + p1φ

1 on Ij . Then we have px = 2
√

3h−
3
2 p1,

where p1 can be obtained through (3.1b),

p1 = (p, φ1)j = −(u, φ1
x)j + u+

j+ 1
2
(φ1)−

j+ 1
2
− u+

j− 1
2
(φ1)+

j− 1
2
.

With integration by parts, we get

p1 = (ux, φ
1)j − u−

j+ 1
2
(φ1)−

j+ 1
2

+ u+
j+ 1

2
(φ1)−

j+ 1
2

= [u]j+ 1
2
(φ1)−

j+ 1
2
, (3.3)

where the second equality holds due to the fact that ux is a constant. Note that (φ1
j+ 1

2
)− =

√
3h−

1
2

j . Now (3.3)

implies p1 =
√

3h−
1
2

j [u]j+ 1
2
. Therefore px = 6h−2

j [u]j+ 1
2

and ‖px‖j = 6h−
3
2

j |[u]j+ 1
2
|. �

The following statements hold based on Lemma 3.1.

Lemma 3.2.
‖un+1

h − un
h − τpn

h‖2 ≤ Cμ(τλ3�un
h�2 + τ3λ�pn

h�2).
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Proof. Rearranging (3.1) gives

(un+1
h − un

h − τpn
h , ϕh) = −τ

2

2
Hαp(pn

h , ϕh).

Exploiting Lemma 2.2, we obtain

(un+1
h − un

h − τpn
h, ϕh) ≤ τ2

2
(‖(pn

h)x‖ + Cμh
− 1

2 �pn
h�)‖ϕh‖.

Then the proof is completed by applying Lemma 3.1 and setting ϕh = un+1
h − un

h − τpn
h . �

Lemma 3.3.
‖pn+1

h − pn
h‖2 ≤ Cμ(h−1λ2�un

h�2 + τλ�pn
h�2 + τ2λ2‖qn

h‖2).

Proof. According to (3.2), the following relationship holds

(pn+1
h − pn

h, ψh) = −Hαu(un+1
h − un

h, ψh) = −Hαu

(
τpn

h +
τ2

2
qn
h , ψh

)
. (3.4)

Then we apply Lemmas 2.2 and 2.3 to obtain

(pn+1
h − pn

h, ψh) ≤ Cμ(τ‖(pn
h)x‖ + τh−

1
2 �pn

h�2 + τλ‖qn
h‖)‖ψh‖.

The proof is completed by applying Lemma 3.1 and plugging in ψh = pn+1
h − pn

h. �

We are now ready to state our main theorem for the stability of the LW2DG schemes.

Theorem 3.4 (Stability of the LW2DG schemes). There exists a constant λ, such that when τ ≤ λh, the
numerical solution of schemes (3.1) satisfies,

(i) ‖un+1
h ‖ ≤ ‖un

h‖, if αu = αp = +1,
(ii) ‖un

h‖ ≤ Cμ,λ‖u0
h‖, if αu = +1 and αp = −1,

where Cμ,λ is a constant depending on λ and the inverse estimate constant μ, but is independent of the total
time T = nτ .

Proof. Take ϕh = un
h in (3.1a). Using (2.4) we get

1
2
‖un+1

h ‖2 − 1
2
‖un

h‖2 +
ταu

2
�un

h�2 +
τ2αup

2
[un

h, p
n
h] =

1
2
‖un+1

h − un
h‖2 − τ2

2
‖pn

h‖2.

Note that

‖un+1
h − un

h‖2 − τ2‖pn
h‖2 = ‖un+1

h − un
h − τpn

h‖2 + 2τ(un+1
h − un

h − τpn
h , p

n
h),

where (un+1
h − un

h − τpn
h , p

n
h) = τ2

2 (qn
h , p

n
h) = − τ2αp

4 �pn
h�2. Hence

‖un+1
h ‖2 − ‖un

h‖2 + ταu�un
h�2 + τ2αup[un

h, p
n
h] +

τ3αp

2
�pn

h�2 = ‖un+1
h − un

h − τpn
h‖2. (3.5)

Exploiting Lemma 3.2, we have

‖un+1
h ‖2 − ‖un

h‖2 + τ(αu − Cμλ
3)�un

h�2 + τ2αup[un
h, p

n
h] + τ3

(αp

2
− Cμλ

) �pn
h�2 ≤ 0. (3.6)
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(i) When αu = αp = +1, (3.6) can be rewritten as

‖un+1
h ‖2 − ‖un

h‖2 + τ

(
1
4
− Cμλ

3

) �un
h�2 + τ3

(
1
6
− Cμλ

) �pn
h�2 + τ

�√
3

2
un

h + τ

√
3

3
pn

h

�2

≤ 0,

which implies ‖un+1
h ‖ ≤ ‖un

h‖ when λ is sufficiently small.
(ii) When αu = +1 and αp = −1, (3.6) gives

‖un+1
h ‖2 − ‖un

h‖2 + τ(1 − Cμλ
3)�un

h�2 − τ3(
1
2

+ Cμλ)�pn
h�2 ≤ 0. (3.7)

The coefficient of �pn
h�2 is negative, and one needs to bring in new terms to balance it. To this end, we plug in

ψh = pn
h in (3.4) to get

1
2
‖pn+1

h ‖2 − 1
2
‖pn

h‖2 − 1
2
‖pn+1

h − pn
h‖2 = −τ

2
�pn

h�2 − τ2

2
‖qn

h‖2.

By Lemma 3.3, this gives

‖pn+1
h ‖2 − ‖pn

h‖2 − Cμλ
2h−1�un

h�2 ≤ −τ(1 − Cμλ)�pn
h�2 − τ2(1 − Cμλ)‖qn

h‖2. (3.8)

Multiplying (3.8) with τ2 and adding it to (3.7), we have

(‖un+1
h ‖2 + τ2‖pn+1

h ‖2) − (‖un
h‖2 + τ2‖pn

h‖2) + τ(1 − Cμλ
3)�un

h�2
+τ3

(
1
2
− Cμλ

) �pn
h�2 + τ4(1 − Cμλ)‖qn

h‖2 ≤ 0.

When λ is small enough, this gives

‖un+1
h ‖2 + τ2‖pn+1

h ‖2 ≤ ‖un
h‖2 + τ2‖pn

h‖2.

Specially, when uniform time steps are used,

‖un
h‖2 + τ2‖pn

h‖2 ≤ ‖u0
h‖2 + τ2‖p0

h‖2 ≤ (1 + Cμλ
2)‖u0

h‖2.

The last inequality holds due to Lemma 2.3. This implies the stability result ‖un
h‖ ≤√1 + Cμλ2‖u0

h‖. Clearly,
the result also holds if the time steps are non-increasing, namely τn+1 ≤ τn. �

Remark 3.5. We require that the time steps are non-increasing to ensure the stability in (ii). One should
note this is only a sufficient but not necessary condition. Let {τn} be the sequence of time steps and assume
0 < λ0 <

τn

h ≤ λ. The scheme is still stable in the following cases.

Case 1: The time steps increase occasionally. Suppose τn+1 ≤ τn except for n = n0, then

‖un0+1
h ‖2 + τ2

n0+1‖pn0+1
h ‖2 ≤ τ2

n0+1

τ2
n0

(‖un0+1
h ‖2 + τ2

n0
‖pn0+1

h ‖2) ≤ τ2
n0+1

τ2
n0

(‖un0
h ‖2 + τ2

n0
‖pn0

h ‖2).

One can continue the inequality by including the factor
τ2

n0+1

τ2
n0

, and finally get

‖un
h‖2 ≤ τ2

n0+1

τ2
n0

(1 + Cμλ
2)‖u0

h‖2 ≤ λ2

λ2
0

(1 + Cμλ
2)‖u0

h‖2.
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Similarly, if there is a fixed number m, such that the time steps increase no more than m times, one can show
that ‖un

h‖2 ≤ λ2m

λ2m
0

(1 + Cμλ
2)‖u0

h‖2.

Case 2: The time steps increase monotonically. Using the argument in Case 1, one has

‖un
h‖2 + τ2

n‖pn
h‖2 ≤

(
n∏

i=1

τ2
i

τ2
i−1

)
(‖u0

h‖2 + τ2
0 ‖p0

h‖2) =
τ2
n

τ2
0

(‖u0
h‖2 + τ2

0 ‖p0
h‖2) ≤ λ2

λ2
0

(1 + Cλ2)‖u0
h‖2,

which is still stable.
However, these arguments can not be used for general time steps {τn}. For example, τ2n+1 = λh and

τ2n+2 = λ
2h. The factor will blow up when h goes to 0. One would need to make more detailed discussions

to analyze the stability.
In the following sections, we will also assume the uniform or non-increasing time steps when analyzing the

stability of the LWDG schemes with alternating fluxes. One should note the argument above will still work,
and we will not repeat it.

Remark 3.6. We note that the alternating fluxes in (ii) actually do not preserve the strong stability. To see
this, one can plug in a continuous initial condition u0

h into (3.1). Then, by (3.5), ‖u1
h‖2 − ‖u0

h‖2 = τ3

2 �pn
h�2 +

‖un+1
h − un

h − τpn
h‖2 > 0.

3.2. Third order schemes

We can rewrite LW3DG schemes as follows. In each step, find un+1
h ∈ Vh, such that

(un+1
h , ϕh) = (un

h, ϕh)+τ(pn
h , ϕh) +

τ2

2
(qn

h , ϕh) +
τ3

6
(rn

h , ϕh), (3.9a)

(pn
h , ψh) = −Hαu(un

h, ψh), (3.9b)
(qn

h , ηh) = −Hαp(pn
h , ηh), (3.9c)

(rn
h , ζh) = −Hαq(qn

h , ζh), (3.9d)

for any ϕh, ψh, ηh, ζh ∈ Vh. Here αu = +1 and αp, αq = ±1. Note that (3.9a) implies

un+1
h = un

h + τpn
h +

τ2

2
qn
h +

τ3

6
rn
h . (3.10)

The proof of the third order schemes are actually easier, since there is inherent numerical viscosity from
the time discretization. The stability will hold for piecewise polynomial elements of arbitrary degrees. In this
section, λ ≤ 1 is assumed for simplicity.

Before going into the main theorem, we first prove the following lemma.

Lemma 3.7.
‖pn+1

h − pn
h‖2 − τ2‖qn

h‖2 ≤ (
τ

4
+ Cμλ)�pn

h�2 + τ2Cμλ‖qn
h‖2.

Proof. According to (3.9b) and (3.10), the following relationship holds

(pn+1
h − pn

h, ψh) = −Hαu
(
un+1

h − un
h, ψh

)
= −Hαu

(
τpn

h +
τ2

2
qn
h +

τ3

6
rn
h , ψh

)
. (3.11)

Hence

(pn+1
h − pn

h − τqn
h , ψh) = τ

αp − αu

2
[pn

h, ψ
n
h ] − τ2

2
Hαu(qn

h , ψ
n
h) − τ3

6
Hαu(rn

h , ψ
n
h)

≤ Cμ

(
τh−

1
2 �pn

h� + τλ‖qn
h‖ + τ2λ‖rn

h‖
)
‖ψn

h‖.
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Using Lemma 2.3, we know τ2λ‖rn
h‖ ≤ τCμλ

2‖qn
h‖. Hence

(pn+1
h − pn

h − τqn
h , ψh) ≤ Cμ(τh−

1
2 �pn

h� + τλ‖qn
h‖)‖ψh‖. (3.12)

Note that
‖pn+1

h − pn
h‖2 − τ2‖qn

h‖2 = ‖pn+1
h − pn

h − τqn
h‖2 + 2τ(pn+1

h − pn
h − τqn

h , q
n
h). (3.13)

By (3.12),
‖pn+1

h − pn
h − τqn

h‖2 ≤ Cμ(τλ�pn
h�2 + τ2λ‖qn

h‖2),

(pn+1
h − pn

h − τqn
h , q

n
h) ≤ Cμ(τh−

1
2 �pn

h� + τλ‖qn
h‖)‖qn

h‖ ≤ 1
8
�pn

h�2 + τCμλ‖qn
h‖2.

The proof is completed by substituting the estimates above into (3.13). �

Theorem 3.8 (Stability of the LW3DG schemes). There exists a constant λ, such that when τ ≤ λh, the
solution of schemes (3.9) satisfies,

(i) ‖un+1
h ‖ ≤ ‖un

h‖, if αu = αp = +1, αq = ±1,
(ii) ‖un

h‖ ≤ Cμ,λ‖u0
h‖, if αu = +1, αp = −1 and αq = ±1,

where Cμ,λ is a constant dependent upon λ and the inverse estimate constant μ, but is independent of the total
time T = nτ .

Proof. Substituting ϕh = un
h into (3.9) and summing over j, we have

1
2
‖un+1

h ‖2 − 1
2
‖un

h‖2 +
ταu

2
�un

h�2 − τ3αp

12
�pn

h�2 +
τ2αup

4
[un

h, p
n
h] +

τ3αuq

12
[un

h, q
n
h ]

=
1
2
‖un+1

h − un
h‖2 − τ2

2
‖pn

h‖2. (3.14)

Note that
‖un+1

h − un
h‖2 − τ2‖pn

h‖2 = ‖un+1
h − un

h − τpn
h‖2 + 2τ(un+1

h − un
h − τpn

h, p
n
h),

where

(un+1
h − un

h − τpn
h , p

n
h) =

τ2

2
(qn

h , p
n
h) +

τ3

6
(rn

h , p
n
h) = −τ

2αp

4
�pn

h�2 − τ3

6
‖qn

h‖2 − τ3αpq

12
[pn

h, q
n
h ].

Hence

‖un+1
h − un

h‖2 − τ2‖pn
h‖2 = ‖un+1

h − un
h − τpn

h‖2 − τ3αp

2
�pn

h�2 − τ4

3
‖qn

h‖2 − τ4αpq

6
[pn

h, q
n
h ]. (3.15)

Using (3.15), the energy estimate (3.14) becomes

‖un+1
h ‖2 − ‖un

h‖2 + ταu�un
h�2 +

τ3αp

3
�pn

h�2 +
τ2αup

2
[un

h, p
n
h] +

τ3αuq

6
[un

h, q
n
h ] +

τ4αpq

6
[pn

h , q
n
h ]

= ‖un+1
h − un

h − τpn
h‖2 − τ4

3
‖qn

h‖2.

Since

(un+1
h − un

h − τpn
h, ϕh) =

τ2

2
(qn

h , ϕh) +
τ3

6
(rn

h , ϕh),
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by Lemma 2.3, ‖un+1
h − un

h − τpn
h‖ ≤ τ2(1

2 + Cμλ)‖qn
h‖. Suppose λ ≤ 1, then the estimate becomes

‖un+1
h ‖2 − ‖un

h‖2 + ταu�un
h�2 +

τ3αp

3
�pn

h�2 +
τ2αup

2
[un

h, p
n
h] +

τ3αuq

6
[un

h, q
n
h ]

+
τ4αpq

6
[pn

h, q
n
h ] ≤ τ4(− 1

12
+ Cμλ)‖qn

h‖2. (3.16)

Different from (3.1), the right hand side of (3.16) is automatically negative when λ is small. This is due to
the numerical dissipation from the third order time discretization. One can avoid detailed arguments as in
Lemma 3.1 to absorb terms with jumps.

(i) When αu = αp = +1, by using the inequality ab ≤ εa2 + b2

4ε , we obtain

‖un+1
h ‖2 − ‖un

h‖2 + τC�un
h�2 + τ3C�pn

h�2 ≤ τ4

(
− 1

12
+ Cμλ

)
‖qn

h‖2 + τ5C�qn
h �2,

where the C’s are positive constants. Using the inverse estimate, τ5C�qn
h �2 ≤ τ4Cμλ‖qn

h‖2. Hence ‖un+1
h ‖2−

‖un
h‖2 ≤ τ4(− 1

12 + C′
μλ)‖qn

h‖2. The strong stability holds as long as λ ≤ 1
12C′

μ
.

(ii) When αu = +1 and αp = −1, the estimate becomes

‖un+1
h ‖2 − ‖un

h‖2 + τ�un
h�2 − τ3

3
�pn

h�2 +
τ3αuq

6
[un

h, q
n
h ] +

τ4αpq

6
[pn

h, q
n
h ] ≤ τ4

(
− 1

12
+ Cμλ

)
‖qn

h‖2. (3.17)

Use Lemma 2.3 and the inverse estimate,

τ3αuq

6
[un

h, q
n
h ] ≤ τ

2
�un

h�2 + τ4Cμλ‖qn
h‖2,

τ3αuq

6
[pn

h, q
n
h ] ≤ τ

6
�pn

h�2 + τ4Cμλ‖qn
h‖2.

Hence

‖un+1
h ‖2 − ‖un

h‖2 +
τ

2
�un

h�2 − τ3

2
�pn

h�2 ≤ τ4

(
− 1

12
+ Cμλ

)
‖qn

h‖2. (3.18)

Now the jump term of pn
h on the left hand side is negative. As we have done in Theorem 3.4, we would introduce

‖pn
h‖ to balance this term. Substituting ψh = pn

h into (3.11), we have

1
2
‖pn+1

h ‖2 − 1
2
‖pn

h‖2 − 1
2
‖pn+1

h − pn
h‖2 = −τ

2
�pn

h�2 − τ2

2
‖qn

h‖2 − τ3

6
H+(rn

h , p
n
h). (3.19)

Note that

τ3

6
H+(rn

h , p
n
h) =

τ3

6
(qn

h , r
n
h) ≤ τ3

6
‖qn

h‖‖rn
h‖ ≤ τ2Cμλ‖qn

h‖2, (3.20)

where Lemma 2.3 is used in the last inequality. Therefore, by using Lemma 3.7 and (3.20) in (3.19), one can
get

‖pn+1
h ‖2 − ‖pn

h‖2 ≤
(
Cμλ− 3

4

)
τ�pn

h�2 + τ2Cμλ‖qn
h‖2. (3.21)

Multiplying (3.21) by τ2 and adding it to (3.18), we get

(‖un+1
h ‖2 + τ2‖pn+1

h ‖2) − (‖un
h‖2 + τ2‖pn

h‖2) +
τ

2
�un

h�2 + τ3

(
1
4
− Cμλ

) �pn
h�2 ≤ τ4

(
− 1

12
+ Cμλ

)
‖qn

h‖2.
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Therefore, when λ is sufficiently small, all jump terms are nonnegative, and the right hand side is less than zero.
So when uniform time steps are used, we get

‖un
h‖2 + τ2‖pn

h‖2 ≤ ‖un
h‖2 + τ2‖pn

h‖2 ≤ ‖un
h‖2 + τ2‖p0

h‖2.

Using Lemma 2.3, one has τ2‖pn
h‖2 ≤ Cμλ

2‖un
h‖2. Hence ‖un

h‖ ≤√1 + Cμλ2‖u0
h‖. Clearly, the result also holds

with non-increasing time steps, namely τn+1 ≤ τn. �

3.3. Multidimensional cases

3.3.1. Notations and preliminaries

Let us now consider the general linear scalar conservation law (1.1). Recall that ∇·βββ(xxx) = 0, hence ∇·(βββu) =
(βββ · ∇)u.

Suppose K = {K} is a quasi-uniform partition of the domain Ω with triangular (or rectangular) element K,
where h = maxK hK , with hK being the diameter of element K. The collection of cell interfaces is denoted
by E . We use the notation (u, v)K =

∫
K uv dxdy for the L2 inner product on each element, and (u, v) =∑

K(u, v)K for the whole domain. Besides, we denote the integration on element interfaces by 〈u, v〉e =
∫

e
uv dl

and jumps by [u]e = (u+ − u−)e. Here, u+ = lim
ε→0+ u(xxx + εβββ), while u− = lim

ε→0+ u(xxx − εβββ). Furthermore, let�u�βββ,e =
√∫

e
[u]2e|βββ ·nnn|dl and �u�βββ =

√∑
e∈E�u�2βββ,e. The corresponding cross term is denoted by [u, v]βββ =∑

e∈E〈[u], [v]|βββ ·nnn|〉.
Similar to our one-dimensional cases, we introduce the operators H±

βββ for convenience,

H±
βββ (w, v) =

∑
K

H±
βββ,K(w, v) =

∑
K

(
(w,∇ · (βββv))K − 〈w±, vβββ ·nnn〉∂K

)
.

When βββ(xxx) is parallel to the cell interfaces, u± are not well-defined. But in this case, βββ(xxx) · nnn = 0, hence the
value of u± will not make any difference. When βββ(xxx) ·nnn changes sign on the edge, H±

βββ (w, v) can still be defined
as above. But one should note w± are no longer polynomials and one would need to be careful when applying
the inverse estimates (see Appendix B.2 for details).

As before, we introduce the auxiliary variables p = ut = ∇ · (βββu), q = utt = ∇ · (βββp) and r = uttt = ∇ · (βββq)
(for the third order schemes). Then the numerical schemes can be defined as in the one-dimensional cases
in (3.1) and (3.9), except for replacing H± by H±

βββ . Moreover, we use the discontinuous finite element space
Vh = {v ∈ L2(Ω) : v|K ∈ Pk(K), ∀K ∈ K}, where Pk(K) denotes the space of polynomials on K of degree no
more than k.

For ∇ · βββ(xxx) = 0 and w, v ∈ Vh, the following relationships hold, which extend Lemmas 2.1 and 2.2 to
multidimensions. The proof of Lemmas 3.9 and 3.10 is given in the appendix.

Lemma 3.9.

H−
βββ (w,w) = −1

2
�w�2βββ , (3.22)

H−
βββ (w, v) = −H+

βββ (v, w), (3.23)

H+
βββ (w, v) = H−

βββ (w, v) + [w, v]βββ . (3.24)

Lemma 3.10.

|H−
βββ (w, v)| ≤ (‖(βββ · ∇)w‖ + Cμ,βββh

− 1
2 �w�βββ)‖v‖, (3.25)

|H−
βββ (w, v)| ≤ (‖(βββ · ∇)v‖ + Cμ,βββh

− 1
2 �v�βββ)‖w‖. (3.26)

With the relationships above, we can state a similar lemma to Lemma 2.4.
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Lemma 3.11. Lemma 2.4 holds after replacing H with Hβββ, [·, ·] with [·, ·]βββ and �·� with �·�βββ .

Lemma 3.1 plays a key role in the stability analysis of the LW2DG schemes. Similarly, we need the following
lemma to bound ‖(βββ · ∇)pn

h‖K with �un
h�βββ,∂K . The proof of this lemma is given in the appendix.

Lemma 3.12. For the piecewise linear polynomial space in R
d,

(i) If βββ is a constant vector, then ‖(βββ · ∇)pn
h‖K ≤ Cμ,βββh

− 3
2 �un

h�βββ,∂K ,
(ii) If βββ is a vector-valued function with ∇ · βββ(xxx) = 0, then

‖(βββ · ∇)pn
h‖K ≤ Cμ,βββh

− 3
2 �un

h�βββ,∂K + Cμ,βββh
−1‖un

h‖K .

Remark 3.13. Note that our proof only holds for P1 elements. It is difficult to extend the proof to Q1 elements,
which are defined by tensor products on rectangular meshes.

3.3.2. Stability results

Theorem 3.14 (Stability of the LW2DG schemes in multidimensions). For multidimensional cases, let un
h

be the numerical solution of the LW2DG schemes with P1 elements. Then under the standard CFL condition
τ ≤ λh,

(i) When βββ is constant, ‖un+1
h ‖ ≤ ‖un

h‖ if αu = αp = +1; ‖un
h‖ ≤ Cμ,λ,βββ‖u0

h‖ if αu = +1 and αp = −1, where
Cμ,λ,βββ depends on λ, μ and βββ but is independent of T .

(ii) When βββ(xxx) is a function with ∇ · βββ(xxx) = 0, if αu = +1 and αp = ±1, then ‖un
h‖ ≤ Cμ,λ,βββ,T ‖u0

h‖, where
Cμ,λ,βββ,T depends on λ, μ, βββ and T .

Proof. For constantβββ, we proceed in the same way as we have done for Theorem 3.4, except for using Lemma 3.11
instead of Lemma 2.4, and Lemma 3.12 instead of Lemma 3.1. For non-constant function βββ, we will get an extra
‖u‖K term in Lemma 3.12. A similar argument will lead to ‖un+1

h ‖ ≤ (1 + τCτ,λ,βββ)‖un
h‖ when αp = +1,

which will end up with ‖un
h‖ ≤ eCμ,λ,βββT ‖u0

h‖. For the same reason, the constant will also depend on T when
αp = −1. �

Theorem 3.15 (Stability of the LW3DG schemes in multidimensions). For multidimensional cases, assume
∇ · βββ(xxx) = 0. Let un

h be the numerical solution of the LW3DG schemes with Pk elements. Then under the
standard CFL condition τ ≤ λh,

(i) ‖un+1
h ‖ ≤ ‖un

h‖, if αu = αp = +1 and αq = ±1,
(ii) ‖un

h‖ ≤ Cμ,λ,βββ‖u0
h‖, if αu = +1, αp = −1 and αq = ±1,

where Cμ,λ,βββ depends on λ, μ and βββ, but is independent of T .

Proof. The proof follows the same lines as in the one-dimensional case and is thus omitted. �

Remark 3.16. By now, we have spent our main effort on some special coefficients βββ. Actually, the LWDG
schemes can be modified to suit general βββ(xxx, t), where βββ may depend on time and can have a non-zero divergence.
Furthermore, as long as βββ is sufficiently smooth, we can obtain the weak stability result ‖un

h‖ ≤ C‖u0
h‖, where

C depends on βββ and T , as well as μ and λ if alternating fluxes are used.
We use the LW2DG scheme with upwinding fluxes for a brief illustration. The revised scheme then becomes

(un+1
h , ϕh) = (un

h + τpn
h +

τ2

2
qn
h , ϕh),

(pn
h, ψh) = −H+

βββ (un
h, ψh) + (∇ · βββun

h, ψh),

(qn
h , ηh) = −H+

βββ (pn
h, ηh) + (∇ ·βββpn

h, ηh) −H+
βββt

(un
h, ηh) + (∇ ·βββtu

n
h, ηh). (3.27)
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Here we have the extra terms (∇ · βββun
h, ψh), (∇ · βββpn

h, ηh), H+
βββt

(un
h, ηh) and (∇ · βββtu

n
h, ηh). Furthermore, the

properties of H has been changed and there will be more terms coming out when one follows the previous
approach. But compared with the exponents of τ before them, the order of derivatives for all these new terms
are relatively low. One can apply the Cauchy-Schwartz inequality, Lemma 3.10 and the inverse estimates to
show they can be bounded by Cτ‖un

h‖2 with some proper constant C. Hence we will finally obtain ‖un+1
h ‖2 ≤

(1 + Cτ)‖un
h‖2, which indicates the weak stability result.

4. Error estimates

For the one-dimensional problem (2.1), set un(x) = u(x, tn) and un
t (x) = ut(x, tn). Assuming the exact

solution u(x, t) is smooth, we have the following error estimates.

Theorem 4.1 (Error estimates of the LW2DG schemes). Under the CFL condition τ ≤ λh for a proper constant
λ, using P1 elements, the numerical approximations un

h and pn
h from the LW2DG schemes (3.1) satisfy the

following error estimates,

(i) ‖un − un
h‖ ≤ C(τ2 + h2),

(ii) ‖un
t − pn

h‖ ≤ C(τ2 + h2),

where C depends on μ, λ, T , u, ut and their derivatives but is independent of τ and h.

Theorem 4.2 (Error estimates of the LW3DG schemes). Under the CFL condition τ ≤ λh for a proper constant
λ, using Pk elements (k is arbitrary), the numerical approximations un

h and pn
h from the LW3DG schemes (3.9)

satisfy the following error estimates,

(i) ‖un − un
h‖ ≤ C(τ3 + hk+1),

(ii) ‖un
t − pn

h‖ ≤ C(τ3 + hk+1),

where C depends on μ, λ, T , u, ut and their derivatives but is independent of τ and h.

The error estimate of u follows from the stability results through a standard argument, while the error
estimate of ut relies on the relationship between un

h and pn
h. Here we only give the details of the proof of

Theorem 4.1 and omit the details of the proof of Theorem 4.2, as they can be obtained following similar lines.
We will need the following lemma for the error estimates. The proof of (4.1) is straightforward, and (4.2)

follows from the standard approximation theorem [2].

Lemma 4.3. Suppose w is a smooth function, then

H±(π±w − w, v) = 0, ∀v ∈ Vh, (4.1)

‖π±w − w‖ ≤ Cwh
k+1, (4.2)

where Cw is a constant depending on w; π± are the Gauss–Radau projections to Vh. More precisely, π±w is the
unique element in Vh such that

(π±w − w, v)j = 0 ∀v ∈ Pk−1(Ij), (π±w)±
j∓ 1

2
= w±

j∓ 1
2
.

Proof of Theorem 4.1. Let u be the exact solution of (1.1), p = ut and q = utt. We denote the truncation
error by

ωn = un+1 − un − τpn − τ2

2
qn. (4.3)
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By the consistency of the schemes, for any ϕh, ψh, ηh ∈ Vh, the following equalities hold

(un+1, ϕh) =
(
un + τpn +

τ2

2
qn, ϕh

)
+ (ωn, ϕh), (4.4a)

(pn, ψh) = −Hαu(un, ψh), (4.4b)
(qn, ηh) = −Hαp(pn, ηh). (4.4c)

Subtract the system (4.4) from the numerical schemes (3.1), then we get the error equation

(un+1 − un+1
h , ϕh) = (un − un

h + τ(pn − pn
h) +

τ2

2
(qn − qn

h , ϕh) + (ωn, ϕh), (4.5a)

(pn − pn
h, ψh) = −Hαu(un − un

h, ψh), (4.5b)

(qn − qn
h , ηh) = −Hαp(pn − pn

h, ηh). (4.5c)

Denote en
v = παvv − vn

h and εn
v = v − παvv, with v = u, p, q. Applying Lemma 4.3, the error equation can be

simplified as follows(
en+1

u − en
u − τen

p − τ2

2
en

q , ϕh

)
= −

(
εn+1

u − εn
u − τεn

p − τ2

2
εn

q , ϕh

)
+ (ωn, ϕh), (4.6a)

(en
p , ψh) = −Hαu(en

u, ψh) − (εn
p , ψh), (4.6b)

(en
q , ηh) = −Hαp(en

p , ηh) − (εn
q , ηh). (4.6c)

Furthermore, by using (4.3) and (4.6b), one can also obtain the error equation for ut

(en+1
p − en

p , ψh) = −Hαu(τen
p +

τ2

2
en

q + w,ψh) − (εn+1
p − εn

p , ψh). (4.7)

Our error estimates are based on the framework of stability analysis. We need lemmas comparable to Lemmas 2.3,
2.4, 3.1, 3.2 and 3.3. Among them, Lemmas 4.4–4.6 can be proved by using (4.6) and similar techniques as before,
and the details are omitted.

Lemma 4.4.

‖en
p‖ ≤ Cμh

−1‖en
u‖ + ‖εn

p‖, (4.8a)

‖en
q ‖ ≤ Cμh

−1‖en
p‖ + ‖εn

q ‖. (4.8b)

Lemma 4.5.

(en
p , e

n
u) = −αu

2
�en

u�2 − (εn
p , e

n
u), (4.9a)

(en
q , e

n
u) = −‖en

p‖2 − αup

2
[en

u, e
n
p ] − (εn

q , e
n
u) − (εn

p , e
n
p ), (4.9b)

(en
q , e

n
p ) = −αp

2
�en

p �2 − (εn
q , e

n
p ), (4.9c)

where αwv = αw + αv, w, v = ±1.

Lemma 4.6. For piecewise linear elements, ‖(en
p )x‖ ≤ Cμh

− 3
2 �en

u� + Cμh
−1‖εn

p‖.

Lemma 4.7.
‖en+1

u − en
u − τen

p‖ ≤ Cμτ
2(h−

3
2 �en

u� + h−
1
2 �en

p �) + C(τ3 + τh2). (4.10)
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Proof. Substituting (4.6b) into (4.6a), we get

(en+1
u − en

u − τen
p , ϕh) = −(εn+1

u − εn
u − τεn

p , ϕh) − τ2

2
Hαp(en

p , ϕh) + (ωn, ϕh)

≤
(
‖εn+1

u − εn
u‖ + τ‖εn

p‖ + ‖ωn‖ + τ2Cμ(‖(en
p )x‖ + h−

1
2 �en

p �))‖ϕh‖

≤
(
‖εn+1

u − εn
u‖ + τ(1 + Cμλ)‖εn

p‖ + ‖ωn‖ + τ2Cμ(h−
3
2 �en

u� + h−
1
2 �en

p �))‖ϕh‖, (4.11)

where we have used Lemma 4.6 in the last inequality. One can see that

‖εn+1
u − εn

u‖ + τ(1 + Cμλ)‖εn
p‖ + ‖ωn‖ ≤ C(τ3 + τh2). (4.12)

The proof can be completed by using the estimate (4.12) and substituting ϕh = en+1
u − en

u − τen
p

into (4.11). �

Lemma 4.8.
‖en+1

p − en
p‖ ≤ Cμ(τh−

3
2 �en

u� + τh−
1
2 �en

p � + τλ‖en
q ‖) + C(τ2 + h2). (4.13)

Proof. By (4.7), one has

(en+1
p − en

p , ψh) = −Hαu(τen
p +

τ2

2
en

q + w,ψh) − (εn+1
p − εn

p , ψh)

≤
(
Cμ(τ‖(en

p )x‖ + τh−
1
2 �en

p � + τλ‖en
q ‖ + h−1‖ωn‖) + ‖εn+1

p − εn
p‖
)
‖ψh‖

≤
(
Cμ(τh−

3
2 �en

u� + τh−
1
2 �en

p � + τλ‖en
q ‖ + λ‖εn

p‖ + h−1‖ωn‖) + ‖εn+1
p − εn

p‖
)
‖ψh‖ (4.14)

where we have used Lemma 4.6 in the last inequality. We see that

λ‖εn
p‖ + h−1‖ωn‖ + ‖εn+1

p − εn
p‖ ≤ C(τ2 + h2). (4.15)

The proof is completed by using the estimate (4.15) and substituting ϕh = en+1
p − en

p into (4.14). �

Step 1: To prove ‖en
u‖ ≤ C(τ2 + h2).

Substitute ϕh = en
u into (4.6) and use (4.5). It follows that

‖en+1
u ‖2 − ‖en

u‖2 + ταu�en
u�2 + τ2αup[en

u, e
n
p ] +

τ3αp

2
�en

p �2 = ‖en+1
u − en

u − τen
p‖2 + γu,

where γu = −2τ(εn
p , e

n
u) − 2τ2(εn

q , e
n
u) + 2τ2(εn

p , e
n
p )− τ3(εn

q , e
n
p ) + (εn+1

u − εn
u, e

n
u) + (ωn, en

u). Using Lemma 4.4,
one can get an estimate for γu

γu ≤ Cμτ‖en
u‖2 + τC(‖εn

p‖2 + ‖εn
q ‖2) +

1
τ
‖εn+1

u − εn
u‖2 +

1
τ
‖ω‖2 ≤ Cμτ‖en

u‖2 + C(τ5 + τh4).

Hence, with the estimate above, by using Lemma 4.7, we get

‖en+1
u ‖2 + τ(αu − Cμλ)�en

u�2 + τ2αup[en
u, e

n
p ] + τ3

(αp

2
− Cμλ

) �en
p �2 ≤ (1 + τCμ)‖en

u‖2 + C(τ5 + τh4). (4.16)

Case 1: When λ is small and αu = αp = +1, all the jump terms can be removed to yield a much simpler
inequality

‖en+1
u ‖2 ≤ (1 + τCμ)‖en

u‖2 + C(τ5 + τh4). (4.17)
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Note that e0u = 0. (4.16) implies
‖en

u‖ ≤ C(τ2 + h2). (4.18)

Case 2: When λ is small, αu = +1 and αp = −1, we have

‖en+1
u ‖2 + τ(1 − Cμλ)�en

u�2 + τ3

(
−1

2
− Cμλ

) �en
p �2 ≤ (1 + τCμ)‖en

u‖2 + C(τ5 + τh4). (4.19)

Plug in ψh = en
p in (4.7). It follows that

‖en+1
p ‖2 − ‖en

p‖2 = ‖en+1
p − en

p‖2 − τ2‖en
q ‖2 − ταu�en

p �2 + γp, (4.20)

where γp = −τ2(εn
q , e

n
q ) −H+(ω, en

p ) − (εn+1
p − εn

p , e
n
p ). Note that

γp ≤ τCμ‖en
p‖2 + τ‖εn

q ‖2 +
1
τ
‖εn+1

u − εn
u‖2 +

1
τh2

‖ω‖2 ≤ Cμτ‖en
p‖2 + C(τ5h−2 + τh4).

Hence, using Lemma 4.8, we get

‖en+1
p ‖2 ≤ (1+τCμ)‖en

p‖2+Cμh
−1λ2�en

u�2−τ2(1−Cμλ
2)‖en

q ‖2−τ(1−Cμλ)�en
p �2 +C(τ5h−2+τ4 +h4). (4.21)

(4.19) and (4.21) lead to the following inequality

‖en+1
u ‖2 + τ2‖en+1

p ‖2 ≤ (1 + τCμ)(‖en
u‖2 + τ2‖en

p‖2) + C(τ5 + τh4). (4.22)

Note that ‖e0u‖ = 0, ‖e0p‖ ≤ ‖ε0h‖ ≤ Ch2. Hence we have,

‖en
u‖2 + τ2‖en

p‖2 ≤ C(τ4 + h4), (4.23)

which implies ‖en
u‖ ≤ C(τ2 + h2).

Step 2: We claim that ‖en+1
u − en

u‖ ≤ C(τ3 + τh2).
Note that en+1

u − en
u satisfies the same error equation as that of en

u, except for ‖ωn‖ ≤ Cτ5. Noting also that
‖e1u − e0u‖ = ‖e1u‖ ≤ Cτh2 by estimating (4.6a) directly, we can prove the statement in the same way as that in
Step 1.

Step 3: (4.6) gives that

(en+1
u − en

u − τen
p − τ2

2
en

q , e
n
p ) = −(νn, en

p ), (4.24)

where νn = εn+1
u − εn

u − τεn
p − τ2

2 ε
n
q + ωn. Hence

‖νn‖ ≤ ‖εn+1
u − εn

u‖ + τ‖εn
p +

τ

2
εn

q ‖ + ‖ωn‖ ≤ C(τ3 + τh2).

Rearranging the equality, we have

τ‖en
p‖2 =

(
en+1

u − en
u − τ2

2
en

q , e
n
p

)
− (νn, en

p )

⇒ τ‖en
p‖ ≤ ‖en+1

u − en
u‖ +

τ2

2
‖en

q ‖ + ‖νn‖

⇒ τ(1 − Cμλ)‖en
p‖ ≤ ‖en+1

u − en
u‖ +

τ2

2
‖εn

q ‖ + ‖νn‖,
(4.25)
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where Lemma 4.4 is used in the last step. Using the results in Step 1 and Step 2, one can get

‖en
p‖ ≤ C(τ2 + h2).

Hence by Lemma 4.3,

‖un − un
h‖ ≤ ‖εn

u‖ + ‖en
u‖ ≤ C(τ2 + h2),

‖un
t − pn

h‖ ≤ ‖εn
p‖ + ‖en

p‖ ≤ C(τ2 + h2).

Sketch of the proof for Theorem 4.2. We adopt similar notations as before. By using the same lines as those in
the stability analysis, one can show ‖en

u‖ ≤ C(τ3 +hk+1) and ‖en+1
u −en

u‖ ≤ C(τ4 +τhk+1). This already implies
the error estimate of u. Like what we have done in Step 3 above, τ‖en

p‖ ≤ ‖en+1
u −en

u‖+ τ2

2 ‖en
q ‖+ τ3

6 ‖en
r ‖+‖νn‖,

where νn = εn+1
u − εn

u − τεn
p − τ2

2 ε
n
q − τ3

6 ε
n
r + ωn. We can bound ‖en

p‖ by estimating each term here. �

Remark 4.9. Note that our optimal error estimates are only one-dimensional results. Since there are no proper
Gauss−Radau projections for Pk elements in multidimensions to eliminate the cell boundary terms, one may
lose the optimal order of accuracy when directly applying trace inverse inequalities. As for rectangular meshes
with Qk elements, we may obtain optimal error estimates for the third order schemes using similar arguments
as in the one-dimensional case.

5. Numerical tests

The main purpose of this section is to numerically validate the error estimates in Section 4. We list the error
tables of the second order schemes with fluxes (+,+) and (+,−), and the third order schemes with numerical
fluxes (+,+,+) and (+,−,−). Here (+,+) means αu = +1 and αp = +1. Others are defined analogously. The
piecewise linear polynomial space is used for the second order schemes and the piecewise quadratic polynomial
space is used for the third order schemes. Furthermore, we use the uniform time steps and uniform spatial meshes
for the numerical tests. For two-dimensional problems, the triangular meshes are used and the triangulation is
constructed by adding diagonals linking the left-bottom and right-top vertexes in a uniform square mesh.

5.1. One-dimensional example with constant coefficients

Consider ⎧⎨⎩ut = ux, (x, t) ∈ (0, 2π) × (0, T ),

u(x, 0) = esin(x), x ∈ (0, 2π),
(5.1)

with periodic boundary conditions. The mesh size is chosen as h = 2π/N , where N is the number of cells and
N = 40, 80, 160, 320, 640 are used. We compute up to the time T = π/2, with τ = 0.05h. The numerical results
are listed in Table 1. The convergence is as we have predicted in Section 4.

5.2. One-dimensional example with variable coefficients

Using the same parameters, we solve the following problem with a variable coefficient{
ut = sin2(x) ux, (x, t) ∈ (0, 2π) × (0, T ),

u(x, 0) = sin(x), x ∈ (0, 2π),
(5.2)

where periodic boundary conditions are assumed. The exact solution to (5.2) is u(x, t) = sin
(
cot−1(cot(x) − t)

)
.

Note that our analysis does not cover the problems with variable coefficients in one dimension. This numerical
test is given only for showing the generality of our results. The numerical results are listed in Table 2. One can
observe the designed order of accuracy for all the schemes and for both u and ut.
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Table 1. 1D, constant coefficients, T = π
2 , λ = 0.05.

Scheme N u L2 error Order ut L2 Error order

(+,+)

40 4.3721E-03 – 7.7284E-03 –

80 1.0993E-03 1.99 1.8998E-03 2.02

160 2.7654E-04 1.99 4.7316E-04 2.01

320 6.9407E-05 1.99 1.1824E-04 2.00

640 1.7389E-05 2.00 2.9565E-05 2.00

(+,−)

40 4.3813E-03 – 6.6884E-03 –

80 1.0999E-03 1.99 1.6147E-03 2.05

160 2.7657E-04 1.99 4.0014E-04 2.01

320 6.9409E-05 1.99 9.9854E-05 2.00

640 1.7390E-05 2.00 2.4958E-05 2.00

(+,+, +)

40 9.0552E-05 – 1.8916E-04 –

80 1.1336E-05 3.00 2.4017E-05 2.98

160 1.4173E-06 3.00 3.0286E-06 2.99

320 1.7717E-07 3.00 3.8029E-07 2.99

640 2.2146E-08 3.00 4.7644E-08 3.00

(+,−,−)

40 9.0252E-05 – 1.9211E-04 –

80 1.1327E-05 2.99 2.4465E-05 2.97

160 1.4170E-06 3.00 3.0816E-06 2.99

320 1.7716E-07 3.00 3.8645E-07 3.00

640 2.2146E-08 3.00 4.8377E-08 3.00

Table 2. 1D, variable coefficients, T = π
2 , λ = 0.05.

Scheme N u L2 error Order ut L2 error Order

(+, +)

40 4.3310E-02 – 1.2344E-01 –

80 1.2661E-02 1.77 3.2003E-02 1.95

160 3.4131E-03 1.89 8.6104E-03 1.89

320 8.8808E-04 1.94 2.2432E-03 1.94

640 2.2659E-04 1.97 5.7261E-04 1.97

(+,−)

40 4.3517E-02 – 1.2376E-01 –

80 1.2705E-02 1.78 3.1334E-02 1.98

160 3.4193E-03 1.89 8.3235E-03 1.91

320 8.8883E-04 1.94 2.1586E-03 1.95

640 2.2668E-04 1.97 5.5026E-04 1.97

(+, +, +)

40 6.1574E-03 – 1.1386E-02 –

80 8.8437E-04 2.80 3.0574E-03 1.90

160 1.1798E-04 2.91 4.1416E-04 2.88

320 1.5238E-05 2.95 5.3551E-05 2.95

640 1.9373E-06 2.98 6.8084E-06 2.98

(+,−,−)

40 6.1434E-03 – 1.1103E-02 –

80 8.8038E-04 2.80 2.9849E-03 1.90

160 1.1764E-04 2.90 4.1036E-04 2.86

320 1.5217E-05 2.95 5.3397E-05 2.94

640 1.9360E-06 2.97 6.8012E-06 2.97
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Table 3. 2D, constant coefficients, T = 1, λ = 0.05.

Scheme N × N u L2 error Order ut L2 error Order

(+, +)

20 × 20 1.2879E-01 – 1.8160E-01 –
40 × 40 3.1837E-02 2.02 4.4990E-02 2.01
80 × 80 7.8797E-03 2.01 1.1142E-02 2.01

160 × 160 1.9579E-03 2.01 2.7689E-03 2.01
320 × 320 4.8786e-04 2.00 6.8994e-04 2.00

(+,−)

20 × 20 1.2891E-01 – 1.7886E-01 –
40 × 40 3.1844E-02 2.02 4.4179E-02 2.02
80 × 80 7.8802E-03 2.01 1.0930E-02 2.02

160 × 160 1.9580E-03 2.01 2.7148E-03 2.01
320 × 320 4.8786E-04 2.00 6.7647E-03 2.00

(+,+, +)

20 × 20 2.7288E-03 – 3.8230E-03 –
40 × 40 3.3286E-04 3.04 4.7406E-04 3.01
80 × 80 4.1561E-05 3.00 5.8895E-05 3.01

160 × 160 5.1948E-06 3.00 7.3615E-06 3.00
320 × 320 6.4942E-07 3.00 9.2031E-07 3.00

(+,−,−)

20 × 20 2.7068E-03 – 3.6877E-03 –
40 × 40 3.3274E-04 3.02 4.5206E-04 3.03
80 × 80 4.1550E-05 3.00 5.6536E-05 3.00

160 × 160 5.1941E-06 3.00 7.0576E-06 3.00
320 × 320 6.4938E-07 3.00 8.8436E-07 3.00

5.3. Two-dimensional example with constant coefficients

Consider ⎧⎪⎨⎪⎩ut =
√

2
2

ux +
√

2
2
uy, (x, y, t) ∈ (0, 2π) × (0, 2π) × (0, T ),

u(x, 0) = sin(x+ y), (x, y) ∈ (0, 2π) × (0, 2π),

(5.3)

with periodic boundary conditions. The mesh is constructed by adding diagonals to the uniform square mesh
with N × N elements, where N = 20, 40, 80, 160, 320. We compute up to time T = 1, with τ = 0.05h. The
numerical results are listed in Table 3. Once again, the designed order of accuracy can be observed.

5.4. Two-dimensional example with variable coefficients

We then compute a two-dimensional problem with variable coefficients. Consider⎧⎨⎩ut = (− y

π
+ 1)ux + (

x

π
− 1)uy, (x, y, t) ∈ (0, 2π) × (0, 2π) × (0, T ),

u(x, 0) = e−2(x−π)2−4(y−π)2 , (x, y) ∈ (0, 2π) × (0, 2π),
(5.4)

with periodic boundary conditions. The same parameters are used as that of (5.3), except for the time steps
τ = 0.02h. When calculating the exact solution, we remove the periodic boundary conditions and compute by
tracing the characteristic lines. For general initial inputs, this does cause inconsistency, and the error can be
from the mismatch of both u and βββ outside of the domain. However, since our initial condition is intentionally
chosen as a Gaussian centered at (π, π), which decays quickly near the boundary, the difference between the
exact solution we use and the real exact solution is negligibly small. For simplicity of implementation, we apply
upwind and downwind fluxes in terms of the wind direction at the midpoint of each edge, instead of strictly
using the definition in our analysis. Since the coefficients are smooth, this should cause negligible difference. The
L2 error of u and ut is listed in Table 4. We can observe the designed convergence of u. As for ut, the LW2DG
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Table 4. 2D, variable coefficients, T = 1, λ = 0.02.

Scheme N × N u L2 error Order ut L2 error Order

(+, +)

20 × 20 6.0750E-02 – 2.5668E-02 –
40 × 40 1.6066E-02 1.92 6.0414E-03 2.09
80 × 80 4.0954E-03 1.97 1.4221E-03 2.09

160 × 160 1.0300E-03 1.99 3.4356E-04 2.05
320 × 320 2.5821e-04 2.00 8.4534E-05 2.02

(+,−)

20 × 20 6.0747e-02 – 2.5584e-02 –
40 × 40 1.6067e-02 1.92 6.0305e-03 2.08
80 × 80 4.0956e-03 1.97 1.4201e-03 2.09

160 × 160 1.0301e-03 1.99 3.4311e-04 2.05
320 × 320 2.5821e-04 2.00 8.4422e-05 2.02

(+,+, +)

20 × 20 5.6089e-03 – 6.5544e-03 –
40 × 40 6.4540e-04 3.12 9.3527e-04 2.81
80 × 80 7.4533e-05 3.11 9.4578e-05 3.31

160 × 160 9.0299e-06 3.05 8.2682e-06 3.52
320 × 320 1.1214e-06 3.01 7.0247e-07 3.56

(+,−,−)

20 × 20 5.6014E-03 – 6.5005E-03 –
40 × 40 6.4485E-04 3.12 9.2575E-04 2.81
80 × 80 7.4506E-05 3.11 9.3600E-05 3.31

160 × 160 9.0289E-06 3.04 8.2128E-06 3.51
320 × 320 1.1213E-06 3.01 6.9989E-07 3.55

schemes exhibit a clear second order convergence, and the order of accuracy for the LW3DG schemes are also
close to the third order.

Finally, we remark that, even though the choices of the numerical fluxes may have influence on the specific
types of stability, they only cause minor differences on the L2 error according to our numerical tests.

6. Concluding remarks

We analyze the stability and estimate the error of the Lax–Wendroff discontinuous Galerkin (LWDG) method
for linear scalar conservation laws. Assume uniform or non-increasing time steps, one can choose between upwind
and downwind fluxes for each variable. As we have shown, for both second order LW2DG schemes with P1

elements and third order LW3DG schemes with arbitrary Pk, as long as we use the upwind flux for u, the
scheme will be stable. Furthermore, if we also use the upwind flux for p (which approximates ut), then the
scheme will be strongly stable. On the other hand, if the downwind flux is used for p, then the energy of
the numerical solution will be bounded by the initial energy times a constant, which is independent of the
total time T . In both cases we have a good control of the L2 energy after long time integration. The stability
results can be extended to high dimensions easily for problems with constant coefficients. For variable coefficient
problems with a divergence-free condition ∇·βββ(x) = 0, the previous results still hold for the third order schemes.
But for the second order schemes, we can only prove the stability in a weaker sense, namely ‖un

h‖ ≤ C‖u0
h‖

where C may depend on T .
For the error estimates, we analyze one-dimensional problems with a smooth solution. We obtain optimal

error estimates for both u and ut. Once we choose the upwind flux for u, whatever fluxes we use for the remaining
variables, our error estimates will hold. The LW2DG scheme with P1 elements is of the second order accuracy,
and the LW3DG scheme with P2 elements is of the third order accuracy.

Even though we have considered only scalar problems in this paper, the analysis can be easily generalized
to one-dimensional linear hyperbolic systems and multidimensional symmetric linear systems. The method also
generalizes to nonlinear scalar equations or systems, however stability analysis is expected to be difficult. On the
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other hand, error estimates for smooth solutions should carry through, along the lines in [12, 18] for RKDG
methods.

Appendix A. Relationships between RKDG and LWDG methods

We only consider the third order temporal discretization. The relationships of the second order schemes follow
from the same lines.

Consider the time dependent problem uuut = Luuu. One can apply Lax–Wendroff procedure to write down a
semi-discretized scheme with respect to time.

uuun+1 = uuun + τpppn +
τ2

2
qqqn +

τ3

6
Lqqqn,

pppn = Luuun, qqqn = Lpppn,

where τ is the time step.
In general, to obtain a fully discretized scheme, one can replace L with different consistent spatial discretiza-

tion operators. For example, for the DG method, one can apply different numerical fluxes, and the final scheme
will still approximate the original equation.

Now we assume the same spatial discretization LN is used for each L. Then the scheme becomes

uuun+1 = uuun + τpppn +
τ2

2
qqqn +

τ3

6
LNqqq

n,

pppn = LNuuu
n, qqqn = LNppp

n, (A.1)

which corresponds to the truncated Taylor expansion for the semi-discretized scheme uuut = LNuuu.
Assume LN to be linear and independent of t. If the third order SSP Runge–Kutta method is applied for

time stepping, one will get

uuu(1) = uuun + τLNuuu
n = uuun + τpppn,

uuu(2) =
3
4
uuun +

1
4
(uuu(1) + τLNuuu

(1))

=
3
4
uuun +

1
4
(uuun + τpppn + τLNuuu

n + τ2LNppp
n)

= uuun +
τ

2
pppn +

τ2

4
qqqn,

uuun+1 =
1
3
uuun +

2
3
(uuu(2) + τLuuu(2))

=
1
3
uuun +

2
3

(
uuun +

τ

2
pppn +

τ2

4
qqqn + τLNuuu

n +
τ2

2
LNppp

n +
τ3

4
LNqqq

n

)
= uuun + τpppn +

τ2

2
qqqn +

τ3

6
LNqqq

n. (A.2)

After comparing (A.1) and (A.2), we will see, if the same spatial discretization LN is used, with LN being
linear and independent of time t, then the fully discretized schemes obtain from the Lax–Wendroff procedure
and the Runge–Kutta method are equivalent after one full time step.

In particular, let LN corresponds to the DG discretization for multidimensional system uuut =
∑d

i=1(Ai(xxx)uuu)xi .
One can check this specific LN also satisfies the assumptions above. If this LN is used through out the Lax–
Wendroff procedure, then the scheme will be equivalent to the corresponding RKDG scheme.
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Appendix B. Proofs of several lemmas

B.1. Proof of Lemma 3.9

Proof. We restore the integral notation in this proof.

(1) In H−
βββ , w = w+ if βββ ·nnn < 0, w = w− if βββ ·nnn > 0. Hence

H−
βββ (w,w) =

∑
K∈K

1
2

∫
K

(βββ · ∇)w2dx−
∑
K∈K

∫
∂K

w−wβββ ·nnndl

=
∑
K∈K

∫
∂K

(
1
2
w − w−

)
wβββ ·nnndl

=
∑
e∈E

∫
e

−1
2
(w−)2|βββ ·nnn| −

(
1
2
w+ − w−

)
w+|βββ ·nnn|dl

=
∑
e∈E

∫
e

−1
2
(w− − w+)2|βββ ·nnn|dl

= −1
2
�w�2βββ . (B.1)

(2) Since ∇ · βββ = 0, (βββ · ∇)v = ∇ · (βββv)

H−
βββ (w, v) =

∑
K∈K

∫
K

w∇ · (βββv)dx −
∑
K∈K

∫
∂K

w−vβββ ·nnndl

= −
∑
K∈K

∫
K

v(βββ · ∇)wdx −
∑
K∈K

∫
∂K

(w− − w)vβββ ·nnndl

= −
∑
K∈K

∫
K

v(βββ · ∇)wdx +
∑
e∈E

∫
e

(w− − w+)v+|βββ ·nnn|dl

= −
∑
K∈K

∫
K

v(βββ · ∇)wdx +
∑
K∈K

∫
∂K

wv+βββ ·nnndl

= −H+
βββ (v, w). (B.2)

(3)

H−
βββ (w, v) =

∑
K∈K

∫
K

w(βββ · ∇)vdx −
∑
K∈K

∫
∂K

w−vβββ ·nnndl

=
∑
K∈K

∫
K

w(βββ · ∇)vdx −
∑
K∈K

∫
∂K

w+vβββ ·nnndl +
∑
K∈K

∫
∂K

[w]vβββ ·nnndl

= H+
βββ (w, v) +

∑
e∈E

∫
e

[w](v− − v+)|βββ ·nnn|dl

= H+
βββ (w, v) − [w, v]βββ . (B.3)

�
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B.2. Proof of Lemma 3.10

Proof.

(1) According to (B.2),

H−
βββ (w, v) = −

∑
K∈K

∫
K

v(βββ · ∇)wdx −
∑
e∈E

∫
e

[w]v+|βββ ·nnn|dl.
(B.4)

Therefore, by the Cauchy-Schwartz inequality,

|H−
βββ (w, v)| ≤

∑
K∈K

‖v‖K‖(βββ · ∇)w‖K +

√∑
e∈E

∫
e

[w]2|βββ ·nnn|dl
√∑

e∈E

∫
e

(v+)2|βββ ·nnn|dl

≤ ‖(βββ · ∇)w‖‖v‖ + Cβββ�w�βββ√∑
e∈E

∫
e

(v+)2dl.
(B.5)

We would like to bound the term
√∑

e∈E
∫

e(v
+)2dl with ‖v‖. However, v+ will no longer be a polynomial if

βββ(xxx) ·nnn changes sign along the edge, and in this case one can not directly apply the trace inverse inequality.
Therefore, we introduce vl and vr to denote the left and right limit of v along the edge. Then it gives

|H−
βββ (w, v)| ≤ ‖(βββ · ∇)w‖‖v‖ + Cβββ�w�βββ√∑

e∈E

∫
e

2(vl)2 + 2(vr)2dl,

≤ (‖(βββ · ∇)w‖ + Cμ,βββh
− 1

2 �w�βββ)‖v‖. (B.6)

(2) Use H−
βββ (w, v) = −H+

βββ (v, w). The remaining steps are similar. �

B.3. Proof of Lemma 3.12

Proof. For simplicity, we drop all the subscripts h and superscripts n. Let xxx0 be the centroid of the element K
in d-dimensions. Denote βββ0 = βββ(xxx0). Let P1(K) = V0 + V1 + V2, where

V0 = {y ∈ P1(K)|y is a constant},
V1 = {y ∈ P1(K)|(y, z)K = 0, ∀z ∈ V0 and (βββ0 · ∇)y = 0},
V2 = {y ∈ P1(K)|(y, z)K = 0, ∀z ∈ V0 ∪ V1}.

Then we can assume p = p0φ
0+p1φ

1+p2φ
2, where φi ∈ Vi and ‖φi‖K = 1. Note that ∇φ0 = 0 and (βββ0 ·∇)φ1 = 0.

Using the inverse inequality, we get

‖(βββ · ∇)p‖K ≤ ‖p2(βββ · ∇)φ2‖K + ‖p1((βββ − βββ0) · ∇)φ1‖K

≤ Cμ,βββh
−1|p2|‖φ2‖K + Cμh

−1‖βββ − βββ0‖L∞ |p1|‖φ1‖K

≤ Cμ,βββh
−1|p2| + Cμh

−1‖βββ − βββ0‖L∞ |p1|. (B.7)

Denote e+ = {x ∈ ∂K|βββ(xxx) ·nnn > 0}, and e− = ∂K\e+. We integrate by parts to get p2.

p2 = (p, φ2)K = −(u, (βββ · ∇)φ2)K + 〈u+, φ2βββ ·nnn〉∂K

= ((βββ · ∇)u, φ2)K − 〈u, φ2βββ ·nnn〉∂K + 〈u+, φ2βββ ·nnn〉∂K

= ((βββ · ∇)u, φ2)K − 〈u−, φ2|βββ ·nnn|〉e+ + 〈u+, φ2|βββ ·nnn|〉e− + 〈u+, φ2βββ ·nnn〉∂K

= (((βββ − βββ0) · ∇)u, φ2)K + 〈[u], φ2|βββ ·nnn|〉e+ ,
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where we have used the fact (βββ0 · ∇)u ∈ V0. By the trace inverse inequality,

|p2| ≤ Cμ,βββ�u�βββ,∂K‖φ2‖∂K + Cμh
−1‖βββ − βββ0‖L∞‖u‖K

≤ Cμ,βββh
− 1

2 �u�βββ,∂K + Cμh
−1‖βββ − βββ0‖L∞‖u‖K . (B.8)

Similarly, one can show
|p1| ≤ Cμ,βββh

− 1
2 �u�βββ,∂K + Cμh

−1‖βββ − βββ0‖L∞‖u‖K . (B.9)

(i) When βββ is a constant, βββ − βββ0 = 0. Therefore, ‖(βββ · ∇)p‖K ≤ Cμ,βββh
−1|p2| ≤ Cμ,βββh

− 3
2 �u�βββ,∂K . (ii) For

non-constant βββ, by the regularity of βββ, ‖βββ − βββ0‖L∞ ≤ Cβββh. Therefore

‖(βββ · ∇)p‖K ≤ Cμ,βββh
−1|p2| + Cμ,βββ |p1|

|p2| ≤ Cμ,βββh
− 1

2 �u�βββ,∂K + Cμ,βββ‖u‖K

|p1| ≤ Cμ,βββh
− 1

2 �u�βββ,∂K + Cμ,βββ‖u‖K,

which implies ‖(βββ · ∇)p‖K ≤ Cμ,βββh
− 3

2 �u�βββ,∂K + Cμ,βββh
−1‖u‖K . �
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