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FINITE ELEMENT APPROXIMATION OF DIRICHLET CONTROL USING
BOUNDARY PENALTY METHOD FOR UNSTEADY NAVIER−STOKES

EQUATIONS

Sivaguru S. Ravindran
1

Abstract. This paper is concerned with the analysis of the finite element approximations of Dirichlet
control problem using boundary penalty method for unsteady Navier−Stokes equations. Boundary
penalty method has been used as a computationally convenient approach alternative to Dirichlet bound-
ary control problems governed by Navier−Stokes equations due to its variational properties. Analysis
of the mixed Galerkin finite element method applied to the spatial semi-discretization of the optimality
system, from which optimal control can be computed, is presented. An optimal L∞(L2) error estimate
of the numerical approximations of the optimality system is derived. Feasibility and applicability of the
approach are illustrated by numerically solving a canonical flow control problem.
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1. Introduction

Control of fluid flows modeled by Navier−Stokes equations is an important area of research that has under-
gone major developments both theoretically and computationally in the recent past. It has many applications
including in drag reduction, lift enhancement, mixing augmentation and flow induced noise suppression. The
complex nonlinearity and high dimensionality of the Navier−Stokes equations pose many theoretical and com-
putational challenges. There is an extensive body of literature devoted to this subject, see [8,11,23] for surveys
in this area.

In this paper, we consider mixed Galerkin finite element approximations of Dirichlet control using boundary
penalty method for unsteady Navier−Stokes equations. Dirichlet boundary control, while being practical, is
considerably more challenging than other controls in every aspect of control development, from analysis to
achieving the control objective. The main difficulty with Dirichlet boundary control is that it is non-variational
and thus it is nontrivial to identify suitable function space framework without using appropriate boundary
lifting. Several approaches have been proposed in the literature to deal with the theoretical and computational
difficulties associated with Dirichlet boundary control, see [5, 6, 13, 15, 16]. In most of these works, the function
space for the controls is Hs with s ≥ 1

2 which makes numerical realizations by finite elements or finite differences
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more involved than if the control space was L2. In [13] control space is taken to be H1 (smooth controls)
leading to a boundary Laplace equation for the control. In [5], a separation of variable type Dirichlet control
of unsteady Navier−Stokes equation is studied. In [6], Dirichlet control of unsteady Navier−Stokes equations
is studied. The choice of function space considered there however involves spaces of fractional powers and
thus is not convenient computationally. In [15], boundary penalty approach for Dirichlet boundary control of
stationary Navier−Stokes equations is studied from theoretical point of view. Error analysis of finite element
approximations of penalized formulations of Dirichlet boundary control problems associated with the stationary
Navier−Stokes equations is studied in [16]. Starting with the works of [15,16], interest in penalization technique
for treating Dirichlet control has increased. It has since been studied in the context of optimal control with
other partial differential equations [2–4,21]. In [21], Dirichlet control of unsteady Navier−Stokes type equations
related to Soret convection is studied using boundary penalty approach. In particular, convergence of solutions
of penalized control problem to the corresponding solutions of the Dirichlet control problem is proved as the
penalty parameter approaches to zero.

In this paper, we are concerned with boundary penalty method to treat the Dirichlet boundary velocity
control of unsteady Navier−Stokes equations. Boundary penalty method studied here allows one to work with
L2-control space. Unlike other L2-control space approaches the present method does not lead to optimality
conditions that involve normal derivative of the adjoint variable on the boundary. We present an analysis of the
mixed Galerkin finite element spatial discretization of the optimality system, from which optimal control can
be computed. An optimal L∞(L2) error estimate of the numerical approximations of the optimality system is
derived. Feasibility and applicability of the approach are illustrated by numerical experiments.

The remainder of the paper is organized as follows. In Section 2, we review mathematical background materials
related to the unsteady Navier−Stokes equations and give a precise description of both Dirichlet boundary
control problem and its penalized counterpart. Moreover, we state results regarding existence of optimal solutions
for the boundary penalized optimal control problem. In Section 3, we present the mixed Galerkin finite element
approximations of optimality system and prove optimal order L∞(L2(Ω)) error estimates for the approximate
solutions of the optimality system. In Section 4, we present results from numerical implementation.

2. Preliminaries and continuum optimal control problem

2.1. Preliminaries

In this section, we introduce some notations and collect several facts from functional analysis which will
be useful in subsequent sections. Let Ω ⊂ R

2 be a bounded domain. When finite element approximations
are considered, we will assume that Ω is a convex polyhedral domain; otherwise, we will assume that Ω has
Lipschitzian boundary Γ . For p ≥ 1, let Lp(Ω) denote the linear space of all real Lebesgue measurable functions φ
and bounded in the usual norm denoted by ‖φ‖Lp(Ω). The inner product and norm in L2(Ω) are denoted by
(·, ·) and ‖ · ‖, respectively. Let Hs(Ω) be the usual Hilbertian Sobolev space with s derivatives in L2(Ω). We
denote with ‖ · ‖s the norm in Hs(Ω). The closed subspace of functions in H1(Ω) with zero trace on Γ will be
denoted by H1

0 (Ω). The closed subspace of functions in L2(Ω) with zero mean on Ω will be denoted by L2
0(Ω).

The dual space of H1
0 (Ω) will be denoted by H−1(Ω) and its norm by ‖ · ‖−1. The trace space Hr(Γ ) consists

of functions that are the restriction to the boundary of functions in Hr+1/2(Ω), r > 0. We denote the norm and
inner product for functions in Hr(Γ ) by ‖ · ‖r,Γ and (·, ·)r,Γ , respectively. In the sequel, we denote by boldface
letters R

2-valued function spaces such as L2(Ω) := [L2(Ω)]2 and Hm(Ω) := [Hm(Ω)]2. We put

V :=
{
v ∈ H1(Ω) : ∇ · v = 0 in Ω

}
, and H :=

{
v ∈ L2(Ω) : ∇ · v = 0 in Ω

}
and

V :=
{
v ∈ H1

0(Ω) : ∇ · v = 0 in Ω
}
.
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We denote the dual of V by V∗. If we identify H with its dual H∗, then we get the following continuous and
dense embedding:

V ⊂ H = H∗ ⊂ V∗.

For details, concerning these spaces, see for e.g. [10].
For a Banach space X , we denote by Lp(0, T ;X) the time-space function space endowed with the norm

‖w‖Lp(0,T ;X) :=
(∫ T

0
‖w‖p

X dt
)1/p

if 1 ≤ p < ∞ and ess supt∈[0,T ] ‖w‖X if p = ∞. We will often use the
abbreviated notation Lp(X) := Lp(0, T ;X) for convenience. We also introduce the space W(0, T ) := {u ∈
L2(V) : ut ∈ L2(V∗)} endowed with the norms ‖u‖W := (‖u‖2

L2(V) + ‖ut‖2
L2(V∗))

1
2 . We further define

WΣ := {g|τ(u) = g for u ∈ W },

where τ : W → L2(0, T ;H
1
2 (Γ )) is the trace operator onto the lateral boundaryΣ := Γ×(0, T ) of the space-time

domain Ω × (0, T ) given by τ(u(t)) = u(·, t)|Γ for a.e in [0, T ]. We define the norm on WΣ by

‖g‖W Σ := inf
u∈W

τ(u)=g

‖u‖W .

For g ∈ WΣ , we define by ug the unique element in W that achieves this infimum, see [21].
We end this section by recalling some inequalities that we will use in this paper.

Poincaré-Friedrichs’ inequality: For u ∈ H1(Ω) ,

λ‖u‖2 ≤ ‖∇u‖2 + ‖u‖2
0,Γ ,

where λ > 0 is a constant, see ([18], Thm. 1.9 and [17], Sect. 5.3). For ε ∈ (0, Re), we have by
Poincaré−Friedrich’s inequality,

Ĉ

Re
‖v‖2

1 ≤ 1
Re

∫
Ω

|∇v|2 dΩ +
1
ε

∫
Γ

|v|2 ds ∀v ∈ H1(Ω). (2.1)

Gagliardo−Nirenberg inequality: For u ∈ H1(Ω) ∩ Lq(Ω), let 1 ≤ q ≤ r <∞. Then, for s = 1 − (q/r),

‖u‖Lr(Ω) ≤ C‖u‖1−s
Lq(Ω)‖u‖

s
1,

see, [7, 19]. Notice that with q = 2 and r = 4, Gagliardo−Nirenberg inequality implies

L2(0, T ;X) ∩ L∞(0, T ;Y ) ⊂ L4(Ω × (0, T )),

where X ⊂ H1(Ω) and Y ⊂ L2(Ω).

Young’s inequality: For any a, b ≥ 0 and ε > 0, and q, r > 1

ab ≤ ε

q
aq +

ε−
r
q

r
br, with

1
q

+
1
r

= 1.

2.2. Continuum optimal control problem

We consider a boundary control problem for unsteady viscous incompressible flow modeled by the
Navier−Stokes equations ⎧⎪⎨⎪⎩

∂tu− 1
Re

Δu + u · ∇u + ∇p = f in Ω × [0, T ]

∇ · u = 0 in Ω × [0, T ]
(2.2)
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along with boundary and initial conditions

u = g on Γ × [0, T ] (2.3)

u(x, 0) = u0(x) in Ω, (2.4)

where u is the velocity, p the pressure, Re the Reynolds number and g the control.
Letting Uad := WΣ be the admissible control set for the Dirichlet control problem, we formulate the Dirichlet

control problem as follows:

(P )
Minimize J (u,g) =

∫ T

0

[
Θ(u) +

γ

2

∫
Γ

|g|2 dΓ
]

dt over all g ∈ Uad,

where (u,g) ∈ W(0, T )× Uad satisfies

(∂tu,v) +
1
Re

(∇u,∇v) + (u · ∇u,v) = (f ,v), ∀v ∈ V

u|Γ = g and u(x, 0) = u(x).

In the cost functional J (u,g), g is the control field and γ is a positive parameter. Moreover, we assume the
function Θ : H1(Ω) → R

+ appearing in the cost functional is assumed to satisfy the following:

(i) Θ(u) is convex and lower-semi continuous and;
(ii) c1‖∇u‖2 − c2‖u‖2

0,Γ ≤ Θ(u) ≤ ĉ1‖∇u‖2 + ĉ2‖u‖2
0,Γ for some constants ci, ĉi ∈ R

+, i = 1, 2.

The allowed class of functionals of course includes regulation of viscous dissipation function Θ1 = δ
2 [‖∇u +

(∇u)T ‖2]. The other allowed functionals include regulation of kinetic energy in weighted H1- norm, i.e., Θ2 =
δ
2 [‖∇u‖2 + ‖u‖2] and regulation of square of the vorticity, i.e., Θ3 = δ

2‖∇ × u‖2. The former expression for Θ
already satisfies the above assumption. The later can also be shown to satisfy the above assumption (see [15],
Lem. 3.3).

In penalized optimal control problem, the Dirichlet boundary control u|Γ = g in (2.3) is penalized as

−pn +
1
Re

∂u
∂n

− 1
2
(u · n)u +

1
ε
u =

1
ε
g on Γ. (2.5)

Moreover, the state and control variables are constrained to satisfy the Navier−Stokes equations in the following
weak form {

(∂tu,v) + 1
Re (∇u,∇v) + c(u,u,v) + 1

ε (u,v)Γ = (f ,v) + 1
ε (g,v)Γ , ∀v ∈ V

u(x, 0) = u0(x).
(2.6)

In (2.6), the tri-linear form c(·, ·, ·) is defined as

c(u,w,v) :=
1
2

[((u · ∇)w,v) − ((u · ∇)v,w)] = (u · ∇w,v) − 1
2
(v,w(u · n))Γ

for all u,v,w ∈ H1(Ω). Notice that by integration by parts

c(u,w,v) = (u · ∇w,v) − 1
2
(v,w(u · n))Γ

and it is clear that c(u,v,v) = 0. The existence of a unique solution to the state equation (2.6), see [21], ensures
the existence of a control-to-state mapping g �→ u(g) through (2.6).
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The weak formulation of the penalized control problem is defined as follows:

(Pε)
Minimize J (u,g) =

∫ T

0

[
Θ(u) +

γ

2

∫
Γ

|g|2 dΓ
]

dt over all g ∈ Uε
ad,

where (u,g) ∈ W(0, T )× Uε
ad satisfies (2.6),

where Uε
ad := L2(0, T ;L2(Γ )). The existence of the optimal solutions to the penalized control problem (P )ε is

guaranteed by the following theorem in [21].

Theorem 2.1. Assume ε ∈ (0, Re). Then there exists an optimal solution (u,g) ∈ W(0, T )×Uε
ad that minimizes

J (u,g) subject to (2.6).

In [21], convergence of the solution of penalized control problem to the solution of the original Dirichlet
control problem has been established. Moreover, it has been shown there that the optimal solution must satisfy
the first-order necessary condition associated with the optimal control problem.

Theorem 2.2. Assume ε ∈ (0, Re). If (u,g) ∈ W(0, T )× Uε
ad is an optimal solution for (P )ε, then we have

1
ε

∫ T

0

(μ,h)Γ dt+ γ

∫ T

0

(g,h)Γ dt = 0 ∀h ∈ Uε
ad, (2.7)

where μ ∈ W(0, T ) is the weak solution of the adjoint equations⎧⎪⎨⎪⎩
−(∂tμ,v) + 1

Re (∇μ,∇v) + c(u,v,μ) + c(v,u,μ) + 1
ε (μ,v)Γ

= (Θu(u),v) ∀v ∈ V

μ(x, T ) = 0.

(2.8)

On the solutions (u, p,μ, π) of optimality system (2.6)−(2.8), we will make the following assumptions:

Assumption (A). There is positive integer k such that⎧⎪⎪⎨⎪⎪⎩
sup

0<t<T
{‖(u,μ)‖k+1 + ‖∂t(u,μ)‖k−1 + ‖(p, π)‖k + τ(t)‖(∂tu, ∂tμ)‖k} ≤M,

sup
0<t<T

e−αt

∫ t

0

eαs‖(∂tu, ∂tμ)‖2
k + σ(s)‖(∂tu, ∂tμ)‖2

k+1 + σ(s)‖(∂tp, ∂tπ)‖2
k ds < M,

(2.9)

for some positive constant M , where σ(t) := τ(t)eαt, α > 0 and τ(t) := min{1, t}.

3. Finite element approximation of penalized control problem

In this section, we study the mixed finite element approximation of the problem in (P )ε. In order to fix the
problem, we will set Θ = Θ1 in the rest of this section.

3.1. Finite element spaces and properties of projections onto finite element spaces

We consider conforming mixed finite element approximations for spatial discretizations. Let Th be a family
of subdivisions (e.g. triangulation) of Ω ⊂ R

d satisfying Ω = ∪K∈Th
K so that diameter(K) ≤ h and any

two closed elements K1 and K2 ∈ Th are either disjoint or share exactly one face, side or vertex. Suppose
further that Th is a shape regular and quasi-uniform triangulation. That is, there exists a constant C > 0 such
that the ratio between the diameter hK of an element K ∈ Th and the diameter of the largest ball contained
in K is bounded uniformly by C, and hK is comparable with the mesh size h = max

K∈Th

hK for all K ∈ Th. For

example, Th consists of triangles that are non-degenerate as h→ 0. We consider conforming mixed finite element
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approximations for spatial discretizations. Let Xh ⊂ H1(Ω) and Qh ⊂ L2(Ω) be a family of finite dimensional
subspaces parameterized by a parameter h such that 0 < h < 1. Here we may choose any pair of subspaces that
can be used for finding finite element approximations of solutions of Navier−Stokes equations.

We make the following assumptions on the finite dimensional subspaces:

Assumption (B).
We have the approximation properties: there exists an integer k and a constant C, independent of h, v and q,
such that

inf
vh∈Xh

[‖v − vh‖ + h‖∇(v − vh)‖] ≤ Ch	+1‖v‖	+1 ∀v ∈ H	+1(Ω), 1 ≤ � ≤ k

and
inf

qh∈Qh

‖q − qh‖ ≤ Ch	‖q‖	 ∀q ∈ H	(Ω).

Assumption (C). (Discrete inf-sup condition)
For every qh ∈ Qh, there exists a nonzero function vh ∈ Xh and β > 0 such that

|b(qh,vh)| ≥ β‖∇vh‖‖qh‖,

with an inf-sup constant β > 0 that is independent of the mesh size h, where the bilinear form b(·, ·) is defined as
b(vh, qh) := −

∫
Ω
qh ∇ ·vh dΩ. The discrete inf-sup condition is needed in finite element approximations of the

Navier−Stokes equations (see, e.g., [10]) and naturally is also needed in the approximations of the optimality
system of equation discussed below.

Assumption (D). For any integers l and m (0 ≤ l ≤ m ≤ 1) and any real numbers p and q (1 ≤ p ≤ q ≤ ∞)
it holds that

‖ψh‖m,q ≤ chl−m+d(1/q−1/p)‖ψh‖l,p ∀ψh ∈ Xh.

There are many conforming finite element spaces satisfying the Assumptions (B)−(D). One may choose, for
example as in Section 4, the Taylor−Hood element pair for the velocity and pressure (i.e, piecewise quadratic
polynomial for velocity and piecewise linear polynomial for pressure). Then, assumptions (B)−(D) hold with
k = 2.

The mixed finite element Galerkin approximation of the state equation in (Pε) is as follows: find uh(t) ∈ Xh

and ph(t) ∈ Qh such that for t > 0⎧⎪⎨⎪⎩
(∂tuh,vh) + 1

Re(∇uh,∇vh) + c(uh,uh,vh) + b(vh, ph) + 1
ε (uh,vh)Γ

= 1
ε (gh,vh)Γ + (f ,vh) ∀vh ∈ Xh,

b(uh, qh) = 0 ∀qh ∈ Qh

(3.1)

and uh(0) = u0h, where u0h ∈ Xh is a suitable approximation of u0 ∈ H1(Ω).
The finite element approximation of the penalize control problem (Pε) is to find (uh, ph) ∈ Xh × Qh such

that

(Ph,ε)
min

gh∈Xh|Γ
J (uh,gh) =

∫ T

0

[
Θ(uh) +

γ

2

∫
Γ

|gh|2 dΓ
]

dt

such that (uh, ph,gh) satisfies (3.1).

Lemma 3.1. If (uh,gh) is the solution of (3.1), then uh ∈ L4(Ω × (0, T )) and

sup
t∈[0,T ]

‖uh‖2 +
1
Re

‖∇uh‖2
L2(L2(Ω)) +

1
ε
‖uh‖2

L2(L2(Γ )) ≤ Re‖f‖2
L2(H1(Ω)∗)

+‖u0‖2 + 1
ε‖g‖2

L2(L2(Γ )).

(3.2)
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Moreover, if (uh,gh) is the solution of the semi-discrete optimal control problem (Ph,ε), then there exists con-
stants c1 and c2 such that ∫ T

0

‖gh‖2 dt ≤ c1 and
∫ T

0

‖uh‖2
1 ≤ c2. (3.3)

Proof. By setting vh = uh in (3.1) and using the skew symmetry of the trilinear form, we get

1
2

d
dt

‖uh‖2 +
1
Re

‖∇uh‖2 +
1
ε
‖uh‖2

0,Γ =
1
ε
(gh,uh)Γ + (f ,uh), (3.4)

First we note that the right hand side of (3.1) can be majorized using Young’s inequality as follows

(f ,uh) +
1
ε
(g,uh)Γ ≤ Re

2
‖f‖2

∗ +
1

2Re
‖∇uh‖2 +

1
2ε

‖g‖2
0,Γ +

1
2ε

‖uh‖2
0,Γ .

Employing this estimate in (3.4), we obtain

1
2

d
dt

‖uh‖2 +
1

2Re
‖∇uh‖2 +

1
2ε

‖uh‖2
0,Γ ≤ Re

2
‖f‖2

∗ +
1
2ε

‖g‖2
0,Γ .

Integrating this with respect to time, we obtain the required a priori bound in (3.2). Furthermore, by
Gagliardo−Nirenberg inequality and (3.2), we have that uh ∈ L4(Ω × (0, T )).

In order to prove (3.3), let gh be zero and u∗
h be the solution to the state equation in (Ph,ε). Then by (3.2),

we have

J (0) ≤ 1
2

∫ T

0 Θ(uh) dt ≤ 1
2

∫ T

0 ‖u∗
h‖2 dt ≤ Re‖f‖2

L2(H1(Ω)∗) + ‖u0‖2.

Now if (uh, ph) is a solution of our optimal control problem then J (gh) ≤ J (0). We obtain the required
inequality in (3.4) from this bound. �

If (uh, ph) is the solution of (Ph,ε), then we can show as in the case of (Pε) [21], there exists a adjoint state
(μh, πh) ∈ Xh × Qh such that (uh, ph,μh, πh) satisfies the following optimality system consisting of forward-
backward Navier−Stokes equations for the optimal velocity, pressure and adjoint fields, and an optimality
condition for the control:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂tuh,vh) + 1
Re (∇uh,∇vh) + c(uh,uh,vh) + b(vh, ph) + 1

ε (uh,vh)Γ

= 1
ε (gh,vh)Γ + (f ,vh) ∀vh ∈ Xh,

b(uh, qh) = 0 ∀qh ∈ Qh,

uh(x, 0) = u0h

−(∂tμh,wh) + 1
Re(∇μh,∇wh) + c(uh,wh,μh) + c(wh,uh,μh) + b(wh, πh)

+ 1
ε (μh,wh)Γ

= δ(∇uh,∇wh) + δ(uh,wh) ∀wh ∈ Xh,

b(μh, rh) = 0 ∀rh ∈ Qh

μh(x, T ) = 0

γ(gh, zh)Γ + 1
ε (μh, zh)Γ = 0 ∀zh ∈ Xh|Γ ,

(3.5)

for t > 0, where u0h ∈ Vh is a suitable approximation of u0 ∈ V such that ‖u0 − u0h‖ ≤ C hk+1.
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3.2. Error estimates

In this section, we derive optimal order estimates for the errors eu := u − uh and eµ := μ − μh. First we
dissociate the nonlinearity by introducing an intermediate solution (ξh, ζh). Let (ξh, ζh) ∈ Vh × Vh be the
finite element solution of a linearized optimality system given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂tξh,vh) + 1
Re (∇ξh,∇vh) + 1

ε (ξh − ςh,vh)Γ = −c(u,u,vh)

+ (f ,vh) ∀vh ∈ Vh,

−(∂tζh,wh) + 1
Re (∇ζh,∇wh) + 1

ε (ζh,wh)Γ = −c(u,wh,μ) − c(wh,u,μ)

+ δ(∇u,∇wh) + δ(u,wh) ∀wh ∈ Vh,

γ(ςh, zh)Γ + 1
ε (ζh, zh)Γ = 0 ∀zh ∈ Vh|Γ ,

ξh(0) = Phu0, ζh(T ) = 0,

(3.6)

where
Vh := {vh ∈ Xh| b(vh, qh) = 0 ∀qh ∈ Qh}

is the discretely divergence free subspace of Xh and Ph : L2(Ω) → Vh is the L2-orthogonal projection. Let
ẽu := u − ξh, ẽµ := μ − ζh, êu := ξh − uh, êu := ξh − uh, ẽg := g − ςh and êg := ςh − gh so that
eu = ẽu + êu, eµ = ẽµ + êµ and eg = ẽg + êg. Below, we derive some estimates for ẽu and ẽµ.

Lemma 3.2. Suppose that the Assumptions (A), (B) hold and that ε ∈ (0, Re) and ε = O(h). Let (ξh, ζh) ∈
Vh×Vh be the solution of A. Then there exists a constant C, independent of h, such that the errors ẽu := (u−ξh)
and ẽµ : (μ − ζh) satisfy∫ t

0

eα s‖(ẽu, ẽµ)‖2 ds+
1
ε

∫ T

0

eα s‖ẽu‖2
0,Γ ds+

1
ε3

∫ T

0

eα s ‖ẽμ‖2
0,Γ ds ≤ C σ(t)h2k+2, (3.7)

0 ≤ t < T , where σ(t) := τ(t)eαt, α > 0 and τ(t) := min{1, t}.

Proof. First notice that (ẽu, ẽµ) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(∂tẽu,vh) + 1
Re (∇ẽu,∇vh) + 1

ε (ẽu,vh)Γ = 1
ε (ẽg,vh)Γ

+ b(vh, p) ∀vh ∈ Vh,

−(∂tẽµ,wh) + 1
Re(∇ẽµ,∇wh) + 1

ε (ẽµ,wh)Γ = b(wh, π) ∀wh ∈ Vh,

γ(ẽg, zh)Γ + 1
ε (ẽµ, zh)Γ = 0 zh ∈ Vh|Γ ,

ẽµ(T ) = 0 and ẽu(0) = u0 − Phu0.

(3.8)

Setting wh = Phẽµ in (3.8)2 and using the approximation properties of Ph yields

−1
2

d
dt

‖ẽµ‖2 +
1
Re

‖∇ẽµ‖2 +
1
ε
‖ẽµ‖2

0,Γ ≤ 1
Re

(∇ẽµ,∇(μ − Phμ))

+
1
ε
(ẽµ,μ − Phμ)Γ − 1

2
d
dt

‖μ − Phμ‖2 − (∇ · (Phẽµ), π)

≤ chk‖∇ẽµ‖‖μ‖k+1 +
1
ε
‖ẽµ‖0,Γ ‖μ − Phμ‖0,Γ

+ chk‖π‖k‖∇ẽµ‖ −
1
2

d
dt

‖μ − Phμ‖2.

Now by Young’s inequality, we have

−1
2

d
dt

‖ẽµ‖2 +
1

2Re
‖∇ẽµ‖2 +

1
2ε

‖ẽµ‖2
0,Γ ≤ ch2k(‖μ‖2

k+1 + ‖π‖2
k) +

1
ε
‖μ − Phμ‖2

0,Γ − 1
2

d
dt

‖μ− Phμ‖2.
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Multiplying by eαt, we find

−1
2

d
dt

(eαt‖ẽµ‖2) + αeαt‖ẽµ‖2+
eαt

2Re
‖∇ẽµ‖2 +

eαt

2ε
‖ẽµ‖2

0,Γ ≤ ch2keαt(‖μ‖2
k+1 + ‖π‖2

k)

+
eαt

ε
‖μ − Phμ‖2

0,Γ − 1
2

d
dt

(eαt‖μ− Phμ‖2) +
α

2
eαt‖μ − Phμ‖2.

Using the estimate ‖μ−Phμ‖0,Γ ≤ ch1/2‖μ−Phμ‖1 (see [12]), and integrating with respect to time yields

1
Re

∫ T

t

eαs‖∇ẽµ‖2 ds+
1
ε

∫ T

t

eαs‖eµ‖2
0,Γ ds ≤ C h2k(1 +

h

ε
)
∫ T

t

eαs(‖μ‖2
k+1 + ‖π‖2

k) ds. (3.9)

Let us next employ a duality argument to derive optimal order error estimates in L2-norm. Let (Φ, r) ∈
V × L2

0(Ω) be the unique solution to the problem⎧⎪⎨⎪⎩
(∂sΦ,ψ) + 1

Re(∇Φ,∇ψ) + (∇ · ψ, r) + 1
ε (Φ,ψ)Γ

= (eαsẽµ, ψ) + 1
ε3 (eαsẽµ, ψ)Γ ψ ∈ H1(Ω),

Φ(0) = 0, 0 ≤ s ≤ t.

(3.10)

It can be easily shown that the following a priori estimates hold∫ T

0

e−αs
{
‖∂sΦ‖2 + ‖Φ‖2

k+1 + ‖r‖2
k

}
ds ≤ c

[∫ T

0

eαs‖ẽµ‖2 ds+
1
ε3

∫ T

0

eαs‖ẽµ‖2
0,Γ ds

]
. (3.11)

Setting ψ = ẽµ in (3.10) and wh = PhΦ in (3.8)2 yield, respectively,

eαt‖ẽµ‖2 +
eαt

ε3
‖ẽµ‖2

0,Γ = (∂τΦ, ẽµ) +
1
Re

(∇Φ,∇ẽμ) + (∇ · ẽµ, r) +
1
ε
(Φ, ẽµ)Γ (3.12)

and

(∂τΦ, ẽµ) =
d
dτ

(ẽµ, Φ) + (∂τ ẽµ,PhΦ− Φ) − 1
Re

(∇ẽµ,∇PhΦ) − 1
ε
(ẽµ,PhΦ)Γ + (∇ · PhΦ, π). (3.13)

Employing (3.13) in the right-hand side of (3.12), we obtain

eαt‖ẽµ‖2 + eαt

ε3 ‖ẽµ‖2
0,Γ = d

dτ (ẽµ, Φ) − (∂τ ẽµ,PhΦ− Φ) + 1
Re (∇ẽµ,∇(Φ− PhΦ))

+(∇ · ẽµ, r) + (∇ · PhΦ, π) + 1
ε (ẽµ, Φ− PhΦ)Γ .

(3.14)

From the definition of Ph, the second term on the right-hand side becomes

(∂τ ẽµ,PhΦ− Φ) =
d
dτ

(ẽµ,PhΦ− Φ) + (μ − Phμ, ∂τΦ). (3.15)

Using (3.15) in (3.14), we obtain

eαt‖ẽµ‖2 +
eαt

ε3
‖ẽµ‖2

0,Γ =
d
dτ

(ẽµ,PhΦ) + (∂τΦ,μ − Phμ) +
1
Re

(∇ẽµ,∇(Φ− PhΦ))

+ (∇ · ẽµ, r − jhr) + (∇ · (PhΦ− Φ), π − jhπ)

+
1
ε
(ẽµ, Φ− PhΦ)Γ , (3.16)
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for jhπ, jhr ∈ Qh. Integrating (3.16) with respect to τ and noting that Φ(0) = 0 and ẽµ(T ) = 0, we obtain by
the approximation properties that∫ T

0

eαs‖ẽµ‖2 ds+
1
ε3

∫ T

0

eαs‖ẽµ‖2
0,Γ ds ≤ ch2k+2

∫ T

0

eαs(‖μ‖2
k+1 + ‖π‖2

k) ds

+ ch2k

∫ T

0

eαs‖∇ẽµ‖2 ds+ c
h2k+1

ε2

∫ T

0

eαs‖ẽµ‖2
0,Γ ds

+ ε̂

∫ T

0

e−αs(‖∂tΦ‖2 + ‖Φ‖2
k+1 + ‖r‖2

k) ds. (3.17)

Using (3.11) in (3.17) and choosing ε̂ sufficiently small, we obtain∫ T

0

eαs‖ẽµ‖2 ds+
1
ε3

∫ T

0

eαs‖ẽµ‖2
0,Γ ds ≤ ch2k+2

∫ T

0

eαs
(
‖μ‖2

k+1 + ‖π‖2
k

)
ds

+ c

(
1 +

h

ε
+
h2

ε2

){
h2k

(∫ T

0

eαs‖∇ẽµ‖2 ds+
1
ε

∫ T

0

eαs‖ẽµ‖2
0,Γ ds

}

for some constant c.
This combined with (3.9) yields∫ T

0

eαs‖ẽµ‖2 ds+
1
ε3

∫ T

0

eαs‖ẽµ‖2
0,Γ ds ≤ c

(
1 +

h

ε
+
h2

ε2

)
σ(t)h2k+2. (3.18)

In order to obtain an analogous estimate for ẽu, we proceed along similar lines. First by setting wh = Phẽu

in (3.8)1, we obtain

1
2

d
dt

‖ẽu‖2 +
1
Re

‖∇ẽu‖2 +
1
ε
‖ẽu‖2

0,Γ ≤ 1
Re

(∇ẽu,∇(u − Phu)) +
1
ε
(ẽu,u− Phu)Γ

+
1
2

d
dt

‖u− Phu‖2 − (∇ · (Phẽu), p) +
1
ε
(ẽg, ẽu)Γ +

1
ε
(ẽg,Phu− u)Γ . (3.19)

Let us start estimating the terms involving ẽg. First notice by Young’s inequality

1
ε
(ẽg, ẽu)Γ +

1
ε
(ẽg,Phu − u)Γ ≤ 3

2ε
‖ẽg‖2

0,Γ +
1
4ε

‖ẽu‖2
0,Γ +

1
2ε

‖Phu − u‖2
0,Γ . (3.20)

Now by putting zh = Ph(ẽg) in (3.8)3 and rearranging the terms, we obtain

γ‖ẽg‖2
0,Γ = γ(ẽg,g − Phg)Γ +

1
ε
(μ − ζh,g − g̃h)Γ +

1
ε
(μ − ζh,Phg − g)Γ .

Therefore by Cauchy−Schwarz inequality, we have

‖ẽg‖0,Γ ≤ c‖g − Phg‖0,Γ +
c

γε
‖ẽµ‖0,Γ . (3.21)

Thus by (3.20) and (3.21), we have

1
ε
(ẽg, ẽu)Γ +

1
ε
(ẽg,Phu− u)Γ ≤ c

ε
‖g − Phg‖2

0,Γ +
C

γ2ε3
‖ẽµ‖2

0,Γ +
1
4ε

‖ẽu‖2
0,Γ

+
1
2ε

‖u− Phu‖2
0,Γ . (3.22)
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Employing (3.22) in (3.19) and estimating other terms as before, we obtain

1
2

d
dt

‖ẽu‖2 +
1
Re

‖∇ẽu‖2 +
1
2ε

‖ẽu‖2
0,Γ ≤ cδ−1h2k(‖u‖2

k+1 + ‖p‖2
k) + δ‖∇ẽu‖2 +

c

ε
‖u− Phu‖2

0,Γ

+
1
2

d
dt

‖u− Phu‖2 +
c

ε
‖g − Phg‖2

0,Γ +
c

ε3
‖ẽµ‖2

0,Γ .

Multiplying by eαt and using Poincaré−Friedrich’s inequality, we obtain

1
2

d
dt

(eαt‖ẽu‖2) + eαt

(
1 − αRe

λ
− δ

)(
1
Re

‖∇ẽu‖2 +
1
2ε

‖ẽu‖2
0,Γ

)
≤ cδ−1eα th2k(‖u‖2

k+1 + ‖p‖2
k)

+
c

ε
h2keαt‖u‖k+1 +

1
2

d
dt

(eαt‖u− Phu‖2) +
ceαt

ε3
‖ẽµ‖2

0,Γ .

We can now choose δ = 1
2 − α Re

2λ and integrate with respect to time t and use (3.18), to obtain∫ T

0

eαs‖∇ẽu‖2 ds+
1
ε

∫ T

0

eα s‖ẽu‖2
0,Γ ds ≤ c

(
1 +

h

ε
+
h2

ε2

)
h2k

(
1 − αRe

λ

)−2 ∫ t

0

eαs(‖u‖2
k+1 + ‖p‖2

k) ds.

(3.23)
In order to derive the optimal order error in L2-norm, we use the following duality argument. For fixed h > 0
and t > 0, let (Ξ(τ), s(τ)) be the unique solution of the backward problem:⎧⎪⎨⎪⎩

(∂τΞ,w) − 1
Re (∇Ξ,∇w) − (∇ · w, p̂) − 1

ε (Ξ,w)Γ

= (eαs ẽu,w) + 1
ε (eαsẽu,w)Γ ∀w ∈ H1(Ω)

Ξ(t) = 0, 0 ≤ τ ≤ t.

(3.24)

With a change of variable t → t − τ , set Ξ(τ) = Ξ(t − τ). Then Ξ(τ) satisfies a forward linear unsteady
Stokes type problem. Thus, we obtain the following a priori estimate∫ t

0

e−αs

(
‖∂tΞ‖2 + ‖Ξ‖2

k+1 + ‖p̂‖2
k +

1
ε
‖Ξ‖2

k+1/2,Γ

)
ds ≤ C

(
1 − αRe

λ

)−2 [∫ t

0

eαs(‖ẽu‖2 +
1
ε
‖ẽu‖2

0,Γ ) ds
]
.

(3.25)
Setting w = ẽu in (3.24) and vh = PhΞ in (3.8)1 yield, respectively,

eαs‖ẽu‖2 +
eαs

ε
‖ẽu‖2

0,Γ = (∂sΞ, ẽu) − 1
Re

(∇Ξ,∇ẽu) − (∇ · ẽu, p̂) −
1
ε
(Ξ, ẽu)Γ (3.26)

and

(∂τΞ, ẽu) =
d
dτ

(ẽu, Ξ) + (∂τ ẽu,PhΞ −Ξ) +
1
Re

(∇ẽu,∇PhΞ) − 1
ε
(ẽg,PhΞ)Γ +

1
ε
(ẽu,PhΞ)Γ

− (∇ · PhΞ, p). (3.27)

Using (3.27) in the right-hand side of (3.26) and using the definition of Ph, we obtain

eαs‖ẽu‖2 +
eαs

ε
‖ẽu‖2

0,Γ =
d
dτ

(ẽu,PhΞ) + (∂τΞ,u− Phu) +
1
Re

(∇ẽu,∇(PhΞ −Ξ))

− (∇ · ẽu, p̂− jhp̂) − (∇ · (PhΞ −Ξ), p− jhp)

+
1
ε
(ẽu,PhΞ −Ξ)Γ − 1

ε

(
PhΞ,

1
γε

ẽμ

)
Γ

. (3.28)
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Integrating (3.28) with respect to τ and using the fact that Ξ(t) = 0 and ẽu(0) = u0 − Phu0, we obtain∫ T

0

eαs‖ẽu‖2 dτ +
1
ε

∫ T

0

eαs‖ẽu‖2
0,Γ ds ≤ ch2k

∫ t

0

eαs‖∇ẽu‖2 dτ

+ ch2k+2

∫ t

0

eαs(‖u‖2
k+1 + ‖p‖2

k) ds+
h2k+1

ε2

∫ t

0

eαs‖ẽu‖2
0,Γ ds+

C

ε3

∫ t

0

eαs‖ẽμ‖2
0,Γ ds

+ ε̂

[∫ t

0

eαs(‖∂tΞ‖2 + ‖Ξ‖2
k+1 + ‖p̂‖2

k +
1
ε
‖Ξ‖2

0,Γ ) ds
]
. (3.29)

Using (3.25) in (3.29) and choosing ε̂ sufficiently small, we obtain∫ t

0

eαs‖ẽu‖2 dτ +
1
ε

∫ t

0

eαs‖ẽu‖2
0,Γ dτ ≤ c(1 − αRe

λ
)−2(1 +

h

ε
+
h2

ε2
+
h3

ε3
){

h2k+2

∫ t

0

eαs((‖u‖2
k+1 + ‖p‖2

k) ds

+ h2k

∫ t

0

eαs(‖ẽu‖2 +
1
ε
‖ẽu‖2

0,Γ ) ds+
1
ε3

∫ t

0

eαs‖ẽμ‖2
0,Γ ds

}
.

This combined with (3.23) yields∫ t

0

eαs‖ẽu‖2 dτ +
1
ε

∫ t

0

eαs‖ẽu‖2
0,Γ dτ ≤ c

(
1 +

h

ε
+
h2

ε2
+
h3

ε3

)
σ(t)h2k+2. (3.30)

Combining (3.18) and (3.30) and choosing ε = O(h), we obtain (3.7). �

For optimal order error estimates of (ẽu, ẽµ) in the L∞(L2(Ω)) and L∞(H1(Ω))-norms, we introduce the
Stokes projection Ps

h : H1(Ω) → Vh according to the rule

1
Re

(∇(Υ − Ps
hΥ ),∇vh) +

1
ε
(Υ − Ps

hΥ ,vh)Γ = (∇ · vh, ι) ∀vh ∈ Vh. (3.31)

With Stokes projection defined as above, we now decompose (ẽu, ẽµ) as

ẽu := (u − Ps
hu) + (Ps

hu− ξh) and ẽµ := (μ − Ps
hμ) + (Ps

hμ − ζh).

First of all, we derive optimal error estimates for the error in Stokes projection.

Lemma 3.3. Suppose that Assumptions (A) and (B) hold and ε = O(h). Then there exists a constant C,
independent of h, such that the error in Stokes projection satisfies the following

(i)

‖Υ − Ps
hΥ ‖ + h‖∇(Υ − Ps

hΥ )‖ +
1
ε
‖Υ − Ps

hΥ ‖0,Γ ≤ C hk+1(‖Υ ‖k+1 + ‖ι‖k),

(ii)
‖∂t(Υ − Ps

hΥ )‖ + h‖∂t(∇(Υ − Ps
hΥ )‖ ds+ 1

ε‖∂t(Υ − Ps
hΥ )‖0,Γ

≤ C hk+1(‖∂tΥ ‖k+1 + ‖∂tι‖k),

for all t ∈ [0, T ).
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Proof.
(i) Setting vh = Ph(Υ − Ps

hΥ ) in (3.31) yields

1
Re

‖∇(Υ − Ps
hΥ )‖2 +

1
ε
‖Υ − Ps

hΥ ‖2
0,Γ ≤ c‖∇(Υ − Ps

hΥ )‖‖∇(Υ − PhΥ )‖

+
1
ε
‖Υ − Ps

hΥ ‖0,Γ ‖Υ − PhΥ ‖0,Γ + c‖ι− jhι‖‖∇(Υ − Ps
hΥ )‖.

Using the estimate ‖Υ − PhΥ ‖0,Γ ≤ ch1/2‖∇(Υ − PhΥ )‖ (see [12]) and the approximation properties of the
L2-projections (see [10]) we are led to

1
Re

‖∇(Υ − Ps
hΥ )‖2 +

1
ε
‖Υ − Ps

hΥ ‖2
0,Γ ≤ c

(
1 +

h

ε

)
h2k. (3.32)

For the L2-norm estimate, we use a duality argument. Suppose now that the pair (Υ̂ , ι̂) is the unique solution to⎧⎪⎪⎨⎪⎪⎩
1

Re (∇Υ̂ ,∇Ψ) + 1
ε (Υ̂ , Ψ)Γ = (∇ · Ψ, ι̂) + (Υ − Ps

hΥ , Ψ)

+ 1
ε (Υ − Ps

hΥ , Ψ)Γ ∀Ψ ∈ H1(Ω)

(∇ · Υ̂ , q) = 0 ∀q ∈ L2
0(Ω).

(3.33)

It can be shown by standard energy arguments that

‖Υ̂‖k+1 + ‖ι̂‖k +
1√
ε
‖Υ̂‖k+1/2 ≤ c‖Υ − Ps

hΥ ‖ +
1√
ε
‖Υ − Ps

hΥ ‖0,Γ . (3.34)

Setting Ψ = Υ − Ps
hΥ in (3.33) and using the definition of Stokes projection yields

‖Υ − Ps
hΥ ‖2 +

1
ε
‖Υ − Ps

hΥ ‖2
0,Γ ≤ 1

Re
(∇(Υ̂ − PhΥ̂ ),∇(Υ − Ps

hΥ ))

+
1
ε
(Υ − Ps

hΥ , Υ̂ − PhΥ̂ )Γ + (∇ · (PhΥ̂ − Υ̂ ), p− jhp)Γ

− (∇ · (Υ − PhΥ ), ι̂− jhι̂) − (∇ · Ph(Υ − Ps
hΥ ), ι− jhι).

Estimating the terms on the right-hand side yields

‖Υ − Ps
hΥ ‖2 +

1
ε
‖Υ − Ps

hΥ ‖2
0,Γ ≤ 1

Re
‖∇(Υ̂ − PhΥ̂ )‖‖∇(Υ − Ps

hΥ )‖

+
1
ε
‖Υ − Ps

hΥ ‖0,Γ ‖Υ̂ − PhΥ̂ ‖0,Γ + c‖∇(PhΥ̂ − Υ̂ )‖‖ι− jhι‖

+ c‖∇(Υ − PhΥ )‖‖ι̂− jhι̂‖ + ‖∇(Υ − Ps
hΥ )‖‖ι− jhι‖.

Applying Young inequality and the approximation properties of Ph, we obtain the desired estimate.
(ii) By differentiating (3.31) with respect to t and setting vh = Ph∂t(Υ − Ps

hΥ ), we obtain

1
Re

‖∇∂t(Υ − Ps
hΥ )‖2 +

1
ε
‖∂t(Υ − Ps

hΥ )‖2
0,Γ ≤ c‖∇∂t(Υ − Ps

hΥ )‖‖∇∂t(Υ − PhΥ )‖

+
1
ε
‖∂t(Υ − Ps

hΥ )‖0,Γ ‖∂t(Υ − PhΥ )‖0,Γ

+ c‖ιt − jhιt‖‖∇ · ∂t(Υ − Ps
hΥ )‖.
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Using the estimate ‖Υ − PhΥ ‖0,Γ ≤ ch1/2‖∇(Υ − PhΥ )‖ (see [12]) and the approximation properties of the
projections, we are led to

1
Re

‖∇∂t(Υ − Ps
hΥ )‖2 +

1
ε
‖∂t(Υ − Ps

hΥ )‖2
0,Γ ≤ c‖∇∂t(Υ − PhΥ )‖2 +

ch

ε
‖∇∂t(Υ − PhΥ )‖2

+ c‖ιt − jhιt‖2

≤ c(1 +
h

ε
)h2k(‖∂tΥ ‖2

k+1 + ‖∂tι‖2
k).

The result now follows by assuming ε = O(h). In order to derive a bound for ‖∂t(Υ −Ps
hΥ )‖, we can use duality

argument as in the proof of part (i) and thus the details are skipped. �

Now we begin estimating ẽu := u − ξh and ẽµ := μ − ζh in the L∞(L2) and L∞(H1)-norms. Since ẽu :=
(u − Ps

hu) + (Ps
hu − ξh) and ẽµ := (μ − Ps

hμ) + (Ps
hμ − ζh) and the estimates of u − Ps

hu and μ − Ps
hμ

are known from Lemma 3.3, it is sufficient to estimate Ps
hu− ξh and Ps

hμ − ζh.

Lemma 3.4. Suppose that the Assumptions (A) and (B) and (D) hold and ε = O(h). Then there exists a
constant C, independent of h, such that the following estimate holds for (Ps

hu− ξh,P
s
hμ − ζh):

‖Ps
hu − ξh‖2 + h2‖∇(Ps

hu− ξh)‖2 ≤ Ch2k+2 (3.35)

and
‖Ps

hμ − ζh‖2 + h2‖∇(Ps
hμ − ζh)‖2 ≤ Ch2k+2. (3.36)

Proof. Let us first prove (3.36). Notice that we can write (3.8)2 as

(∂t(Ps
hμ − ζh),wh) +

1
Re

(∇(Ps
hμ − ζh),∇wh) +

1
ε
(Ps

hμ − ζh,wh)Γ

= (∂t(Ps
hμ − μ),wh) wh ∈ Vh. (3.37)

Setting wh = σ(t)(Ps
hμ − ζh) in (3.37) yields

1
2

d
dt

(σ(t)‖Ps
hμ − ζh‖2) +

σ(t)
Re

‖∇(Ps
hμ − ζh)‖2 +

σ(t)
ε

‖Ps
hμ − ζh‖2

0,Γ

≤σ(t)‖∂t(Ps
hμ − μ)‖‖Ps

hμ − ζh‖ +
σt

2
‖Ps

hμ − ζh‖2 (3.38)

where σ(t) := τ(t)eαt, α > 0 and τ(t) := min{1, t}. Therefore applying Young’s inequality and integrating with
respect to time t yields

σ(t)‖Ps
hμ − ζh‖2 +

∫ t

0

σ(t)
Re

‖∇(Ps
hμ − ζh)‖2 ds+

∫ t

0

σ(t)
ε

‖Ps
hμ − ζh‖2

0,Γ ds

≤ c

∫ t

0

σ2

∂sσ
‖∂s(Ps

hμ − μ)‖2 ds+ c

∫ t

0

eα s ‖Ps
hμ − μ‖2 ds

+ c

∫ t

0

eα s‖ẽμ‖2 ds.

(3.39)

Since σ2

∂sσ ≤ τ(s)σ(s)
α , using the estimate in Lemma 3.3 for ‖μ− ζh‖ and Lemma 3.2, we obtain

‖Ps
hμ − ζh‖2 ≤ ch2k+2σ−1(t)

∫ t

0

τ(s)σ(s)(‖μs‖2
k+1 + ‖πs‖2

k)ds

+ ch2k+2σ−1(t)
∫ t

0

eα s(‖μ‖2
k+1 + ‖π‖2

k) ds+ ch2k+2.
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In order to bound the first term on the right-hand side of last inequality, we note that for 0 < t ≤ 1,

σ−1(t)
∫ t

0

τ(s)σ(s)(‖μs‖2
k+1 + ‖πs‖2

k)ds ≤ t−1e−α t
∫ t

0 sσ(s)(‖μs‖2
k+1 + ‖πs‖2

k)ds

≤ e−α t

∫ t

0

σ(s)(‖μs‖2
k+1 + ‖πs‖2

k)ds.

Moreover, for t > 1, τ(t) = 1 and thus we easily have the same. By arguing similarly, we can bound the second
term. Thus, we obtain by Assumption (A) that

‖Ps
hμ − ζh‖2 ≤ c

(
1 +

h

ε
+
h2

ε2

)
h2k+2. (3.40)

Finally by the inverse estimate (D), we have h2‖∇(Ps
hμ − ζh)‖2 ≤ C(1 + h

ε + h2

ε2 )h2k+2.
For proving (3.35), we will essentially repeat the same steps as we did in proving (3.36). We begin by rewriting

(3.8)1 as
(∂t(Ps

hu− ξh),vh) + 1
Re (∇(Ps

hu− ξh),∇vh) + 1
ε (Ps

hu− ξh,vh)Γ

= (∂t(Ps
hu − u),vh) + 1

ε (ẽg,vh)Γ vh ∈ Vh.
(3.41)

Now setting vh = σ(t)(Ps
hu− ξh) and integrating with respect to time t yields

σ(t)‖Ps
hu − ξh‖2 +

∫ t

0

σ(t)
Re

‖∇(Ps
hu− ξh)‖2 ds+

∫ t

0

σ(t)
ε

‖Ps
hu − ξh‖2

0,Γ ds

≤ c

∫ t

0

σ2

∂sσ
‖∂t(Ps

hu − u)‖2 ds+ c

∫ t

0

σ(t)
ε3

‖ẽµ‖2
0,Γ ds

+ c

∫ t

0

eα s‖Ps
hu − u‖2 ds+ c

∫ t

0

eα s ‖ẽu‖2 ds. (3.42)

Thus by Lemmas 3.2 and 3.3, it follows from (3.42) that

‖P s
hu− ξh‖2 ≤ C

(
1 +

h

ε
+
h2

ε2
+
h3

ε3

)
h2k+2. (3.43)

The desired result now follows by assuming ε = O(h). �

Lemma 3.5. Suppose that Assumptions (A), (B) and (D) hold and ε = O(h). Then there exists a constant C,
independent of h, such that the error ẽu := u− ξh and ẽμ := μ − ζh satisfies

‖u− ξh‖ + h‖∇(u− ξh)‖ ≤ Chk+1

‖μ − ζh‖ + h‖∇(μ − ζh)‖ ≤ Chk+1.
(3.44)

Proof. By combining Lemmas 3.3 and 3.4, we obtain the required result. �

We shall next state and prove the main result of this section regarding the error in the semi-discrete velocity
and its adjoint.

Theorem 3.6. Let the Assumptions (A), (B) and (D) hold true, and let ε ∈ (0, Re) and ε = O(h) be satisfied.
Further, let the initial velocity u0h satisfy

‖u0 − u0h‖ ≤ chk+1‖u0‖k+1.

Then there exists a constant C depending on T and independent of h such that the following estimate holds:

‖(u,μ) − (uh,μh)‖ + h‖∇((u,μ) − (uh,μh))‖ ≤ Chk+1.
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Proof. First notice that êu and êμ satisfy

(∂têu,vh) +
1
Re

(∇êu,∇vh) +
1
ε
(êu − êg,vh)Γ = c(uh,uh,vh) − c(u,u,vh)

=: ℵ1(vh) (3.45)

and

−(∂têµ,wh) +
1
Re

(∇êµ,∇wh) +
1
ε
(êµ,wh)Γ = (c(uh,wh,μh) − c(u,wh,μ))

+ (c(wh,uh,μh) − c(wh,u,μ)) − δ(∇eu,∇wh) − δ(eu,wh)
=: ℵ2(wh) + ℵ3(wh) − δ(∇eu,∇wh) − δ(eu,wh). (3.46)

Since

ℵ1(vh) = −c(u, ẽu,vh) − c(ẽu, ξh,vh) − c(êu, ξh,vh) − c(uh, êu,vh) =:
4∑

i=1

ℵ1,i(vh),

ℵ2(wh) = −c(êu,wh, ζh) − c(ẽu,wh, ζh) − c(u,wh, ẽμ) − c(uh,wh, êμ) =:
4∑

i=1

ℵ2,i(wh),

and

ℵ3(wh) = 2c(wh,u, êμ) + c(wh,u, ẽμ) − c(wh, êu, ζh) − c(wh, ẽu, ζh) + c(wh,uh, êμ) =:
5∑

i=1

ℵ3,i(wh)

setting (vh,wh) = (êu, êμ) in (3.45)−(3.56) yields⎧⎪⎪⎨⎪⎪⎩
1
2

d
dt‖êu‖2 + 1

Re‖∇êu‖2 + 1
ε‖êu‖2

0,Γ ≤ ℵ1(êu) + 1
ε2 ‖êu‖1‖êμ‖− 1

2 ,Γ

− 1
2

d
dt‖êμ‖2 + 1

Re‖∇êμ‖2 + 1
ε‖êμ‖2

0,Γ = ℵ2(êμ) + ℵ3(êμ) + δ(∇eu,∇êμ)

+ δ(eu, êμ),

(3.47)

where we have used the relation êg = − 1
βε êμ. Using Young’s inequality, we obtain

−δ‖∇êu‖‖∇êμ‖ ≥ − δ

2η1
‖êu‖2

1 − η1
δ

2
‖êμ‖2

1

for some η1 ≥ δRe

2Ĉ
, where Ĉ is as defined in (2.1). Employing this inequality in (3.47)2 and using (2.1), we

obtain

−1
2

d
dt

‖êμ‖2 + η̂2‖êμ‖2
1 ≤ℵ2(êμ) + ℵ3(êμ) +

δη1
2

‖êu‖2
1 +

η̂2
8
‖êμ‖2

1 + c‖∇ẽu‖2

+
δ

2
‖(ẽu, ẽμ)‖2 + δ‖êμ‖2. (3.48)

where η̂2 := Ĉ
Re − δ

2η1
. We use inverse inequality and Young’s inequality to estimate the second term on the

right-hand side of (3.47)1 as follows

1
ε2
‖êu‖1‖êμ‖− 1

2 ,Γ ≤ Ch

ε2
‖êu‖1‖êμ‖1

≤ Ch2

ε4
‖êu‖2

1 +
η̂2
8
‖êμ‖2

1 ≤ Ch2

ε8
‖êu‖2 +

δη1
2η2

‖êu‖2
1 +

η̂2
8η2

‖êμ‖2
1. (3.49)
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The nonlinear terms ℵ1 − ℵ3 and other terms in the right-hand side of (3.47) can be estimated as below. First
by skew-symmetry ℵ1,4(êu) = ℵ2,4(êμ) = 0. Estimating ℵ1,1(êu),ℵ1,2(êu) and ℵ1,3(êu) using (A.1), (A.2) and
(A.5), respectively, and collecting the estimates, we obtain

ℵ1(êu) ≤ δη1
8η2

‖êu‖2
1 + c‖ẽu‖2

1[‖u‖2
2 + ‖u‖2

1 + ‖ξh‖2
∞ + ‖∇ξh‖2] + ‖êu‖2[‖ξh‖2

∞ + ‖∇ξh‖2]. (3.50)

Estimating ℵ2,1(êμ), ℵ2,2(êμ) and ℵ2,3(êμ) using (A.2), (A.7) and (A.4), respectively, and collecting the esti-
mates, we obtain

ℵ2(êμ) ≤ η̂2
8 ‖êμ‖2

1 + δη1
8 ‖êu‖2

1 + ‖ẽu‖2
1[‖ζh‖2

∞ + ‖∇ζh‖2 + c]

+ c‖êu‖2[‖ζh‖2
∞ + ‖∇ζh‖2] + c‖u‖2

2[‖ẽμ‖2 + ‖êμ‖2] + c‖êμ‖2.
(3.51)

Similarly, estimating ℵ3,1(êμ), ℵ3,2(êμ), ℵ3,3(êμ), ℵ3,4(êμ) and ℵ3,5(êμ) using (A.5), (A.6), (A.3), (A.3) and
(A.8), respectively, and collecting the estimates, we obtain

ℵ3(êμ) ≤ η̂2
8 ‖êμ‖2

1 + ‖êμ‖2[‖uh‖4
L4 + ‖∇uh‖2 + ‖∇u‖2

L4 + ‖u‖2
2 + ‖ζh‖2

∞ + ‖∇ζh‖2]

+ δη1
8 ‖êu‖2

1 + ‖ẽμ‖2[‖∇u‖2
L4 + ‖u‖2

2] + C[‖ẽu‖2
1 + ‖êu‖2].

(3.52)

Multiplying (3.47)1 by η1 and inserting (3.50)−(3.52) in the resulting equation and also in (3.48), we obtain,
respectively, ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2

d
dt (η2‖êu‖2) + η2Ĉ

Re ‖êu‖2
1 ≤ δη1

4 ‖êu‖2
1 +H1‖ẽu‖2

1 + (Ch2

ε8 +H2)‖êu‖2

+ η̂2
8 ‖êμ‖2

1,

− 1
2

d
dt‖êμ‖2 + η̂2‖êμ‖2

1 ≤ 3η̂2
8 ‖êμ‖2

1 + 3δη1
4 ‖êu‖2

1 +H3‖(ẽu, ẽμ)‖2
1

+ H4‖(êu, êμ)‖2 +H5‖ẽμ‖2 + δ
2‖ẽu‖2,

(3.53)

where
H1(t) := C[‖u‖2

2 + ‖u‖2
1 + ‖ξh‖2

∞ + ‖∇ξh‖2],

H2(t) := C[‖ξh‖2
∞ + ‖∇ξh‖2],

H3(t) := C[1 + ‖ζh‖2
∞ + ‖∇ζh‖2],

H4(t) := C[‖ζh‖2
∞ + ‖∇ζh‖4 + ‖uh‖4

L4 + ‖∇uh‖2 + ‖∇u‖2
L4 + ‖u‖2

2 + 1],

H5(t) := C[‖∇u‖2
L4 + ‖u‖2

2]

and η2 > Reδη1

Ĉ
. Notice by virtue of the regularity properties of the solutions and Lemma 3.5 that ‖∇(ζh, ξh)‖ <

C. Moreover, it can be shown using inverse estimate, approximation properties and (3.44) that

‖ξ‖∞ ≤ C‖u‖2 +K1h
1/2 ‖ζ‖∞ ≤ C‖μ‖2 +K2h

1/2,

see for e.g. [14]. Therefore we easily see by Assumption (A) and Lemma 3.1 that Hi(t) ∈ L1(0, T ), i = 1, 2, 3, 4, 5.
Therefore applying Gronwall’s inequality, Lemmas 3.2 and 3.5, and setting ε = O(h

1
4 ), it follows that

η1‖êu‖2 + ‖êμ‖2 + η̂1

∫ T

0

‖êu‖2
1 ds+ η̂2

∫ T

0

‖êμ‖2
1 ds ≤ Ch2k+2,

where η̂1 := η1 − δRe

2Ĉ
and η̂2 := η2 − Reδη1

Ĉ
. Hence the desired result follows from the triangle inequality and

inverse inequality. �

Let us next obtain some estimates in preparation for proving error estimates for the pressure and adjoint
pressure approximations.



842 S.S. RAVINDRAN

Lemma 3.7. Suppose that Assumptions (B.1)–(B.3) hold and ε = O(h). Then the time derivative of the errors
eu and eμ satisfy

‖∂teu‖ ≤ K1τ(t)−
1
2hk and ‖∂teμ‖ ≤ K2τ(t)−

1
2hk,

t > 0, for some constants K1 and K2, where τ(t) := min{1, t}.

Proof. Let us first prove that∫ t

0

eα s‖∂teu‖2 ds ≤ C1h
2k and

∫ t

0

eα s‖∂teμ‖2 ds ≤ C2h
2k. (3.54)

To this end, we split the integrals as follows∫ t

0

eα s‖∂teu‖2 ds =
∫ hk+1

0

eα s ‖∂teu‖2 ds+
∫ t

hk+1
eα s ‖∂teu‖2 ds = Iu

1 + Iu
2

and ∫ t

0

eα s‖∂teμ‖2 ds =
∫ hk+1

0

eα s ‖∂teμ‖2 ds+
∫ t

hk+1
eα s ‖∂teμ‖2 ds = Iμ

1 + Iμ
2 .

Note that since
Iu
1 ≤ c hk+1eαhk+1

(‖∂tu‖2 + ‖∂tuh‖2) ≤ K hk+1

and similarly Iμ
1 ≤ c hk+1 it is enough to estimate Iu

2 and Iμ
2 . Notice that eu and eμ satisfy⎧⎪⎪⎨⎪⎪⎩

(∂teu,vh) + 1
Re (∇eu,∇vh) + b(vh, ep) + 1

ε (eu,vh)Γ = 1
ε (eg,vh)Γ + Λ̂u

h(vh),

−(∂teμ,wh) + 1
Re (∇eμ,∇wh) + b(wh, eπ) + 1

ε (eμ,wh)Γ = δ(∇eu,∇wh)

+δ(eu,wh) + Λ̂μ
h(wh),

(3.55)

where Λ̂u
h(vh) := −c(eu,u,vh) − c(u, eu,vh) + c(eu, eu,vh) and Λ̂μ

h(wh) := c(u,wh, eμ) − c(eu,wh, eμ) +
c(eu,wh, μ) + c(wh,u, eμ)− c(wh, eu, eμ) + c(wh, eu, μ). Setting vh = ∂t(Ps

hu− uh) and wh = ∂t(Ps
hμ−μh)

in (3.55)1 and (3.55)2, respectively, we obtain

2‖∂t(Ps
hu− uh)‖2 +

1
Re

d
dt

‖∇(Ps
hu − uh)‖2 +

1
ε

d
dt

‖Ps
hu − uh‖2

0,Γ

=
2
ε
(eg, ∂t(Ps

hu− uh)Γ + 2Λ̂u
h(∂t(Ps

hu − uh))

+ 2(∂t(Ps
hu − u), ∂t(Ps

hu− uh)),

−2‖∂t(Ps
hμ − μh)‖2 +

1
Re

d
dt

‖∇(Ps
hμ − μh)‖ +

1
ε

d
dt

‖Ps
hμ − μh‖2

0,Γ

=2δ(∇eu,∇∂t(Ps
hμ − μh))

+ 2δ(eu, ∂t(Ps
hμ − μh)) + 2Λ̂μ

h(∂t(Ps
hμ − μh))

− 2(∂t(Ps
hμ − μ), ∂t(Ps

hμ − μh)).

We next multiply these equations by eα t, integrate with respect to time from h2 to t and estimate the terms
as usual. For example, we estimate Λ̂u

h(∂t(Ps
hu − uh)) and Λ̂u

h(∂t(Ps
hμ − μh)) using Hölder’s and Sobolev

inequality as follows:

|Λ̂u
h| ≤ C[‖eu‖‖u‖2‖∇∂t(Ps

hu − uh)‖ + ‖u‖2‖eu‖1‖‖∂t(Ps
hu − uh)‖ + ‖∇eu‖2‖∇∂t(Ps

hu − uh)‖] (3.56)
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and
|Λ̂μ

h| ≤ C[‖u‖2‖eμ‖‖∇∂t(Ps
hμ − μh)‖ + ‖u‖2‖∇eμ‖‖∂t(Ps

hμ − μh)‖
+‖∇eμ‖‖∇eu‖‖∇∂t(Ps

hμ − μh)‖ + ‖μ‖2‖eu‖‖∇∂t(Ps
hμ − μh)‖

+‖μ‖2‖∇eu‖‖∂t(Ps
hμ − μh)‖].

(3.57)

Therefore by applying the inverse inequality to (3.56) and (3.57) and using Theorem 3.6 yields

|Λ̂u
h| ≤ C[‖u‖2‖∂t(Ps

hu − uh)‖(h−1‖eu‖ + ‖∇eu‖) + ‖∇eu‖2‖∇∂t(Ps
hu− uh)‖]

≤ C‖∇eu‖2 + 1
4‖∂t(Ps

hu− uh)‖2
(3.58)

and

|Λ̂μ
h| ≤C[‖u‖2‖∂t(Ps

hμ − μh)‖(h−1‖eμ‖ + ‖∇eμ‖) + ‖μ‖2‖∂t(Ps
hμ − μh)‖(h−1‖eu‖ + ‖∇eu‖)

+ h−1‖∇eu‖‖∇eμ‖‖∂t(Ps
hμ − μh)‖]

≤C[‖∇eu‖2 + ‖∇eμ‖2] +
1
4
‖∂t(Ps

hμ − μh)‖2. (3.59)

Employing (3.58) and (3.59) in (3.55), estimating the other terms there as usual, integrating with respect to
time and using Lemma 3.3 and Theorem 3.6, we obtain (3.54). The required result can now be obtained by
differentiating (3.55) with respect to time, setting (vh,wh) = (σ(t)Ph∂teu, σ(t)Ph∂teμ) and arguing as we did
above. �
Theorem 3.8. Suppose that Assumptions (A)–(D) hold, and ε ∈ (0, Re) and ε = O(h). Then there exists
constants K1 and K2 such that the following error estimates hold

‖p− ph‖ ≤ K1τ(t)−
1
2hk and ‖π − πh‖ ≤ K2τ(t)−

1
2hk,

t > 0, where τ(t) := min{1, t}.
Proof. First notice that the error p− ph satisfy

b(vh, p− ph) = −(∂teu,vh) − 1
Re (∇eu,∇vh) − c(eu,uh,vh) − c(u, eu,vh)

− 1
ε (eu,vh)Γ + 1

ε (eg,vh)Γ

≤ C[‖∂teu‖ + ‖∇eu‖ + 1
ε‖eu‖− 1

2 ,Γ + 1
ε‖eg‖− 1

2 ,Γ ]‖vh‖1.

(3.60)

Moreover, since

b(wh, π − πh) = − (∂teμ,w) − 1
Re

(∇eμ,∇wh) − c(u,wh, eμ) − c(eu,wh, μh)

− 1
ε
(eμ,wh)Γ + δ(∇eμ,∇wh) + δ(eμ,wh)

− c(wh,u, eμ) − c(wh, eu,μh),

we have that
b(wh, π − πh) ≤ C[‖∂teμ‖ + ‖∇eμ‖ + ‖∇eu‖ +

1
ε
‖eμ‖− 1

2 ,Γ ]‖wh‖1. (3.61)

It follows from the inf-sup condition and (3.60) that

‖p− ph‖ ≤ C‖p− qh‖ + sup
vh∈Xh

b(p− ph,vh)
‖vh‖1

≤ C[‖p− qh‖ + ‖∂teu‖ + ‖∇eu‖ +
1
ε
‖eu‖− 1

2 ,Γ +
1
ε
‖eg‖− 1

2 ,Γ ], (3.62)

for qh ∈ Qh. Combining (3.62), Theorem 3.6 and Lemma 3.7, we obtain ‖p − ph‖ ≤ K1τ(t)−
1
2 hk. A similar

argument with the help of (3.61) leads to ‖π − πh‖ ≤ K2τ(t)−
1
2hk. �
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4. Computational results

In this section, we show feasibility and applicability of the penalty method by using it to solve an optimal
boundary control problem in wall bounded channel flow. The flow configuration is the backward facing step
channel with fixed channel width ratio and Reynolds number. Beyond certain Reynolds number, flow separates
near the enlargement due to pressure increase. Subsequently, the flow re-attaches on the bottom wall, and
recirculation forms near the corner region. After re-attachment, the flow field fully recovers toward a fully
developed Poiseuille flow [1, 9, 20]. It is of interest to alleviate flow separation and wake spread, and thus
improving the performance of the fluid system. Below we formulate it as an optimal boundary control problem
in which the control that minimizes the cost functional is found using a variable step gradient algorithm,
where gradient of the objective function is obtained by solving adjoint equations. The control is effected via
small suction and blowing through a slot on the channel boundary. The choice of cost functional or objective
functional to meet the control objective of reducing the flow separation and recirculation is not trivial. Here we
will consider cost functional as defined in (P) with control g = (g, 0) and three different choices for Θ, namely,
Θ1 := δ

2 [‖u‖2+‖∇u‖2] which corresponds to minimizing kinetic energy in H1-norm, Θ2(u) = δ
2 [‖∇×u‖2] which

corresponds to minimization of enstrophy levels in the flow and Θ3 := δ
2 [‖∇u + (∇u)T ‖2] which corresponds to

minimizing viscous dissipation function.

In Figure 1, the downstream channel was defined to have unit height L with a step height and inlet height L/2.
The downstream channel length was taken as x=12L. The only non-dimensional parameter of interest, the
Reynolds’ number is defined by Re = uaveL/ν. At the inflow channel boundary a parabolic velocity profile is
prescribed, i.e. u(x = 0, 1/2 ≤ y ≤ 1) = 24(y − 1/2)(1 − y), v(x = 0, 1/2 ≤ y ≤ 1) = 0, which produces
a maximum inflow velocity of umax = 3/2 and an average velocity of uave = 1. On the solid walls the no-slip
condition (u = 0) is imposed. At the outflow, the pseudo stress-free condition,

−p+
1
Re

∂u

∂x
= 0 and

∂v

∂x
= 0,

is applied [9].

The computational grid was non-uniform in both the stream-wise and cross-flow coordinate directions. The
velocity and adjoint velocity were approximated by piecewise quadratic polynomials while pressure and ad-
joint pressure were approximated by piecewise linear polynomials. All the variables were defined on the same
triangulation and on each triangle the degrees of freedom for quadratic elements were the function values at
the vertices and midpoints of each edge; the degrees of freedom for linear elements were the function values
at the vertices. This particular choice of finite element spaces for velocity and pressure satisfies the discrete
inf-sup condition. The time discretization is carried out using a second-order extrapolated backward difference
formula (BDF2) [22]. A fine grid was used in regions where sharp variations in velocities were expected. All
the computations were done with 45 × 45 grid and a time step size Δt = 1/200 for the Reynolds’ number 200.
The flow separates at the corner of the step and a recirculation forms. After the re-attachment of the lower wall
eddy, the flow slowly recovers towards a fully developed Poiseuille flow. The predicted re-attachment point on
the lower wall was five step-heights downstream. The resulting steady flow field is given in Figure 1.

The selection of the portion of the boundary Γc, where control is applied, is crucial for the control effectiveness.
To this end, first the vertical part of the step was selected for actuator placement. This choice was motivated
by the fact that if one wants maximum influence in the flow, then the control has to be applied in the vicinity
of the point of separation and wake region. To find where exactly on this part of the channel boundary the
actuator should be placed, this portion of the step was divided into four parts of equal size and named them
as Slot 1, Slot 2, Slot 3 and Slot 4, where Slot i is defined as (i − 1)/8 ≤ y ≤ i/8, i = 1, 2, 3, 4. In order to
determine the best position for actuation, the control for each of these cases was computed and results were
compared.
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(a)

(b)

(c)

(d)

Figure 1. Uncontrolled and controlled velocity fields at t = 10 with embedded vorticity
contours. (a) Baseline velocity field, (b) Controlled velocity field with actuation at slot 2 and
with cost function Θ1. (c) Controlled velocity field with actuation at slot 2 and with cost
function Θ2. Controlled velocity field with actuation at slot 2 and with cost function Θ3.

The control that minimizes the cost functional was found using a variable step gradient algorithm. Each itera-
tion of the gradient algorithm requires sequential solution of the state equation (2.6) and adjoint equation (2.8).
Adjoint equations were discretized using the same space-time discretization scheme as the one used for the state
equations. As these two can not be solved simultaneously in practice, the state equations are solved marching
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Figure 2. Adjoint velocity fields at t = 10 with embedded adjoint vorticity contours. With
actuation at slot 2 and with cost function Θ1.

Table 1. The L2(Ω)-norm of vorticity of optimal solution.

εi 1 10−1 10−2 10−3 10−4 10−5 10−6

‖∇ × uε
h‖2 0.62 0.58 0.54 0.53 0.52 0.52 0.52

forward in time starting from the initial conditions and adjoint equations are solved marching backward in time
from the final conditions at t = 10.

Figure 1a shows the baseline velocity field at time t = 10. Figure 2b, 2c and 2d show controlled velocity
fields computed with cost functions corresponding to Θ1, Θ2 and Θ3, respectively. Figures 1b–1d illustrates
the suppression of flow reversal present in the uncontrolled flow shown in Figure 1a. As indicated in the flow
fields, separation has been effectively eliminated by the optimal blowing control. Substantial reduction in the
recirculation bubble is also seen. The re-attachment length has been reduced by more than 99% compared to
the uncontrolled case. Moreover, the results are almost independent of the choice of cost functional employed. In
order to verify the convergence of solutions of penalized optimal control problem to that of the Dirichlet control
problem with respect to ε, numerical experiments were carried out in which optimal solutions were computed
for a sequence of ε values. In Table 1, L2(Ω)-norm of vorticity of optimal solution is shown for a sequence of
ε values. As can be seen in Table 1, convergence do occur as ε → 0. Figure 2 shows the adjoint velocity field
associated with vorticity cost function at time t = 10 when the actuation is on Slot 2. The adjoint velocity field
seems to settles down to steady state when integrated backwards in time and it concentrates entirely in the wake
region. As shown in Figure 2, the main feature of adjoint field is a pair of elongated vortices upstream of the
channel. The adjoint velocity field propagates upstream while being diffused by the high viscosity. The upstream
propagation of adjoint field is due to backward in time integration of the adjoint equations. These observations
are also consistent with adjoint fields computed with the other two cost functions. Figure 3 shows a comparison
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Figure 3. A comparison of cross-channel profiles of horizontal velocity component of the base
line flow with that of the controlled flow corresponding to each actuator position. (a) With cost
function Θ1, (b) With cost function Θ2, (c) With cost function Θ3.
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Figure 4. Cross-channel profiles of horizontal adjoint velocity component for five different
time instances at three different spatial locations. (a) Station 1: x = 1, (b) Station 2: x = 4
and (c) Station 3: x = 8.

of cross channel profiles of horizontal velocity component of the baseline flow with that of the controlled flow
corresponding to each actuator position and cost function. These results and others not reported here clearly
indicated that Slot 2 is the best place for actuator and the second best place is Slot 1. Moreover, the optimal
actuator location is independent of the cost functional employed in the control problem. Figure 4 shows the
cross-channel profiles of horizontal adjoint velocity component for five different time instances at three different
spatial locations. As can be seen the adjoint field has a larger magnitude at smaller t. The magnitude of the
adjoint increases rapidly as t decreases.

Appendix A

In this section, we list some of the estimates regarding the trilinear forms that appear in the governing
equations and related equations. These results are used in energy arguments throughout the paper.

Lemma A.1.

(i) For any ε > 0 and u ∈ H2(Ω), v,w ∈ H1(Ω), there exists a positive constant Cε such that

|c(u,v,w)| ≤ ε‖w‖2
1 + Cε‖u‖2

2[‖v‖ + ‖∇v‖2]. (A.1)

(ii) For any ε > 0 and u,w ∈ H1(Ω) and v ∈ L∞(Ω) ∩H1(Ω), there exists a positive constant Cε such that

|c(u,v,w)| ≤ ε‖w‖2
1 + Cε‖u‖2

1[‖∇v‖2 + ‖v‖2
∞]. (A.2)

(iii) For any ε1 > 0, ε2 > 0 and u,w ∈ H1(Ω), v ∈ L∞(Ω) ∩ H1(Ω) there exists a positive constants Cε1 and
Cε2 such that

|c(u,v,w)| ≤ ε1‖u‖2
1 + ε2‖w‖2

1 + Cε1‖w‖2 + Cε2‖u‖2[‖v‖2
∞ + ‖∇v‖4]. (A.3)

(iv) For any ε > 0, u ∈ H2(Ω), v,w ∈ H1(Ω), there exists a positive constants C1,ε and C2,ε such that

|c(u,v,w)| ≤ ε‖v‖2
1 + C1,ε‖u‖2

2[‖w‖2 + ‖v‖2] + C2,ε‖∇w‖2. (A.4)

(v) For any ε and u ∈ H1(Ω) and v ∈ H2(Ω), there exists a positive constant Cε such that

|c(u,v,u)| ≤ ε‖u‖2
1 + Cε[‖∇v‖2

L4 + ‖v‖2
2]‖u‖2. (A.5)
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(vi) For any ε and u,w ∈ H1(Ω) and v ∈ H2(Ω), there exists a positive constant Cε such that

|c(u,v,w)| ≤ ε‖u‖2
1 + Cε[‖∇v‖2

L4 + ‖v‖2
2]‖w‖2

1. (A.6)

(vii) For any ε1 > 0, ε2 > 0 and u,v ∈ H1(Ω), w ∈ L∞(Ω) ∩ H1(Ω) there exists a positive constants Cε1 and
Cε2 such that

|c(u,v,w)| ≤ ε1‖u‖2
1 + ε2‖v‖2

1 + Cε1‖v‖2 + Cε2‖u‖2[‖w‖2
∞ + ‖∇w‖2]. (A.7)

(viii) For any ε > 0 and u,v ∈ V, there exists a positive constant Cε such that

|c(u,v,u)| ≤ ε‖∇u‖2 + Cε‖u‖2[‖∇v‖2 + ‖v‖4
L4(Ω)]. (A.8)

Proof.

(i) By Hölder’s inequality, we have

|c(u,v,w)| ≤ C‖u‖∞[‖∇v‖‖w‖ + ‖v‖‖∇w‖].

Since ‖u‖∞ ≤ C‖u‖2, the desired result follow by Young’s inequality.
(ii) By Hölder’s inequality, we have

|c(u,v,w)| ≤ C‖u‖L4‖∇v‖‖w‖L4 + C‖u‖‖∇w‖‖v‖∞.

The result now follows by Sobolev embedding and Young’s inequality.
(iii) By Hölder’s inequality, we have

|c(u,v,w)| ≤ C‖u‖L4‖∇v‖‖w‖L4 + C‖u‖‖∇w‖‖v‖∞.

The result now follows by Gagliardo−Nirenberg’s inequality with q = 2 and r = 4 and Young’s inequality.
(iv) The proof of this result similar to (i) and thus omitted.
(v) By Hölder’s inequality, we have

|c(u,v,u)| ≤ C‖u‖L4‖∇v‖‖u‖L4 + C‖u‖‖∇u‖‖v‖∞.

By using Gagliardo−Nirenberg inequality, we obtain

|c(u,v,u)| ≤ C‖u‖‖u‖1[‖∇v‖ + ‖v‖∞].

The result now follows by Young’s inequality.
(vi) By Hölder’s inequality, we have

|c(u,v,w)| ≤ C‖u‖L4‖∇v‖‖w‖L4 + C‖u‖L4‖∇w‖‖v‖L4.

(vii) By Hölder’s inequality, we have

|c(u,v,w)| ≤ C‖u‖L4‖∇v‖‖w‖L4 + C‖u‖‖∇v‖‖w‖∞.

But by Gagliardo−Nirenberg’s inequality with q = 2 and r = 4, we obtain

|c(u,v,w)| ≤ C‖u‖ 1
2 ‖u‖

1
2
1 ‖∇w‖‖v‖ 1

2 ‖v‖
1
2
1 + C‖u‖‖∇v‖‖w‖∞.

Applying Young’s inequality repeatedly, we get

|c(u,v,w)| ≤ ε1‖u‖2
1 + ε2‖v‖2

1 + C‖u‖2[‖w‖2
∞ + ‖∇w‖2] + C‖v‖2.

(viii) By Hölder’s and Gagliardo−Nirenberg’s inequalities, we obtain

|c(u,v,u)| ≤ C‖u‖‖∇u‖‖∇v‖ + ‖u‖ 1
2 ‖∇u‖ 3

2 ‖v‖L4(Ω).

Now the result follows by Young’s inequality. �
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