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UNIFORM DISCRETE SOBOLEV ESTIMATES OF SOLUTIONS TO FINITE
DIFFERENCE SCHEMES FOR SINGULAR LIMITS OF NONLINEAR PDES

Liat Even-Dar Mandel1,2 and Steven Schochet2

Abstract. Uniform discrete Sobolev space estimates are proven for a class of finite-difference schemes
for singularly-perturbed hyperbolic-parabolic systems. The estimates obtained improve previous results
even when the PDEs do not involve singular perturbations. These estimates are used in a companion
paper to prove the convergence of solutions as the discretization parameter and/or the singular pertur-
bation parameter tends to zero.
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1. Introduction

This paper initiates a theory for finite difference schemes analogous to the theory of singular limits of systems
of PDEs such as

A(εu)ut =
d∑

j=1

Aj(t, x, u)uxj +
d∑

j,k=1

∂xj

(
Bj,k∂xk

u
)

+
1
ε

⎛⎝ d∑
j=1

Cjuxj + Du

⎞⎠ + F (t, x, u) (1.1)

[14, 17, 20, 26, 33]. When the matrices A, Aj , and Cj are symmetric, D is anti-symmetric, the matrices Bj,k,
Cj and D are constant, and assuming for simplicity that the second-order operator in which the Bj,k appear
either vanishes identically or is strongly elliptic, solutions of (1.1) with fixed smooth initial data exist for a time
independent of ε, and the difference between those solutions and the solutions of certain limit or profile equations
tends to zero with ε. More general assumptions on the second-order operator are presented in Section 2.2.
In particular those assumptions are satisfied by the slightly-compressible barotropic Navier–Stokes equations
(e.g. [34])

P ′(ρ0 + εr)
ρ0 + εr

[rt + u · ∇r] +
P ′(ρ0 + εr)

ε
∇ · u = 0

(ρ0 + εr)[ut + (u · ∇)u] +
P ′(ρ0 + εr)

ε
∇r = μ∇ · ∇u + (μ + λ)∇(∇ · u),
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which may be kept in mind as a typical system under consideration. Singular limits of equations of the form (1.1)
and variants thereof occur not only in the original motivating example of slightly-compressible fluid dynam-
ics [20, 26, 34] and its variants [5,32,46] but also in a variety of other fields (e.g., [1,7,36]). It is therefore of much
interest to obtain, and prove estimates for, numerical methods for equations of the form (1.1) whose accuracy
is uniform in the parameter ε.

There is a vast literature on numerical methods for PDEs like (1.1) without the large terms, i.e., with the
Cj and D all vanishing, and for various special cases of such equations. The part of this literature that proves
uniform bounds and convergence may be classified according to the corresponding bounds known for PDEs:
BV or L∞ bounds for scalar equations (e.g., [6,23,30,41]), small BV bounds for systems in one spatial variable
(e.g., [2,4]), L2 or Sobolev Hs bounds for constant-coefficient (e.g., [10]) and variable-coefficient linear systems,
and Hs bounds with a sufficiently high index s for smooth solutions of nonlinear systems [40, 44].

However, neither the well-known convergence result of Strang [40] for finite difference approximations to
nonlinear evolution equations nor the somewhat improved result of Tomoeda [44] yield uniform bounds for
discretizations of (1.1) when large terms are present. This difficulty is inherent in their analysis, which makes
use of higher-order time derivatives of the PDE solution that are generally not uniformly bounded. Nevertheless,
even in the absence of any theory guaranteeing uniform bounds and convergence, much progress has been made
in designing and analyzing schemes whose leading formal asymptotics when the parameter ε tends to zero is
consistent with the asymptotics of the PDE, including some first steps towards the stability analysis of such
schemes (see [8,21,22,28,29,37] and their references). One of the first conclusions of this research was that the
large terms must be treated implicitly, since for explicit schemes the CFL condition mandates taking time steps
Δt no larger than O(εΔx), where for simplicity the spatial grid is assumed to be of size O(Δx) in all directions.

In this paper we prove discrete Sobolev norm bounds that are independent of both ε and the discretization
parameters for solutions to two classes of finite difference approximations to equations of the form (1.1) satisfying
the ab ove-mentioned assumptions, one very specific and the other fairly general. As far as we know these are
the first uniform bounds obtained for such approximations.

The only finite difference approximation for which uniform discrete bounds can be obtained by following
the discrete analogue of every step of the energy estimates used to obtain uniform bounds for the PDE is
the Crank–Nicolson scheme, in which the time derivative term ut in (1.1) is approximated by a forward time
difference u(t+Δt,x)−u(t,x)

Δt , all other appearances of the dependent variable u are approximated by the time
average u(t+Δt,x)+u(t,x)

2 , and the spatial derivative operators are approximated by arbitrary central differences.
We prove here uniform bounds not only for the Crank–Nicolson scheme but also for the θ-scheme in which the
equally-weighted time average is replaced by θu(t + Δt, x)+ (1− θ)u(t, x) with θ ∈ [12 , 1], without requiring any
relationship between the time discretization parameter Δt and the spatial discretization parameter Δx. Some
estimates in the discrete �2 norms defined in Section 2.1 have been obtained previously for the θ-scheme for
linear systems without large terms: for the constant-coefficient case without assuming the symmetry of the Aj

but with the ratio Δt
(Δx)2 assumed to be constant [16], for the cases θ = 1

2 and θ = 1 ([18], Thms. 5.3.2–3), and
for other values of θ ([31], Sects. 5.1.8 and 6.2) using scheme-dependent norms.

In order to obtain uniform bounds for a wider class of numerical schemes we treat the large terms, the
remaining first-order terms, and the higher-order terms separately from each other. The large terms are treated
purely implicitly, which together with their anti-symmetry ensures that they drop out of the discrete energy
estimates obtained by taking the inner product of the scheme with u(t+Δt, x). This key step towards obtaining
bounds uniform in ε mirrors the dropping out of the large terms from energy estimates for the PDE (1.1), first
observed by Klainerman and Majda [20]. The second-order terms of the PDE (1.1) will only be assumed to be
weakly dissipative in the sense that they do not increase the L2 norm of solutions, and the PDE will be also
be allowed to contain even higher-order terms having the same property. All such terms will be approximated
by differences that do not increase an appropriate discrete norm. For dissipative terms of the PDE this leads to
numerical approximations of the second-order and higher-order terms similar to but more general than those in
the θ-scheme. For purely dispersive terms of the PDE the numerical approximation must be purely implicit as
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in the case θ = 1 of the θ-scheme in order to be dispersive at the discrete level. The main increase in generality
comes from the treatment of the first-order terms that are independent of ε, which are treated purely explicitly:
an estimate for that part of the scheme is obtained via a fully discrete and nonlinear version of Lax and
Nirenberg’s sharp G̊arding inequality [24], which only requires a condition on the symbol of the operator that
describes the scheme. Precise statements of the results including basic examples of discretizations are presented
in Section 2, and the results are shown in Section 3 to apply to a representative sample of specific schemes.

Previous results for general schemes for systems like (1.1) without large terms include discrete �2 estimates
for linear systems under conditions on the eigenvalues of the spatial difference operator of the finite difference
scheme, without assuming the symmetry of the Aj but with the ratio Δt

(Δx)2 assumed to be constant [27,38,39,47],
estimates in continuous L2 norms for linear systems without second-order or higher-order terms whose spatial
operator satisfies a sharp G̊arding inequality [24], and the above-mentioned results for nonlinear systems [40,44]
discussed further below. The results here could also be extended to the case when the Aj are not symmetric if
Δt = O((Δx)2), but a more refined analysis to be presented elsewhere will relax that restriction.

Because of the separate treatment of the various terms, the schemes other than Crank–Nicolson presented here
for equations involving large terms or higher-order terms are limited to being first order in time. For equations
with large terms this seems to be an inherent limitation. More refined estimates needed to allow first and higher-
order terms to be treated together in equations without large terms will be presented elsewhere. Nevertheless,
the bounds obtained here improve on earlier results [40,44] even for systems without large terms. First, [40,44]
only analyze explicit schemes for first-order hyperbolic systems, and although [40] mentions that the results
extend to systems like (1.1) containing second-order terms, the approach suggested there, following [19], requires
the usual assumption that Δt

(Δx)2 be constant. That restriction is avoided here by treating the second-order and
higher-order terms implicitly or at least semi-implicitly. Second, by directly estimating discrete Sobolev norms
of solutions to finite difference schemes, we show that solutions have as many discrete Sobolev derivatives as the
initial data. For equations of the form (1.1) the bounds implicit in the above-mentioned results lose 2�d/2�+ 2
derivatives, where d is the spatial dimension. The improved bounds here are used in [9] to show that for schemes
without large terms the rate of convergence equals the order of accuracy of the scheme under less restrictive
conditions on the smoothness of the PDE solution than in [40]. In addition, the stability condition developed
here is easier to apply than the one in [40].

As for the PDE itself, the uniform bounds proven here imply the convergence of solutions as ε or Δx + Δt
or both tend to zero, albeit without a rate. Moreover, the norm in which solutions converge is strong enough
to ensure that the limit of the solutions satisfies the relevant limit equation. The details of the convergence
argument are given in the companion paper [9], where the solutions constructed here are also shown under
additional assumptions to converge uniformly in ε at the rate O((Δt)1/2).

The framework required for our method includes discrete versions of a variety of calculus inequalities that
are well-known in the continuous case, including the Sobolev embedding estimate, certain Gagliardo–Nirenberg
inequalities and Moser estimates, and the sharp G̊arding inequality. Certain special cases of these estimates have
been shown previously: discrete versions of Gagliardo–Nirenberg-Sobolev inequalities involving only derivatives
through first order were proven for general meshes used in finite-volume schemes in [3, 15] and references
therein, but we require such estimates involving arbitrary orders. A wide variety of discrete Gagliardo–Nirenberg
inequalities and certain cases of the discrete Sobolev embedding estimate have been proven by Zhou [48–50]
even for nonuniform meshes, but in the case of multiple space dimensions the results are restricted to particular
values of the index p in the discrete �p norms, whereas we require all values of p in [2,∞]. Discrete sharp G̊arding
inequalities were proven for pseudo-difference operators on half-spaces in ([27], Sect. 4) and references therein,
but their translation to the periodic case is not equivalent to the estimates used here. Since the estimates
available in the literature do not include all those needed here, the required estimates will be derived briefly
in Section 4 for the rectangular meshes used in this paper, following as much as possible the methods used for
the original continuous versions, which yield simpler and more uniform proofs. To simplify the notation we will
only consider periodic meshes; the case of infinite meshes is similar.
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The main results will be proven in Section 5. Various applications and extensions will be considered elsewhere.
In particular, the results here and in [9] will be used in [35] to prove the stability and convergence to smooth
solutions of upwind finite-volume schemes on uniform rectangular grids that use actual or approximate Riemann
solvers.

2. Notation and statement of results

The estimates for the θ-scheme follow closely the estimates for the PDEs themselves, so the conditions for
that scheme will be stated in terms of the coefficients of the PDE. The conditions under which estimates can
be obtained via a sharp G̊arding inequality will be stated in terms of the scheme itself. Before describing those
schemes we recall some notations for shift and difference operators and some discrete Sobolev spaces that will
be needed for both cases.

2.1. Notation and spaces

Let ej denote the vector whose component j equals one and other components equal zero. The forward and
backward shift operators in the jth coordinate are defined by [Sj,Δxu](x) := u(x+Δxej) and [(Sj,Δx)−1

u](x) :=
u(x−Δxej), respectively, and the forward difference operator in that coordinate is Dj,Δx := Sj,Δx−1

Δx . Note that
in operator formulas a number denotes the operator of multiplication by that number; these are all scalar
operators, but will be extended to operate on vectors componentwise. Higher-order shift operators are defined
by Sα

Δx := (S1,Δx)α1 . . . (Sd,Δx)αd , where α is a multi-index vector with integer components, and higher-order
difference operators are defined by Dα

Δx := (D1,Δx)α1 . . . (Dd,Δx)αd , where α is a multi-index vector with
nonnegative integer components. In examples presented in one spatial dimension the index j will be omitted
from both shifts and difference operators.

Similarly, the forward time-shift operator and forward time-difference operator are defined by [SΔtu](t, x) =
u(t + Δt, x) and DΔt := SΔt−1

Δt , respectively. For the θ-scheme we will also need the θ-averaging operator
uθ := [θSΔt + (1 − θ)]u.

A general first-order difference operator ∂j,Δx := 1
Δx

∑
|m|≤M cm(Sj,Δx)m in the direction j is assumed to have

real coefficients and to be an approximation to the differential operator ∂xj satisfying ∂j,Δxu = ∂xj u + O(Δx)
for any u ∈ C2, which is equivalent to the conditions

∑
|m|≤M cm = 0 and

∑
|m|≤M mcm = 1. A central first-

order difference operator ∂j,Δx,c in the direction j is a first-order difference operator in that direction satisfying
c−m = −cm. Any first-order difference operator in the direction j can be written as a linear combination
∂j,Δx =

[∑
|m|≤M dm(Sj,Δx)m

]
Dj,Δx of shift operators applied to the forward difference operator in that

direction. However, it will be more convenient to write a central difference operator in the direction j as
a linear combination ∂j,Δx,c =

∑
0<m≤M dmDj,mΔx,c of the basic central difference operators Dj,mΔx,c :=

(Sj,Δx)m−(Sj,Δx)−m

2mΔx in that direction. The length |α| of a multi-index is the sum
∑

j |αj | of the absolute values of
its components. We will let PΔx :=

∑
|α|≤M PαSα

Δx, and similarly QΔx, GΔx, etc., denote general spatial shift
operators.

Example 2.1. The difference scheme SΔtu = [GΔx(u)]u with GΔx(u) = 1 + Δt
Δxa(u)(SΔx − 1) is an approxi-

mation of the PDE ut = a(u)ux. A more complicated scheme that is second order in both space and time can
be obtained by combining the central-difference approximation SΔx−(SΔx)−1

2Δx to the derivative operator ∂x with
midpoint time-stepping. Defining λ := Δt

Δx and umid := u + λ
4 a(u)

(
SΔx − (SΔx)−1

)
u, the resulting scheme can

be written as SΔtu = GΔx(Δt, Δx, SΔxu, u, (SΔx)−1u)u with

GΔx(Δt, Δx, SΔxu, u, (SΔx)−1u)

=
[
1 + λ

2 a(umid)
(
SΔx − (SΔx)−1

)
+ λ2

8 a(umid)
{
a(SΔxu)

(
S2

Δx − 1
)
− a((SΔx)−1u)

(
1 − S−2

Δx

)} ]
. (2.1)
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The adjoint S∗
j,Δx of the shift operator Sj,Δx equals (Sj,Δx)−1, no matter whether that adjoint is taken with

respect to the continuum L2 inner product or the discrete �2 inner product defined below. Together with the
standard results that (P + Q)∗ = P ∗ + Q∗ and (PQ)∗ = Q∗P ∗, this allows us to calculate the adjoints ∂∗

j,Δx

and P ∗
Δx of any difference or shift operator. In particular, a central difference operator is anti-symmetric.

The symbol of a spatial shift or difference operator is defined by[
Symb

(∑
α

cα(x)Sα
Δx

)]
(ξ) :=

∑
α

cα(x)eiΔxα·ξ . (2.2)

Besides occurring in difference schemes, difference operators also appear in formulas for discrete Sobolev
norms in place of the differential operators in ordinary continuum Sobolev norms. For concreteness we will
define discrete norms in the periodic case, in which the domain of the spatial variables is XL := [−L, L)d

with the endpoints in each direction identified. The discrete domain XΔx = [−LΔx, LΔx)d ∩ ΔxZd, where
LΔx := Δx

⌊
L

Δx

⌋
, is also taken periodic, via the rule that if x belongs to XΔx but x ± Δxej does not, then

x ± Δxej is taken to equal x ∓ mΔxej where m is the largest integer for which the latter point belongs to
XΔx. The cases when the periods of different components differ, some or all of the spatial components lie in R,
or the distances between grid points of different components differ requires for the most part only notational
adjustments. The discrete �2 norm is ‖v‖�2 :=

√
〈v, v〉�2 , where 〈v, w〉�2 :=

∑
x∈XΔx

v(x) · w(x) (Δx)d is the
discrete �2 inner product. The argument XΔx, as in �2(XΔx), will sometimes be added to distinguish these from
the analogous norm and inner product on Fourier space. Similarly to the PDE case, when the matrix coefficient A
of the time-difference operator is not simply the identity matrix then the �2 estimate will usually not be obtained
directly in the �2 norm but in the time-varying equivalent norm ‖v‖�2A

:=
√
〈v, Av〉�2 . The discrete Sobolev norms

are then defined for nonnegative integers s by ‖u‖hs
A

:=
√
〈u, u〉hs

A
, where 〈u, v〉hs

A
:=

∑
|α|≤s 〈Dα

Δxu, ADα
Δxv〉�2

is the discrete Sobolev inner product, any points in the formula for Dα
Δx that lie outside the discrete domain

XΔx are understood in the periodic sense defined above, and the positive-definite matrix A is omitted from
the inner product if it is omitted from the notation for the norm. Since the sum in the inner product defining
the hs

A norm consists of nonnegative terms, includes the �2 norm as the case α = 0 of the sum, and involves
differences of order at most s, there exists a constant C(s, d, Δ0) such that

‖u‖�2 ≤ ‖u‖hs ≤ C(s,d,Δ0)
(Δx)s ‖u‖�2 (2.3)

for 0 < Δx ≤ Δ0 where d denotes the spatial dimension. The discrete �∞ norm is ‖u‖�∞ = supx∈XΔx
|u(x)|.

The discrete version of Sobolev’s theorem, which is a particular case of Lemma 4.1 below, says that there exists
a constant c(d) independent of Δx such that

‖u‖�∞ ≤ c(d)‖u‖hσ , (2.4)

where σ := �d/2� + 1 is called the Sobolev embedding exponent.

2.2. Results for the θ-scheme

The basic form of θ-schemes for the PDE (1.1) is

A(εu)DΔtu =
d∑

j=1

Aj(t, x, uθ)∂j,Δx,cu
θ −

d∑
j,k=1

(∂j,Δx)∗
(
Bj,k∂k,Δxuθ

)
+ 1

ε

( d∑
j=1

Cj∂j,Δx,cu
θ + Duθ

)
+ F (t, x, uθ), (2.5)
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where θ ∈ [12 , 1] is a parameter. Since our assumptions will allow the matrices Bj,k to be identically zero, (2.5)
includes schemes for first-order systems as a special case; systems with higher-order spatial derivative terms can
be handled similarly under appropriate assumptions.

The assumptions needed on the coefficients of system (2.5) are mostly the same as those used to obtain the
simplest analogous results for the PDE system (1.1). First, all the coefficients are assumed to be smooth in all
variables and uniformly bounded in the independent variables, i.e., for sufficiently large s,∑

|α|≤s

|Dα
(t,x,u)

(
A(u), {Aj(t, x, u)}d

j=1, F (t, x, u)
)
| ≤ Ms(|u|), (2.6)

where for any vector w the derivative operator Dα
w means

∏
j ∂

αj
wj , | | denotes the norm of a vector or matrix,

not summed or integrated over the spatial variables, and both here and later all bounds depending on variables
are assumed for simplicity to be continuous and nondecreasing.

Second, the first-order terms are assumed to form a symmetric-hyperbolic system, which means that

the matrices A, the Aj , and the Cj are symmetric (2.7)

and A is positive definite, i.e., satisfies
A(w) ≥ 1

m0(|w|)I. (2.8)

Third, the terms of order 1
ε and the second-order terms in (1.1) will be assumed to have constant coefficients,

i.e.,
the matrices Bj,k, Cj , and D are constant. (2.9)

Fourth, the large operator
∑

Cj∂xj + D in (1.1) will be assumed to be antisymmetric, i.e.(
Cj

)T
= Cj , DT = −D. (2.10)

The reason for repeating the condition
(
Cj

)T = Cj , which already appeared in (2.7), will be explained in
Remark 2.3.

Fifth, the second-order operator in (1.1) will assumed to satisfy a somewhat weaker condition than ellipticity.
Specifically, either∑

j,k

wj · Bj,kwk ≥ b0

∑
j

|wj |2 with b0 ≥ 0, (2.11)

or else both ∑
j,k

ξjξk
Bj,k + (Bj,k)T

2
≥ b0|ξ|2I with b0 ≥ 0 (2.12)

and
the difference operators ∂k,Δx in the terms in (2.5) involving Bj,k are central. (2.13)

Condition (2.11) implies (2.12), but the matrices B1,1 = ( 5 0
0 1 ), B1,2 = B2,1 = ( 0 2

2 0 ), and B2,2 = ( 1 0
0 5 ) provide an

example in which (2.12) is satisfied but (2.11) is not. By definition, the second-order terms of (1.1) are strongly
elliptic when (2.12) holds with b0 > 0. The case b0 = 0 has been allowed not only to cover the case of hyperbolic
systems having no second-order terms, but also to include systems having purely dispersive second-order terms.
For example, the nonlinear Schrödinger equation and the Zakharov equations can be written as real systems
of the form (1.1) with b0 = 0 (see [36] and Sect. 3.3 below). When (2.12) holds but (2.11) does not then the
additional condition (2.13) is needed to enable the terms involving the Bj,k in (2.5) to be estimated in Fourier
space.
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Finally, because we have not assumed that b0 in (2.11)–(2.12) is strictly positive, just as for PDEs we need
to assume that

either A is constant or the Bj,k all vanish. (2.14)

The above assumptions will suffice to obtain a uniform hs estimate for solutions of (2.5) having uniformly
bounded initial data u0,ε,Δx. However, in order to obtain a uniform estimate for the time difference DΔtu as
well it is necessary to assume in addition that the initial time difference DΔtu

∣∣
t=0

is bounded uniformly in ε.
That condition is not automatic on account of the O(1

ε ) term in the difference scheme, but will hold provided
that ∥∥∥(∑Cj∂j,Δx,c + D

)
u0,ε,Δx

∥∥∥
hr

≤ cε (2.15)

for an appropriate value of r. As in the PDE case, such initial data will be called well prepared.
Unlike the results in [16, 38, 39, 47], the following theorem does not require that Δt

(Δx)2 be bounded.

Theorem 2.2. Let s be an integer greater or equal to σ + 2, where σ := �d/2� + 1 is the Sobolev embedding
exponent. Assume that the above-mentioned conditions hold, i.e., (2.6) with this value of s, (2.7), (2.8), (2.9),
(2.10), (2.14), and either (2.11) or both (2.12) and (2.13).

Then for every K0 and ε0 there are Δ0, K, and T such that for all ε ∈ (0, ε0], Δx in (0, 1], Δt ∈ (0, Δ0],
θ ∈ [12 , 1], and initial value u0,ε,Δx satisfying supε∈(0,ε0],Δx∈(0,1] ‖u0,ε,Δx‖hs ≤ K0 there exists a unique solution
of (2.5) plus initial condition

u(0) = u0,ε,Δx (2.16)

in �∞([0, T ]∩ΔtZ; hs) satisfying supt∈[0,T ]∩ΔtZ ‖u‖hs ≤ K. The maximum allowed time step Δ0, solution bound
K, and guaranteed time of existence T depend only on K0, ε0, the bounds Ms and m0 in (2.6)–(2.7), the
smoothness parameter s and the dimension d.

If in addition (2.15) holds for some r ≤ s− 2, then DΔtu is uniformly bounded in �∞([0, T −Δt]∩ΔtZ; hr).

Remark 2.3. The result of Theorem 2.2 can be generalized in various ways:

1. Essentially the same proof yields the following additional results:
(a) The central difference operators multiplied by Aj in (2.5) may be different from those multiplied by Cj

there.
(b) Rather than depending solely on uθ, the coefficients Aj and F in (2.5) may depend on an arbitrary

average uρ := [ρSΔt +(1−ρ)]u, or even on an arbitrary finite set {Sα
Δxu, Sα

ΔxSΔtu}|α|≤M of spatial shifts
of u and its time shift SΔtu, as long as Aj and F depend smoothly on all those variables. Dependence
of coefficients on shifts of u is discussed further in the next subsection.

(c) When the large terms are absent then the coefficient A of the time difference can also be allowed to
depend on t and x as well as u, as long as the bound m0 in (2.7) is independent of those variables.

(d) When the Bj,k all vanish then the minimum value of s is σ + 1 rather than σ + 2 and the maximum
value of r in the last part of the theorem is s − 1 instead of s − 2.

(e) The discrete spatial domain may be the discretization ΔxZd of the whole space Rd provided that the
inhomogeneous part F (t, x, 0) of F is bounded in hs uniformly in Δx and t. For the periodic case
considered in Theorem 2.2 that condition follows from the smoothness assumption on F .

2. When the second-order terms are strongly elliptic, i.e. b0 in (2.11) or (2.12) is positive, then those terms
contribute a favorable term to the energy estimates, which can be used to cancel various unfavorable terms.
First, condition (2.14) is no longer needed, since the favorable term so obtained dominates the problematic
term arising from (5.24) below. As for PDEs ([20], Thm. 4), condition (2.14) may also be omitted in the
hyperbolic-parabolic case familiar from the compressible Navier–Stokes equations in which second-order
terms only appear in certain equations and their restriction to those equations satisfies (2.11) or (2.12) with
b0 > 0.
Second, when b0 > 0 then the the first-order terms Aj do not need to be symmetric, but the coefficients Cj

appearing in the large terms must still be symmetric to ensure the anti-symmetry of the large operator.
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2.3. Results via sharp G̊arding inequality

In order to obtain estimates for finite difference schemes other than the θ-scheme, we will write those schemes
using shift operators rather than difference operators. Before defining the exact form of the schemes to be con-
sidered, let us consider various terms of the PDE (1.1) in order to elucidate what form the terms in the numerical
scheme used to approximate them should have. However, these considerations are used only to motivate the
form of the difference scheme; in particular, the assumptions actually made on the difference scheme allow terms
that approximate partial differential operators of order higher than two and large terms involving differential
operators of order higher than one. Such higher-order terms are, however, required to have the same properties
as the one appearing in (1.1), i.e. the large terms are required to be antisymmetric and the higher-order terms
that are independent of ε are required to not increase the energy.

The first-order terms in (1.1) are quasilinear, i.e., their coefficients depend on the dependent variables, and
hence the coefficients of the finite difference schemes will also depend on u in general. As the scheme in (2.1)
illustrates, the form of the difference scheme approximating the first-order terms need not be simply the first-
order terms from the PDE with derivatives replaced by differences as in the θ-scheme, but will still be related
to the terms in the PDE. In accordance with the example shift operator in (2.1) we will allow the coefficients
of shift operators that depend on u to also depend on any finite set of its spatial shifts. To keep the notation
compact let us denote such a collection by

ũ := {Sα
Δxu}|α|≤M , (2.17)

and use the abbreviation
Δ := {Δt, Δx}. (2.18)

Another example of a scheme that requires shifts in coefficients is the fourth-order Runge–Kutta time-stepping
scheme presented in Section 3.2. Although the PDE and forward time-shift in Example 2.1 are not multiplied
by matrices, we will allow schemes in which the time shift is multiplied by a matrix A(εũ), in accordance with
the PDE (1.1). In similar fashion to the conditions for (2.5), the matrix A will be required to satisfy

(A(εũ))T = A(εũ), A(w) ≥ 1
m0(|w|)I,

∑
|β|≤s

|∂β
wA(w)| ≤ Ms(|w|). (2.19)

While we will not assume that the coefficients of the shift operator GΔx are symmetric matrices, in some
applications the symmetry (Sect. 3.1) or at least symmetry up to O((Δt)2) (Sect. 3.2) of the coefficients of GΔx

can be used to show that the stability condition (2.26) below holds.
Another difference between (2.1) and the general scheme to be considered is that while the right side of (2.1)

consists of u plus terms of order Δt arising from difference operators, in general we will allow an A-weighted
average of shifts of u plus terms of order Δt arising from difference operators. Here and later, the factor Δt
occurs on account of the shift-operator form in which we write the numerical scheme. Specifically, we assume
that

GΔx =
∑

|α|≤M

GαSα
Δx, Gα = A(εũ)Cα + Δt

ΔxDα(Δ, t, x, ũ), (2.20)

where ∑
α

Cα = I, |Cα| ≤ c,
∑

α

Dα = 0,
∑
|β|≤s

|∂β
t,x,wDα(Δ, t, x, w)| ≤ Cs(|w|). (2.21)

For most difference schemes the only nonzero Cα is the coefficient C0 that multiplies the unshifted term, with
the Lax–Friedrichs scheme discussed in Section 3.1 being the main exception.

The second-order and higher-order terms independent of ε may be treated either implicitly or by a combination
of implicit and explicit terms. The implicit terms will be written as −ΔtBΔxSΔtu, and the explicit terms as
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ΔtHΔxu. Some specific examples of shift operators BΔx and HΔx will be presented in Section 3.3. Both BΔ

and HΔ will be assumed to have constant coefficients, in accordance with the fact that the second-order terms
in (1.1) have constant coefficients. Because the implicit terms will appear in the expression for which an estimate
is obtained, the symmetric part of the operator BΔx needs to be semi-positive definite; more precisely, we assume
that

〈u, BΔxu〉�2 ≥ 0 (2.22)

and
| 〈v, BΔxw〉�2 | ≤ cB‖v‖hμ‖w‖hμ (2.23)

for some nonnegative integer μ. In addition, assume that

‖HΔxu‖�2 ≤ c‖u‖hν (2.24)

for some nonnegative integer ν, which says that HΔx is a difference operator of finite order.
The energy estimates used in this paper require that the first-order terms satisfy an estimate by themselves,

and the second-order and higher-order terms are merely required to not increase the energy of solutions. When
the second-order terms are multiplied by a “viscosity” parameter then this approach yields estimates that are
uniform in that parameter. More specifically, our stability assumptions are

| 〈v, HΔxu〉�2 | ≤
√
〈v, BΔxv〉

√
〈u, BΔxu〉 (2.25)

on the second-order terms, and

Symb(GΔx)∗A−1 Symb(GΔx) ≤ (1 + c(|u|)Δt)A (2.26)

on the lower-order terms, where we have used the definition (2.2). Due to a technicality arising in the derivation
of the sharp G̊arding inequality, we will also require that

Either A is a constant matrix or Δt ≥ δΔx for some δ > 0. (2.27)

Assuming that at least one coefficient Dα from (2.20) is nonzero, GΔx is an explicit finite-difference approxi-
mation to a first-order partial differential operator, and hence the well-known CFL condition says that in order
for (2.26) to hold we must assume some restriction

Δt ≤ cΔx (2.28)

on the size of the time steps. Since the constant δ in the second alternative of (2.27) can be arbitrarily small
that condition is compatible with (2.28) no matter how small the constant c there is.

In order to make the O(1
ε ) terms in the numerical scheme drop out of the energy estimates for the numerical

scheme of the type considered here, as they do from the energy estimates for the PDE (1.1), we will need
to treat those terms purely implicitly, i.e., by an approximation of the form 1

εQΔxSΔtu. Furthermore, just as
large operator in (1.1) is antisymmetric, the operator QΔx =

∑
QαSα

Δx will need to be antisymmetric. More
specifically, we will require that

Q−α = −QT
α , ‖QΔxu‖�2 ≤ c‖u‖hν̃ (2.29)

for some nonnegative integer ν̃. The second condition in (2.29) implies that QΔx corresponds to a difference
operator of finite order.

It will be convenient to use the notations

AΔx(Δ, εũ) := A(εũ) + ΔtBΔx (2.30)
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and

GΔx(Δ, t, x, εũ, ũ) := GΔx(Δ, t, x, εũ, ũ) + ΔtHΔx. (2.31)

Then, after adding to the elements already considered a term of order zero yields a numerical scheme of the
form

AΔx(Δ, εũ)SΔtu + Δt
ε QΔx(Δ)SΔtu = GΔx(Δ, t, x, εũ, ũ) u + ΔtF (t, x, ũ). (2.32)

Before stating the theorem we need to define the norm in which the size of the initial data and the solution
will be measured. Analogously to the norm ‖ ‖hs

A
we define ‖u‖hs

A(εV )
=

√
〈u, u〉hs

A(εV )
, where 〈u, v〉hs

A(εV )
=∑

|α|≤s

〈
Dα

Δxu, AΔx(Δ,εV )+(AΔx(Δ,εV ))∗

2 Dα
Δxv

〉
�2

. When it is clear what the argument εV of A is then that

argument will sometimes be omitted from the notation for the norm. By (2.19) and (2.22) plus Lemma 4.2
below,

1
m0(ε|V |)‖u‖

2
hs ≤ ‖u‖2

hs
A(εV )

≤ Ms(ε|V |)‖u‖2
hs + cBΔt‖u‖2

hs+2μ. (2.33)

The assumption on the initial data will be framed in terms of the hs
A(0) norm, in order to have a fixed norm

to work with while still including the term involving ΔtBΔx. Although the hs
A(0) norm is stronger than the hs

norm, the factor of Δt multiplying the hs+2μ norm in (2.33) ensures that when following theorem is applied to
approximate solutions of a PDE then only a uniform hs bound will be required for the initial data to the PDE.

Theorem 2.4. Consider the finite difference scheme (2.32), where the definitions (2.30), (2.31), (2.17),
and (2.18) have been used. Assume that that (2.23) holds for some nonnegative μ, that (2.24) holds for some
nonnegative ν, that (2.29) holds for some nonnegative ν̃, and that (2.21) holds for some s ≥ σ+max{2, 2μ, ν, ν̃},
where σ := �d/2�+1 is the Sobolev embedding exponent, and that (2.19), (2.20), and (2.22) hold. Finally, assume
in addition that (2.25), (2.26), (2.27), and (2.28) hold.

Choose any positive K0 and any K > K0. Then there is a positive T such that for all initial values
u0,ε,Δx satisfying supε∈(0,1],Δx∈(0,1] ‖u0,ε,Δx‖hs

A(0)
≤ K0 there exists a unique solution of (2.32), (2.16) sat-

isfying ‖u‖hs
A(0)

≤ K for 0 ≤ t ≤ T . The time of existence T depends only on K0, K, the bounds in all the
assumptions listed above, the smoothness parameter s and the dimension d, and so in particular is independent
of ε ∈ (0, 1] and of Δt and Δx in (0, 1] satisfying any restrictions placed above on Δt.

If in addition ‖QΔxu0,ε,Δx‖hr
A(0)

≤ cε for some r ≤ s − max{1, 2μ, ν, ν̃}, then DΔtu is uniformly bounded in
�∞([0, T − Δt] ∩ ΔtZ; hr

A(0)).

Remark 2.5. Essentially the same proof yields extensions of the results of Theorem 2.4 analogous to the
extensions (c) and (e) of Theorem 2.2 in Remark 2.3.

However, when only first-order terms are present then the minimum value of s required in Theorem 2.4 is
still σ + 2 instead of σ + 1 as in Theorem 2.2. The reason is that Theorem 2.2, like the corresponding result for
PDEs, requires that the coefficients belong to C1, whereas the sharp G̊arding inequality used for Theorem 2.4
requires that the coefficients belong to C2.

3. Specific schemes

In order to make clear the meaning and applicability of Theorem 2.4, some schemes will now be presented and
shown to satisfy the conditions of that theorem, although the proof for the Runge–Kutta scheme in Section 3.2
requires two facts from Section 4.
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3.1. Lax–Friedrichs and local Lax–Friedrichs schemes

The local Lax–Friedrichs scheme (e.g., [25], Sect. 12.5) for the PDE (1.1), also known as the Rusanov scheme,
with both the large terms and the second-order terms treated implicitly, is:[

A(εv) − Δt
ε

⎛⎝ d∑
j=1

Cj Sj,Δx−(Sj,Δx)−1

2Δx + D

⎞⎠− Δt
(Δx)2

d∑
j,k=1

(1 − (Sj,Δx)−1)Bj,k(Sk,Δx − 1)
]
SΔtv

=

[
A(εv) + Δt

2ΔxA(εv)
d∑

j=1

γj(v, ε)(Sj,Δx − 2 + S−1
j,Δx) + Δt

2Δx

d∑
j=1

Aj(v)
(
Sj,Δx − (Sj,Δx)−1

) ]
v + Δt F (v),

(3.1)

where for notational simplicity we have omitted the dependence of coefficients on the independent variables.
There are several possible variants of this scheme. First, although (3.1) is suitable for (1.1) since that PDE is
not in conservation form, many treatments of the local Lax–Friedrichs scheme use a conservation formulation,
in which the artificial viscosity term

Δt

2Δx
A(εv)

d∑
j=1

γj(v, ε)
(
Sj,Δx − 2 + S−1

j,Δx

)
(3.2)

from (3.1) is replaced by Δt
2ΔxA(εv)

∑d
j=1

[
γj(SΔxṽ, ε)(Sj,Δx − 1) − γj(ṽ, ε)(1 − S−1

j,Δx)
]
, where as usual ṽ de-

notes a finite set of spatial shifts of v. Since ṽ differs from v by O(Δx), and the coefficients in which it appears
are multiplied by Δt

Δx , this variant differs from the version in (3.1) by O(Δt), which does not affect the stability of
the scheme because condition (2.26) allows arbitrary terms of size O(Δt). A more significantly different variant
is the original Lax–Friedrichs scheme, in which the artificial viscosity term from (3.1) is replaced by

1
2A(εv)

d∑
j=1

γj

(
Sj,Δx − 2 + S−1

j,Δx

)
(3.3)

with the now-constant γj satisfying
d∑

j=1

γj = 1. (3.4)

The artificial viscosity of the original Lax–Friedrichs scheme has a simpler form, at the price of being generally
much larger than the artificial viscosity of the local version. The dropping of the factor Δt

Δx from the artificial
viscosity term prevents that term from being incorporated into the coefficients Δt

ΔxDα in (2.20), so the coeffi-
cients Cα there are used instead. The following result covers both the local and original Lax–Friedrichs schemes.

Corollary 3.1. Let s ≥ σ+2 be an integer, where σ := �d/2�+1 is the Sobolev embedding exponent, and assume
that A, the Aj and F satisfy assumptions (2.6)–(2.8) and that the Cj, D, and the Bj,k satisfy (2.9)–(2.11).
Pick any positive K0 and K > K0, and define umax = cS(d)K, where cS(d) is the discrete Sobolev embedding
constant from (2.4). Define Ãj(v, ε) := (A(εv))−1/2Aj(v)(A(εv))−1/2, let ‖M‖ denote the L2 operator norm of
a matrix M , and assume that ∥∥∥Ãj(v, ε)

∥∥∥ ≤ γj(v, ε), j = 1, . . . , d. (3.5)

Assume further that Δt satisfies the stability condition⎡⎣ max
0≤ε≤1,|v|≤umax

d∑
j=1

γj(v, ε)

⎤⎦ Δt

Δx
≤ 1. (3.6)

If A is not constant then also restrict Δt by the condition Δt
Δx ≥ δ, where δ is an arbitrary positive constant.
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Then there exists T > 0 independent of ε ∈ (0, 1], Δx, and Δt satisfying the above restriction(s), such that
for all initial data u0,ε,Δx satisfying supε∈(0,1],Δx∈(0,1] ‖u0,ε,Δx‖hs ≤ K0 the local Lax–Friedrichs scheme (3.1)
with initial data u0,ε,Δx has a unique solution in �∞([0, T ] ∩ ΔtZ; hs) satisfying ‖u‖hs ≤ K for 0 ≤ t ≤ T .

Moreover, if in addition
∥∥∥(∑d

j=1 Cj Sj,Δx−(Sj,Δx)−1

2Δx + D
)

u0,ε,Δx

∥∥∥
hs−2

≤ cε then ‖DΔtu‖hs−2 is also uni-
formly bounded up to time T .

Furthermore, after replacing conditions (3.5)–(3.6) by (3.4) plus[
max

0≤ε≤1,|v|≤umax

∥∥∥Ãj(v, ε)
∥∥∥] Δt

Δx
≤ γj , j = 1, . . . , d, (3.7)

the same result holds for the original Lax–Friedrichs scheme in which (3.3) is substituted for the term (3.2)
in (3.1).

Proof. Define

GΔx := A(εv) +
Δt

2Δx

⎡⎣A(εv)
d∑

j=1

γj(v, ε)(Sj,Δx − 2 + S−1
j,Δx) +

Δt

2Δx

d∑
j=1

Aj(v)
(
Sj,Δx − (Sj,Δx)−1

)⎤⎦ ,

QΔx :=
∑

Cj Sj,Δx − (Sj,Δx)−1

2Δx
+ D,

BΔx := − 1
(Δx)2

∑
(1 − (Sj,Δx)−1)Bj,k(Sk,Δx − 1),

and HΔx := 0. Then (3.1) has the form (2.32), where definitions (2.30)–(2.31) have been used. The symbol of
GΔx is

Symb (GΔx) =

⎛⎝1 − Δt

Δx

d∑
j=1

γj(v, ε)(1 − cos(Δxξj)

⎞⎠A(εv) + i
Δt

Δx

d∑
j=1

sin(Δxξj)Aj(v). (3.8)

The assumption that A and the Aj are all symmetric implies that the adjoint Symb (GΔx)∗ is obtained simply
by replacing i by −i in (3.8). Substituting these into the left side of (2.26), factoring out factors of (A(εv))1/2

at the beginning and end of that expression, and using the definition of the Ãj yields

Symb (GΔx)∗
(
A0

)−1
Symb (GΔx) − A

= A
1
2

{
− 2

Δt

Δx

d∑
j,k=1

γj(v, ε)(1 − cos(Δxξj))

+
(

Δt

Δx

)2

⎛⎜⎝
⎡⎣ d∑

j,k=1

γj(v, ε)(1 − cos(Δxξj))

⎤⎦2

+

⎡⎣ d∑
j

sin(Δxξj)Ãj

⎤⎦2
⎞⎟⎠}

A
1
2 . (3.9)

By assumption (3.5) plus the fact that if a symmetric matrix M satisfies ‖M‖ ≤ cI for some positive constant c
then M2 ≤ c2I, ⎡⎣ d∑

j

sin(Δxξj)Ãj

⎤⎦2

≤

⎡⎣ d∑
j

γj(v, ε)| sin(Δxξj)|

⎤⎦2

. (3.10)

Writing the squared sums involving γj from (3.9) and (3.10) as double sums, estimating the products
(1 − cos(Δxξj))(1 − cos(Δxξk)) and | sin(Δxξj)| | sin(Δxξk)| by the elementary bound ab ≤ 1

2 (a2 + b2), and
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simplifying yields⎡⎣ d∑
j=1

γj(v, ε)(1 − cos(Δxξj))

⎤⎦2

+

⎡⎣ d∑
j=1

γj(v, ε)| sin(Δxξj)|

⎤⎦2

=
d∑

j,k=1

γj(v, ε)γk(v, ε) [(1 − cos(Δxξj))(1 − cos(Δxξk)) + | sin(Δxξj)| | sin(Δxξk)|]

≤ 1
2

d∑
j,k=1

γj(v, ε)γk(v, ε)
[
(1 − cos(Δxξj))2 + (1 − cos(Δxξk))2 + sin(Δxξj)2 + sin(Δxξk)2

]

=

[
d∑

k=1

γk(v, ε)

]⎡⎣ d∑
j=1

γj(v, ε)
[
(1 − cos(Δxξj))2 + sin(Δxξj)2

]⎤⎦
= 2

⎡⎣ d∑
j=1

γj(v, ε)

⎤⎦⎡⎣ d∑
j=1

γj(v, ε)(1 − cos(Δxξj))

⎤⎦ . (3.11)

Substituting (3.10) and then (3.11) into (3.9) and using assumption (3.6) yields

Symb (GΔx)∗
(
A0

)−1
Symb (GΔx) − A ≤ −2

Δt

Δx

d∑
j=1

γj(v, ε)(1 − cos(Δxξj))

⎛⎝1 − Δt

Δx

d∑
j=1

γj(v, ε)

⎞⎠A ≤ 0,

so the stability criterion (2.26) of Theorem 2.4 holds. Since assumption (2.11) ensures that 〈u, BΔxu〉�2 ≥ 0,
condition (2.25) also holds. The operator QΔx is anti-symmetric, and the remaining hypotheses of Theorem 2.4
may also be checked straightforwardly, so the conclusion of the lemma for the local Lax–Friedrichs scheme (3.1)
follows from that theorem.

The original Lax–Friedrichs scheme can be viewed as the special case of the local version in which γj(v, ε) is
chosen to be the constant Δx

Δt γj . As noted above, even though γj(v, ε) now contains a factor of Δx
Δt the resulting

scheme still has the form defined in (2.32) and (2.31) with GΔx given by (2.20). Assumption (3.4) ensures
that (3.6) now holds with equality, while assumption (3.7) ensures that (3.5) still holds. Hence the result for
the original Lax–Friedrichs scheme follows from the result for the local version. �

3.2. A fourth order classical explicit Runge–Kutta scheme

When the PDE (1.1) contains large terms there is little reason to attempt to obtain a higher-order-in-time
scheme, because the error of a scheme of order p ≥ 2 in time is (Δt)pO(‖∂p

t u‖), and even for well-prepared
initial data ∂p

t u will in general be of order ε−(p−1), which is large when ε is small. Hence in this subsection we
consider the PDE (1.1) with ε set equal to one. In addition, we will assume for simplicity that all the Bj,k, Cj ,
D, and F vanish.

The centered difference operators 1
ΔxLj,Δx, where

Lj,Δx := 2
3

(
Sj,Δx − (Sj,Δx)−1

)
− 1

12

(
Sj,2Δx − (Sj,2Δx)−1

)
,

are fourth-order approximations to ∂xj because

Symb(Lj,Δx) = i
(

4
3 sin(Δxξj) − 1

6 sin(2Δxξj)
)

= iΔx ξj + O((Δx)5).

Using 1
ΔxLj,Δx to approximate the spatial derivatives, the first-order-in-time approximation to the solution

after a time-step Δt is (I + G̃Δx)u, where

G̃Δx(t, x, v) := λ (A(v))−1
d∑

j=1

Aj(t, x, v)Lj,Δx (3.12)
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and as before λ := Δt
Δx . The classical fourth-order Runge–Kutta scheme for the spatial discretization can be

written in the form (2.32) as A(v)SΔtv = GΔx(t, x, v)v, where GΔx := A(v)
[
1 + 1

6 (K1 + 2K2 + 2K3 + K4)
]

with

K1 = G̃Δx(t, x, v),

K2 = G̃Δx(t + Δt
2 , x, v + 1

2K1v)(1 + 1
2K1),

K3 = G̃Δx(t + Δt
2 , x, v + 1

2K2v)(1 + 1
2K2),

and
K4 = G̃Δx(t + Δt, x, v + K3v)(1 + K3).

Since the Lj,Δx are fourth order in Δx, and the Runge–Kutta scheme applied to the discretized problem is
fourth order in Δt, the above scheme is a fourth order approximation to the PDE.

Corollary 3.2. Let s ≥ σ+2 be an integer, where σ := �d/2�+1 is the Sobolev embedding exponent, and assume
that A and the Aj satisfy (2.6)–(2.8). Pick any positive K0 and K > K0, and define umax = cS(d)K, where
cS(d) is the discrete Sobolev embedding constant from (2.4). Let γ be a number such that

∣∣Aj(t, x, u)
∣∣ ≤ γA(εu)

for all j, t, x, ε ∈ (0, 1], and |u| ≤ umax , and restrict Δt by the condition

δ ≤ Δt

Δx
≤ 4

√
2

3
1
γd

, (3.13)

where δ is an arbitrary positive constant.
Then there exists T > 0 independent of ε ∈ (0, 1], Δx, and Δt satisfying (3.13) such that for all initial data

u0,ε,Δx satisfying supε∈(0,1],Δx∈(0,1] ‖u0,ε,Δx‖hs ≤ K0 the scheme (3.1) with initial data u0,ε,Δx has a unique
solution in �∞([0, T ] ∩ ΔtZ; hs) satisfying ‖u‖hs ≤ K for 0 ≤ t ≤ T .

Moreover ‖DΔtu‖hs−1 is also uniformly bounded up to time T .

Proof. Since the scheme is explicit, its solution is well defined. Since the other hypotheses of Theorem 2.4 are
easily verified, in order to show the boundedness of the solution it suffices to show that the symbol of GΔx

satisfies (2.26). Because the equation has no large terms the uniform boundedness of the time difference of the
solution then follows from the scheme itself.

Since λ is bounded and Lj,Δx is a bounded combination of shift operators, we obtain by induction and
the definition (3.12) of the operator G̃Δx that the Kj are also bounded operators on hr spaces. On the other
hand, writing λ as Δt

Δx and using the fact that 1
ΔxLj,Δx is a first-order difference operator, the discrete Sobolev

inequality (2.4), the boundedness of the Kj , and the definition of the Kj yields ‖Kjv‖�∞ ≤ c1‖Kjv‖hσ ≤
c2Δt‖v‖hσ+1, and hence also that∥∥∥(A(v + cKjv))−1

Aj(t + cΔt, x, v + cKjv) − (A(v))−1
Aj(t, x, v)

∥∥∥
�∞

≤ c3‖Kjv‖�∞ ≤ c4Δt‖v‖hσ+1 . (3.14)

Since arbitrary terms of size O(Δt) are permitted in estimate (2.26), let us modify GΔx by replacing the
arguments t + cΔt and v + cK�v appearing in G̃Δx in the definition of the Kj by t and v, respectively. This
yields the modified operator

GΔx,mod(t, x, v) := A(v)
4∑

k=0

1
k!

(
G̃Δx(t, x, v)

)k

,

which has the familiar form of the fourth-order Taylor series approximation to the exponential function that
the classical Runge–Kutta method takes when applied to linear equations. In view of (3.14), GΔx = GΔx,mod +
O(Δt). Using this plus the definition of GΔx,mod, the estimate

‖Symb(PΔxQΔx) − Symb(PΔx) Symb(QΔx)‖�∞ ≤ cΔx
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from Lemma 4.7 below, and the boundedness of λ from below yields Symb (GΔx) = A
∑4

k=0
1
k!

(
Symb(G̃Δx)

)k

+

O(Δt). The symbol of G̃Δx can be written in terms of Ãj := A−1/2AjA−1/2 and

ζj := 4
3 sin(Δxξj) − 1

6 sin(2Δxξj)

as Symb(G̃Δx) = A−1/2
[
iλ

∑d
j=1 ζjÃ

j
]
A1/2. Together with the algebraic identity[

4∑
k=0

(−iy)k

k!

] [
4∑

k=0

(iy)k

k!

]
= 1 − y6

72

(
1 − y2

8

)
,

these formulas imply that Symb(GΔx)∗A−1 Symb(GΔx) equals

A − A1/2

72

(
λ

d∑
j=1

ζjÃ
j

)3
⎡⎣1 −

(
λ

2
√

2

d∑
j=1

ζjÃ
j

)2
⎤⎦(

λ
d∑

j=1

ζjÃ
j

)3

A1/2 + O(Δt).

Hence (2.26) will hold provided that
(

λ
2
√

2

∑d
j=1 ζjÃ

j

)2

≤ I, and the trig estimate
∣∣4
3 sin(x) − 1

6 sin(2x)
∣∣ ≤ 3

2

plus the definition of γ and assumption (3.13) ensure that that condition indeed holds. �

3.3. Examples of approximations of second-order terms

A purely implicit treatment of second-order terms was given in (3.1). That method works even when the
second-order terms are purely dispersive, as in the subsystem ([36], Eqs. (2.9)–(2.10)) of the Zakharov equations
Ft = −ΔG, Gt = ΔF , where Δ denotes the Laplacian operator and lower-order terms have been omitted
for simplicity. For the PDE system, adding F times the first equation to G times the second, integrating
over the spatial variables, and noting that the terms arising from the right side form exact derivatives yields
d
dt

∫
(F 2 + G2) dx = 2

∫
(GΔF − FΔG) dx =

∫
∇ · (G∇F − F∇G) dx = 0. For the discretization SΔtF =

F − Δt
(Δx)2

∑d
j=1(Sj,Δx − 2 + (Sj,Δx)−1)SΔtG, SΔtG = G + Δt

(Δx)2

∑d
j=1(Sj,Δx − 2 + (Sj,Δx)−1)SΔtF of these

terms, adding the �2 inner product of SΔtF with the first equation to the �2 inner product of SΔtG with the
second equation, and using the fact that (Sj,Δx)−1 = S∗

j,Δx yields

‖SΔtF‖2
�2 + ‖SΔtG‖2

�2 = 〈SΔtF, F 〉�2 + 〈SΔtF, F 〉�2

+ Δt
(Δx)2

d∑
j=1

[〈
SΔtG, (1 − (Sj,Δx)−1)(Sj,Δx − 1)SΔtF

〉
�2
−

〈
SΔtF, (1 − (Sj,Δx)−1)(Sj,Δx − 1)SΔtG

〉
�2

]
= 〈SΔtF, F 〉�2 + 〈SΔtF, F 〉�2

− Δt
(Δx)2

d∑
j=1

[
〈(Sj,Δx − 1)SΔtG, (Sj,Δx − 1)SΔtF 〉�2 − 〈(Sj,Δx − 1)SΔtF, (Sj,Δx − 1)SΔtG〉�2

]
= 〈SΔtF, F 〉�2 + 〈SΔtF, F 〉�2 ≤ 1

2

[
‖SΔtF‖2

�2 + ‖SΔtG‖2
�2 + ‖F‖2

�2 + ‖G‖2
�2

]
,

which shows that the second-order terms drop out of the discrete energy estimate, just like they drop out of the
continuuous energy estimate for the PDE.

We next consider an example in which second-order terms are treated only semi-implicitly. The scalar PDE
ut = uxx +uxy +uyy may be discretized as SΔtu+ΔtBΔxSΔtu = u+ΔtHΔxu with BΔxu := 1

(Δx)2 [(S1,Δx)−1−
1)(S1,Δx − 1) + (S2,Δx)−1 − 1)(S2,Δx − 1)] and HΔxu := 1

(Δx)2 (S1,Δx − 1)(S2,Δx − 1). Since

| 〈v, HΔxu〉�2 | = 1
(Δx)2 | 〈v, (S1,Δx − 1)(S2,Δx − 1)u〉�2 | = 1

(Δx)2 |
〈
((S1,Δx)−1 − 1)v, (S2,Δx − 1)u

〉
�2
|

≤ 1
(Δx)2 ‖((S1,Δx)−1 − 1)v‖�2‖(S2,Δx − 1)u‖�2 = 1

(Δx)2 ‖(S1,Δx − 1)v‖�2‖(S2,Δx − 1)u‖�2
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and

〈u, BΔxu〉�2 = 1
(Δx)2

〈
u,

[
((S1,Δx)−1 − 1)(S1,Δx − 1) + ((S2,Δx)−1 − 1)(S2,Δx − 1)

]
u
〉

�2

= 1
(Δx)2

[
〈(S1,Δx − 1)u, (S1,Δx − 1)u〉�2 + 〈(S2,Δx − 1)u, (S2,Δx − 1)u〉�2

]
= 1

(Δx)2

[
‖(S1,Δx − 1)u‖2

�2 + ‖(S2,Δx − 1)u‖2
�2

]
the stability condition (2.25) is satisfied.

4. Discrete versions of continuous estimates

In this section we formulate and prove discrete versions of various well-known continuous estimates that are
important in the analysis of linear and nonlinear PDEs. The discrete versions will play an analogous role in our
theory of difference schemes.

4.1. Discrete Fourier transform

In order to prove the discrete Sobolev embedding estimate (2.4) and other results that will be needed for the
proofs of Theorems 2.2 and 2.4 we will need certain results about the discrete Fourier transform. Recall that
the physical-space variable, denoted x, lies in the set XΔx = [−LΔx, LΔx)d ∩ΔxZd, which contains N := 2LΔx

Δx

points in each direction. The domain ΠΔx :=
[
− π

Δx , π
Δx

)d ∩ π
LΔx

Zd of the corresponding Fourier variable ξ also
contains N points in each direction. The discrete Fourier and inverse Fourier transforms may be written in the
form

f̂(ξ) :=
∑

x∈XΔx

f(x)e−iξ·x(Δx)d, (4.1)

f(x) =
1

(2π)d

∑
ξ∈ΠΔx

f̂(ξ)eiξ·x(Δξ)d, (4.2)

where Δξ := π
LΔx

. These formulas can be derived from the standard discrete Fourier and inverse Fourier

transform formulas (e.g. [12], pp. 250–252) âm :=
∑N−1

n=0 ane−2πimn/N and an = 1
N

∑N−1
m=0 âme2πimn/N by

making the changes of independent and dependent variables

x = nΔx − LΔx, ξ = πm
LΔx

, f(x) = an, f̂(ξ) = eπimâmΔx (4.3)

and generalizing to multiple dimensions by applying one-dimensional transforms in each variable. The discrete
Fourier and inverse Fourier transforms satisfy the Plancherel identity

‖f‖2
�2(XΔx) = 1

(2π)d ‖f̂‖2
�2(ΠΔx), (4.4)

where the �2 norm ‖g‖�2(ΠΔx) :=
√
〈g, g〉�2(ΠΔx) on ΠΔx is defined in terms of the inner product 〈g, h〉�2(ΠΔx) :=∑

ξ∈ΠΔx
g(ξ)h(ξ)(Δξ)d. The corresponding Parseval identity is

〈f, g〉�2(XΔx) = 1
(2π)d

〈
f̂ , ĝ

〉
�2(ΠΔx)

. (4.5)

Formula (4.4) can be derived from the Plancherel identity
∑N−1

n=0 |an|2 = 1
N

∑N−1
m=0 |âm|2 ([12], Lem. 7.1, p. 251)

for the standard form of the discrete Fourier transform via the changes of variables (4.3).
Formula (4.1) and the definition (2.2) of the symbol of a difference operator imply that

P̂Δxf(ξ) = [Symb(PΔx)](ξ)f̂ (ξ) (4.6)
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for any constant-coefficient shift operator PΔx. The discrete �p and wk,p norms are defined by

‖u‖�p :=

[ ∑
x∈XΔx

|u(x)|p(Δx)d

]1/p

, ‖u‖wk,p :=
∑
|α|≤k

‖Dα
Δxu‖�p.

The following lemma is the discrete version of the Sobolev embedding lemma, which says that the Hs norm
dominates the C0 norm when s > d

2 , and, more generally, dominates the Ck norm when s > k + d
2 .

Lemma 4.1 (Discrete sobolev embedding estimate). For any nonnegative integer k there is a constant cS(d, k)
depending only on k and the spatial dimension d such that

‖u‖wk,∞ ≤ cS(d, k)‖u‖hk+σ , (4.7)

where σ := �d/2� + 1 is the Sobolev embedding exponent.

Proof. The standard proof (e.g. [11], pp. 243–244) for the differential case translates directly to the difference

case once we notice that the discrete Fourier transform of a difference is D̂α
Δxf(ξ) =

∏d
j=1

(
eiξjΔx−1

Δx

)αj

f̂(ξ)
by (4.6), and ∣∣∣∣eiξjΔx − 1

Δx

∣∣∣∣ ≥ c|ξj | (4.8)

for |ξ| ≤ π
Δx , because the fact that σ > d

2 ensures that the Fourier-space sum
∑

ξ∈ΠΔx
(1 + |ξ|2)−σ (Δξ)d is

bounded by a constant independent of Δx just like it ensures that the integral
∫

ξ∈Rd(1+ |ξ|2)−σ dξ is finite. �

The following elementary result says that, just as for differential operators, the order of a difference operator
is bounded by twice the order of the bilinear form that it induces.

Lemma 4.2. If a constant coefficient difference operator BΔx satisfies (2.23) for some nonnegative integer μ
then ‖BΔxu‖�2 ≤ c̃‖u‖h2μ.

Proof. Define an operator Λ by Λ̂f(ξ) = (1 + |ξ|)f̂(ξ). Then by the definition of the hμ norm, (4.4), (4.6),
and (4.8) plus the trivial reverse inequality

∣∣∣ eiξjΔx−1
Δx

∣∣∣ ≤ c2|ξj |,

c−(μ, s)‖f‖hμ+s ≤ ‖Λμf‖hs ≤ c+(μ, s)‖f‖hμ+s . (4.9)

By the fact that BΔx has constant coefficients, (2.23), and (4.9),

| 〈v, BΔxu〉�2 | = |
〈
Λ−μv, BΔxΛμu

〉
| ≤ c ‖Λ−μv‖hμ‖Λμu‖hμ ≤ c̃ ‖v‖�2‖u‖h2μ. (4.10)

Setting v := BΔxu in (4.10) yields the claimed result. �

It will sometimes be useful to extend functions defined on the discrete lattice XΔx so as to be defined on a
continuous domain XLΔx := [−LΔx, LΔx)d. Such an interpolation can be obtained by taking the inverse discrete
Fourier transform of the discrete Fourier transform of a function, but letting the new spatial variable vary over
XLΔx rather than just XΔx. The fact that the inverse and direct Fourier transforms are inverses ensures that
the restriction of the interpolation back to the lattice yields the original function. By formulas (4.1) and (4.2),
this interpolation operator Intx is defined for x ∈ XLΔx by

[Intx f ](x) :=
1

(2π)d

∑
ξ∈ΠΔx

⎡⎣ ∑
y∈XΔx

f(y)e−iξ·y(Δx)d

⎤⎦ eiξ·x (Δξ)d
.
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Lemma 4.3. The interpolation operator Intx is a bounded map from hs(XΔx) to Hs(XLΔx) for every integer
s ≥ 0, uniformly in Δx.

Proof. Using Plancherel’s identities for XLΔx and XΔx, the fact that 0 < c1 ≤
∑

|α|≤s

∏
j |ξj |2αj

(1+|ξ|2)s
≤ c2 < ∞, and

(4.8), we obtain that

‖ Intx f‖2
Hs(XLΔx

) ≤ c1

∑
ξ∈ΠΔx

(1 + |ξ|2)s|f̂(ξ)|2
(

π
LΔx

)d

≤ c2

∑
ξ∈ΠΔx

(
1 +

∑
j

∣∣∣ eiξjΔx−1
Δx

∣∣∣2 )s

|f̂(ξ)|2
(

π
LΔx

)d

≤ c3‖f‖2
hs(XΔx). �

4.2. Discrete calculus inequalities

Our development of the theory of nonlinear difference equations will require not only the discrete Sobolev
embedding estimate but also a discrete version of certain Gagliardo–Nirenberg inequalities, which interpolate
between various discrete Sobolev norms, and of certain Moser inequalities, which estimate Sobolev norms of
smooth functions of u(x) in terms of the corresponding norms of u(x).

The discrete version of the chain rule is the identity

Dj,ΔxF (t, x, u(t, x)) =
1

Δx

∫ 1

0

d
ds

F (t, x + sΔxej , sSj,Δxu + (1 − s)u) ds

=
∫ 1

0

Fxj (t, x + sΔxej , sSj,Δxu + (1 − s)u) ds +
∫ 1

0

Fu(t, x + sΔxej , sSj,Δxu + (1 − s)u) ds · Dj,Δxu,

which can be written in terms of Fxj ,Δx(t, x, u, Sj,Δxu) :=
∫ 1

0 Fxj (t, x + sΔxej , sSj,Δxu + (1 − s)u) ds and
Fu,j,Δx(t, x, u, Sj,Δxu) :=

∫ 1

0
Fu(t, x + sΔxej , sSj,Δxu + (1 − s)u) ds as

Dj,ΔxF (t, x, u(t, x)) = Fxj ,Δx(t, x, u, Sj,Δxu) + Fu,j,Δx(t, x, u, Sj,Δxu) · Dj,Δxu. (4.11)

A similar identity holds for the time difference. Note that the discrete effective derivatives Fxj ,Δx and Fu,j,Δx

depend on both u and its shift Sj,Δxu. In particular, for the function F (v, w) = vw calculating the last integral
in (4.11) explicitly yields Dj,Δx(vw) = (Avj,Δx v) (Dj,Δxw) + (Dj,Δxv) (Avj,Δx w), where Avj,Δx := (Sj,Δx)+1

2 .
We will also sometimes use the unsymmetric versions

DΔ(vw) = vDΔw + (DΔv) SΔw (4.12)

where Δ denotes either Δt or Δx, and

Dj,mΔx,c(vw) = vDj,mΔx,cw + (Dj,mΔxv) Sj,mΔxw +
(
Dj,mΔx(Sj,mΔx)−1v

)
(Sj,mΔx)−1w. (4.13)

Identities (4.12) and (4.13) can be verified by substituting in the definitions of the shift and difference operators
and simplifying. By induction, (4.11) and its time-difference variant imply analogous but more complicated
chain-rule formulas for higher-order differences (DΔt)mDα

ΔxF (u).
The Gagliardo–Nirenberg inequalities (e.g., [13], Thm. 9.3) are estimates for the Lp norms of derivatives of

order k in terms of Lq norms of derivatives of some higher order m and Lr norms of the original function.
Specifically,

∑
|α|=k ‖Dαu‖Lp ≤ c

[∑
|β|=m ‖Dβu‖α

Lq

]
‖u‖1−α

Lr when 1 ≤ q ≤ ∞, 1 ≤ r ≤ ∞, k
m ≤ α < 1 and

1
p = k

d + α
(

1
q − m

d

)
+ (1 − α)1

r . We prove the discrete version of these inequalities in the special case when

α = k
m , with q and r restricted to be at least two.
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Lemma 4.4. For any 2 ≤ q, r ≤ ∞ with at least one of q or r finite, and integers 1 ≤ k < m, the p defined by

1
p

=
k

m

1
q

+
(

1 − k

m

)
1
r

(4.14)

also satisfies 2 ≤ p < ∞, and there is a constant c depending only on q, r, k, m and the spatial dimension such
that ∑

|α|=k

‖Dα
Δxu‖�p ≤ c

⎡⎣ ∑
|β|=m

‖Dβ
Δxu‖k/m

�q

⎤⎦ ‖u‖1−k/m
�r . (4.15)

Proof. The proof for the continuous case outlined in ([13], pp. 24–27) relies mostly on induction and Hölder’s
inequality, and so only requires proving directly the case when k = 1, m = 2, both q and r are finite, and the
spatial dimension equals one. To prove that case note that identity (4.12) with v = |DΔxu|p−2DΔxu and w = u
can be written as

|DΔxu|p = DΔx

(
u|DΔxu|p−2DΔxu

)
− DΔx

(
DΔxu|p−2DΔxu

)
SΔxu.

Summing over the spatial grid, noting that the sum of the exact difference vanishes by periodicity, and using the
discrete chain rule (4.11), the fact that shifts preserve �p norms, and Hölder’s inequality with the three factors

p
p−2 , q and r, we obtain∑

XΔx

|DΔxu|pΔx = −
∑
XΔx

DΔx

(
|DΔxu|p−2DΔxu

)
SΔxuΔx

= −(p − 2)
∑
XΔx

[∫ 1

0

|sSΔxDΔxu + (1 − s)DΔxu|p−2 ds

]
(DΔx)2u SΔxuΔx

≤ c(p)
∑
XΔx

(
|SΔxDΔxu|p−2 + |DΔxu|p−2

)
|(DΔx)2u| |SΔxu|Δx

≤ 2c(p)

(∑
XΔx

|DΔxu|pΔx

) p−2
p

(∑
XΔx

|(DΔx)2u|qΔx

)1/q (∑
XΔx

|u|rΔx

)1/r

(4.16)

provided that p−2
p + 1

q + 1
r = 1, which is equivalent to (4.14) for the case k = 1, m = 2. Solving the inequality (4.16)

for
∑

XΔx
|DΔxu|pΔx yields the above-mentioned case of (4.15). Since the constant c in (4.16) depends only

on p, which remains finite as either q or r but not both tends to infinity, the estimate is also valid under those
circumstances. As indicated above, the rest of the proof follows the proof for the differential case. �

Moser estimates bound norms of derivatives of compositions of functions and of commutators of multiplication
and derivative operators in terms of the norms of their component parts. Using Lemmas 4.1 and 4.4, discrete
versions of the Moser estimates can be obtained. Although we will only use here the following weak versions of
those estimates, the discrete versions of the standard strong versions (e.g. [26], Prop. 2.1, p. 43 are also valid,
and their proofs are identical to those of the standard differential versions, which use only the above Gagliardo–
Nirenberg estimates, the Sobolev embedding estimate, Hölder’s inequality, and standard interpolation estimates
between Lp norms that are also valid for the discrete �p norms.

Lemma 4.5. Let s be an integer, and define s̃ := max{s, σ}, where σ := �d/2� + 1 is the Sobolev embedding
exponent. Assume that F is a C s̃ function satisfying F(t, x, 0) ≡ 0, A is a matrix-valued C s̃ function satisfying
A(t, x, 0) ≡ 0, and B is a matrix-valued C s̃ function of the independent variables t and x. Then there is a
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function cF and constant c, depending on F , A, B, s and the spatial dimension such that

‖F(t, x, U)‖hs ≤ cF (‖U‖hs̃) ‖U‖hs , (4.17)∑
|α|≤s

‖[Dα
Δx, A(t, x, U)]u‖�2 ≤ c‖A(t, x, U)‖hs̃‖u‖hs−1, (4.18)

∑
|α|≤s

‖[Dα
Δx, B(t, x)]u‖�2 ≤ c‖u‖hs−1, (4.19)

where [Dα
Δx, A] denotes the commutator of Dα

Δx with the operator of multiplication by the matrix A.

The differential Gronwall lemma says that if a function u satisfies u′ ≤ c(t)u+k(t) then u(t) ≤ e
∫ t
0 c(r) dru(0)+∫ t

0
e
∫ t

s
c(r) drk(s) ds. We will make use of the following discrete constant-coefficient version:

Lemma 4.6. Suppose that a nonnegative function w defined on [0, T ]∩ΔtZ satisfies w(t+Δt) ≤ (1+cΔt)w(t)+
kΔt. Then w(t) ≤ ectw(0) + ect−1

c k for t ∈ [0, T ] ∩ ΔtZ.

Proof. By induction, the formula for the sum of a geometric series, and the estimate (1+x)n ≤ enx, for t = nΔt,
w(t) = w(nΔt) ≤ (1 + cΔt)nw(0) + kΔt

∑n−1
j=0 (1 + cΔt)j = (1 + cΔt)nw(0) + k (1+cΔt)n−1

c ≤ ecnΔtw(0) +

k ecnΔt−1
c = ectw(0) + ect−1

c k. �

4.3. Discrete sharp G̊arding inequality

The sharp G̊arding inequality states if the symbol of an operator is self-adjoint and nonnegative then the
symmetric part of the operator is almost nonnegative, in some sense. Both the original and sharp forms of
G̊arding’s inequality play an important role in the theory of differential and pseudodifferential operators ([43],
Sect. 7.6, [42], Chap. 7). Although a version has been proven for shift operators ([24], Thm. 1.1) and applied to
difference schemes, that version estimates the action of shift operators on the space L2 of functions of continuous
variables. Specifically, if the coefficients Pα(x) of a shift operator PΔx are defined for all x ∈ XL and satisfy∑

α∈Zd

[∑
0≤β≤2 ‖DβPα‖C0 + (1 + |α|2)‖Pα‖C0

]
< ∞, and the symbol Symb(PΔx) =

∑
α∈Zd Pα(x)eiα·ξ of the

shift operator is self-adjoint and nonnegative, then PΔx + P ∗
Δx ≥ −cΔx when considered as an operator acting

on L2. Here we formulate and prove a fully discrete version, in which the shift operator acts on the space �2

and its coefficients need only be defined at grid points.
By the definition of symbols, the operator corresponding to a symbol is Op

(∑
α Pα(x)eiΔxα·ξ) =∑

α Pα(x)Sα
Δx. Then Op ◦ Symb is the identity operator on shift operators, and Symb ◦Op is the identity oper-

ator on symbols. By direct calculation we obtain the following lemma, in which ‖P‖�2→�2 denotes the operator
norm sup‖v‖�2≤1 ‖Pv‖�2 , since moving a shift past a coefficient shifts that coefficient by an amount O(Δx), but
only if the coefficient depends on x.

Lemma 4.7. Suppose that the coefficients Pα(x) and Qα(x) of bounded shift operators PΔx and QΔx belong to
w1,∞. Then ∥∥P ∗

Δx − Op
(
(SymbPΔx)∗

)∥∥
�2→�2

≤ cΔx,

‖PΔxQΔx − Op (SymbPΔx Symb QΔx)‖�2→�2 ≤ cΔx,

‖Symb(PΔxQΔx) − Symb(PΔx) Symb(QΔx)‖�∞ ≤ cΔx.

Moreover, if Pα(x) = P
(0)
α +δP

(1)
α (x) then

∥∥P ∗
Δx − Op

(
(Symb PΔx)∗

)∥∥
�2→�2

≤ cδΔx, and if in addition Qα(x) =

Q
(0)
α + δQ

(1)
α (x) then

‖PΔxQΔx − Op (SymbPΔx Symb QΔx)‖�2→�2 ≤ cδΔx. (4.20)

We now prove the discrete sharp G̊arding inequality:
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Theorem 4.8. Let PΔx :=
∑

α∈Z
Pα(x)Sα

Δx be a shift operator, possibly involving infinitely many shifts, and
assume that ∑

α∈Zd

⎡⎣ ∑
0≤|β|≤2

‖Dβ
ΔxPα‖hσ + (1 + |α|2)‖Pα‖hσ

⎤⎦ ≤ c1. (4.21)

Suppose in addition that the symbol of PΔx satisfies

Symb(PΔx)∗ = Symb(PΔx), Symb(PΔx) ≥ 0. (4.22)

Then the operator PΔx is almost positive in the sense that

PΔx + P ∗
Δx ≥ −cΔx, (4.23)

where c depends only on c1 in (4.21). Moreover, if

Pα(x) = P (0)
α + δP (1)

α (x) (4.24)

and (4.21) holds with Pα replaced by each P
(j)
α then

PΔx + P ∗
Δx ≥ −c2δΔx. (4.25)

Proof. Begin by extending the definition of the coefficients Pα(x) from the discrete lattice XΔx to the torus
XLΔx , by replacing Pα(x) by its interpolation [Intx Pα](x), hereafter abbreviated to IntPα. Although interpola-
tion maintains self-adjointness of the symbol, it does not necessarily maintain positivity, as the scalar example
f(x) = 1 − (Δx)2 − cos(π(x − Δx

2 )) with Δx = 1/m for some integer m > 1 illustrates: its restriction to the
lattice ΔxZ is positive but it is negative at x = Δx

2 . However, as that example also illustrates, the most negative
value of Symb(Int PΔx) is of the order of ∑

α

‖Pα‖w2,∞(Δx)2, (4.26)

as a Taylor series expansion around the most negative point y shows in view of the fact that the value at the
closest grid point must be nonnegative. By (4.21) plus the Sobolev embedding estimate (Lem. 4.1),

∑
α ‖Pα‖w2,∞

is uniformly bounded. Hence nonnegativity of the interpolated symbol can be restored by adding a constant
times (Δx)2I to PΔx, which does not affect the conclusion to be proven.

The Sobolev embedding estimate also ensures that assumption (4.21) implies the assumption

∑
α

sup
x∈XLΔx

⎡⎣ ∑
|β|≤2

|∂β
x IntPα| + (1 + |α|2)| Int Pα|

⎤⎦ ≤ c < ∞

of the ordinary continuous version of the sharp G̊arding inequality ([45], Thm. 1.1). Apply that result, namely
〈v, (IntPΔx + IntP ∗

Δx)v〉L2 ≥ −cΔx‖v‖2
L2 , to functions v that are constant in each centered grid cell Cx := {y |

maxk |xk − yk| ≤ Δx
2 } when x is a lattice point, and use the fact that for such v

|〈v, (IntPΔx + IntP ∗
Δx)v〉L2 − 〈v, (PΔx + P ∗

Δx)v〉�2 |

=
∣∣∣〈v(x),

∫
Cx

[(IntPΔx(y) + IntPΔx(y)∗) − (IntPΔx(x) + IntPΔx(x)∗)]v(x)
〉

�2

∣∣∣ ≤ cΔx‖v‖2
�2.

(4.27)

Since the error of converting from continuous to discrete norms is of the same order as the claimed deviation
from positivity, the continuous result implies the discrete one.
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Finally, in order to obtain the improved estimate (4.25) it suffices to show it in the continuous case and to
show that the estimates (4.26) and (4.27) also improve in the same way. To do that, note that in the proof of
G̊arding’s inequality for the continuous case in [45] the constant c in (4.23) depends only on the estimates in
Lemmas 2 and 3 there. The estimates in the proof of Lemma 2 in ([45], p. 156) only involve derivatives of the
coefficients Pα, and so contain a factor of δ when (4.24) holds, while the proof of Lemma 3 in ([45], p. 156) is
based on estimating the expression, in our notation,∑

α

[∫
Pα(x − (Δx)1/2y)

{
q(y)2 − q(y + (Δx)1/2α)2

}
dy

]
eiα·z . (4.28)

When (4.24) holds then the part of (4.28) involving the constant coefficients P
(0)
α cancels since∫ {

q(y)2 − q(y + (Δx)1/2α)2
}

dy = 0,

again leaving only terms containing a factor of δ. Hence the extension holds for the continuous sharp G̊arding
inequality, and similar arguments show that the same improvement is obtained in (4.26)–(4.27). �

Corollary 4.9.

1. Let A(x) be a positive self-adjoint matrix satisfyingA(x) ≥ c0I, such that ‖A(x)‖hσ+2 ≤ c1 < ∞. Suppose
that a shift operator PΔx(x) containing finitely-many shifts satisfies∑

α

‖Pα(x)‖hσ+2 ≤ c2 < ∞

and
Symb(PΔx)∗A−1 Symb(PΔx) ≤ (1 + η)A. (4.29)

Then 〈
PΔxv, A−1PΔxv

〉
�2

≤ (1 + η + cΔx) 〈v, Av〉�2 , (4.30)

where c depends only on the cj.
2. Let A be a constant-coefficient positive self-adjoint matrix satisfying A ≥ c0I. Suppose that a shift operator

PΔx(x) = P
(0)
Δx + δP

(1)
Δx(x) containing finitely-many shifts satisfies (4.29) and∑

α

[
|P (0)

α | + ‖P (1)
α (x)‖hσ+2

]
≤ c1 < ∞.

Then 〈
PΔxv, A−1PΔxv

〉
�2

≤ (1 + η + cδΔx) 〈v, Av〉�2 , (4.31)

where c depends only on the cj.

Proof. When (4.29) holds, then by Lemma 4.7 and Theorem 4.8,〈
PΔxv, A−1PΔxv

〉
�2

=
〈
v, P ∗

ΔxA−1PΔxv
〉

�2

≤
〈
v, Op

[
Symb(PΔx)∗ Symb(A−1PΔx)

]
v
〉

�2
+ k1Δx‖v‖2

�2A

=
〈
v, Op

[
Symb(PΔx)∗A−1 Symb(PΔx) − (1 + η)A

]
v
〉

�2
+ (1 + η + k1Δx) 〈v, Av〉�2

≤ k2Δx 〈v, Av〉�2 + (1 + η + k1Δx) 〈v, Av〉�2 = (1 + η + cΔx) 〈v, Av〉�2 . (4.32)

When A has constant coefficients, a calculation similar to (4.32) but using the variant results (4.20) and (4.25)
shows that (4.31) holds. �



UNIFORM ESTIMATES FOR FINITE DIFFERENCE SCHEMES FOR SINGULAR LIMITS 749

5. Energy estimates

5.1. Estimates for the θ-scheme

Lemma 5.1. As usual, let σ := �d/2�+ 1 denote the Sobolev embedding exponent. Assume that the hypotheses
of Theorem 2.2 hold for some s, and let K1 and K2 be finite constants. Then there exist a positive Δ0 and finite
κ0 and R0 such that for all Δt ∈ (0, Δ0], all T > 0, all u0,ε,Δx ∈ �2, all F̃ ∈ �∞([0, T ] ∩ ΔtZ; �2), and all V
satisfying

sup
t∈[0,T ]∩ΔtZ

‖V ‖hσ+1 ≤ K1, ε sup
t∈[0,T−Δt]∩ΔtZ

‖DΔtV ‖hσ ≤ K2 (5.1)

the linearized numerical scheme

A(εV )DΔtv =
d∑

j=1

Aj(t, x, V θ)∂j,Δx,cv
θ −

d∑
j,k=1

(∂j,Δx)∗
[
Bj,k∂k,Δxvθ

]
+

1
ε

[ d∑
j=1

Cj∂j,Δx,c + D

]
vθ + F̃ (t, x),

(5.2)
v(0) = v0,ε,Δx (5.3)

has a unique solution in �∞([0, T ] ∩ ΔtZ; �2) satisfying

‖SΔtv‖2
�2SΔtA

≤ (1 + R0Δt)‖v‖2
�2A

+ κ0Δt‖F̃‖2
�2 (5.4)

for all t ∈ [0, T − Δt] ∩ ΔtZ. The constants Δ0, κ0, and R0 depend only on the bounds K1 and K2 on V , the
bounds Ms and m0 in (2.6)–(2.7), and the dimension d.

Proof. The a priori estimate (5.4) says that at each time the square of the norm of the solution at the next
time step is bounded by a constant times the squares of the norms of the inhomogeneous term and the solution
at the current time step. Since the difference scheme (5.2) is linear, such an estimate implies the existence and
uniqueness of the solution. Hence it suffices to prove (5.4).

The key estimate for dealing with the time-difference term in (5.2) is

DΔt(〈v, Av〉�2) ≤ 2
〈
vθ, ADΔtv

〉
�2

+ 〈SΔtv, (DΔtA)SΔtv〉�2 . (5.5)

The first step towards deriving (5.5) is to use the definitions of the time-average vθ and time-difference DΔtv
and the symmetry of A to obtain

(vθ)TADΔtv =
θ(SΔtv)T ASΔtv − (2θ − 1)v(t)T ASΔtv − (1 − θ)v(t)T Av(t)

Δt
· (5.6)

Since 2θ − 1 ≥ 0, estimating the mixed term v(t)T ASΔtv on the right side of (5.6) via the Cauchy–Schwarz
inequality and simplifying yields

θ(SΔtv)TASΔtv − (2θ − 1)v(t)TASΔtv − (1 − θ)v(t)TAv(t)
Δt

≥ 1
2

(SΔtv)TASΔtv − v(t)TAv(t)
Δt

· (5.7)

If the matrix A is constant then the right side of (5.7) is an exact time difference. When A is not constant then
it is evaluated at time t everywhere in (5.7) so the right side of that expression is not an exact time difference,
but it can be expressed as a time difference plus a correction term involving the time difference of A, i.e.,

1
2

(SΔtv)TASΔtv − v(t)TAv(t)
Δt

= 1
2 [DΔt(v · Av) − (SΔtv) · (DΔtA)(SΔtv)] . (5.8)
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Combining (5.6)–(5.8) yields (5.5). Substituting for ADΔtv in (5.5) the value it has according to the numerical
scheme (5.2) yields

DΔt 〈v, Av〉�2 ≤ 〈SΔtv, (DΔtA) SΔtv〉�2 + 2
d∑

j=1

〈
vθ, Aj∂j,Δx,cv

θ
〉

�2

− 2
d∑

j,k=1

〈
vθ, (∂j,Δx)∗

[
Bj,k∂k,Δxvθ

]〉
�2

+
2
ε

〈
vθ,

[ d∑
j=1

Cj∂j,Δx,c + D

]
vθ

〉
�2

+ 2
〈
vθ, F̃

〉
�2

.

(5.9)
We now turn to estimating each of the terms on the right side of (5.9).

When the assumption (2.12) on the coefficients Bj,k holds and the difference operators ∂j,Δx are centered
then using successively the definition of an adjoint operator, Parseval’s identity (4.5) plus formula (4.6) for the
Fourier transform of a difference operator and the identity 2wT Bw = wT (B + BT )w, (2.12) and the fact that
the symbol of a centered difference operator is purely imaginary and hence the product of two such symbols is
real, and the Plancherel identity (4.4), the second-order terms in (5.9) can be estimated by

−2
d∑

j,k=1

〈
vθ, (∂j,Δx)∗

[
Bj,k∂k,Δxvθ

]〉
�2

= −2
d∑

j,k=1

〈
∂j,Δxvθ, Bj,k∂k,Δxvθ

〉
�2

= −c

d∑
j,k=1

∑
ξ∈ΠΔx

Symb(∂j,Δx)(Δxξ)Symb(∂k,Δx)(Δxξ)v̂θ(ξ)T
[
Bj,k + (Bj,k)T

]
v̂θ(ξ) (Δξ)d

≤ −cb0

∑
ξ∈ΠΔx

∑
j

|Symb(∂j,Δx)(Δxξ)|2
∣∣∣v̂θ(ξ)

∣∣∣2 (Δξ)d = −cb0

∑
j

∥∥∂j,Δxvθ
∥∥2

�2
, (5.10)

since (2.12) for real vectors implies that the same inequality holds for the real part when the vectors are complex
and one factor is conjugated, and the fact that the overall expression is real means that the imaginary part can
be ignored. Note that this argument uses the assumption that the difference operators ∂j,Δx are centered since
that ensures that their symbols are purely imaginary and hence that the product of two such symbols is real.
When the stronger assumption (2.11) on the Bj,k holds then the last line of (5.10) is obtained directly as an
estimate for the second line there, without assuming that the ∂j,Δx are centered differences.

Using the symmetry of the inner product, formulas for adjoint operators, the antisymmetry of central differ-
ences, the fact that the central differences in the first-order terms can be written in terms of elementary central
differences as ∂j,Δx,c =

∑
0<m≤Mj

dm,jDj,mΔx,c, and the product rule (4.13) for Dj,mΔx,c lets us write and then
estimate the first-order terms as

2
d∑

j=1

〈
vθ, Aj∂j,Δx,cv

θ
〉

�2
=

d∑
j=1

〈
vθ,

[
Aj∂j,Δx,c + (∂j,Δx,c)∗(Aj)T

]
vθ

〉
�2

=
d∑

j=1

〈
vθ,

[
Aj∂j,Δx,c − ∂j,Δx,cA

j
]
vθ

〉
�2

= −
d∑

j=1

〈
vθ,

∑
0<m<Mj

dm,j

[ (
Dj,mΔxAj

)
Sj,mΔx +

(
Dj,mΔx(Sj,mΔx)−1Aj

)
(Sj,mΔx)−1

]
vθ

〉
�2

≤ c

d∑
j=1

‖Dj,ΔxAj‖�∞‖vθ‖2
�2 . (5.11)

Since all the terms after the last equals sign in (5.11) involve differences of the Aj , a similar calculation shows
that the large terms in (5.9), which have constant coefficients, cancel to zero. Substituting (5.10) and (5.11)
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into (5.9) and taking into account the cancellation of the large terms, using the Cauchy–Schwarz inequality
for the term involving F̃ , using the definition of vθ and the estimate ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2, and using the
positivity of A guaranteed by (2.8) then yields

DΔt 〈v, Av〉�2 ≤ ‖DΔtA‖�∞‖SΔtv‖2
�2 + c

d∑
j=1

‖Dj,ΔxAj‖�∞‖vθ‖2
�2 + ‖vθ‖�2‖F̃‖�2 − cb0

∑
j

∥∥∂j,Δxvθ
∥∥2

�2

≤ c5

⎡⎣1 + ‖DΔtA‖�∞ +
d∑

j=1

‖Dj,ΔxAj‖�∞

⎤⎦ [
‖SΔtv‖2

�2 + ‖v‖2
�2

]
+

1
2
‖F̃‖2

�2

≤ c6(‖V ‖�∞ , ‖SΔtV ‖�∞)

⎡⎣1 + ‖DΔtA‖�∞ +
d∑

j=1

‖Dj,ΔxAj‖�∞

⎤⎦[
‖SΔtv‖2

�2SΔtA
+ ‖v‖2

�2A

]
+

‖F̃‖2
�2

2 ·

(5.12)

By the discrete chain rule (4.11) and its time-difference variant plus the smoothness assumption (2.6),

‖DΔtA(εV )‖�∞ ≤ c7(‖V ‖�∞ , ‖SΔtV ‖�∞)ε‖DΔtV ‖�∞ ,

‖Dj,ΔxAj(t, x, V )‖�∞ ≤ c8(‖V ‖�∞)(1 + ‖Dj,ΔxV ‖�∞).

Inserting these estimates into (5.12), using the discrete Sobolev embedding estimate (4.7) to replace all �∞ norms
by Sobolev space norms, and using the definition of the time-difference operator in the expression DΔt 〈v, Av〉�2
yields

[1 − c9(‖V ‖hσ+1 , ‖SΔtV ‖hσ , ε‖DΔtV ‖hσ)Δt] ‖SΔtv‖2
�2SΔtA

≤ [1 + c9(‖V ‖hσ+1 , ‖SΔtV ‖hσ , ε‖DΔtV ‖hσ)Δt] ‖v‖2
�2A

+
Δt

2
‖F̃‖2

�2 . (5.13)

The derivation of the bound c9 shows that it may be taken to be continuous and nondecreasing, so under the
assumptions of the lemma

c9(‖V ‖hσ+1 , ‖SΔtV ‖hσ , ε‖DΔtV ‖hσ) ≤ c10 := c9(K1, K1, K2) (5.14)

for all t ∈ [0, T − Δt] ∩ ΔtZ. Pick any constant η less than one and define Δ0 := η
c10

; then for 0 < Δt ≤ Δ0

the quantity 1− c10Δt is positive, so the estimate obtained by substituting (5.14) into (5.13) can be solved for
‖SΔtv‖2

�2SΔtA
, yielding

‖SΔtv‖2
�2SΔtA

≤ 1+c10Δt
1−c10Δt‖v‖

2
�2A

+ Δt
2(1−η)‖F̃‖2

�2 ≤
[
1 + 2c10

1−η Δt
]
‖v‖2

�2A
+ Δt

2(1−η)‖F̃‖2
�2 (5.15)

for all t ∈ [0, T − Δt] ∩ ΔtZ. Estimate (5.15) has the desired form (5.4) with R0 := 2c10
1−η and κ0 := 1

2(1−η) , and
our calculation shows that those bounds and Δ0 depend only on the claimed quantities. �

Lemma 5.2. Assume that the hypotheses of Theorem 2.2 hold for some s, and let K1 and K2 be finite constants.
Then there exist a positive Δs and finite κs and Rs such that for all Δt ∈ (0, Δs], all T > 0, all u0,ε,Δx ∈ hs,
all F̃ ∈ �∞([0, T ] ∩ ΔtZ; hs), and all V satisfying

sup
t∈[0,T ]∩ΔtZ

‖V ‖hs ≤ K1, ε sup
t∈[0,T−Δt]∩ΔtZ

‖DΔtV ‖hσ ≤ K2 (5.16)

the solution of linearized numerical scheme (5.2) with initial data (5.3) satisfies the additional estimates

‖SΔtv‖2
hs

SΔtA
≤ (1 + RsΔt)‖v‖2

hs
A

+ κsΔt‖F̃‖2
hs (5.17)
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for all t ∈ [0, T − Δt] ∩ ΔtZ, and

‖SΔt(DΔtv)‖2
hr

SΔtA
≤ (1 + RsΔt)‖DΔtv‖2

hr
A

+ κsΔt

(
‖DΔtF̃‖2

hr + ‖DΔtV ‖2
hr

A
‖SΔtv‖2

hs−1
SΔtA

+ ‖SΔtv‖2
hs−1

A

+ ‖(SΔt)2v‖2
hs−1

A

) (5.18)

for 0 ≤ r ≤ s − 2, all t ∈ [0, T − 2Δt] ∩ ΔtZ. The constants Δs, κs, and Rs depend only on the bounds K1 and
K2 on V , the bounds Ms and m0 in (2.6)–(2.7), the smoothness parameter s and the dimension d.

Proof. Applying a spatial difference operator Dα
Δx to the scheme (5.2) yields

A(εV )DΔt(Dα
Δxv) =

d∑
j=1

Aj(t, x, V θ)∂j,Δx,c(Dα
Δxv)θ −

d∑
j,k=1

(∂j,Δx)∗
[
Bj,k∂k,Δx(Dα

Δxv)θ
]

+
1
ε

[ d∑
j=1

Cj∂j,Δx,c + D

]
(Dα

Δxv)θ + F̃α,

(5.19)

where

F̃α = Dα
ΔxF̃ − [Dα

Δx, A]DΔtv +
d∑

j=1

[Dα
Δx, Aj ]∂j,Δx,cv

θ. (5.20)

Since (5.19) has the form of (5.2) with v replaced by Dα
Δxv and F̃ replaced by F̃α, we can apply the estimate (5.4)

of Lemma 5.1 with those substitutions and then sum over 0 ≤ |α| ≤ s and use the definition of the hs norm to
obtain

‖SΔtv‖2
hs

SΔtA
≤ (1 + R0Δt)‖v‖2

hs
A

+ κ0Δt
∑

0≤|α|≤s

‖F̃α‖2
�2. (5.21)

We now need to estimate the square of the �2 norm of the F̃α. For any norm,∥∥∥∥ N∑
j=1

aj

∥∥∥∥2

≤ N

N∑
j=1

‖aj‖2, (5.22)

so it suffices to estimate the square of the �2 norms of each of the terms on the right side of (5.20). For the first
term we obtain simply ∑

0≤|α|≤s

‖Dα
ΔxF̃‖2

�2 = ‖F̃‖2
hs . (5.23)

The second term on the right side of (5.20) is the most difficult, because of the presence of the time difference. To
treat this term, note first that since Ao(0) is independent of x, [Dα

Δx, A(0)] = 0. In particular, if A is identically
constant then the whole second term vanishes. By the alternative in assumption (2.14), we can therefore assume
while estimating this terms that all the Bj,k vanish. By the fact just noted, the Moser estimates (4.18) and (4.17)
show that this term may be estimated by∑

0≤|α|≤s

‖[Dα
Δx, A(εV )]DΔtv‖2

�2 = ‖[Dα
Δx, A(εV ) − A(0)]DΔtv‖2

�2

≤ c1‖A(εV ) − A(0)‖2
hs‖DΔtv‖2

hs−1 ≤ ε2c2(‖εV ‖hs)‖V ‖2
hs‖DΔtv‖2

hs−1 .

(5.24)

By the difference equation (5.2) plus the above assumption, εDΔtv equals a sum of spatial first-differences of vθ

plus the undifferentiated term F̃ , each multiplied by some matrix of size at most O(1). The Moser estimate (4.17)
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with s replaced by s − 1 and F = F(t, x, V, V θ, ∂j,Δx,cv
θ) := εA(εV )−1Aj(t, x, V θ)∂j,Δx,cv

θ for one particular
term, with similar definitions for the other terms, yields the estimate

ε‖DΔtv‖hs−1 ≤ c3(‖V ‖hs−1 , ‖SΔtV ‖hs−1) (‖v‖hs + ‖SΔtv‖hs) . (5.25)

Substituting (5.25) into (5.24) shows that∑
0≤|α|≤s

‖[Dα
Δx, A(εV )]DΔtv‖2

�2 ≤ c4(‖V ‖hs , ‖SΔtV ‖hs−1)
(
‖v‖2

hs + ‖SΔtv‖2
hs

)
. (5.26)

Write Aj(t, x, V θ) = Aj(t, x, 0)+
(
Aj(t, x, V θ) − Aj(t, x, 0)

)
, use (4.19) to estimate the commutator of Dα

Δx with
Aj(t, x, 0), and use the same method as for A (but without the need to convert any time difference) to estimate
the commutator with Aj(t, x, V θ)−Aj(t, x, 0). This shows that the remaining terms on the right side of (5.20)
are also bounded by the right side of (5.26), possibly with a different c4. Substituting the estimates for all the
terms from (5.20) into (5.21), using (2.8) to convert the hs norms of v and SΔtv into the hs

A and hs
SΔtA

norms,
respectively, and using the assumed bounds (5.16) on V to replace all bounds involving V by constants yields

‖SΔtv‖2
hs

SΔtA
≤ (1 + R0Δt)‖v‖2

hs
A

+ κ0Δt

(
‖F̃‖2

hs + c5

(
‖v‖2

hs
A

+ ‖SΔtv‖2
hs

SΔtA

))
. (5.27)

Picking any constant η less than one and calculating as at the end of the proof of Lemma 5.1 yields (5.17) with
Δs = min(Δ0,

η
c5κ0

), Rs = R0+2c5κ0
1−η , and κs = κ0

1−η .
Applying to (5.2) the time difference operator DΔt while using the product rule (4.12), then applying a spatial

difference operator Dβ
Δx with |β| ≤ r, and estimating in similar fashion to the calculation above yields (5.18),

possibly after increasing the values of Rs and κs. No additional assumptions are required on F̃ , V or the initial
data because the lemma does not claim that the norms on the right side of (5.18) are bounded uniformly in Δt
or ε. �

Proof of Theorem 2.2. Let v = T (V ) denote the mapping sending the argument V of the coefficients of the
linearized difference scheme (5.2), with F̃ (t, x) chosen to be F (t, x, V (t, x)), to the solution v of that scheme.
We will prove the existence of a unique solution of the nonlinear difference scheme (2.5) by applying the
contraction-mapping theorem to the mapping T on the set S of functions in �∞([0, T ]∩ΔtZ; hs) satisfying the
bounds ‖w(0)‖hσ ≤ K0, supt∈[0,T ]∩ΔtZ ‖w(t)‖hs ≤ K, and supt∈[0,T−Δt]∩ΔtZ ε‖DΔtw(t)‖hσ ≤ b := 2c3(K, K),
for some appropriate constants T and K, where K0 is the assumed bound on the hs norm of the initial data in
the statement of the theorem and c3 is the function appearing in (5.25).

We now show that K and T can be chosen so that T maps the set S into itself. By (2.6), the assumed bound
‖u0,ε,Δx‖hs ≤ K0 for the standard norm of the initial data yields the bound

‖v‖2
hs

A(εV )

∣∣
t=0

= ‖u0,ε,Δx‖2
hs

A(εV )
≤ Ms(ε0c(d)K0)K2

0 (5.28)

for the square of the hs
A norm, where ε0 is the constant chosen in the statement of the theorem, Ms is the function

appearing in (2.6), and c(d) is the discrete Sobolev embedding bound in (2.4). We will apply Lemma 5.2 with
K1 := K and K2 := b, and the bound Δ0 on the allowed values of Δt for the theorem will be the bound Δs

obtained in that lemma for those values of K1 and K2. Note that writing F (t, x, V ) = F (t, x, 0) + [F (t, x, V ) −
F (t, x, 0)] and using the bound (2.6) and the Moser estimate (4.17) yields a bound ‖F (t, x, V )‖2

hs ≤ c̃F (‖V ‖hs) ≤
c̃F (K). Substituting this bound into (5.17) yields

‖SΔtv‖2
hs

SΔtA
≤ (1 + RsΔt)‖v‖2

hs
A

+ κsc̃F (K)Δt. (5.29)

By Lemma 4.6 with w(t) := ‖v(t)‖2
hs

A(εV (t))
, (5.28)–(5.29) imply that

‖v‖2
hs

A
≤ eRstMs(ε0c(d)K0)K2

0 + eRst−1
Rs

κsc̃F (K) (5.30)
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for t ∈ [0, T ] ∩ ΔtZ, where Rs and κs also depend on K. Moreover, by the definition of the set S and the fact
that εV (t) = εV (0) +

∑ t
Δt−1
j=0 εDΔtV (jΔt)Δt,

ε‖V ‖�∞ ≤ c(d)ε‖V ‖hσ ≤ c(d)(ε0K0 + bt). (5.31)

Using (5.31) to estimate the argument of m0 in (2.8) together with the bound (5.30) shows that

‖v‖2
hs ≤ m0(c(d)(ε0K0 + bt))

(
eRstMs(ε0c(d)K0)K2

0 + eRst−1
Rs

κsc̃F (K)
)

. (5.32)

The right side of (5.32) is an increasing function of t whose value at time zero is m0(c(d)ε0K0)Ms(ε0c(d)K0)K2
0 .

We therefore pick K to be any number greater than the square root of that quantity, and let T1 be the value
of t at which the right side of (5.32), with that value of K substituted into the parameters that depend on
it, equals K2. By construction, T1 > 0. Moreover, the initial data for the linearized scheme satisfy the bound
‖v(0)‖hσ = ‖v0,ε,Δx‖hσ ≤ K0, and estimate (5.25) shows that ε‖DΔtv‖hσ ≤ b. Hence for any T ≤ T1 the
mapping T indeed maps S into itself.

Now let V and Ṽ be two elements of S and consider v := T (V ) and ṽ := T (Ṽ ). Take the difference of the
equations (5.2) for v and ṽ, with F̃ in (5.2) defined as F (t, x, V ) in the equation for v and as F (t, x, Ṽ ) in
the equation for ṽ in accordance with the definition of T . After rearranging to express the result in terms of
w := v − ṽ and W := V − Ṽ we obtain

A(εV )DΔtw =
d∑

j=1

Aj(t, x, V θ)∂j,Δx,cw
θ −

d∑
j,k=1

(∂j,Δx)∗
[
Bj,k∂k,Δxwθ

]
+

1
ε

⎡⎣ d∑
j=1

Cj∂j,Δx,c + D

⎤⎦wθ + F ,

(5.33)
w(0) = 0, (5.34)

where the inhomogeneous term

F :=
{
F (t, x, Ṽ + W ) − F (t, x, Ṽ

}
+

{
A(εṼ +εW )−A(εṼ )

ε

}
εDΔtv −

d∑
j=1

{
Aj(εṼ + εW ) − Aj(εṼ )

}
∂j,Δx,cv

θ

(5.35)
can be estimated in similar fashion to estimates in the lemmas above to yield ‖F‖2

�2 ≤ cF(K, b)‖W‖2
�2 . Using this

bound in estimate (5.4) and then applying Lemma 4.6 and translating back to the standard �2 norm via (2.8)
yields ‖w(t)‖�2 ≤ ρ(t)max0≤s≤t ‖W‖�2 , where ρ(t)2 = m0(c(d)εK) eR0t−1

R0
κ0cF (K, b). Picking any ρ̃ < 1 and

defining T2 to be the value of t at which ρ(t) = ρ̃ shows that T is a contraction on S in the �2 norm provided
that we set T = min(T1, T2). As for the PDE case the set S is closed in the �2 norm; in fact this is trivial for the
periodic finite difference case since the spaces �2 and hk are finite-dimensional; in particular, as already noted
in (2.3), the corresponding norms are equivalent for fixed Δx. Hence the conditions of the contraction-mapping
theorem hold and so T has a unique fixed point in S, which is the claimed solution of the nonlinear difference
scheme. The claimed hs bound on the solution holds by the definition of the set S.

When the initial data satisfies (2.15) with r ≤ s − 2 then the first step towards obtaining a uniform bound
for ‖DΔtu‖hr

A
is to show that it is uniformly bounded at time zero. To do this we apply Dβ

Δx to (2.5), take the
�2 inner product of the result with Dβ

ΔxDΔtv, add the result over |β| ≤ r̃ ≤ r, and set t = 0. On the left side

we obtain ‖DΔtu |t=0‖2
hr̃

A

plus the commutator term
∑

|β|≤r̃

〈
Dβ

ΔxDΔtu |t=0, [D
β
Δx, A(εu)]DΔtu |t=0

〉
�2

, which

vanishes when r̃ = 0 and is bounded in absolute value by c‖DΔtu |t=0‖hr̃
A
‖DΔtu |t=0‖hr̃−1

A
when r̃ > 0. The terms

on the right side containing Aj , Bj,k and F are bounded by a constant times ‖DΔtu |t=0‖hs
A

on account of the
hs bound for u, the Moser estimates, and the fact that r̃ ≤ s − 2. To estimate the large terms, write the time
average uθ|t=0 appearing in them as u0,ε,Δx+θΔtDΔtu |t=0; the part of the large terms containing θΔtDΔtu |t=0
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vanishes by the antisymmetry of the operator in those terms, while by assumption the part containing u0,ε,Δx

is bounded by a constant times ‖DΔtu |t=0‖hr̃
A
. Combining these estimates and dividing by the common factor

of ‖DΔtu |t=0‖hs
A

yields ‖DΔtu |t=0‖h0
A
≤ c and ‖DΔtu |t=0‖hr̃

A
≤ c + ‖DΔtu |t=0‖hr̃−1

A
for 1 ≤ r̃ ≤ r, which by

finite induction yields the claimed uniform bound at time zero. Combining this bound with estimate (5.18),
Lemma 4.6, and (2.8) then yield the uniform bound on DΔtu at later times claimed in the theorem. �

5.2. Energy estimates via G̊arding’s inequality

Lemma 5.3. Assume that the hypotheses of Theorem 2.4 hold for some s, and let K1 and K2 be finite constants.
Then there exist finite κ0 and R0 such that for all Δt ∈ (0, Δ0], all T > 0, all u0,ε,Δx ∈ �2, all F̃ ∈ �∞([0, T ] ∩
ΔtZ; �2), and all V satisfying

sup
t∈[0,T ]∩ΔtZ

‖V ‖hσ+2 ≤ K1, ε sup
t∈[0,T−Δt]∩ΔtZ

‖DΔtV ‖hσ ≤ K2 (5.36)

the linearized numerical scheme

AΔx(Δ, εṼ )SΔtv + Δt
ε QΔx(Δ)SΔtv = GΔx

(
Δ, t, x, εṼ , Ṽ

)
v + ΔtF̃ (t, x), (5.37)

v(0) = v0,ε,Δx, (5.38)

where Ṽ denotes any finite collection {Sα
ΔxV }|α|≤M of spatial shifts of V , has a unique solution in �∞([0, T ] ∩

ΔtZ; �2) satisfying
‖SΔtv‖2

h0
A(εSΔtV )

≤ (1 + R0Δt)‖v‖2
h0
A(εV )

+ κ0Δt‖F̃‖2
�2 (5.39)

for all t ∈ [0, T −Δt]∩ΔtZ. The constants κ0 and R0 depend only on the bounds K1 and K2 on V , the bounds
in the assumptions of Theorem 2.4 and the dimension d.

Proof. Taking the �2 inner product of (5.37) with SΔtv and using the antisymmetry of the operator QΔx yields

‖SΔtv‖2
h0
A(εV )

= 〈SΔtv,AΔxSΔtv〉�2 = 〈SΔtv,GΔxv〉�2 + Δt 〈SΔtv, F 〉�2 (5.40)

Using (2.31), Cauchy–Schwarz, estimate (2.25), estimate (2.26) plus formula (2.20) and the second part of
Corollary 4.9 with η = cΔt and δ = Δt

Δx if A is constant, or the first part of that corollary, still with η = cΔt
and using the fact that Δx ≤ cΔt by (2.27) if A is not constant, and the elementary bound ab ≤ 1

2a2 + 1
2b2

yields

〈SΔtv,GΔxv〉�2 = 〈SΔtv, GΔxv〉�2 + Δt 〈SΔtv, HΔxv〉�2
≤ 1

2 〈SΔtv, ASΔtv〉�2 + 1
2

〈
v, G∗

Δx(A)−1GΔxv
〉

�2
+ Δt

2 〈SΔtv, BΔxSΔtv〉�2 + Δt
2 〈v, BΔxv〉�2

≤ 1
2 〈SΔtv, ASΔtv〉�2 + 1

2 (1 + cΔt) 〈v, Av〉�2 + Δt
2 〈SΔtv, BΔxSΔtv〉�2 + Δt

2 〈v, BΔxv〉�2
≤ 1

2 〈SΔtv,AΔxSΔtv〉�2 + 1
2 (1 + cΔt) 〈v,AΔxv〉�2 .

(5.41)
By (2.26) and Corollary 4.9, the constant c in (5.41) depends at most on ‖V ‖hσ+2 . Since the assumptions (2.8)
plus (2.22) imply that AΔx ≥ 1

m(ε‖V ‖�∞)I,

Δt 〈SΔtv, F 〉�2 ≤ Δt
2

[
‖SΔtv‖2

�2 + ‖F‖2
�2

]
≤ cΔt 〈SΔtv,AΔxSΔtv〉�2 + Δt

2 ‖F‖2
�2. (5.42)

In addition, by writing the difference as the integral of a derivative and using the Moser estimate (4.17) and
the Sobolev embedding estimate (4.7) we obtain

‖A(εSΔtV ) − A(εSΔtV )‖�∞ = ‖
∫ 1

0

d
ds

A(ε(sSΔtV + (1 − s)V ) ds‖�∞ ≤ c(‖V ‖hσ , ‖SΔtV ‖hσ)‖DΔtV ‖hσ ,

(5.43)
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which implies that
‖SΔtv‖2

h0
A(εSΔtV )

≤ (1 + cΔt)‖SΔtv‖2
h0
A(εV )

. (5.44)

Substituting (5.41)–(5.42) into (5.40), solving the result for 〈SΔtv,AΔtSΔtv〉�2 , and substituting the result into
the right side of (5.44) yields (5.39). �

Proof of Theorem 2.4. We first obtain the analogue of Lemma 5.2. Before applying a spatial difference operator
Dα

Δx to equation (5.37), we rearrange that equation to show that the commutator terms that arise will have
a similar form to those in Lemma 5.2. Assumption (2.21) implies that, after subtracting Av from both sides
of (5.37) and multiplying both sides of the result by (Δt)−1, the terms multiplied by A on the left side can be
written as a time difference and the terms arising from GΔxv − Av can be written as spatial differences. Note
that although the term A(εv)[

∑
CαSα

Δx−I]v
Δt is a sum of spatial differences divided by Δt rather than by Δx, it can

be written as Δx
Δt times A(εv)[

∑
CαSα

Δx−I]v
Δx , and by assumption (2.27) either Δx

Δt is bounded or else A is constant
and hence this term produces no commutator terms. Hence Dα

Δx applied to (5.37) can be written as that same
equation with v replaced by Dα

Δxv plus Δt times commutators that can be estimated by a constant times spatial
differences of order at most |α|, which can be estimated in similar fashion to the estimates for the commutators
of the θ-scheme. Estimating as in the proof of Lemma 5.2 but using the basic estimate of Lemma 5.3 instead
of Lemma 5.1, and using Lemma 4.2 to bound the term involving BΔx in the analogue of (5.25), therefore
yields the desired estimate for 〈v,Av〉hs . As in the proof of Lemma 5.2, an estimate for the time difference is
obtained similarly. Given those estimates, the rest of the proof is similar to that of Theorem 2.2. In particular,
the same trick used in the proof of that theorem can be used to show that when ‖QΔxv0,ε,Δx‖hr

A(0)
≤ cε then

‖DΔtu |t=0‖hr
A(0)

is uniformly bounded, since the purely-implicit form 1
εQΔxSΔtu of the large term in (2.32)

corresponds to the case θ = 1 of the θ-scheme. �
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