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BLOCH WAVES IN CRYSTALS AND PERIODIC HIGH CONTRAST MEDIA

Robert Lipton1 and Robert Viator Jr.1

Abstract. Analytic representation formulas and power series are developed describing the band struc-
ture inside periodic photonic and acoustic crystals made from high contrast inclusions. Central to this
approach is the identification and utilization of a resonance spectrum for quasi-periodic source free
modes. These modes are used to represent solution operators associated with electromagnetic and
acoustic waves inside periodic high contrast media. Convergent power series for the Bloch wave spec-
trum is recovered from the representation formulas. Explicit conditions on the contrast are found that
provide lower bounds on the convergence radius. These conditions are sufficient for the separation of
spectral branches of the dispersion relation.
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1. Introduction

Recent decades have seen intense interest in wave propagation through high contrast periodic media. These
materials have been studied both theoretically and experimentally and have been shown to exhibit unique
optical, acoustic, and elastic properties [17, 29]. Here we develop analytic representation formulas and power
series for dispersion relations describing wave propagation inside periodic crystals made from high contrast
inclusions. These tools are applied to investigate the propagation band structure as a function of the crystal
geometry.

Consider a Bloch wave h(x) with Bloch eigenvalue ω2 propagating through a two or three dimensional crystal
lattice characterized by the periodic coefficient a(x) = a(x+ p), p ∈ Zd, d = 2, 3, with unit cell Y = (0, 1]d. The
Bloch wave satisfies the differential equation,

−∇ · (a(x)∇h(x)) = ω2h(x), x ∈ R
d, d = 2, 3 (1.1)

together with the α quasi-periodicity condition h(x + p) = h(x)eiα·p. Here α lies in the first Brillouin
zone of the reciprocal lattice given by Y � = (−π, π]d. Equation (1.1) describes acoustic wave propagation
through crystals and transverse magnetic (TM) wave propagation through a two dimensional photonic crystal.
We examine Bloch wave propagation through high contrast crystals made from periodic configurations of two
materials. One material occupies disjoint inclusions and is completely contained within each period cell and
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surrounded by the second material. The coefficient is taken to be 1 inside the inclusions and k > 0 outside. The
domain occupied by the union of all the inclusions D1, D2, . . . , Dn inside Y is denoted by D, see Figure 1. The
coefficient is specified on the unit period cell by a(x) = (kχY \D(x) + χD(x)) where χD and χY \D are indicator
functions for the sets D and Y \D and are extended by periodicity to Rd. In this paper we consider periodic
crystals made from finite collections of separated inclusions each with C1,γ boundary.

For each α ∈ Y � the Bloch eigenvalues ω2 are of finite multiplicity and denoted by λj(k, α), j ∈ N. We
develop power series expansions for each branch of the dispersion relation

λj(k, α) = ω2, j ∈ N (1.2)

that are valid for k in a neighborhood of infinity.
To proceed we complexify the problem and consider k ∈ C. Now a(x) takes on complex values inside Y \D

and the divergence form operator −∇ · (kχY \D + χD)∇ is no longer uniformly elliptic. Our approach develops
an explicit representation formula for −∇ · (kχY \D + χD)∇ that holds for complex values of k. We identify
the subset z = 1/k ∈ Ω0 of C where this operator is invertible. The explicit formula shows that the solution
operator (−∇· (kχY \D +χD)∇)−1 may be regarded more generally as a meromorphic operator valued function
of z for z ∈ Ω0 = C \ S, see Section 4 and Lemma 4.1. Here the set S is discrete and consists of poles lying on
the negative real axis with only one accumulation point at z = −1. For the problem treated here we expand
about z = 0 and the distance between z = 0 and the set S is used to bound the radius of convergence for the
power series. The spectral representation for −∇ · (kχY \D + χD)∇ follows from the existence of a complete
orthonormal set of quasi-periodic functions associated with the quasi-periodic resonances of the crystal, i.e.,
quasi periodic functions v and real eigenvalues λ for which

−∇ · (χD)∇v = −λΔv. (1.3)

These resonances are shown to be connected to the spectra of Neumann−Poincaré operators associated with
quasi-periodic double layer potentials. For α = 0 these are the well known electrostatic resonances identified
in [4,5,24,26]. Both Neumann−Poincaré operators and associated electrostatic resonances have been the focus of
theoretical investigations [18,22] and applied in analysis of plasmonic excitations for suspensions of noble metal
particles [23] and electrostatic breakdown [3]. The explicit spectral representation for the operator −∇·(kχY \D+
χD)∇ is crucial for elucidating the interaction between the contrast k and the quasi-periodic resonances of the
crystal, see Theorem 2.5, (2.26) and (2.27). The spectral representation is applied to analytically continue the
band structure λj(k, α) = ω2, j ∈ N, α ∈ Y � for k onto C, see Theorem 3.1. Application of the contour integral
formula for spectral projections [19, 20, 28] delivers an analytic representation formula for the band structure,
see Section 4. We apply perturbation theory in Section 4 together with a calculation provided in Section 12



BLOCH WAVES IN CRYSTALS AND PERIODIC HIGH CONTRAST MEDIA 891

to find an explicit formula for the radii of convergence for the power series λj(k, α) about 1/k = 0. The formula
shows that the radius of convergence and separation between different branches of the dispersion relation are
determined by: 1) the distance of the origin to the nearest pole z∗ of (−∇ · (kχY \D + χD)∇)−1, and 2) the
separation between distinct eigenvalues in the z = 1/k → 0 limit, see Theorems 7.1 and 7.2. These theorems
provide conditions on the contrast guaranteeing the separation of spectral bands that depend explicitly upon
z∗, j ∈ N and α ∈ Y �. Error estimates for series truncated after N terms follow directly from the formulation.

Next we apply these results and develop bounds on the convergence radii for a wide class of inclusions called
buffered geometries. A buffered geometry is described by any randomly distributed collection of separated inclu-
sions with a prescribed minimum distance of separation between inclusions, see Section 8. For these geometries
we demonstrate that the poles of (−∇ · (kχY \D + χD)∇)−1 associated with the quasi-periodic spectra are
bounded away from the origin uniformly for α ∈ Y ∗. The quasi-periodic spectra {μi}i∈N associated with a
buffered geometry is shown to lie inside the interval −1/2 < μ− ≤ μi ≤ 1/2, for every α ∈ Y �, see Theorem 8.1
and Corollary 8.2. The lower bound μ− is independent of α ∈ Y � and depends explicitly on the geometry of
the inclusions expressed in terms of the norm of the Dirichlet to Neumann map of each inclusion shape. This
control insures that the associated poles of (−∇ · (kχY \D + χD)∇)−1 are uniformly bounded away from the
origin and insures a nonzero radius of convergence for the power series representation for the band structure
λj(k, α) = ω2 for each j ∈ N and α ∈ Y �, see Theorems 7.1 and 7.2. In Section 9 we apply these observations
to periodic assemblages of buffered disks. Here a buffered disk assemblage is characterized by a period filled
with a randomly distributed collection of N disks of equal radius separated by a minimum distance. For this
case we recover explicit formulas for the radii of convergence of the power series expansion for λj(k, α) and
explicit conditions for the separation of spectral branches in terms of the minimum distance between disks in
the assemblage. It is important to emphasize that the results on separation of spectra and convergence of power
series are not asymptotic results but are valid for an explicitly delineated regime of finite contrast.

Earlier work on effective properties for periodic and stationary random media [4,15,25] show that the effective
conductivity for a composite medium is an analytic function of the contrast. The effective conductivity function
is seen to be nonzero and analytic off the negative real axis and is determined by its singularities and zeros.
Estimates for effective properties are obtained from partial knowledge of the singularities and zeros. The work
of [6] develops power series solutions to bound the poles and zeros of the effective conductivity function. This
provides bounds on the effective conductivity function for the class of inclusion geometries discussed here.

Subsequent research activity has provided insights on the frequency spectrum for high contrast periodic media.
Rigorous analysis establishing existence of band gaps in the limit of high contrast is developed in [10–12]. There
an asymptotic analysis is carried out for establishing the existence of band gaps for photonic and acoustic
crystals made from thin walled cubic lattices containing a low permittivity material such as air. Band gaps are
shown to appear in the limit as walls become thin and the permittivity of the wall increases to infinity. The
work [16] considers a high contrast problem but with periodically distributed inclusions embedded inside a host
material. The coefficient associated with the partial differential operator inside the host material is very large
and the band-gap structure is analyzed in the limit when the coefficient is sent to infinity. Here the geometry
is kept fixed for all values of the coefficient and it is shown asymptotically that band gaps emerge as this
coefficient approaches infinity. This phenomena is shown to be generic and holds for a very general class of
inclusion shapes. Asymptotic expansions for Bloch eigenvalues are developed and applied to this setting in [2].
The expansions are in terms of the contrast and developed using a boundary integral perturbation approach
based on the generalized Rouché’s Theorem [2]. The approach provides explicit asymptotic expressions for the
band structure in the high contrast limit.

Along related lines the work of [30] examines the frequency spectrum of high contrast periodic media in the
high contrast sub-wavelength limit. For periods of size d the coefficient inside the included phase is proportional
to d2 and a multi branched quasi-static dispersion relation emerges for the Bloch spectra in the limit d → 0,
see [30]. This effect is also observed for models of two dimensional electromagnetics [9] and is responsible for
the generation of artificial magnetism. Recent work applies a power series approach to recover this spectra [14],
as well as dispersion relations associated with wave transport inside plasmonic crystals [13] and for periodic
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crystals of micro-resonators [27]. Power series for the recovery of dispersion relations that rigorously demonstrate
backwards wave behavior across selected frequency intervals are developed in [7]. In that work the electrostatic
spectrum for a three phase problem is used to develop an analytic representation formula for determining the
existence or non existence of pass bands. The techniques developed in the power series based approaches listed
above are distinct from those developed here and instead work directly with coefficients obtained from formal
power series expansions. These approaches apply majoring series techniques to establish convergence of the
formal series.

The paper is organized as follows: In the next section we introduce the Hilbert space formulation of the
problem and the variational formulation of the quasi-static resonance problem. The completeness of the eigen-
functions associated with the quasi-static spectrum is established and a spectral representation for the operator
−∇· (kχY \D +χD)∇ is obtained. These results are collected and used to continue the frequency band structure
into the complex plane, see Theorem 3.1 of Section 3. Spectral perturbation theory [21] is applied to recover
the power series expansion for Bloch spectra in Section 4. The leading order spectral theory is developed for
quasi-periodic α �= 0 and periodic α = 0 problems in Sections 5 and 6. The main theorems on radius of conver-
gence and separation of spectra given by Theorems 7.1 and 7.2 are presented in Section 7. The class of buffered
inclusions is introduced in Section 8 and the explicit radii of convergence for a random suspension of buffered
disks is presented in Section 9. Explicit formulas for each term of the power series expansion is recovered and ex-
pressed in terms of layer potentials in Section 10. In Section 11 the explicit formula for the first order correction
in the power series is presented in the form of the Dirichlet energy of the solution of a transmission boundary
value problem. This formula follows from the layer potential representation for the first term and agrees with
the first order correction obtained in the work of [2]. The explicit formulas for the convergence radii are derived
in Section 12 as well as hands on proofs of Theorems 7.1 and 7.2 and the explicit error estimates for the series
truncated after N terms.

2. Hilbert space setting, quasi-periodic resonances and representation
formulas

We denote the spaces of all α quasi-periodic complex valued functions belonging to L2
loc(R

d) by L2
#(α, Y )

and the L2 inner product over Y is written

(u, v) =
∫

Y

uv dx. (2.1)

For α �= 0 the eigenfunctions h for (1.1) belong to the space

H1
#(α, Y ) =

{
h ∈ H1

loc(R
d) : h is α quasiperiodic

}
. (2.2)

The space H1
#(α, Y ) is a Hilbert space under the inner product

〈u, v〉 =
∫

Y

∇u(x) · ∇v̄(x)dx. (2.3)

When α = 0, the pair h(x) = 1, ω2 = 0 is a solution to (1.1). For this case the remaining eigenfunc-
tions associated with nonzero eigenvalues are orthogonal to 1 in the L2(Y ) inner product. These eigenfunctions
are periodic and belong to L2

loc(R
d). The set of Y periodic functions with zero average over Y belonging to

L2
loc(R

d) is denoted by L2
#(0, Y ). The periodic eigenfunctions of (1.1) associated with nonzero eigenvalues

belong to the space
H1

#(0, Y ) = {h ∈ H1
loc(R

d) : h is periodic,
∫

Y
h dx = 0}. (2.4)

The space H1
#(0, Y ) is also Hilbert space with the inner product 〈u, v〉 defined by (2.3).
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For any k ∈ C, the the variational formulation of the eigenvalue problem (1.1) for h and ω2 is given by

Bk(h, v) = ω2(h, v) (2.5)

for all v in H1
#(α, Y ) where Bk : H1

#(α, Y ) ×H1
#(α, Y ) −→ C is the sesquilinear form

Bk(u, v) = k

∫
Y \D

∇u(x) · ∇v̄(x)dx +
∫

D

∇u(x) · ∇v̄(x)dx. (2.6)

The linear operator Tα
k : H1

#(α, Y ) −→ H1
#(α, Y ) associated with Bk is defined by

〈Tα
k u, v〉 := Bk(u, v). (2.7)

In what follows we decompose H1
#(α, Y ) into invariant subspaces of source free modes and identify the

associated quasi-periodic resonance spectra. This decomposition will provide an explicit spectral representation
for the operator Tα

k , see Theorem 2.5. We first address the case α ∈ Y � \ {0}. Let W1 ⊂ H1
#(α, Y ) be the

completion in H1
#(α, Y ) of the subspace of functions with support away from D, and let W2 ⊂ H1

#(α, Y ) be
the subspace of functions in H1

0 (D) extended by zero into Y . Clearly W1 and W2 are orthogonal subspaces of
H1

#(α, Y ), so define W3 := (W1 ⊕W2)⊥. We therefore have

H1
#(α, Y ) = W1 ⊕W2 ⊕W3. (2.8)

The orthogonal decomposition and integration by parts shows that elements u ∈ W3 are harmonic separately
in D and Y \D.

Now consider α = 0 and decompose H1
#(0, Y ). Let W1 ⊂ H1

#(0, Y ) be the completion in H1
#(0, Y ) of the

subspace of functions with support away from D. Here let H̃1
0 (D) denote the subspace of functions H1

0 (D)
extended by zero into Y \ D and let 1Y be the indicator function of Y . We define W2 ⊂ H1

#(0, Y ) be the
subspace of functions given by

W2 =
{
u = ũ−

(∫
D

ũdx
)

1Y | ũ ∈ H̃1
0 (D)

}
. (2.9)

Clearly W1 and W2 are orthogonal subspaces of H1
#(0, Y ), and W3 := (W1 ⊕W2)⊥. As before we have

H1
#(0, Y ) = W1 ⊕W2 ⊕W3 (2.10)

and W3 is identified with the subspace of H1
#(0, Y ) functions that are harmonic inside D and Y \D respectively.

The orthogonality between W2 and W3 follows from the identity
∫

∂D ∂nw ds = 0 for w ∈ W3. We summarize
with the following observation.

Lemma 2.1. For every α ∈ Y �, if u ∈W3 then u is harmonic in Y \D and D separately.

To set up the spectral analysis observe that Lemma 2.1, together with uniqueness of traces onto ∂D of functions
in H1

#(α, Y ) for α ∈ Y ∗, implies that elements of W3 can be represented in terms of single layer potentials
supported on ∂D. We introduce the d-dimensional α-quasi-periodic Green’s function, d = 2, 3 given by, see,
e.g., [1],

Gα(x, y) = −
∑
n∈Zd

ei(2πn+α)·(x−y)

|2πn+ α|2 for α �= 0 (2.11)

and the periodic Green’s function given by

G0(x, y) = −
∑

n∈Zd\{0}

ei2πn·(x−y)

|2πn|2 for α = 0. (2.12)
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Let H1/2(∂D) be the fractional Sobelev space on ∂D defined in the usual way, and denote its dual by
(H1/2(∂D))∗ = H−1/2(∂D). For ρ ∈ H−1/2(∂D), and α ∈ Y � define the single layer potential

SD[ρ](x) =
∫

∂D

Gα(x, y)ρ(y)dσ(y), x ∈ Y. (2.13)

It follows from [8], that for any ρ ∈ H−1/2(∂D)

ΔSDρ = 0 in D and Y \D,
SDρ |+∂D = SDρ |−∂D,

∂

∂ν
SDρ |±∂D = ±1

2
ρ+ (K̃−α

D )∗ρ, (2.14)

where ν is the outward directed normal vector on ∂D and (K̃−α
D )∗ is the Neumann Poincaré operator defined by

(K̃−α
D )∗ρ(x) = p. v.

∫
∂D

∂Gα(x, y)
∂ν(x)

ρ(y)dσ(y), x ∈ ∂D, (2.15)

and K̃α
D is the Neumann Poincaré operator

K̃α
Dρ(x) = p. v.

∫
∂D

∂Gα(y, x)
∂ν(y)

ρ(y)dσ(y), x ∈ ∂D. (2.16)

In what follows we assume the boundary ∂D is C1,γ , for some γ > 0. Here the layer potentials K̃α
D, and

(K̃−α
D )∗ are continuous linear mappings from L2(∂D) to L2(∂D) and compact, since ∂Gα(x,y)

∂ν(x) is a continuous
kernel of order d− 2 in dimensions d = 2, 3. The operator SD is a continuous linear map from H−1/2(∂D) into
H1

#(α, Y ) and we define S∂Dρ = SDρ |∂D for all ρ ∈ H−1/2(∂D). Here S∂D : H−1/2(∂D) −→ H1/2(∂D) is
continuous and invertible, see [8].

One readily verifies the symmetry

Gα(x, y) = G−α(y, x), (2.17)

and application delivers the Plemelj symmetry for K̃−α, (K̃−α)∗ and S∂D as operators on L2(∂D) given by

K̃−αS∂D = S∂D(K̃−α)∗. (2.18)

Moreover as seen in [22] the operator −S∂D is positive and selfadjoint in L2(∂D) and in view of (2.18) (K̃−α
D )∗

is a compact operator on H−1/2(∂D).
Let G : W3 −→ H1/2(∂D) be the trace operator, which is bounded and onto.

Lemma 2.2. SD : H−1/2(∂D) −→ W3 is a one-to-one, bounded linear map with bounded inverse S−1
D = S−1

∂DG.

Proof. Let ρ ∈ H−1/2(∂D), and set f = SDρ. Then by the first equation of (2.14), f is harmonic in D and
Y \D separately, and so for any v1 ∈ W1 and v2 ∈W2 we have

〈f, v1〉 = 0 = 〈f, v2〉. (2.19)

But W3 = (W1 ⊕W2)⊥, so f = SDρ ∈ W3 for every ρ ∈ H−1/2(∂D).
Now suppose u ∈ W3, and consider Gu = u |∂D∈ H1/2(∂D). For all x ∈ Y define w(x) = SD(S−1

∂DGu).
Since u,w ∈ W3, it follows that w − u ∈ W3 as well. Since Gu = Gw, we have that G(w − u) = 0, and so
w− u ∈ (W1 ⊕W2). But W3 = (W1 ⊕W2)⊥, so w = u as desired. The boundedness follows from the continuity
of S−1

∂D and G. �
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We introduce an auxiliary operator T : W3 −→W3, given by the sesquilinear form

〈Tu, v〉 =
1
2

∫
Y \D

∇u(x) · ∇v̄(x)dx − 1
2

∫
D

∇u(x) · ∇v̄(x)dx. (2.20)

The next theorem will be useful for the spectral decomposition of Tα
k and in the proof of Theorem 7.3.

Theorem 2.3. The linear map T defined in equation (2.20) is given by

T = SD(K̃−α
D )∗S−1

D

and is compact and self-adjoint.

Proof. For u, v ∈ W3, consider

〈SD(K̃−α
D )∗S−1

D u, v〉 =
∫

Y

∇[SD(K̃−α
D )∗S−1

D u] · ∇v̄. (2.21)

Since ΔSDρ = 0 in D and Y \D for any ρ ∈ H−1/2(∂D), an integration by parts yields

〈SD(K̃−α
D )∗S−1

D u, v〉 =
∫

∂D

v̄

(
∂[SD(K̃−α

D )∗S−1
D u]

∂ν
|−∂D −∂[SD(K̃−α

D )∗S−1
D u]

∂ν
|+∂D

)
dσ.

Applying the jump conditions from (2.14) yields

〈SD(K̃−α
D )∗S−1

D u, v〉 = −
∫

∂D

(K̃−α
D )∗S−1

D uv̄dσ. (2.22)

Note that by the same jump conditions

(K̃−α
D )∗S−1

D u =
1
2

(
∂u

∂ν
|−∂D +

∂u

∂ν
|+∂D

)
· (2.23)

Application of (2.23) to equation (2.22) and an integration by parts yields the desired result. Compactness
follows directly from the properties of SD and (K̃−α)∗. �

Rearranging terms in the weak formulation of (1.3) and writing μ = 1/2−λ delivers the equivalent eigenvalue
problem for quasi-periodic electrostatic resonances.

〈Tu, v〉 = μ〈u, v〉, u, v ∈W3.

Since T is compact and self adjoint on W3, there exists a countable subset {μi}i∈N of the real line with a single
accumulation point at 0 and an associated family of orthogonal finite-dimensional projections {Pμi}i∈N such
that 〈 ∞∑

i=1

Pμiu, v

〉
= 〈u, v〉, u, v ∈ W3

and 〈 ∞∑
i=1

μiPμiu, v

〉
= 〈Tu, v〉, u, v ∈ W3.

Moreover, it is clear by (2.20) that

−1
2
≤ μi ≤ 1

2
·

The upper bound 1/2 is the eigenvalue associated with the eigenfunction Π ∈ H1
#(α, Y ) such that Π = 1 in

D and is harmonic on Y \ D. In Section 8 an explicit lower bound μ− is identified such that the inequality
−1/2 < μ− ≤ μi, holds for a generic class of geometries uniformly with respect to α ∈ Y �.
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Lemma 2.4. The eigenvalues {μi}i∈N of T are precisely the eigenvalues of the Neumann−Poincaré operator
(K̃−α

D )∗ associated with quasi-periodic double layer potential restricted to ∂D.

Proof. If a pair (μ, u) belonging to (−1/2, 1/2]×W3 satisfies Tu = μu then SD(K̃−α
D )∗S−1

D u = μu. Multiplication
of both sides by S−1

D shows that S−1
D u is an eigenfunction for function for (K̃−α

D )∗ associated with μ. Suppose
the pair (μ,w) belongs to (−1/2, 1/2]×H−1/2(∂D) and satisfies (K̃−α

D )∗w = μw. Since the trace map from W3

to H1/2(∂D) is onto then there is a u in W3 for which w = S−1
D u and (K̃−α

D )∗S−1
D u = μS−1

D u. Multiplication of
this identity by SD shows that u is an eigenfunction for T associated with μ. �

Finally, we see that if u1 ∈W1 and u2 ∈W2, then

〈Tu1, v〉 =
1
2
〈u1, v〉 ,

〈Tu2, v〉 = −1
2
〈u2, v〉

for all v ∈ H1
#(α, Y ).

Let Q1, Q2 be the orthogonal projections of H1
#(α, Y ) onto W1 and W2 respectively, and define P1 :=

Q1 + P1/2, P2 := Q2. Here P1/2 is the projection onto the one dimensional subspace spanned by the function
Π ∈ H1

#(α, Y ). Then {P1, P2} ∪ {Pμi}− 1
2<μi<

1
2

is an orthogonal family of projections, and

〈
P1u+ P2u+

∑
− 1

2<μi<
1
2

Pμiu, v

〉
= 〈u, v〉

for all u, v ∈ H1
#(α, Y ).

We now recover the spectral decomposition for Tα
k associated with the sesqualinear form (2.7).

Theorem 2.5. The linear operator Tα
k : H1

#(α, Y ) −→ H1
#(α, Y ) associated with the sesqualinear form Bk is

is given by
〈Tα

k u, v〉 = 〈kP1u+ P2u+
∑

− 1
2<μi<

1
2

[k(1/2 + μi) + (1/2 − μi)]Pμiu, v〉

for all u, v ∈ H1
#(α, Y ).

Proof. For u, v ∈ H1
#(α, Y ) we have

Bk(Pμiu, v) = k

∫
Y \D

∇Pμiu · ∇v̄ +
∫

D

∇Pμiu · ∇v̄.

Since Pμiu is an eigenvector corresponding to μi �= ± 1
2 , we have

∫
Y \D

∇Pμiu · ∇v̄ =
(1/2 + μi)
(1/2 − μi)

∫
D

∇Pμiu · ∇v̄

and so we calculate

Bk(Pμiu, v) =
[
k

(1/2 + μi)
(1/2 − μi)

+ 1
]∫

D

∇Pμiu · ∇v̄.

But we also know that ∫
D

∇Pμiu · ∇v̄ = (1/2 − μi)
∫

Y

∇Pμiu · ∇v̄
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and so
Bk(Pμiu, v) = [k(1/2 + μi) + (1/2 − μi)]

∫
Y

∇Pμiu · ∇v̄.

Since we clearly have

Bk(P1u, v) = k

∫
Y \D

∇P1u · ∇v̄,

Bk(P2u, v) =
∫

D

∇P2u · ∇v̄,

and the projections P1, P2, Pμi are mutually orthogonal for all − 1
2 < μi <

1
2 , the proof is complete. �

It is evident that Tα
k : H1

#(α, Y ) −→ H1
#(α, Y ) is invertible whenever

k ∈ C \ Z where Z =
{
μi − 1/2
μi + 1/2

}
{− 1

2≤μi≤ 1
2}

(2.24)

and for z = k−1,

(Tα
k )−1 = zP1u+ P2u+

∑
− 1

2<μi<
1
2

z [(1/2 + μi) + z(1/2− μi)]
−1
Pμi . (2.25)

For future reference we also introduce the set S of z ∈ C for which Tα
k is not invertible given by

S =
{
μi + 1/2
μi − 1/2

}
{− 1

2<μi<
1
2}

(2.26)

which also lies on the negative real axis. In Section 8 we will provide explicit upper bounds on S that depend
upon the geometry of the inclusions.

Collecting results, the spectral representation of the operator −∇ · (kχY \D + χD)∇ on H1
#(α, Y ) is given by

−∇ · (kχY \D + χD)∇ = −ΔαT
α
k , (2.27)

in the sense of linear functionals over the space H1
#(α, Y ). Here −Δα is the Laplace operator associated with the

bilinear form 〈·, ·〉 defined on H1
#(α, Y ). This formulation is useful since it separates the effect of the contrast k

from the underlying geometry of the crystal.

3. Band structure for complex coupling constant

We set ω2 = λ in (1.1) and extend the Bloch eigenvalue problem to complex coefficients k outside the set Z
given by (2.24). The operator representation is applied to write the Bloch eigenvalue problem as

−∇ · (kχY \D + χD)∇u = −ΔαT
α
k u = λu. (3.1)

We characterize the Bloch spectra by analyzing the operator

Bα(k) = (Tα
k )−1(−Δα)−1, (3.2)

where the operator (−Δα)−1 defined for all α ∈ Y ∗ is given by

(−Δα)−1u(x) = −
∫

Y

Gα(x, y)u(y) dy. (3.3)
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The operator Bα(k) : L2
#(α, Y ) −→ H1

#(α, Y ) is easily seen to be bounded for k �∈ Z, see Theorem 12.5.
Since H1

#(α, Y ) embeds compactly into L2
#(α, Y ) we find by virtue of Poincare’s inequality that Bα(k) is

a bounded compact linear operator on L2
#(α, Y ) and therefore has a discrete spectrum {γi(k, α)}i∈N with a

possible accumulation point at 0, see Remark 12.6. The corresponding eigenspaces are finite dimensional and
the eigenfunctions pi ∈ L2

#(α, Y ) satisfy

Bα(k)pi(x) = γi(k, α)pi(x) for x in Y (3.4)

and also belong to H1
#(α, Y ). Note further for γi �= 0 that (3.4) holds if and only if (3.1) holds with λi(k, α) =

γ−1
i (k, α), and −ΔαT

α
k pi = λi(k, α)pi. Collecting results we have the following theorem

Theorem 3.1. Let Z denote the set of points on the negative real axis defined by (2.24). Then the Bloch
eigenvalue problem (1.1) for the operator −∇(kχY \D + χD)∇ associated with the sesquilinear form (2.6) can
be extended for values of the coupling constant k off the positive real axis into C \ Z, i.e., for each α ∈ Y � the
Bloch eigenvalues are of finite multiplicity and denoted by λj(k, α) = γ−1

j (k, α), j ∈ N and the band structure

λj(k, α) = ω2, j ∈ N (3.5)

extends to complex coupling constants k ∈ C \ Z.

4. Power series representation of bloch eigenvalues for high contrast
periodic media

In what follows we set γ = λ−1(k, α) and analyze the spectral problem

Bα(k)u = γ(k, α)u (4.1)

Henceforth we will analyze the high contrast limit by by developing a power series in z = 1
k about z = 0 for the

spectrum of the family of operators associated with (4.1).

Bα(k) := (Tα
k )−1(−Δα)−1

=
(
zP1 + P2 + z

∑
− 1

2<μi<
1
2
[(1/2 + μi) + z(1/2− μi)]−1Pμi

)
(−Δα)−1

= Aα(z).

Here we define the operator Aα(z) such that Aα(1/k) = Bα(k) and the associated eigenvalues β(1/k, α) =
γ(k, α) and the spectral problem is Aα(z)u = β(z, α)u for u ∈ L2

#(α, Y ).
It is easily seen from the above representation that Aα(z) is self-adjoint for k ∈ R and is a family of bounded

operators taking L2
#(α, Y ) into itself and we have the following:

Lemma 4.1. Aα(z) is holomorphic on Ω0 := C \ S. Where S = ∪i∈Nzi is the collection of points zi = (μi +
1/2)/(μi − 1/2) on the negative real axis associated with the eigenvalues {μi}i∈N. The set S consists of poles of
Aα(z) with only one accumulation point at z = −1.

In the Sections 8 and 9 we develop explicit lower bounds −1/2 < μ− ≤ μ−(α) = mini{μi}, that hold for
generic classes of inclusion domains D and for every α ∈ Y �. The corresponding upper bound z+ on S is written

max
i

{zi} =
μ−(α) + 1/2
μ−(α) − 1/2

= z∗ ≤ z+ < 0. (4.2)

Let βα
0 ∈ σ(Aα(0)) with spectral projection P (0), and let Γ be a closed contour in C enclosing βα

0 but no
other β ∈ σ(Aα(0)). The spectral projection associated with βα(z) ∈ σ(Aα(z)) for βα(z) ∈ int(Γ ) is denoted
by P (z). We write M(z) = P (z)L2

#(α, Y ) and suppose for the moment that Γ lies in the resolvent of Aα(z)
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and dim(M(0)) = dim(M(z)) = m, noting that Theorems 7.1 and 7.2 provide explicit conditions for when this
holds true. Now define β̂α(z) = 1

m tr(Aα(z)P (z)), the weighted mean of the eigenvalue group {βα
1 (z), . . . βα

m(z)}
corresponding to βα

1 (0) = . . . = βα
m(0) = βα

0 . We write the weighted mean as

β̂α(z) = βα
0 +

1
m

tr[(Aα(z) − βα
0 )P (z)]. (4.3)

Since Aα(z) is analytic in a neighborhood of the origin we write

Aα(z) = Aα(0) +
∞∑

n=1

znAα
n . (4.4)

The explicit form of the sequence {Aα
n}n∈N is given in Section 7. Define the resolvent of Aα(z) by

R(ζ, z) = (Aα(z) − ζ)−1,

and expanding successively in Neumann series and power series we have the identity

R(ζ, z) = R(ζ, 0)[I + (Aα(z) −Aα(0))R(ζ, 0)]−1

= R(ζ, 0) +
∑∞

p=1[−(Aα(z) −Aα(0))R(ζ, 0)]p

= R(ζ, 0) +
∑∞

n=1 z
nRn(ζ),

(4.5)

where
Rn(ζ) =

∑
k1+...kp=n,kj≥1

(−1)pR(ζ, 0)Aα
k1
R(ζ, 0)Aα

k2
. . . R(ζ, 0)Aα

kp

for n ≥ 1.
Application of the contour integral formula for spectral projections [19, 20, 28] delivers the expansion for the

spectral projection

P (z) = − 1
2πi

∮
Γ
R(ζ, z)dζ

= P (0) +
∑∞

n=1 z
nPn

(4.6)

where Pn = − 1
2πi

∮
Γ
Rn(ζ)dζ. Now we develop the series for the weighted mean of the eigenvalue group. Start

with

(Aα(z) − βα
0 )R(ζ, z) = I + (ζ − βα

0 )R(ζ, z) (4.7)

and we have

(Aα(z) − βα
0 )P (z) = − 1

2πi

∮
Γ

(ζ − βα
0 )R(ζ, z)dζ, (4.8)

so
β̂(z) − βα

0 = − 1
2mπi

tr
∮

Γ

(ζ − βα
0 )R(ζ, z)dζ. (4.9)

Equation (4.9) delivers an analytic representation formula for a Bloch eigenvalue or more generally the eigenvalue
group when βα

0 is not a simple eigenvalue. Substituting the third line of (4.5) into (4.9) and manipulation yields

β̂α(z) = βα
0 +

∞∑
n=1

znβα
n , (4.10)

where
βα

n = − 1
2mπi

tr
∑

k1+...+kp=n

(−1)p

p

∮
Γ

Aα
k1
R(ζ, 0)Aα

k2
. . . R(ζ, 0)Aα

kp
R(ζ, 0)dζ; n ≥ 1. (4.11)
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5. Spectrum in the high contrast limit: Quasi-periodic case

We now identify the spectrum of the limiting operator Aα(0) when α �= 0. Using the representation

Aα(z) =

⎛
⎝zP1 + P2 + z

∑
− 1

2<μi<
1
2

[(1/2 + μi) + z(1/2 − μi)]Pμi

⎞
⎠ (−Δα)−1, (5.1)

we see that
Aα(0) = P2(−Δα)−1. (5.2)

Denote the spectrum of Aα(0) by σ(Aα(0)). The following theorem provides the explicit characterization of
σ(Aα(0)).

Theorem 5.1. Let −ΔD be the negative Laplacian with zero Dirichlet boundary conditions on ∂D with inverse
−Δ−1

D : L2(D) → L2(D). Denote the spectrum of −Δ−1
D by σ(−Δ−1

D ). Then σ(Aα(0)) = σ(−Δ−1
D ).

To establish the theorem we first show that the eigenvalue problem

P2(−Δα)−1u = λu

with λ ∈ σ(Aα(0)) and eigenfunction u ∈ L2
#(α, Y ) is equivalent to finding λ and u ∈ W2 for which

(u, v)L2(Y ) = λ〈u, v〉, for all v ∈W2. (5.3)

To conclude we will then show that the set of eigenvalues for (5.3) is given by σ(−Δ−1
D ). To see the equivalence

note that we have u = P2u and for v ∈ H1
#(α, Y ),

〈P2(−Δα)−1u, v〉 = λ〈u, v〉 = λ〈P2u, v〉 (5.4)

hence
〈(−Δα)−1u, P2v〉 = λ〈u, P2v〉. (5.5)

Since 〈(−Δα)−1u, v〉 =
∫

Y uv dx = (u, v)L2(Y ) for any u ∈ L2
#(α, Y ) and v ∈ H1

#(α, Y ), equation (5.5) becomes

(u, P2v)L2(Y ) = λ〈u, P2v〉, (5.6)

and the equivalence follows noting that P2 is the projection of H1
#(α, Y ) onto W2.

To conclude we show that the set of eigenvalues for (5.3) is given by σ(−Δ−1
D ). Note that P2v is supported

in D, so

λ−1

∫
D

uP2v =
∫
D

∇u · ∇P2v. (5.7)

Now since P2 : H1
#(α, Y ) → W2 = H̃1

0 (D) is onto, it follows that λ−1 is a Dirichlet eigenvalue of the negative
Laplacian acting on D and the proof of Theorem 5.1 is complete.

6. Spectrum in the high contrast limit: Periodic case

Recall for the periodic case P2 is the projection onto W2 given by (2.9) and the limiting operator A0(0) is
written

A0(0) = P2(−Δ0)−1. (6.1)
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Here the operator (−Δ0)−1 is compact and self-adjoint on L2
#(0, Y ) and given by

(−Δ0)−1u(x) = −
∫
Y

G0(x, y)u(y)dy. (6.2)

Denote the spectrum of A0(0) by σ(A0(0)). To characterize this spectrum we introduce the sequence of numbers
{νj}j∈N given by the positive roots ν of the spectral function S(ν) defined by

S(ν) = ν
∑
i∈N

a2
i

ν − δ∗i
− 1, (6.3)

where {δ∗j }j∈N are the Dirichlet eigenvalues for −ΔD associated with eigenfunctions ψj for which
∫

D
ψj dx �= 0

and aj = | ∫
D
ψj dx|. The following theorem provides the explicit characterization of σ(Aα(0)).

Theorem 6.1. Let {δ′j}j∈N denote the collection of Dirichlet eigenvalues for −ΔD associated with eigenfunc-
tions ψj for which

∫
D
ψj dx = 0. Then σ(A0(0)) = {δ′j−1}j∈N ∪ {νj

−1}j∈N.

To establish the theorem we proceed as before to see that the eigenvalue problem

P2(−Δ0)−1u = λu

with λ ∈ σ(A0(0)) and eigenfunction u ∈ L2
#(0, Y ) is equivalent to finding λ and u ∈ W2 for which

(u, v)L2(Y ) = λ〈u, v〉, for all v ∈W2. (6.4)

To conclude we show that the set of eigenvalues for (6.4) is given by {δ′j−1}j∈N ∪ {ν−1
j }j∈N. We see that

u ∈W2 and from (2.9) we have the dichotomy:
∫

D
ũdx = 0 and u = ũ ∈ H̃1

0 (D) or
∫

D
ũdx �= 0 and u = ũ− γ1Y

with γ =
∫

D
ũdx. It is evident for the first case that the eigenfunction u ∈ H̃1

0 (D) and for v ∈W2 given by

v = ṽ −
(∫

D

ṽdx
)

1Y for ṽ ∈ H̃1
0 (D) (6.5)

the problem (6.4) becomes ∫
D

uṽ = λ

∫
D

∇u · ∇ṽ, for all ṽ ∈ H̃1
0 (D), (6.6)

and we conclude that ũ is a Dirichlet eigenfunction with zero average over D so λ ∈ {δ′j−1}j∈N. While for the
second, we have u ∈W2 and again∫

D

uṽ = λ

∫
D

∇u · ∇ṽ, for all ṽ ∈ H̃1
0 (D). (6.7)

Writing u = ũ− γ1Y and integration by parts in (6.7) shows that ũ ∈ H̃1
0 (D) is the solution of

Δũ+ νũ = −νγ for x ∈ D. (6.8)

We normalize ũ so that γ =
∫

D ũdx = 1 and write

ũ =
∞∑

j=1

cjψj (6.9)
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d d

βα
j−1(0) βα

j (0) βα
j+1(0)

Γ

Figure 2. Γ .

where, ψj are the Dirichlet eigenfunctions of −ΔD associated with eigenvalue δj extended by zero to Y . Sub-
stitution of (6.9) into (6.8) gives

∞∑
j=1

(−δj + ν)cjψj = −ν. (6.10)

Multiplying both sides of (6.10) by ψk over Y and orthonormality of {ψj}j∈N, shows that ũ is given by

ũ = ν
∑
k∈N

∫
D ψk

ν − δ∗k
ψk, (6.11)

where δ∗k correspond to Dirichlet eigenvalues associated with eigenfunctions for which
∫

D ψk dx �= 0. To calculate
ν, we integrate both sides of (6.11) over D to recover the identity

ν
∑
k∈N

a2
k

ν − δ∗k
− 1 = 0. (6.12)

It follows from (6.12) that λ ∈ {ν−1
i }i∈N and the proof of Theorem 6.1 is complete.

7. Radius of convergence and separation of spectra

Fix an inclusion geometry specified by the domain D. Suppose first α ∈ Y � and α �= 0. Recall from Theo-
rem 5.1 that the spectrum of Aα(0) is σ(−Δ−1

D ). Take Γ to be a closed contour in C containing an eigenvalue
βα

j (0) in σ(−Δ−1
D ) but no other element of σ(−Δ−1

D ), see Figure 2. Define d to be the distance between Γ and
σ(−Δ−1

D ), i.e.,

d = dist(Γ, σ(−Δ−1
D ) = inf

ζ∈Γ

{
dist(ζ, σ

(−Δ−1
D

)}
. (7.1)

The component of the spectrum of Aα(0) inside Γ is precisely βα
j (0) and we denote this by Σ′(0). The part of

the spectrum of Aα(0) in the domain exterior to Γ is denoted by Σ′′(0) and Σ′′(0) = σ(−Δ−1
D ) \ βα

j (0). The
invariant subspace of Aα(0) associated with Σ′(0) is denoted by M ′(0) with M ′(0) = P (0)L2

#(α, Y ).
Suppose the lowest quasi-periodic resonance eigenvalue for the domain D lies inside −1/2 < μ−(α) < 0. It

is noted that in the sequel a large and generic class of domains are identified for which −1/2 < μ−(α). The
corresponding upper bound on the set z ∈ S for which Aα(z) is not invertible is given by

z∗ =
μ−(α) + 1/2
μ−(α) − 1/2

< 0, (7.2)

see (4.2). Now set

r∗ =
|α|2d|z∗|
1

1/2 − μ− + |α|2d
· (7.3)
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Theorem 7.1. Separation of spectra and radius of convergence for α ∈ Y �, α �= 0. The following properties
hold for inclusions with domains D that satisfy (7.2):

(1) If |z| < r∗ then Γ lies in the resolvent of both Aα(0) and Aα(z) and thus separates the spectrum of Aα(z)
into two parts given by the component of spectrum of Aα(z) inside Γ denoted by Σ′(z) and the component
exterior to Γ denoted by Σ′′(z). The invariant subspace of Aα(z) associated with Σ′(z) is denoted by M ′(z)
with M ′(z) = P (z)L2

#(α, Y ).
(2) The projection P (z) is holomorphic for |z| < r∗ and P (z) is given by

P (z) =
−1
2πi

∮
Γ

R(ζ, z) dζ. (7.4)

(3) The spaces M ′(z) and M ′(0) are isomorphic for |z| < r∗.
(4) The power series (4.10) converges uniformly for z ∈ C inside any disk centered at the origin contained

within |z| < r∗.

Suppose now α = 0. Recall from Theorem 6.1 that the limit spectrum for A0(0) is σ(A0(0)) = {δ′j−1}j∈N ∪
{νj

−1}j∈N. For this case take Γ to be the closed contour in C containing an eigenvalue β0
j (0) in σ(A0(0)) but

no other element of σ(A0(0)) and define

d = inf
ζ∈Γ

{dist(ζ, σ(A0(0)))}. (7.5)

Suppose the lowest quasi-periodic resonance eigenvalue for the domain D lies inside −1/2 < μ−(0) < 0 and the
corresponding upper bound on S is given by

z∗ =
μ−(0) + 1/2
μ−(0) − 1/2

< 0. (7.6)

Set

r∗ =
4π2d|z∗|
1

1/2 − μ− + 4π2d
· (7.7)

Theorem 7.2. Separation of spectra and radius of convergence for α = 0.
The following properties hold for inclusions with domains D that satisfy (7.6):

(1) If |z| < r∗ then Γ lies in the resolvent of both A0(0) and A0(z) and thus separates the spectrum of A0(z)
into two parts given by the component of spectrum of A0(z) inside Γ denoted by Σ′(z) and the component
exterior to Γ denoted by Σ′′(z). The invariant subspace of A0(z) associated with Σ′(z) is denoted by M ′(z)
with M ′(z) = P (z)L2

#(α, Y ).
(2) The projection P (z) is holomorphic for |z| < r∗ and P (z) is given by

P (z) =
−1
2πi

∮
Γ

R(ζ, z) dζ. (7.8)

(3) The spaces M ′(z) and M ′(0) are isomorphic for |z| < r∗.
(4) The power series (4.10) converges uniformly for z ∈ C inside any disk centered at the origin contained

within |z| < r∗.

Next we provide an explicit representation of the integral operators appearing in the series expansion for the
eigenvalue group.
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Theorem 7.3. Representation of integral operators in the series expansion for eigenvalues
Let P3 be the projection onto the orthogonal complement of W1 ⊕W2 ⊕ span{Π} and let I denote the identity

on L2(∂D), then the explicit representation for for the operators Aα
n in the expansion (4.10), (4.11) is given by

Aα
1 =

[
SD

((
K̃−α

D

)∗
+

1
2
I

)−1

S−1
D P3 + P1

]
(−Δα)−1 and

Aα
n = SD

(
(K̃−α

D )∗ +
1
2
I

)−1

S−1
D

[
SD

(
(K̃−α

D )∗ − 1
2
I

) ((
K̃−α

D

)∗
+

1
2
I

)−1

S−1
D

]n−1

P3(−Δα)−1.

(7.9)

We have a corollary to Theorems 7.1 and 7.2 regarding the error incurred when only finitely many terms of
the series 4.10 are calculated.

Theorem 7.4. Error estimates for the eigenvalue expansion.

(1) Let α �= 0, and suppose D, z∗, and r∗ are as in Theorem 7.1. Then the following error estimate for the
series (4.10) holds for |z| < r∗: ∣∣∣∣∣β̂α(z) −

p∑
n=0

znβα
n

∣∣∣∣∣ ≤ d|z|p+1

(r∗)p(r∗ − |z|) · (7.10)

(2) Let α = 0, and suppose D, z∗, and r∗ are as in Theorem 7.2. Then the following error estimate for the
series (4.10) holds for |z| < r∗: ∣∣∣∣∣β̂0(z) −

p∑
n=0

znβ0
n

∣∣∣∣∣ ≤ d|z|p+1

(r∗)p(r∗ − |z|) · (7.11)

We summarize results in the following theorem.

Theorem 7.5. The Bloch eigenvalue problem (1.1) is defined for the coupling constant k extended into the
complex plane and the operator −∇· (kχY \D +χD)∇ with domain H1

#(α, Y ) is holomorphic for k ∈ C \Z. The
associated Bloch spectra is given by the eigenvalues λj(k, α) = (βα

j (1/k))−1, for j ∈ N. For α ∈ Y � fixed, the
eigenvalues are of finite multiplicity. Moreover for each j and α ∈ Y �, the eigenvalue group is analytic within
any neighborhood of infinity contained within the disk |k| > r∗−1 where r∗ is given by (7.3) for α �= 0 and
by (7.7) for α = 0.

The proofs of Theorems 7.1, 7.2 and 7.4 are given in Section 12. The proof of Theorem 7.3 is given in
Section 10.

8. Radius of convergence and separation of spectra for periodic scatterers
of general shape

We start by identifying an explicit condition on the inclusion geometry that guarantees a lower bound μ− on
the quasi-periodic spectra that holds uniformly for α ∈ Y ∗, i.e., − 1

2 < μ− ≤ μ−(α) = mini{μi} ≤ 1
2 .

Let D � Y be a union of simply connected sets (inclusions) Di, i = 1, . . . , N with C1,γ boundary. Recall
that, for any eigenpair (μ,w) of T |W3 and all v ∈ H1

#(α, Y ),

1
2

∫
Y \D

∇w · ∇v̄ − 1
2

∫
D

∇w · ∇v̄ = μ

∫
Y

∇w · ∇v̄. (8.1)
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Adding 1
2

∫
Y

∇w · ∇v̄ to both sides yields∫
Y \D

∇w · ∇v̄ =
(
μ+

1
2

) ∫
Y

∇w · ∇v̄. (8.2)

We will show that there exists a ρ > 0 such that μi + 1
2 > ρ independent of i ∈ N and α ∈ Y ∗. If such a

ρ exists, then clearly μi > ρ − 1
2 for all i and α, providing an explicit lower bound μ− = ρ − 1

2 satisfying the
desired inequality.

Theorem 8.1. Let μ−(α) be the lowest eigenvalue of T in W3 ⊂ H1
#(α, Y ). Suppose there is a θ > 0 such that

for all u ∈ W3 we have

‖∇u‖2
L2(Y \D) ≥ θ‖∇u‖2

L2(D). (8.3)

Let ρ = min{ 1
2 ,

θ
2}. Then μ−(α) + 1

2 > ρ for all α ∈ Y ∗.

Proof. We proceed by contradiction: suppose that μ−(α)+ 1
2 <

1
2 and μ−(α)+ 1

2 <
θ
2 . Let u− be the normalized

eigenvector of T associated with μ−(α). Then we have∫
Y \D

|∇u−|2 < 1
2

(8.4)

and
θ

2
>

∫
Y \D

|∇u−|2 ≥ θ

∫
D

|∇u−|2. (8.5)

Thus we have ∫
D

|∇u−|2 < 1
2
· (8.6)

Inequalities (8.4) and (8.6) yield
‖∇u−‖2

L2(Y ) < 1.

But u− was normalized so that
‖∇u−‖2

L2(Y ) = 1,

completing the proof. �

Clearly the parameter θ is a geometric descriptor for D. The class of periodic distributions of inclusions for
which Theorem (8.1) holds for a fixed positive value of θ is denoted by Pθ and we have the corollary given by:

Corollary 8.2. For every inclusion domain D belonging to Pθ Theorems 7.2 through 7.5 hold with z∗ replaced
with z+

θ given by

z+
θ =

μ− + 1/2
μ− − 1/2

< 0, (8.7)

where μ− = min{ 1
2 ,

θ
2} − 1

2 .

Now we introduce a wide class of inclusion shapes with θ > 0 that satisfy (8.3). Consider an inclusion domain
D = ∪N

i=1Di. Suppose we can surround each Di by a buffer layer Ri so that each inclusion Di together with its
buffer does not intersect with the any of the other buffered inclusions, i.e., Di ∪ Ri ∩Dj ∪ Rj = ∅, i �= j. The
set of such inclusion domains will be called buffered geometries, see Figure 3. We now denote the operator norm
for the Dirichlet to Neumann map for each inclusion by ‖DNi‖ and the Poincare constant for each buffer layer
by CRi and we have the following theorem.
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Figure 3. Random buffered suspension.

Theorem 8.3. Suppose there is a θ > 0 for which

θ−1 ≥ max
i

{(1 + CRi)‖DNi‖} . (8.8)

then the buffered geometry lies in Pθ.

Proof. To prove this theorem it suffices to consider one of the components Di denoted by D and its buffer Ri

denoted by R. The union of inclusion and buffer is denoted by D′ = D ∪ R. We now show for any function
w′ ∈ H1(R) there is a w ∈ H1(D′) such that

w(x) = w′(x), x ∈ R

and ∫
D

|∇w|2dx ≤ θ−1

∫
R

|∇w′|2, (8.9)

where θ−1 = {1 + CR‖DN‖} and DN is the Dirichlet to Neumann map for D.
Let w ∈ H1(D′) such that w = w′ in R and Δw = 0 in D with boundary condition w|∂D = w′. Note that

since w is harmonic in D, we have ∫
∂D

∂νwdσ = 0,

where ν is the outward pointing normal vector on ∂D. Thus∫
D

|∇w|2 =
∫

∂D

∂νww̄ =
∫

∂D

∂νw(w − (w′)∗)

=
∫

∂D

∂νw(w′ − (w′)∗),
(8.10)

where (w′)∗ is the average of w′ over R, given by

(w′)∗ =
1
|R|

∫
R

w′dx. (8.11)

Taking DN as the Dirichlet−to−Neumann map on H1/2(∂D), we have∫
∂D

∂νw(w′ − (w′)∗) ≤ H−1/2(∂D)〈DN |∂Dw,w
′ − (w′)∗〉H1/2(∂D)

= H−1/2(∂D)〈DN |∂D[w′ − (w′)∗], w′ − (w′)∗〉H1/2(∂D)

≤ ‖DN |∂D‖‖w′ − (w′)∗‖2
H1/2(∂D)

.

(8.12)
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The second line of (8.12) holds since w = w′ on ∂D and Ker(DN) is simply the constant functions on ∂D. Let
CR be the Poincaré constant of R, i.e.

‖q − (q)∗‖2
L2(R) ≤ CR‖∇q‖2

L2(R) (8.13)

for all q ∈ H1(R). Then we calculate

‖w′ − (w′)∗‖2
H1/2(∂D)

≤ ‖w′ − (w′)∗‖2
H1/2(∂R)

= inf
v|∂R=w′−(w′)∗

‖v‖2
H1(R)

≤ ‖w′ − (w′)∗‖2
H1(R) ≤ (1 + CR)‖∇w′‖2

L2(R).

(8.14)

Substituting the last line of (8.14) into the last line of (8.12) and setting θ−1 = ‖DN‖(1 + CR), we obtain
inequality (8.9) as desired.

Let u ∈ W3, and set w′ = u in R. Then the w arising from the above theorem is a harmonic function in D
satisfying w|∂D = u. Since u is also harmonic in D, we have that u = w in D by uniqueness of solutions to
Laplace’s equation with Dirichlet boundary conditions, and inequality (8.9) becomes

θ

∫
D

|∇u|2 ≤
∫
R

|∇u|2 ≤
∫

Y \D

|∇u|2. (8.15)

�

9. Radius of convergence and separation of spectra for disks

We now consider Bloch spectra for crystals in R2 with each period cell containing an identical random
distribution of N disks Di, i = 1, . . . , N of radius a. We suppose that the smallest distance separating the disks
is td > 0. The buffer layers Ri are annuli with inner radii a and outer radii b = a + t where t ≤ td/2 and is
chosen so that the collection of buffered disks lie within the period cell. For this case the constant θ is computed
in [6] and is given by

θ =
b2 − a2

b2 + a2
· (9.1)

Since a < b, we have that
0 < θ < 1. (9.2)

We also note that when Di is a disc of radius a > 0, we can recover an explicit formula for d from equation 7.1.
In particular, any eigenvalue βα

j (0) of −Δ−1
D , for α �= 0. may be written

βα
j (0) =

(ηn,k

a

)−2

, (9.3)

where ηn,k is the kth zero of the nth Bessel function Jn(r). Let η̃ be the minimizer of

min
m,j∈N

|(ηn,k)−2 − (ηm,j)−2|. (9.4)

Then we may choose Γ from Section 7 so that

d =
1
2

∣∣∣∣∣
(

a

ηn,k

)2

−
(
a

η̃

)2
∣∣∣∣∣ · (9.5)
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We apply explicit form for θ to obtain a formula for r∗ in terms of a,b, d given above, and α. Recall that ρ from
Theorem 8.1 is given by ρ = min{ 1

2 ,
θ
2}. In light of inequality (9.2), we have that

ρ =
1
2

(
b2 − a2

b2 + a2

)
, (9.6)

and we calculate the lower bound μ−:

μ− = ρ− 1
2

= − a2

b2 + a2
· (9.7)

Recalling that

|z∗| ≤ |z+| =
μ− + 1/2
1/2 − μ− ,

we obtain an explicit radius of convergence r∗ in terms of a, b, ηn,k, η̃, and α for α �= 0,

r∗ =
|α|2|

(
a

ηn,k

)2

−
(
a

η̃

)2

|(b2 − a2)

4(b2 + a2) + |α|2|
(

a

ηn,k

)2

−
(
a

η̃

)2

| (b2 + 3a2)

· (9.8)

When α = 0 Theorem 6.1 shows that the limit spectrum consists of a component given by the roots ν0k of

1 = Nν
∑
k∈N

a2
0k

ν − (η0k/a)2
, (9.9)

where a0k =
∫

D̃
u0k dx are averages over the disk D̃ of of radius a centered at the origion of the rotationally

symmetric normalized eigenfunctions u0k given by

u0k = J0(rη0k/a)/
(
a
√
πJ1(η0k)

)
. (9.10)

The other component is comprised of the eigenvalues exclusively associated with mean zero eigenfunctions. The
collection of these eigenvalues is given by {∪n	=0,k(ηnk/a)2} The elements λnk of the spectrum σ(A0(0)) are
given by the set {∪n	=0,k(ηnk/a)2} ∪ {∪kν0k}. Now fix an element λnk and let η̃ be the minimizer of

min
m,j∈N

∣∣(λn,k)−1 − (λm,j)−1
∣∣ . (9.11)

Then as before we may choose Γ from Section 7 so that

d =
1
2

∣∣(λn,k
−1 − η̃−1

∣∣ (9.12)

and in terms of a, b, λn,k, and η̃ for α = 0:

r∗ =
4π2|(λn,k)−1 − η̃−1|(b2 − a2)

4(b2 + a2) + 4π2|(λn,k)−1 − η̃−1|(b2 + 3a2)
· (9.13)

The collection of suspensions of N buffered disks is an example of a class of buffered inclusion geometries
and collecting results we have the following:

Corollary 9.1. For every suspension of buffered disks with θ given by (9.1): Theorem 7.1 holds with r∗ given
by (9.8) for α ∈ Y �, α �= 0, and Theorem 7.2 holds with r∗ given by (9.13) for α = 0.
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10. Layer potential representation of operators in power series

In this section we identify explicit formulas for the operators Aα
n appearing in the power series (4.11). It is

shown that Aα
n , n �= 0 can be expressed in terms of integral operators associated with layer potentials and we

establish Theorem 7.3.
Recall that Aα(z) −Aα(0) is given by

⎛
⎝zP1 +

∑
− 1

2 <μi<
1
2

z[(1/2 + μi) + z(1/2 − μi)

⎞
⎠

−1

Pμi)(−Δ−1
α ). (10.1)

Factoring (1/2 + μi)−1 from the second summand, we expand in power series

[(1/2 + μi) + z(1/2 − μi)]−1 = (1/2 + μi)−1
∞∑

n=0

zn

(
μi − 1/2
μi + 1/2

)n

, (10.2)

and

Aα(z) −Aα(0) =

⎛
⎝zP1 +

∞∑
n=1

zn
∑

− 1
2<μi<

1
2

(μi + 1/2)−1

(
μi − 1/2
μi + 1/2

)n−1

PμiP3

⎞
⎠ (−Δ−1

α ). (10.3)

It follows that

Aα
1 =

⎡
⎣P1 +

∑
− 1

2 <μi<
1
2

(1/2 + μi)−1PμiP3

⎤
⎦ (−Δ−1

α ) (10.4)

and

Aα
n =

⎡
⎣ ∑
− 1

2<μi<
1
2

(μi + 1/2)−1

(
μi − 1/2
μi + 1/2

)n−1

PμiP3

⎤
⎦ (−Δ−1

α ). (10.5)

Recall also that we have the resolution of the identity

IH1
#(α,Y ) = P1 + P2 + P3 with P3 =

∑
− 1

2 <μi<
1
2

Pμi , (10.6)

and the spectral representation

〈Tu, v〉 =
〈(

SD(K̃−α
D )∗S−1

D

)
P3u+

1
2
P1u− 1

2
P2u, v

〉

=

〈 ∑
− 1

2<μi<
1
2

μiPμiu+
1
2
P1u− 1

2
P2u, v

〉
. (10.7)

Adding 1
2I to both sides of the above equation, we obtain

〈
(T +

1
2
I)u, v

〉
=

〈⎛
⎝ ∑

− 1
2<μi<

1
2

(
μi +

1
2

)
Pμi + P1

⎞
⎠u, v

〉

=
〈(

(SD(K̃−α
D )∗S−1

D +
1
2
P3)P3 + P1

)
u, v

〉

=
〈(

(SD((K̃−α
D )∗ +

1
2
Ĩ)S−1

D )P3 + P1

)
u, v

〉
, (10.8)
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where Ĩ is the identity on H−1/2(∂D). Now from (10.8) we see that

∑
− 1

2<μi<
1
2

(
1
2

+ μi

)−1

PμiP3 = (SD(K̃−α
D )∗S−1

D +
1
2
P3)−1P3

=
(
SD

((
K̃−α

D

)∗
+

1
2
Ĩ

)
S−1

D

)−1

P3

=

(
SD

(
(K̃−α

D )∗ +
1
2
Ĩ

)−1

S−1
D

)
P3. (10.9)

Combining the first line of (10.4) and (10.9), we obtain

Aα
1 =

[
SD

(
(K̃−α

D )∗ +
1
2
Ĩ

)−1

S−1
D P3 + P1

]
(−Δα)−1. (10.10)

We now turn to the higher-order terms. By the mutual orthogonality of the projections Pμi , we have that

∑
− 1

2<μi<
1
2

(μi + 1/2)−1

(
μi − 1/2
μi + 1/2

)n−1

Pμi

=

⎛
⎝ ∑

− 1
2<μi<

1
2

(1/2 + μi)−1Pμi

⎞
⎠

⎛
⎝ ∑

− 1
2<μi<

1
2

(
μi − 1/2
μi + 1/2

)
Pμi

⎞
⎠

n−1

=

⎛
⎝ ∑

− 1
2<μi<

1
2

(1/2 + μi)−1Pμi

⎞
⎠

⎛
⎝ ∑

− 1
2<μi<

1
2

(μi − 1/2)Pμi

⎞
⎠

n−1 ⎛
⎝ ∑

− 1
2 <μi<

1
2

(μi + 1/2)Pμi

⎞
⎠

1−n

. (10.11)

As above, we have that

∑
− 1

2<μi<
1
2

(1/2 + μi)−1PμiP3 =SD

(
(K̃−α

D )∗ +
1
2
Ĩ

)−1

S−1
D P3,

∑
− 1

2<μi<
1
2

(1/2 + μi)PμiP3 =SD

(
(K̃−α

D )∗ +
1
2
Ĩ

)
S−1

D P3,

∑
− 1

2<μi<
1
2

(μi − 1/2)PμiP3 =SD

(
(K̃−α

D )∗ − 1
2
Ĩ

)
S−1

D P3. (10.12)

Combining (10.12), (10.11), and (10.4), we obtain the layer-potential representation for Aα
n, proving

Theorem 7.3:

Aα
n = SD

(
(K̃−α

D )∗ +
1
2
I

)−1

S−1
D

[
SD

(
(K̃−α

D )∗ − 1
2
I

)(
(K̃−α

D )∗ +
1
2
I

)−1

S−1
D

]n−1

P3(−Δα)−1. (10.13)

11. Explicit first order correction to the bloch band structure in the high
contrast limit

In this section we develop explicit formulas for the second term in the power series

βα
j (z) = βα

j (0) + zβα
j,1 + z2βα

j.2 + . . . (11.1)
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for simple eigenvalues. We use the analytic representation of Aα(z) and the Cauchy Integral Formula to
represent βα

j,1

βα
j,1 =

1
2πim

tr
∮

Γ
Aα

1R(0, ζ)dζ

=
1

2πim
tr

(
Aα

1

∮
Γ
R(0, ζ)dζ

)

= tr (Aα
1P (0)) =

1
m

m∑
k=1

〈ϕk, A
α
1P (0)ϕk〉L2

#(α,Y ).

(11.2)

Here P (0) is the L2
#(α, Y ) projection onto the eigenspace corresponding to the Dirichlet eigenvalue (βα

j (0))−1

of −Δ on D. For simple eigenvalues consider the normalized eigenvector P (0)ϕ = ϕ and

βα
j,1 = 〈ϕ,Aα

1P (0)ϕ〉L2
#(α,Y ). (11.3)

We apply the integral operator representation of Aα
1 to deliver an explicit formula for the first order term

βα
j,1 in the series for βα

j (z). The explicit formula is given by the following theorem.

Theorem 11.1. Let βα
j (z) be an eigenvalue of Aα(z). Then for |z| < r∗ there is a βj(0) ∈ σ(−Δ−1|D) with

corresponding eigenfunction ϕj such that

βα
j (z) = βj(0) + z(βj(0))2

∫
Y \D

|∇v|2 + z2βα
j.2 + . . . (11.4)

Where v takes α-quasi periodic boundary conditions on ∂Y , is harmonic in Y \ D, and takes the Neumann
boundary condition on ∂D given by

∂nv|∂D+ = ∂nϕ|∂D− ,

where ∂n is the normal derivitave on ∂D with normal vector n pointing into Y \D.

Remark 11.2. Recall from Theorem 7.5 that the eigenvalues λα
j (k) = (βα

j (1/k))−1, for j ∈ N. The high
coupling limit expansion for λα

j (k) is written in terms of the expansion βα
j (z) = βj(0) + zβα

j,1 + . . . as

λα
j (k) = (βj(0))−1 − 1

k
(βj(0))−2βα

j,1 + . . .

= λj(0) − 1
k

∫
Y \D

|∇v|2 + . . . , (11.5)

where λj(0) = (βj(0))−1 is the jth Dirichlet eigenvalue for the Laplacian on D. This naturally agrees with the
formula for the leading order terms presented in [1].

Proof. Recall from the previous section that

Aα
1 =

[
SD

(
(K̃−α

D )∗ +
1
2
I

)−1

S−1
D P3 + P1

]
(−Δα)−1

= Kα
1 (−Δα)−1,

(11.6)

where Kα
1 := SD((K̃−α

D )∗ + 1
2I)S

−1
D P3 + P1. Moreover,

(−Δα)−1f = −
∫

Y

Gα(x, y)f(y)dy. (11.7)



912 R. LIPTON AND R. VIATOR JR.

Since ϕ is a Dirichlet eigenvector of D with eigenvalue (βj(0))−1 and ϕ = 0 in Y \D, we have

ϕ = −βj(0)χD(−Δϕ). (11.8)

Now from (11.8)

−Δ−1
α ϕ = βj(0)

∫
Y

Gα(x, y)χD(Δyϕ)dy

= βj(0)
∫

D

Gα(x, y)(Δyϕ)dy

= βj(0)
(∫

D

∇y · (Gα(x, y)∇yϕ) dy −
∫

D

∇yG
α(x, y) · ∇yϕdy

)
= βj(0)(SD[∂nϕ|

∂D− ](x) −R(x)), (11.9)

where the last equality follows from the divergence theorem and definition of the single layer potential SD and

R(x) =
∫

D

∇yG
α(x, y) · ∇yϕdy. (11.10)

Hence

Aα
1ϕ = Kα

1 βj(0)(SD[∂nϕ∂D− ](x) − R(x)). (11.11)

Now we aply the definition of Kα
1 and compute P1R(x) and P3R(x). Integrating by parts, we find

R(x) =
∫

D
∇yG

α(x, y) · ∇yϕdy

=
∫

D
∇y · (∇yG

α(x, y)ϕ)dy − ∫
D
−ΔyG

α(x, y)ϕdy

= ϕ(x).

(11.12)

Thus P1R(x) = P3R(x) = 0 since ϕ ∈ W1. Combining this result, (11.2), (11.11), and the definition of Kα
1

we obtain

βα
j,1 = tr (Aα

1P (0)) = 〈ϕ,Aα
1P (0)ϕ〉L2

#(α,Y )

=

〈
ϕ, βj(0)SD

(
(K̃−α

D )∗ +
1
2
I

)−1 [
∂nϕ|

∂D−

]〉
L2

#(α,Y )

.
(11.13)

Let v ∈ H1
#(α, Y ) be defined

v := SD((K̃−α
D )∗ +

1
2
I)−1

[
∂nϕ|

∂D−

]
. (11.14)

Then v is harmonic in D and Y \D, and

∂nv|∂D+ = ∂nϕ|∂D− . (11.15)

On applying (11.8), (11.14), and (11.15) equation (11.13) becomes

βα
j,1 = βj(0)〈ϕ, v〉 = −(βj(0))2

∫
D

vΔϕdy (11.16)

= −(βj(0))2
(∫

∂D

∂nϕ|
∂D− v̄dσ −

∫
D

∇ϕ · ∇v̄
)

= −(βj(0))2
(∫

∂D

∂nv|
∂D+

v̄dσ −
∫

D

∇ϕ · ∇v̄
)
.
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Last an integration by parts yields ∫
D

∇ϕ · ∇v̄ =
∫

D

∇ · (∇v̄ϕ) −Δv̄ϕ

=
∫

∂D

∂nv̄|
∂D−ϕdσ = 0. (11.17)

Combining this result with the last line of (11.16) and integrating by parts a final time reveals a representation
of the second term in (11.1)

βα
j,1 = (βj(0))2

∫
Y \D

|∇v|2dx, (11.18)

and the theorem follows. �

12. Derivation of the convergence radius and separation of spectra

Here we prove Theorems 7.1 and 7.2. To begin, we suppose α �= 0 and recall that the Neumann series (4.5)
and consequently (4.6) and (4.10) converge provided that

‖(Aα(z) −Aα(0))R(ζ, 0)‖L[L2
#(α,Y );L2

#(α,Y )] < 1. (12.1)

With this in mind we will compute an explicit upper bound B(α, z) and identify a neighborhood of the origin
on the complex plane for which

‖(Aα(z) −Aα(0))R(ζ, 0)‖L[L2
#(α,Y );L2

#(α,Y )] < B(α, z) < 1, (12.2)

holds for ζ ∈ Γ . The inequality B(α, z) < 1 will be used first to derive a lower bound on the radius of convergence
of the power series expansion of the eigenvalue group about z = 0. It will then be used to provide a lower bound
on the neighborhood of z = 0 where properties 1 through 3 of Theorem 7.1 hold.

We have the basic estimate given by

‖(Aα(z) − Aα(0))R(ζ, 0)‖L[L2
#(α,Y );L2

#(α,Y )] ≤ ‖(Aα(z) −Aα(0))‖L[L2
#(α,Y );L2

#(α,Y )]‖R(ζ, 0)‖L[L2
#(α,Y );L2

#(α,Y )].

(12.3)
Here ζ ∈ Γ as defined in Theorem 7.1 and elementary arguments deliver the estimate

‖R(ζ, 0)‖L[L2
#(α,Y );L2

#(α,Y )] ≤ d−1, (12.4)

where d is given by (7.1).
Next we estimate ‖(Aα(z) −Aα(0))‖L[L2

#(α,Y );L2
#(α,Y )]. Denote the energy seminorm of u by

‖u‖ = ‖∇u‖L2(Y ). (12.5)

To proceed we introduce the Poincare estimate for functions belonging to H1
#(α, Y ) for α �= 0:

Lemma 12.1.
‖u‖L2(Y ) ≤ |α|−1‖u‖. (12.6)

Proof. A straight forward calculation using (2.11) gives the upper bound

(−Δ−1
α v, v)L2(Y ) ≤ |α|−2‖v‖2

L2(Y ) (12.7)
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and we have the Cauchy inequality

‖v‖2
L2(Y ) = 〈−Δ−1

α v, v〉 ≤ ‖ −Δ−1
α v‖‖v‖. (12.8)

Applying (12.7) we get

‖ −Δ−1
α v‖ = (〈−Δ−1

α v,−Δ−1
α v〉)1/2 = ((−Δ−1

α v, v))1/2 ≤ |α|−1‖v‖L2(Y ) (12.9)

and the Poincaré inequality follows from (12.8) and (12.9). �

For any v ∈ L2
#(α, Y ), we apply (12.6) to find

‖(Aα(z) −Aα(0))v‖L2(Y ) ≤ |α|−1‖(Aα(z) −Aα(0))v‖
= |α|−1‖((Tα

k )−1 − (Tα
0 )−1)(−Δα)−1v‖

≤ |α|−1‖((Tα
k )−1 − P2)‖L[H1

#(α,Y );H1
#(α,Y )]‖ −Δ−1

α v‖. (12.10)

Applying (12.9) and (12.10) delivers the upper bound:

‖(Aα(z) −Aα(0))‖L[L2
#(α,Y );L2

#(α,Y )] ≤ |α|−2‖((Tα
k )−1 − P2)‖L[H1

#(α,Y );H1
#(α,Y )]. (12.11)

The next step is to obtain an upper bound on ‖((Tα
k )−1 − P2)‖L[H1

#(α,Y );H1
#(α,Y )]. For all v ∈ H1

#(α, Y ), we
have

∥∥((Tα
k )−1 − P2)v

∥∥
‖v‖ ≤ |z|

{
w0 +

∞∑
i=1

wi|(1/2 + μi) + z(1/2 − μi)|−2

}1/2

, (12.12)

where w0 = ‖P1v‖2/‖v‖2, wi = ‖Piv‖2/‖v‖2, and w0 +
∑∞

i=1 wi = 1. So maximizing the right hand side is
equivalent to calculating

max
w0+

∑
wi=1

{
w0 +

∞∑
i=1

wi|(1/2 + μi) + z(1/2− μi)|−2

}1/2

= sup
{
1, |(1/2 + μi) + z(1/2− μi)|−2

}1/2

. (12.13)

Thus we maximize the function

f(x) =
∣∣∣∣12 + x+ z

(
1
2
− x

)∣∣∣∣
−2

(12.14)

over x ∈ [μ−(α), μ+(α)] for z in a neighborhood about the origin. Let Re(z) = u, Im(z) = v and we write

f(x) =
∣∣∣∣12 + x+ (u+ iv)

(
1
2
− x

)∣∣∣∣
−2

=

((
1
2

+ x+ u

(
1
2
− x

))2

+ v2

(
1
2
− x

)2
)−1

≤
(

1
2

+ x+ u

(
1
2
− x

))−2

= g(Re(z), x),

(12.15)

to get the bound

‖((Tα
k )−1 − P2)‖L(H1

#(α,Y )) ≤ |z| sup

{
1, sup

x∈[μ−(α),μ+(α)]

g(u, x)

}1/2

. (12.16)
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We now examine the poles of g(u, x) and the sign of its partial derivative ∂xg(u, x) when |u| < 1. If Re(z) = u
is fixed, then g(u, x) = ((1

2 + x) + u(1
2 − x))−2 has a pole when (1

2 + x) + u(1
2 − x) = 0. For u fixed this occurs

when

x̂ = x̂(u) =
1
2

(
1 + u

u− 1

)
· (12.17)

On the other hand, if x is fixed, g has a pole at

u =

1
2

+ x

x− 1
2

· (12.18)

The sign of ∂xg is determined by the formula

∂xg(u, x) = N/D, (12.19)

where N = −2(1 − u)2x − (1 − u2) and D := ((1
2 + x) + u(1

2 − x))4 ≥ 0. Calculation shows that ∂xg < 0 for
x > x̂, i.e. g is decreasing on (x̂,∞). Similarly, ∂xg > 0 for x < x̂ and g is increasing on (−∞, x̂).

Now we identify all u = Re(z) for which x̂ = x̂(u) satisfies

x̂ < μ−(α) < 0. (12.20)

Indeed for such u, the function g(u, x) will be decreasing on [μ−(α), μ+(α)], so that g(u, μ−(α)) ≥ g(u, x) for
all x ∈ [μ−(α), μ̄], yielding an upper bound for (12.16).

Lemma 12.2. The set U of u ∈ R for which − 1
2 < x̂(u) < μ−(α) < 0 is given by

U := [z∗, 1]

where

−1 ≤ z∗ :=
μ−(α) +

1
2

μ−(α) − 1
2

< 0.

Proof. Note first that μ−(α) = infi∈N{μi} ≤ 0 follows from the fact that zero is an accumulation point for the
sequence {μi}i∈N so it follows that −1 ≤ z∗. Noting x̂ = x̂(u) = 1

2
u+1
u−1 , we invert and write

u =

1
2

+ x̂

x̂− 1
2

· (12.21)

We now show that
z∗ ≤ u ≤ 1 (12.22)

for x̂ ≤ μ−(α). Set h(x̂) =
1
2 +x̂

x̂− 1
2
. Then

h′(x̂) =
−1(

x̂− 1
2

)2 , (12.23)
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and so h is decreasing on (−∞, 1
2 ). Since μ−(α) < 1

2 , h attains a minimum over (−∞, μ−(α)] at x = μ−(α).
Thus x̂(u) ≤ μ−(α) implies

z∗ =
μ−(α) +

1
2

μ−(α) − 1
2

≤ u ≤ 1 (12.24)

as desired. �

Combining Lemma 12.2 with inequality (12.16), noting that −|z| ≤ Re(z) ≤ |z| and on rearranging terms we
obtain the following corollary.

Corollary 12.3. For |z| < |z∗|:

‖(Aα(z) −Aα(0))‖L[L2
#(α,Y );L2

#(α,Y )] ≤ |α|−2|z|(−|z| − z∗)−1

(
1
2
− μ−(α)

)−1

. (12.25)

From Corollary 12.3, (12.3), and (12.4) we easily see that

‖(Aα(z) −Aα(0))R(ζ, 0)‖L[L2
#(α,Y );L2

#(α,Y )] ≤ B(α, z) = |α|−2|z|(−|z| − z∗)−1

(
1
2
− μ−(α)

)−1

d−1. (12.26)

a straight forward calculation shows that B(α, z) < 1 for

|z| < r∗ :=
|α|2d|z∗|
1

1
2−μ−(α)

+ |α|2d (12.27)

and property 4 of Theorem 7.1 is established since r∗ < |z∗|.
Now we establish properties 1 through 3 of Theorem 7.1. First note that inspection of (4.5) shows that

if (12.1) holds and if ζ ∈ C belongs to the resolvent of Aα(0) then it also belongs to the resolvent of Aα(z).
Since (12.1) holds for ζ ∈ Γ and |z| < r∗, property 1 of Theorem 7.1 follows. Formula (4.6) shows that P (z) is
analytic in a neighborhood of z = 0 determined by the condition that (12.1) holds for ζ ∈ Γ . The set |z| < r∗

lies inside this neighborhood and property 2 of Theorem 7.1 is proved. The isomorphism expressed in property
3 of Theorem 7.1 follows directly from Lemma 4.10 ([21], Chap. I, Sect. 4) which is also valid in a Banach space.

The proof of 7.2 proceeds along identical lines. To prove Theorem 7.2, we need the following Poincaré
inequality for H1

#(0, Y ).

Lemma 12.4.
‖v‖L2

#(0,Y ) ≤
1
2π

‖v‖. (12.28)

This inequality is established using (2.12) and proceeding using the same steps as in the proof of Lemma 12.1.
Using (12.28) in place of (12.6) we argue as in the proof of Theorem 7.1 to show that

‖(A0(z) −A0(0))R(ζ, 0)‖L[(L2
#(0,Y );L2

#(0,Y )] < 1 (12.29)

holds provided |z| < r∗, where r∗ is given by (7.7). This establishes Theorem 7.2.
The error estimates presented in Theorem 7.4 are easily recovered from the arguments in ([21], Chap. II,

Sect. 3); for completeness, we restate them here. We begin with the following application of Cauchy inequalities
to the coefficients βα

n of (4.10) from ([21] Chap. II, Sect. 3, p. 88):

|βα
n | ≤ d(r∗)−n. (12.30)
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It follows immediately that, for |z| < r∗,∣∣∣∣∣β̂α(z) −
p∑

n=0

znβα
n

∣∣∣∣∣ ≤
∞∑

n=p+1

|z|n|βα
n | ≤

d|z|p+1

(r∗)p(r∗ − |z|) , (12.31)

completing the proof.
For completeness we establish the boundedness and compactness of the operator Bα(k).

Theorem 12.5. The operator Bα(k) : L2
#(α, Y ) −→ H1

#(α, Y ) is bounded for k �∈ Z.

To prove the theorem for α �= 0 we observe for v ∈ L2
#(α, Y ) that

‖Bα(k)v‖ = |(Tα
k )−1(−Δα)−1v‖ ≤ ‖((Tα

k )−1‖L[H1
#(α,Y );H1

#(α,Y )]‖ −Δ−1
α v‖

≤ |α|−1‖((Tα
k )−1‖L[H1

#(α,Y );H1
#(α,Y )]‖v‖L2(Y ), (12.32)

where the last inequality follows from (12.9). The upper estimate on ‖((Tα
k )−1‖L[H1

#(α,Y );H1
#(α,Y )] is obtained

from
‖Tα

k )−1v‖
‖v‖ ≤

{
|z|ŵ + w̃ +

∣∣∣∣∣
∞∑

i=1

wi

∣∣∣∣∣ (1/2 + μi) + z(1/2 − μi)|−2

}1/2

, (12.33)

where ŵ = ‖P1v‖2/‖v‖2=, w̃ = ‖P2v‖2/‖v‖2, wi = ‖Piv‖2/‖v‖2. Since ŵ + w +
∑∞

i=1 wi = 1 one recovers the
upper bound

‖Tα
k )−1v‖
‖v‖ ≤M, (12.34)

where
M = max{1, |z|, sup

i
{|(1/2 + μi) + z(1/2− μi)|−1}}, (12.35)

and the proof of Theorem 12.5 is complete. An identical proof can be carried out when α = 0.

Remark 12.6. The Poincaré inequalities (12.6) and (12.28) together with Theorem 12.5 show that Bα(k) :
L2

#(α, Y ) −→ L2
#(α, Y ) is a bounded linear operator mapping L2

#(α, Y ) into itself. The compact embedding of
H1

#(α, Y ) into L2
#(α, Y ) shows the operator is compact on L2

#(α, Y ).
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