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RECONSTRUCTION OF POLYGONAL INCLUSIONS IN A HEAT
CONDUCTIVE BODY FROM DYNAMICAL BOUNDARY DATA
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Abstract. In this paper, we consider a reconstruction problem of small and polygonal heat-conducting
inhomogeneities from dynamic boundary measurements on part of the boundary and for finite interval in
time. Our identification procedure is based on asymptotic method combined with appropriate averaging
of the partial dynamic boundary measurements. Our approach is expected to lead to an effective
computational identification algorithms.
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1. Introduction

This work deals with an inverse boundary value problem arising from the equation of heat conduction.
We identify locations and certain properties of the shapes of small polygonal conductivity defects in the heat
equation from partial (on accessible part of the boundary) dynamic boundary measurements and for finite
interval in time.

Notice that reconstruction methods that allow partial boundary data are very interesting because, in most
experimental settings, one does not have access to measurements on the whole boundary. The inverse heat
conduction problem arises in most thermal manufacturing processes of solids and has recently attracted much
attention.

Let Ω be a bounded domain of R
d, d = 2, 3 with smooth boundary ∂Ω. We suppose that Ω contains a finite

number of polygonal inhomogeneities Dj , j = 1, . . . , m. We denote D =
⋃m

j=1 Dj such that D ⊂ Ω and Ω\D is
connected (see Fig. 1). We suppose that the inhomogeneities satisfy:

Dj ∩ Dl = ∅, for j �= l, and 0 < sup
x,y∈Dj

dist(x, y) ≤ dist(Dj , ∂Ω); ∀ j = 1, . . . , m. (1.1)

The fact that Dj is a polygonal domain means that the boundary of Dj is the union of a finite number of line
segments. The vertices s

(j)
i are the ends of the edges, where i = 1, . . . , pj and pj means the number of edges

of Dj .
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reconstruction.
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Figure 1. Domain with polygonal inhomogeneities.

Figure 2. Approximation of the polygonal inclusion by smooth inhomogeneity.

Let us denote by Cj := {s(j)
i ; 1 ≤ i ≤ pj} ⊂ ∂Dj, (1 ≤ j ≤ m), the set of the vertices associated to the

polygonal inhomogeneity Dj .
Let Dj = zj +αBj be such that ∂Dj is circumscribed to Dj (for a simple example, one can see Fig. 2), where

Bj ⊂ R
d is a bounded and smooth domain containing no corners.

Evidently, we have
Cj ⊂ ∂Dj , for all j = 1, . . .m. (1.2)

Next, let zj be the center of the new nonpolygonal inhomogeneity Dj and α is the common magnitude of the
diameter of these new inhomogeneities containing no corners. We denote Dα =

⋃m
j=1 Dj .

We now have the following remark.

Remark 1.1. Suppose that the polygonal inclusions Dj satisfy the hypothesis (1.1) and (1.2) for all j =
1, . . . , m. We can assume that the points zj ∈ Ω, j = 1 . . .m, that determines the location of the inhomogeneities
Dj satisfy

|zj − zl| ≥ d0 > 0, ∀j �= l, and dist(zj , ∂Ω) ≥ d0 > 0, ∀j = 1 . . .m. (1.3)
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Let cj denote the heat conductivity of the jth polygonal inhomogeneity Dj . We introduce the piecewise
constant conductivity:

cα(x) =

{
c0, if x ∈ Ω\D
cj , if x ∈ Dj .

Let u and uα be the solutions of the heat equation without and with inhomogeneities respectively:⎧⎪⎨⎪⎩
∂tu − c0Δu = 0, (x, t) ∈ Ω × [0, T ]

u(x, 0) = ϕ(x), x ∈ Ω

u(x, t)|∂Ω×[0,T ] = f(x, t)

(1.4)

⎧⎪⎨⎪⎩
∂tuα − (∇ · cα∇)uα = 0, (x, t) ∈ Ω × [0, T ]

uα(x, 0) = ϕ(x), x ∈ Ω

uα(x, t)|∂Ω×[0,T ] = f(x, t)

(1.5)

where ϕ ∈ C∞(Ω) and f ∈ C∞([0, T ]× C∞(∂Ω)).
It is classical to prove that the transmission problem of the heat equation (1.5) has a unique weak solution

uα ∈ L2
(
[0, T ]; H2(Ω)

) ∩ H1
(
[0, T ]; L2(Ω)

)
(see, for example, [13] p. 92 or [20]).

In the rest of this paper we will focus our attention to approximate the polygonal inhomogeneity Dj by the
spherical one Dj . Since the inhomogeneity Dj is not polygonal and is smooth enough, then we will try to use
some results that we have developed in [4].

Now, we define νj to be the outward unit normal to ∂(zj + αBj) for j = 1, . . . , m and let Γ ⊂ ∂Ω be a given
part of the boundary ∂Ω.

Inverse problem. Reconstruct unknown polygonal inclusion Dj satisfying (1.1) and (1.2) from only knowledge
of boundary measurements of

∂uα

∂ν
on Γ × (0, T ),

i.e., on the part Γ of the boundary ∂Ω and on the finite interval in time (0, T ).
More precisely, the aim of this paper is to identify the location and certain properties of the shapes of the

polygonal inclusion Dj from some information concerning Dj , that we will recuperate by using the asymptotic
method.

Throughout this paper we suppose that Cj ⊂ ∂Dj j = 1, . . . , m. In the presence of Dj , we develop an
asymptotic method based on appropriate averaging, using particular background solutions as weights. These
particular solutions are constructed by a control method as it has been done in the original work [31].

The procedure used to prove our central results is different from the ones used in [1, 8, 12, 14, 16–18,21–24]. By
means of specific test functions our first result can be read as an approximation to the Fourier transformation of
the delta distributions at the centers of the inhomogeneities Dj and this was suggested as an idea for a numerical
reconstruction algorithm.

The first basic step in the design of our reconstruction method is the derivation of an asymptotic formula
for ∂uα

∂νj
|∂D

+
j

in terms of the reference solution u, the location zj of the imperfection Dj := zj + αBj and the
geometry of Bj .

The second basic step of this investigation is to summon major information to build Dj from that found
concerning Dj . We will use some classical geometric results if the unknown polygonal inclusion is a triangle and
for other regular polygonal inclusions one can apply similar methods developed here to identify them.

The above inverse boundary value problem is related to non-destructive testing where one looks for anomalous
materials inside a known material. As an example one can mention the monitoring of a blast furnace used in iron
making: the corroded thickness of the accreted refractory wall based on temperature and heat flux measurement
on the accessible part of the furnace wall [33].
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A similar approach may be applied to Stokes equations with small polygonal inhomogeneities of different
parameters. This will be discussed in a forthcoming paper. The elastodynamic inverse problem will also be
considered.

There are lots of works on inverse problem of heat conductivity [4, 6, 10, 12, 15–18,24, 29, 34].
In general, the determination of conductivity shapes from information of boundary measurements has received

an enormous deal of attention (see for example [7, 11, 32]) the reconstruction of polygonal inclusions within
dynamics is much less investigated. In this context, one can refer to the series of works developed by Liu and
Zou [22,23]. These works are concerned with the inverse electromagnetic scattering by polyhedral obstacles. To
the best of our knowledge, the present paper is the first attempt to design an effective method to determine
the location and the size of small and polygonal heat-conducting imperfections inside a homogeneous medium
from the dynamical measurements on part of the boundary. Our method is quite similar to the ideas used (in
the time-independent case) by Sylvester and Uhlmann in their important work [29] on uniqueness of the three-
dimensional inverse conductivity problem. It is also closely related to ideas used by Yamamoto in the original
works [30, 31] on inverse source hyperbolic problems, and by Rakesh and Symes [28]. For discussions on other
interesting inverse source hyperbolic problems, the reader is referred for example to Puel and Yamamoto [26,27],
Bruckner and Yamamoto [5].

The paper is organized as follows. In Section 2, we present an asymptotic expansion for the resulting heat flux
associated to temperature distribution, which will be useful for our future results. In Section 3, we describe our
identification procedure for Dj and as consequence we identify the polygonal inclusion by using some well-known
geometrical results. In the last section, we give some numerical examples.

2. Asymptotic formula and identification procedure

In this section, we begin by citing an asymptotic formula for the heat flux ∂uα

∂νj
on the boundary ∂Dj for

j = 1, . . . , m.

Proposition 2.1. Suppose that we have hypothesis (1.1)–(1.3). Then for y ∈ ∂Bj we have:

∂uα

∂νj

∣∣∣
∂(Dj)+

(zj + αy) = νj .∇(u(zj , t)) +
(

c0

cj
− 1
)

∂Φj

∂νj

∣∣∣
+
(y).∇u(zj , t) + o(1), (2.1)

where νj means the outward unit normal to ∂(zj + αBj), and Φj is the solution of the problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ΔΦj = 0, in Dj ∪ R
d\Dj,

Φj is continuous across ∂Dj ,

c0
cj

∂Φj

∂νj
|+ − ∂Φj

∂νj
|− = −νj ,

lim|y|→+∞ |Φj(y)| = 0.

(2.2)

The term o(1) is uniform in y ∈ ∂Bj and t ∈ (0, T ) and depends on the shape of {Bj}m
j=1 and Ω, the constants d0,

T , {cj}m
j=1, the data ϕ and f , but is otherwise independent of the points {zj}m

j=1.

Proposition 2.1 may be proven by using the matching conditions for a single inhomogeneity, and by iteration
we can deduce the desired result. For detailed proof the reader can see Proposition 3.1 in [4].

Let β(x) ∈ C∞
0 (Ω) be a cutoff function such that β(x) ≡ 1 in a subdomain Ω′ of Ω that contains the

inhomogeneities Dα. Therefore, Ω′ contains ∪m
j=1Dj . For an arbitrary η ∈ R

d, we assume that we are in
possession of the boundary measurements of

∂uα

∂ν
on Γ × (0, T )
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for

ϕ(x) = ϕη(x) =
J0

(
z

a|η| |x|
)

zJ1(z)
, f(x, t) = fη(x, t) =

J0

(
z

a|η| |x|
)

zJ1(z)
e−( z

a|η| )
2
c0t;

where z is the positive zero of the Bessel function of the first kind J0(x) ([3], pp. 37–39), and a = 1/2 max{d(x, y) :
x, y ∈ Ω}.

This particular choice of data ϕ and f implies that the background solution u of the heat equation (1.4) in
the absence of any inhomogeneity is given by

u(x, t) = uη(x, t) =
J0

(
z

a|η| |x|
)

zJ1(z)
e−( z

a|η| )
2
c0t in Ω × (0, T ).

Next, we consider the function vα,η ∈ C0(0, T ; L2(Ω)) ∩ C1(0, T ; H−1(Ω)) satisfying:

∂tvα,η − c0Δvα,η = 0, (x, t) ∈ Ω × [0, T ]

vα,η(x, 0) =
m∑

j=1

i

(
1 − co

cj

)
η.

(
νj +

(
c0

cj
− 1
)

∂Φj

∂νj
|+
)

eiη.zj δ∂Dj , x ∈ Ω (2.3)

vα,η|∂Ω×[0,T ] = 0,

∂vα,η

∂t
(x, 0) = 0, x ∈ ∂Ω.

When
∂Φj

∂νj
|+(y)δ∂Dj ∈ H−1(Ω), for j = 1, . . . , m, the existence and uniqueness of a solution vα,η can be

established by transposition, see [20] and [19] (Thm. 4.2, p. 46). For a closely discussions, we can also refer
to [2].

For η ∈ R
d, introduce the function gη ∈ H1

0 (0, T ; L2(Γ )) such that the unique weak solution wη in
C0(0, T ; L2(Ω)) ∩ C1(0, T ; H−1(Ω)) of the following problem

(∂t + c0Δ)wη = 0 in Ω × (0, T ),
wη|t=0 = β(x)eiη·x ∈ H1

0 (Ω), (2.4)
wη|Γ×(0,T ) = gη, (2.5)

wη|∂Ω\Γ×(0,T ) = 0,

satisfies wη(T ) = 0.
On the other hand, we will use the following proposition.

Proposition 2.2. Suppose that we have all assumptions (1.1)–(1.3). For any η ∈ R
d, we have the following

result:
m∑

j=1

i

(
1 − c0

cj

)
eiη.zj η.

∫
∂Dj

(
νj +

(
c0

cj
− 1
)

∂Φj

∂νj
|+(y)

)
eiη.ydsj(y) = −c0

∫ T

0

∫
Γ

∂vα,η

∂ν
gη,

where gη is given in (2.5).

From the previous proposition, we can deduce the following one for d = 2.

Proposition 2.3. Suppose that we have the (1.1)–(1.3), and let d = 2. For any η ∈ R
2 we have:

α2
m∑

j=1

(
1 − c0

cj

)
e2iηzj η.

∫
∂Bj

(
νj +

(
c0

cj
− 1
)

∂Φ

∂νj
|+(y)

)
η.y dsj(y) = c0

∫ T

0

∫
Γ

gη
∂vα,η

∂ν
+ o

(
α2
)
.
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Therefore, from Propositions 2.1 and 2.3, we can deduce the following theorem which gives the procedure to
identify the locations of the inhomogeneities Dj for j = 1, . . . , m, and consequently the reconstruction of Dj .

Theorem 2.4. Suppose that we have all assumptions (1.1)–(1.3). Let η ∈ R
2 and let uα be the unique solution

of (1.5). Then:∫ T

0

∫
Γ

[
θη

(
∂uα

∂ν
− ∂u

∂ν

)
+ ∂tθη∂t

(
∂uα

∂ν
− ∂u

∂ν

)]
= −

∫ T

0

∫
Γ

ei
√

c0|η|∂t

[
e−i

√
c0|η|gη

](∂uα

∂ν
− ∂u

∂ν

)
= α2

m∑
j=1

(
1
c0

− 1
cj

)
e2iη.zj Mjη.η + o

(
α2
)
. (2.6)

Here Mj is the polarisation tensor of Bj, defined by:

(Mj)k,l = ek.

(∫
∂Bj

(
νj +

(
c0

cj
− 1
)

∂Φj

∂νj

∣∣∣∣
+

(y)

)
y.eldsj(y)

)
.

with (ei)1≤i≤2 being an orthonormal basis of R
2, and θη is the solution of the following problem as a function

of η: ⎧⎪⎪⎨⎪⎪⎩
∂tθη(x, t) +

∫ T

t e−i
√

c0|η|(s−t)(θη(x, s) − i
√

c0|η|∂tθη(x, s)) ds = gη(x, t), (x, t) ∈ ∂Ω × (0, T );

θη(x, 0) = 0, x ∈ ∂Ω;

∂θη(x, T ) = 0, x ∈ ∂Ω.

(2.7)

Proof. Firstly, we set

I =
∫ T

0

∫
Γ

∂tθη∂t

(
∂uα

∂ν
− ∂u

∂ν

)
.

Noting that
(

∂uα

∂ν − ∂u
∂ν

) |t=0 = 0, and integrating by parts, we get:

I =−
∫ T

0

∫
Γ

∂2
t θη

(
∂uα

∂ν
− ∂u

∂ν

)
=−

∫ T

0

∫
Γ

[
ei

√
c0|η|t∂t

(
e−i

√
c0|η|tgη

)
+ θη

](∂uα

∂ν
− ∂u

∂ν

)
.

Using the Volterra equation, we get:∫ T

0

∫
Γ

[
θη

(
∂uα

∂ν
− ∂u

∂ν

)
+∂tθη∂t

(
∂uα

∂ν
− ∂u

∂ν

)]
= −

∫ T

0

∫
Γ

[
ei

√
c0|η|t∂t

(
e−i

√
c0|η|tgη

)](∂uα

∂ν
− ∂u

∂ν

)
.

To prove the second equality, we consider the following function:

ũα,η(x, t) = u(x, t) +
∫ T

0

e−i
√

c0|η|svα,η(x, t − s)ds.

Using the function ũα,η(x, t), we obtain:∫ T

0

∫
Γ

[
θη

(
∂uα

∂ν
− ∂u

∂ν

)
+ ∂tθη∂t

(
∂uα

∂ν
− ∂u

∂ν

)]
=
∫ T

0

∫
Γ

[
θη

(
∂uα

∂ν
− ∂ũα,η

∂ν

)
+ ∂tθη∂t

(
∂uα

∂ν
− ∂ũα,η

∂ν

)]
+
∫ T

0

∫
Γ

[
θη

∫ t

0

ei
√

c0|η|s∂νvα,η(x, t − s)ds + ∂tθη∂t

∫ t

0

e−i
√

c0|η|s∂νvα,η(x, t − s)ds

]
.
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On the other hand, we have

∂tθ(x, t) +
∫ T

t

e−i
√

c0|η|(s−t)(θη(x, s) − i
√

c0|η|∂tθη(x, s))ds = gη(x, t),

and by performing a variable change, we get

∂t

∫ t

0

e−i
√

c0|η|s∂νvα,η(x, t − s)ds=−i
√

c0|η|e−i
√

c0|η|t
∫ t

0

ei
√

c0|η|s∂νvα,η(x, z)dz+∂νvα,η(x, t).

Therefore, ∫ T

0

∫
Γ

[
θη

∫ t

0

ei
√

c0|η|s∂νvα,η(x, t − s)ds + ∂tθη∂t

∫ t

0

e−i
√

c0|η|s∂νvα,η(x, t − s)ds

]
=
∫ T

0

∫
Γ

[
θη

∫ t

0

ei
√

c0|η|s∂νvα,η(x, t − s)ds

+∂tθη

(
−i

√
c0|η|e−i

√
c0|η|t

∫ t

0

ei
√

c0|η|s∂νvα,η(x, z)dz + ∂νvα,η(x, t)
)]

=
∫ T

0

∫
Γ

∂νvα,η(x, t)

[
∂tθη +

∫ T

t

(θη(z) − i
√

c0|η|∂tθη(z))ei
√

c0|η|(t−z)dz

]
dt

=
∫ T

0

∫
Γ

gη(x, t)∂νvα,η(x, t)dt.

Then,∫ T

0

∫
Γ

[
θη

(
∂uα

∂ν
− ∂u

∂ν

)
+ ∂tθη∂t

(
∂uα

∂ν
− ∂u

∂ν

)]
=
∫ T

0

∫
Γ

[
θη

(
∂uα

∂ν
− ∂ũα,η

∂ν

)
+ ∂tθη∂t

(
∂uα

∂ν
− ∂ũα,η

∂ν

)]
+
∫ T

0

∫
Γ

gη(x, t)∂νvα,η(x, t)dt.

From Proposition 2.3, we get:∫ T

0

∫
Γ

[
θη

(
∂uα

∂ν
− ∂u

∂ν

)
+ ∂tθη∂t

(
∂uα

∂ν
− ∂u

∂ν

)]
=
∫ T

0

∫
Γ

[
θη

(
∂uα

∂ν
− ∂ũα,η

∂ν

)
+ ∂tθη∂t

(
∂uα

∂ν
− ∂ũα,η

∂ν

)]
+ α2

m∑
j=1

(
1
c0

− 1
cj

)
e2iηzj η.

∫
∂Bj

(
νj +

(
c0

cj
− 1
)

∂Φ

∂νj
|+(y)

)
η.y dsj(y) + o(α2)

=
∫ T

0

∫
Γ

[
θη

(
∂uα

∂ν
− ∂ũα,η

∂ν

)
+ ∂tθη∂t

(
∂uα

∂ν
− ∂ũα,η

∂ν

)]
+ α2

m∑
j=1

(
1
c0

− 1
cj

)
e2iηzj η.Mj(η) + o

(
α2
)
.

Eventually, to obtain the final result we should prove∫ T

0

∫
Γ

[
θη

(
∂uα

∂ν
− ∂ũα,η

∂ν

)
+ ∂tθη∂t

(
∂uα

∂ν
− ∂ũα,η

∂ν

)]
= o(α2).
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On the other hand, by using a variable change, we get

∂t

∫ t

0

e−i
√

c0|η|svα,η(x, t − s)ds = i
√

c0|η|e−i
√

c0|η|t
∫ t

0

ei
√

c0|η|svα,η(x, s)ds + vα,η(x, t)

which implies that,

(∂t − c0Δ)
(∫ t

0

e−i
√

c0|η|svα,η(x, t − s)ds

)
= i

√
c0|η|e−i

√
c0|η|t

×
∫ t

0

ei
√

c0|η|svα,η(x, s)ds + vα,η(x, t)

− c0

∫ t

0

e−i
√

c0|η|sΔvα,η(x, t − s)ds.

By identity (2.1), we obtain:⎧⎪⎪⎨⎪⎪⎩
(∂t − c0Δ)

(∫ t

0 e−i
√

c0|η|svα,η(x, t − s)ds
)

= α
∑m

j=1 i
(
1 − co

cj

)
η
(
νj +

(
c0
cj

− 1
)

∂Φj

∂νj
|+
)

eiη.zj δ∂Dj∫ t

0
e−i

√
c0|η|svα,η(x, t − s)ds|t=0 = 0∫ t

0 e−i
√

c0|η|svα,η(x, t − s)ds|∂Ω×(0,T ) = 0.

Using these equalities and by means of Proposition 2.1, we can demonstrate the following relations:⎧⎪⎨⎪⎩
(∂t − c0Δ)(uα − ũα,η) = o(α2), (x, t) ∈ Ω × [0, T ]

(uα − ũα,η)|t=0 = 0, x ∈ Ω

(uα − ũα,η) = 0, (x, t) ∈ ∂Ω × (0, T ).

(2.8)

Next, let ϕ̂(x) =
∫ T

0

ϕ(x, t)θ(t)dt where θ ∈ C∞
0 (]0, T [). Then,

(∇ · cα∇)
(
ûα − ̂̃uα,η

)
= (∇ · cα∇)

∫ T

0

(uα − ũα,η)θ(t)dt

=
∫ T

0

(∂t(uα − ũα,η) + o(α2))θ(t)dt = o(α2).

Hence, using Proposition 2.1 in [4], we obtain:

‖∇(ûα − ̂̃uα,η)‖ + ‖ûα − ̂̃uα,η‖ ≤ λα,

which implies that
ûα − ̂̃uα,η = o(α2).

Then we obtain,
‖∂t(ûα − ̂̃uα,η)‖ = o(α2).

Our aim now is to prove that

‖ ∂

∂ν
(ûα − ̂̃uα,η)‖L2(Γ ) = o(α2), ∀θ ∈ C∞

0 ([0, T ]).

Recalling that ∥∥∥∥ ∂

∂ν

(
ûα − ̂̃uα,η

)∥∥∥∥2

L2(Γ )

=
∫

Γ

[
∇
(∫ T

0

(uα − ũα,η)(x, t)θ(t)

)
.ν

]2

.
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Therefore, by using the divergence theorem, the previous integral becomes:

∫
Ω

[
∇ · (∇

∫ T

0

(uα − ũα,η) (x, t)θ(t)dt

]2

=
∫

Ω

[∫ T

0

Δ (uα − ũα,η) θ(t)dt

]2

≤ 1
c2
0

(∥∥∥∂t

(
ûα − ̂̃uα,η

)∥∥∥2

+ o(α2)
)

= o(α2).

Thus, ∥∥∥∥ ∂

∂ν

(
ûα − ̂̃uα,η

)∥∥∥∥
L2(Γ )

= o(α2), ∀θ ∈ C∞
0 ([0, T ]),

which implies that, ∥∥∥∥ ∂

∂ν
(uα − ũα,η)

∥∥∥∥
L2(Γ )

= o(α2).

Therefore, ∫ T

0

∫
Γ

[
θη

(
∂uα

∂ν
− ∂ũα,η

∂ν

)
+ ∂tθη∂t

(
∂uα

∂ν
− ∂ũα,η

∂ν

)]
= o(α2).

Then, the desired proof is achieved. �

2.1. Locations of the centers

First of all, we will neglect the asymptotic remainder of the asymptotic formula (2.6) given in Theorem 2.4.
As described in [4], we will use the fact that the function e2iη.zj is the Fourier transform of the Dirac function

δ−2zj . Let us denote:

Λα(η) =
∫ T

0

∫
Γ

[
θη

(
∂uα

∂ν
− ∂u

∂ν

)
+ ∂tθη∂t

(
∂uα

∂ν
− ∂u

∂ν

)]
. (2.9)

To obtain the locations of the centers zj , j = 1, . . . , m we need to apply an inversion Fourier transform to
the function Λα(η). We have to recall also that the function e2iη·zj is exactly the Fourier transform (up to
a multiplicative constant) of the Dirac function δ−2zj (a point mass located at −2zj), where the set of the
points zj , j = 1, . . . , m represents the centers of the inhomogeneities to be detected.

Furthermore, if we construct numerically the term Λα(η) then, by applying the IFFT (Inverse Fast Fourier
Transforms) algorithm to Λα(η), we obtain a linear combination of the Dirac functions δ−2zj . So, after rescaling,
we obtain the total collection of the points zj , j = 1, . . . , m. However, it has to be noticed that the number of
different values of the variable η ∈ R

2, which is considered as the set of the frequencies for the Inverse Fourier
Transform, is very important for the total computation time for the direct problem, and also gives the final
detection precision. Thus, any numerical reconstruction for the underlined inverse problem may be stable.

From Shannon’s theorem the following two principal facts follow:

• If the domain which contains the inclusions is a square with dimension M , then the function Λα(η) has to
be sampled with the step size Δη = 1

M .
• If we sample in the frequency domain |η| < ηmax, then the reconstruction resolution will not be less than

δ = 1
2ηmax

.

In order to construct a suitable algorithm to find the location of the inclusions, we should begin by identifying
the control function gη on Γ . In the next section, we will give the method used to find the function gη.
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2.2. Determination of the control gη

Let gη be a function such that wη be the unique solution of the following problem:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(∂t + ic0Δ)wη = 0, in Ω × (0, T ),

wη|t=0 = βeiη.x ∈ H1
0 (Ω),

wη|Γ×(0,T ) = gη,

wη|∂Ω\Γ×(0,T ) = 0,

wη(T ) = 0.

(2.10)

There are several works concerned with the controllability problems. The key point in these investigations
is the well-known Hilbert Uniqueness Method (HUM) [19]. On the other hand, in this paragraph we use
the decomposition method [9]. This method is based on the decomposition of the function wη in two sim-
ple functions uη and vη such that uη + vη be the unique weak solution of (2.10). Explicitly we can write
uη(x, t) = 1

2β(η.x + c0|η|t).η⊥e
i
2 (η.x+c0|η|t) and vη(x, t) = 1

2β(η.x − c0|η|t).η⊥e
i
2 (η.x−c0|η|t). We can prove eas-

ily that the function wη = uη + vη solves the problem (2.10). Therefore, it is not difficult to determine the
function gη by using the calculated term of wη.

2.3. Numerical algorithm

In this section, we will give the algorithm used to find the locations of the centers zj, j = 1, . . . , m. Using
Theorem 2.4, the steps of the reconstruction of the inhomogeneities are as follows:

(1) Solve the problems (1.4) and (1.5) to find u and uα.
(2) Apply the decomposition method to find the control gη.
(3) Compute Λα(η) by using its expression defined in (2.9).
(4) Apply the IFFT to find the locations of the centers zj of the inhomogeneities Dj , j = 1, . . . , m.
(5) Calculate the polarization tensors (Mj)m

j=1 of Bj , to find the position of the hypotenuse of each polygonal
inhomogeneity Dj with respect to (ei)1≤i≤2.

(6) Apply the law of sines to find the position of the other vertex.

2.4. Determination of the inhomogeneity Dj

In this section, we are convinced that the centers zj of the circumscribed circle ∂Dj to the triangular inclusion
Dj are well determined according to the mentioned above. Now suppose that the number of edges of Dj is pj := 3,
and suppose that we have the assumption (1.2). Then, Dj is the circumcircle of the triangle Dj .

Moreover, to compute the length of any side of Dj, one can use the law of sines to remark that (see Fig. 3).

Remark 2.5.

(i) If Dj is a right triangle, then the circumcenter zj is at the center of the hypotenuse. As a consequence, the
length of the hypotenuse is exactly the diameter of Dj .

(ii) The length of any side of Dj can be computed as the diameter of Dj , multiplied by the sine of the opposite
angle.

The following main result holds.

Theorem 2.6. Suppose that the assumptions (1.1)–(1.3) are satisfied. Let u and uα be the solutions of (1.4)
and (1.5) respectively, and let Λα be given by (2.9). If the polygonal inclusion Dj is a right triangle, then its
area can be given by the following relation:

Λα(ek) = πα

m∑
j=1

λj

sin(2ϕj)
|Dj| + o(α2), (2.11)
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Figure 3. The circumcenter of a right triangle (Dj := ΔS
(j)
1 S

(j)
2 S

(j)
3 ) is at the center of the

hypotenuse.

where λj is a constant depending on the ratio c0
cj

, 0 < ϕj < π/2 is an inscribed angle, and (ei)1≤i≤2 is an
orthonormal basis of R

2.

Proof. To justify our results, we directly use Theorem 2.4. So, by using definition (2.9) we can write:

Λα(η) = α2
m∑

j=1

(
1
c0

− 1
cj

)
e2iη.zj Mj(η).η + o(α2), for any η ∈ R

d. (2.12)

On the other hand, we recall from [7] that if Bj is a ball in R
d its polarization tensor Mj has the following

explicit expression:
Mj = Mj(c0, cj ; Bj) = ζj |Bj |Id,

where Id is the identity matrix and ζj = ζj(c0/cj). Therefore, (2.12) becomes

Λα(η) = α2
m∑

j=1

(ajζj |η|2)|Bj | + o(α2) for any η ∈ R
2, (2.13)

where the constant aj depends on zj which now is known according to Theorem 2.4 and Section 2.1.
Now, if Dj is a right triangle with Cj := {s(j)

i ; 1 ≤ i ≤ 3} (1 ≤ j ≤ m) the set of vertices, then, one can
compute, by using the classical law of sines and Remark 2.5, that

|Dj | =
sin(2ϕj)

π
|Dj |, (2.14)

where ϕj ≡ ŝ
(j)
i (mod π) and ŝ

(j)
i is the opposite angle.

Moreover, since |Dj | = α|Bj | and relation (2.13) is valid for all η ∈ R
2, we can insert (2.14) into (2.13) to get

that

Λα(ek) = α
m∑

j=1

λj

sin(2ϕj)
π|Dj | + o(α2),

where we have taken η = ek; 1 ≤ k ≤ 2 and λj depends on ζj . �

In the following result, we state that if one knows the ratio of areas for two successive triangular inclusions
|Dj |

|Dj−1| = βj , then we can determine more precisely the area of each one.
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Figure 4. The function gη at three different times.

Corollary 2.7. Suppose that all the assumptions of Theorem 2.6 are satisfied. Let βj = |Dj |/|Dj−1|, j =
1, . . . , m. Then we have

|Dj| =
|Dm|

Πm
s=j+1βs

and

|Dm| ≈ Λα(ek)/α

π
∑m

j=1
λj

Πm
s=j+1βs

sin(2ϕj)
, (2.15)

where λj is given in (2.11) and the product term Πm
s=j+1βs := βj+1 · βj+2 . . . βm.

3. Numerical examples

In this section, we choose Ω to be the circle centered in the origin, its radius is r = 1 and the thermal
conductivity is c0 = 1. In the rest of this section we will try to detect one inhomogeneity and then two
inhomogeneities.

In all the examples of this section, steps 1, 2, 3 and 4 of the algorithm, given in the paragraph 2.3, were done
using Matlab. After obtaing locations of the centers, we use FreeFem++ to apply steps 5 and 6.

In order to find the locations of the inhomogeneities, we begin by determining the function gη(x, t). Using
the decomposition method, we obtain the following graphs.

Now, we can use the above algorithm to detect a single inhomogeneity.

3.1. Detection of a one inhomogeneity

The aim of this section is to find the location of one polygonal inhomogeneity which has the form of a triangle
and whose thermal conductivity is c = 0.5. Then, the graphs of the density uα and the heat flux ∂nuα for t = 2
are given by the Figures 5 and 6, respectively.

Using these values, the detection result is giving by Figures 7 and 8.
In the table below, we have a comparison between the coordinates of the vertices of the real inhomogeneity

and the numerical one.
From Table 1, one may see that the error is small and our numerical result are stable.
To go more with the performance of this procedure, we will try to detect two inhomogeneities in the next

paragraph.
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Figure 5. The density uα(t = 2).
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Figure 6. The heat flux ∂uα

∂n (t = 2).

Figure 7. The real position of the in-
homogeneity.

Figure 8. The numerical position of
the inhomogeneity.

Table 1. Comparison between the real and the detected inhomogeneity.

Mesh 1490 triangles
1st vertex 2nd vertex 3rd vertex

Real vertices (–0.22,0.12) (–0.05;–0.02) (–0.23,–0.01)
Detected vertices (–0.2098,0.1222) (–0.04277,0.02037) (–0.2301,–0.03259)
Norm of the error 10−2 4 × 10−2 2 × 10−2

3.2. Detection of two inhomogeneities

In this paragraph, we choose two inhomogeneities, the first is a triangle and the second is a pentagon. Their
thermal conductivities are c1 = 0.5 and c2 = 0.1 respectively. The following figures represent the density and
the heat flux associated to the present configuration.

On the other hand, we apply our algorithm to obtain the two figures below containing the real and the
detected cavities.

In the next table, we give the exact coordinates of the vertices of the two real inhomogeneities and the
coordinates of the detected ones after applying our method.
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Figure 11. The real locationss of
the inhomogeneities.

Figure 12. The numerical locations
of the inhomogeneities.

Table 2. Comparison between the real and the detected inhomogeneities.

Mesh 2079 triangles
1st vertex 2nd vertex 3rd vertex 4th vertex 5th vertex

Real vertices (0.1,–0.1) (0.1,–0.2) (0,–0.2) (0.2,–0.3) (0.3,–0.1)
Detected vertices (0.06571,–0.05011) (0.–0.201) (0.157,–0.3998) (0.3509,–0.0687)
Norm of the error 6 × 10−2 10−3 10−1 5 × 10−2

Table 2 shows that our algorithm can be applied not only for the inhomogeneities whose form is triangular,
but also for other inhomogeneities containing right angles.

4. Conclusion

The reconstruction of unknown inhomogeneities becomes a very interesting problem and its applications take
places in many fields such as biology, physics, and others. The reconstruction of polygonal cavities was studied
by Ikehata using the enclosure method for several classes of PDEs [14, 16]. The asymptotic method is often
used for inhomogeneities with smooth boundaries [1, 7, 32]. In this paper we have proved that the asymptotic
method is also available for the polygonal case. In the last part of this paper we have developed some numerical



RECONSTRUCTION FROM DYNAMICAL BOUNDARY DATA 963

applications to prove the performance and the stability of the numerical reconstruction method. In a forthcoming
paper we will focus our attention to identify more complicated polygonal inclusions.

Acknowledgements. The authors wish to thank the Editor and the Referees for their valuable criticisms and suggestions,
leading to the present improved version of our paper.

References

[1] H. Ammari, E. Iakovleva, H. Kang and K. Kim, Direct algorithms for thermal imaging of small inclusions. SIAM J. Multiscale
Model. Simul. 4 (2005) 1116–1136.

[2] C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from
the boundary. SIAM J. Control Optim. 30 (1992) 1024–1065.

[3] F. Bowman, Introduction to Bessel Functions. Dover, New York (1958).

[4] M. Bouraoui, A. Khelifi and L. El Asmi, On an inverse boundary problem for the heat equation when small heat conductivity
defects are present in a material. ZAMM, Z. Angew. Math. Mech. 96 (2015) 1–17.

[5] G. Bruckner and M. Yamamoto, Determination of point wave sources by pointwise observations: stability and reconstruction.
Inverse Probl. 16 (2000) 723–748.

[6] K. Bryan and L.F. Caudill, Stability and reconstruction for an inverse problem for the heat equation. Inverse Probl. 14 (1998)
1429–1453.

[7] D.J. Cedio-Fengya, S. Moskow and M. Vogelius, Identification of conductivity imperfections of small diameter by boundary
measurements. Continuous dependence and computional reconstruction. Inverse Probl. 14 (1998) 553–595.

[8] R. Chapko, R. Kress and J-R. Yoon, On the numerical solution of an inverse boundary value problem for the heat equation.
Inverse Probl. 14 (1998) 853–867.

[9] C. Daveau, Diane M. Douady, A. Khelifi and A. Sushchenko, Numerical solution of an inverse initial boundary value problem
for the full time dependent Maxwell’s equations in the presence of imperfections of small volume. Appl. Anal. 92 (2013)
975–996.

[10] T.P. Fredman, A boundary identification method for an inverse heat conduction problem with an application in ironmaking.
Heat Mass Transfer 41 (2004) 95–103.

[11] A. Friedman and M. Vogelius, Identification of small inhomogeneities of extreme conductivity by boundary measurements: a
theorem on continuous dependence. Arch. Ration. Mech. Anal. 105 (1989) 299–326.

[12] P. Gaitan, H. Isozaki, O. Poisson, S. Siltanen and J. Tamminen, Probing for inclusions in heat conductive bodies. Inverse
Probl. Imaging 6 (2012) 423–446.

[13] G.C. Hsiao and J. Saranen, Boundary integral solution of the two-dimmensional heat equation Math. Methods Appl. Sci. 16
(1993) 87–114.

[14] M. Ikehata, Enclosing a polygonal cavity in a two-dimensional bounded domain from Cauchy data Inverse Probl. 15 (1999)
1231–1241.

[15] M. Ikehata, Extracting discontinuity in a heat conductiong body. One-space dimensional case. Appl. Anal. 86 (2007) 963–1005.

[16] M. Ikehata and H. Itou, On reconstruction of an unknown polygonal cavity in a linearized elasticity with one measurement.
In: International conference on Inverse problem. J. Phys.: Conf. Series 209 (2011) 012005.

[17] M. Ikehata and M. Kawashita, On the reconstruction of inclusions in a heat conductive body from dynamical boundary data
over a finite time interval. Inverse Probl. 26 (2010) 15.

[18] X.Z. Jia and Y.B. Wang, A Boundary Integral Method for Solving Inverse Heat Conduction Problem. J. Inverse Ill-Posed
Probl. 14 (2006) 375–384.
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