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A VIRTUAL VOLUME METHOD FOR HETEROGENEOUS AND ANISOTROPIC
DIFFUSION-REACTION PROBLEMS ON GENERAL MESHES

Julien Coatléven

Abstract. Starting from the recently introduced virtual element method, we construct new diffusion
fluxes in two and three dimensions that give birth to symmetric, unconditionally coercive finite volume
like schemes for the discretization of heterogeneous and anisotropic diffusion-reaction problems on
general, possibly nonconforming meshes. Convergence of the approximate solutions is proved for general
tensors and meshes. Error estimates are derived under classical regularity assumptions. Numerical
results illustrate the performance of the scheme. The link with the original vertex approximate gradient
scheme is emphasized.
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1. Introduction

Finite volumes are very attractive methods in many scientific fields such as biology, plasma physics, hydro-
dynamics, oil reservoir simulation, etc. They allow to deal easily with the non linearities occurring in complex,
coupled physical models while preserving relevant physical properties such as local mass conservation. More-
over, they remain quite easy to implement, even in a high performance computing (HPC) context, with several
level of parallelization. However, the most basic, appreciated and widely used finite volume scheme, namely the
two-point flux approximation (TPFA) scheme, has limited abilities to cope with diffusion operators on distorted
meshes: to remain consistent, it requires a very strong orthogonality hypothesis on the mesh, even more difficult
to satisfy in presence of anisotropy and strong heterogeneities (see [19]). Consequently, the range of admissible
meshes is quite small, and too restrictive to tackle the more complex geometries industries are now considering
(for instance structurally complex subsurface models for oil and gas exploration).

Due to the economic importance of this issue, a huge literature exists on the extension to general meshes
of the classical TPFA finite volume method, thus we will not try to be exhaustive. For a recent review, we
refer the reader to [16]. Multi-point flux approximations (MPFA, see [1–3]) are the natural generalization of
the TPFA. They allow to construct consistent and cell-centered flux approximations on distorted meshes and
lead to compact stencils, but suffer from conditional coercivity (see [5, 6]). More recently, new finite volume
methods using additional face unknowns (the hybrid finite volume scheme, see [17, 20, 21]) or vertex unknowns
(the vertex approximate gradient schemes (VAG, see [8, 22–24]) have been introduced. They allow to obtain
both coercivity and consistency on quite general, possibly nonconforming meshes, for strongly heterogeneous
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and anisotropic tensors, and require only star-shaped cells (notice that for the hybrid scheme extensions to
a larger class of meshes with non-star shaped cells but still with planar faces exists, see [27]). The formerly
introduced mimetic finite differences (see [10–12,15]) can be unified, in their first order formulation, with hybrid
finite volumes in a generalized context (see [18]), giving birth to the class of Hybrid Mixed Methods (HMM).
These new finite volume schemes are, at some point, based on non conforming variational formulations of the
diffusion operators, in this sense closing the gap between finite volume methods and Galerkin approximations
like finite elements and discontinuous Galerkin methods (dG). From this observation, even if what we seek
are finite volume schemes, it is interesting to see to which extent modern Galerkin methods are able to cope
with generic meshes. Of course, we are not trying here to describe the corresponding tremendous literature,
but only to motivate our observations. The mimetic finite differences have recently been reformulated in the
very promising virtual element method (VEM) (see [7, 14]), a Galerkin method that can cope with almost any
mesh, without even requiring star-shaped cells. The mimetic technology underlying the VEM seems to be the
one, among Galerkin approaches, that allows to handle the widest class of meshes in the simplest manner (dG
methods also give access to a wide class of meshes, but are much more involved). Consequently it appears as a
very interesting approach for overcoming the limitations of finite volume methods. However, as classical finite
elements, the VEM for diffusion problems does not ensure local mass conservation as a finite volume scheme
would, nor does it present an obvious diffusion flux-based formulation, which would simplify its extension to
some important non-linear flow problems.

The method we present here is nothing but an attempt to merge the clever ideas of the VEM/mimetic and
VAG approaches into the finite volume setting. We are going to construct finite volume diffusion fluxes using
the VEM technology with the modification that we keep the usually discarded cell unknown, and use ideas from
the VAG scheme to treat non-planar faces. Then, we approximate the reaction part following the stabilized
mimetic approach of [7]. We show that this stabilization leads to introducing ”reaction fluxes” between degrees
of freedom. Doing so, the mimetic technology provides access to its extremely wide range of admissible meshes,
with possibly very exotic, non necessarily star shaped cells. Meanwhile our modifications allow us to retrieve
the local mass conservation property, as well as a balanced flux-based formulation. Then, the method formally
possesses the same analytic form than classical finite volume methods, which means that its extension to more
complex problems, not discussed here, can follow well establish lines.

The paper will be organized as follows: in a first section, we describe basic notations and our diffusion-reaction
model problem. In a second section, we explain how to construct our new diffusion fluxes in dimension 2 and 3,
introducing at the same time the approximation spaces. Then, we will describe how the stabilized approximation
of the reaction term leads to introducing reaction fluxes. Then, in a third section, we establish convergence of
the method and provide the usual error estimates. In the last section, we present some numerical results in
dimension 2 and 3, that illustrate the good behavior of the scheme, even for very exotic meshes.

Notice that the method we present is formally very close to VAG schemes when reduced to their most basic
characteristics, i.e. finite volume schemes that uses both cell and vertex unknowns. However our construction
of diffusion fluxes, particularly in dimension 3, is to our knowledge different from VAG constructions that has
appeared in the literature and provides access to a much wider range of admissible meshes, in particular those
with non star-shaped cells. The approximating space, related to VEM spaces, is also very different from those
appearing in usual finite volume methods and leads to a new interpretation which we consider as probably
as interesting as the method itself. Moreover the stabilization of the reaction part we introduce here is very
different from the one introduced in the context of approximating multiphase-flow in porous media with the
VAG scheme (see [8, 23, 24]). Here, our stabilization is incorporated in the fluxes, producing diffusion-reaction
fluxes, very different from usual VAG diffusion only fluxes.

Also notice that our work could be sum up by saying that we are constructing an enhanced VEM approxima-
tion by keeping the classically discarded cell unknown, useless for consistency, of the first order VEM method
and modifying the stabilization accordingly to recover local conservativity. With this point of view, the main
contributions of the present work is to show how to extend the schemes to cells with non-planar faces and also
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to show that keeping this additional unknown is the key to make the resulting scheme a finite volume one, thus
bringing the elegance and flexibility of the mimetic technology to the classical finite volume setting.

2. Model problem, notations

As a model problem we consider a classical diffusion-reaction problem, set on an open bounded domain Ω
subset of R

d, d ∈ N \ {0}, that reads:

−div (Λ∇u) + βu = f in Ω, (2.1)

We complement it with homogeneous Dirichlet boundary conditions, i.e.

u = 0 on ∂Ω, (2.2)

where ∂Ω = Ω \ Ω is the boundary of the domain Ω, assumed to be at least Lipschitz continuous. The weak
solution associated to (2.1)–(2.2) is the unique u ∈ H1

0 (Ω) such that:∫
Ω

Λ∇u∇v + βuv =
∫

Ω

fv ∀ v in H1
0 (Ω), (2.3)

under the additional hypothesis that f ∈ L2(Ω), that β is a measurable function from Ω to R, with β(x) ≥ 0
for a.e. x ∈ Ω, and that Λ is a measurable functions from Ω to Md(R), the set of d × d matrices, and is such
that for almost every (a.e.) x ∈ Ω, Λ(x) is symmetric, positive definite and there exists two strictly positive
real numbers λ∗, λ

∗ such that for a.e. x ∈ Ω and for every ξ ∈ Rd:

λ∗|ξ|2 ≤ Λ(x)ξ · ξ ≤ λ∗|ξ|2. (2.4)

2.1. Description of the meshes

From now on, we assume that the domain Ω is a bounded generalized polyhedral (i.e. with potentially non
planar faces) subset of Rd. To fix vocabulary, the mesh associated to Ω is described as follows:

Definition 2.1 (General nonconforming meshes). Let Ω be a generalized polyhedral, open bounded connected
subset of Rd, d = 2 or 3, and ∂Ω = Ω \ Ω denotes its boundary. A mesh on Ω, denoted by M, is defined as a
set M = (T ,F ,SF ,V , Ṽ, E , Ẽ) where:

1. T is a finite family of connected open disjoint and generalized polygonal subsets of Ω (the cells of the mesh),
such that Ω = ∪K∈T K. For any K ∈ T , we denote by |K| the d-dimensional Lebesgue measure of |K|, and
we assume that |K| > 0. We denote by ∂K = K \ K the boundary of K, by hK the diameter of K, and by
xK the barycenter of K.

2. F is a finite family of disjoint subsets of Ω (the faces of the mesh) such that, for all σ ∈ F , its d − 1
dimensional Lebesgue measure |σ| is assumed to be strictly positive, and its diameter is denoted hσ. We
assume that for any K ∈ T , there exists a subset FK of F such that ∂K = ∪σ∈FK σ. Then, for any σ ∈ F ,
we denote by Tσ = {K ∈ T | σ ∈ FK} (the neighbors of σ), and assume that either Tσ has exactly one
element, and then σ ⊂ ∂Ω (the set of these faces, called boundary faces, is denoted Fext), or Tσ has exactly
two elements (the set of these faces, called interior faces, is denoted Fint). For all K ∈ T and all σ ∈ FK , we
denote by nK,σ the unit normal vector to σ outward to K. For any σ ∈ F , we denote by xσ its barycenter.

3. V is a family of points (the vertices of the mesh) such that for any K ∈ T , and any subset HK of FK

with card(HK) ≥ d, then ∩σ∈HK = ∅ or ∩σ∈HK = s, for some s ∈ V . For all s ∈ V , we denote Fs the
set {σ ∈ F | s ∈ σ}, and Ts the set of cells {K ∈ T | s ∈ K}. For all K ∈ T , the set VK stands for
{s ∈ V | K ∈ Ts}, while for all σ ∈ F , the set Vσ stands for {s ∈ V | σ ∈ Fs}. Conversely, Fs stands for the
set {σ ∈ F | s ∈ Vσ}. For any s ∈ V , the geometrical position of the vertex will be denoted xs.
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4. E is a family of segments (the edges of the mesh) such that, for all e ∈ E , its Lebesgue measure |e|, which
coincides with its diameter he, is assumed to be strictly positive, and there exists exactly two vertices se,1, se,2

of V such that e =]se,1, se,2[. The subset {se,1, se,2} of V is denoted Ve. In dimension 2, we have F = E while
in dimension 3, for any σ ∈ F , there exists a subset Eσ of E such that ∂σ = ∪e∈Eσe and we have E = ∪σ∈FEσ.
For any σ ∈ F and any e ∈ Eσ in dimension 3, we denote nσ,e the unit normal vector to e outward to
σ. For any e ∈ E , we denote by xe its barycenter. By construction, we have Vσ = ∪e∈EσVe. We denote
Eext = {e ∈ E | σ ∈ Fext with e ∈ Eσ}, and Eint = E \ Eext

In dimension 3, we need to complement the definition of faces to handle non-planar faces that are composed of
several planar subfaces:

5. SF is a finite family of disjoint subsets of Ω (the subfaces of the mesh) such that, for all f ∈ F , f is polygonal,
included in a hyperplane of Rd, and its Lebesgue measure |f | is assumed to be strictly positive. We assume
that for any σ ∈ F , there exist a subset SFσ of SF such that σ = ∪f∈SFσf , and that SF = ∪σ∈FSFσ. For
all K ∈ T , for all σ ∈ FK and all f ∈ SFσ, we denote by nK,f the constant unit normal vector to f outward
to K, and SFK = ∪σ∈FKSFσ. For any f ∈ SF , we denote by xf its barycenter.

7. Ẽ is a family of segments (the additional edges due to the subfaces) such that, for all e ∈ Ẽ , its Lebesgue
measure |e|, which coincides with its diameter he, is assumed to be strictly positive, and e /∈ E . For any
f ∈ SF , there exists a subset Ẽf of Ẽ and a subset Ef of E such that ∂f = (∪f∈Ẽf

e) ∪ (∪f∈Ef
e). For any

f ∈ SF and any e ∈ Ẽf , we denote nf,e the unit normal vector to e outward to f while for any e ∈ Ẽ , we
denote by xe its barycenter.

6. Ṽ is a family of points (the additional vertices due to the subfaces) such that for any s ∈ Ṽ, there exists σ ∈ F
and a subset Eσ of ∪f∈SFσ Ẽf such that ∩e∈Eσ = s and s /∈ V . For any s ∈ Ṽ , the geometrical position of the
vertex will be denoted xs. For any e ∈ Ẽ , and there exists exactly two vertices se,1, se,2 of V ∪ Ṽ such that
e =]se,1, se,2[. The subset of {se,1, se,2} included in V is denoted Ve, while the subset of {se,1, se,2} included
in Ṽ is denoted Ṽe. For any f ∈ SF , we denote Vf the set {s ∈ V | s ∈ f}, and Ṽf the set {s ∈ Ṽ | s ∈ f}. For
any σ ∈ F , we denote Ṽ∂σ,f the subset of Ṽf such that any s ∈ Ṽf belongs to ∂σ, and Ṽσ,f the subset of Ṽf

such that any s ∈ Ṽf belongs to the interior of σ. We also denote Ṽ∂σ = ∪f∈SFσ Ṽ∂σ,f and Ṽσ = ∪f∈SFσ Ṽσ,f .
Finally, for any s ∈ V ∪ Ṽ , we denote SFs the set {f ∈ SF | s ∈ Vf ∪ Ṽf}.

In dimension 2, we simply have SF = F = E , Ẽ = ∅ and Ṽ = ∅. In dimension 3, the last three sets describes
how any face is decomposed into one or more planar subfaces, the face itself not being necessarily planar. In
more classical definitions of general non conforming meshes, this decomposition is implicit and the elements of
SF are directly called faces. However, this considerably increase the number of vertices and edges, as one has
then to consider the sets V ∪ Ṽ and E ∪ Ẽ . As we will construct our degrees of freedom on vertices, we choose
to call faces the entire common boundary of any couple of cells, at the expense of a more involved construction
of the numerical method. Notice that in practice, the set Ṽ will very often be empty: in particular, in the case
where the cells all generalized hexahedrons (i.e. hexahedrons whose points have been moved such that some
faces are no longer planar), any face can be split into two triangular subfaces based on the existing points (see
Fig. 1).

Notice that we do not have assumed that any element is star-shaped, nor did we assume that faces are planar in
dimension 3: our definition is very permissive and corresponds to the most common practical situations: it covers
in particular mesh deformations obtained by moving their vertices, very common in industrial applications.

In the following, we denote h = maxK∈Th
hK . For any element O, we denote by Pk(O) the space of polynomial

functions of degree at most k on O, and by Mk(O) the space of monomials of degree exactly k on O. Moreover,
we denote by πk,O the L2 orthogonal projector on Pk(O). We also denote ∀u, v ∈ H1(Ω)

A(Λ, β; u, v) = a(Λ; u, v) + r(β; u, v), a(Λ; u, v) = (Λ∇u,∇v)0,Ω , and r(β; u, v) = (βu, v)0,Ω
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Figure 1. Examples of splitting for a non planar face σ: left: Ṽ∂σ = Ṽσ = ∅, center: Ṽ∂σ �= ∅
Ṽσ = ∅, right: Ṽ∂σ = ∅, Ṽσ �= ∅, plane circles are the vertices of σ, empty circles are the
additional vertices defining subfaces.

and ∀u, v ∈ H1(K)

AK(Λ, β; u, v) = aK(Λ; u, v) + rK(β; u, v), a(Λ; u, v) = (Λ∇u,∇v)0,K , and rK(β; u, v) = (βu, v)0,K

where (·, ·)0,O denote the L2(O) scalar product for any open set O.

Definition 2.2. We say that a mesh M has optimal polynomial approximation properties if there exits Cpoly >
0 such that for any K ∈ T and any v ∈ Hs(K), there exists p ∈ Pk(K), with s − 1 ≤ k < s, such that

|v − p|Hm(K) ≤ Cpolyhs−m
K |v|Hs(K) for 0 ≤ m ≤ s

In what follows, we will assume that our mesh satisfies:

(A1) There exists a real number ρ > 0 and a matching simplicial submesh ST of M such that for any T ∈ ST ,
ρhT ≤ rT where rT is the inradius of T , and for any T ∈ T and any T ∈ ST such that T ⊂ K, ρhK ≤ hT .

Notice that assumption (A1) is not very restrictive: it simply requires that any cell of the mesh can itself be
meshed by simplices. Any generalized polygon with piecewise planar faces obviously satisfies this assumption. It
can be shown (see e.g. [9,26]) that these assumptions indeed imply optimal polynomial approximation properties.

3. A virtual volume method

Ultimately, we wish to describe any approximating function v in any dimension simply by the following
degrees of freedom:

• the mean value vK = π0,K(v) of v over each cell K ∈ T ,
• the values vs = v(xs) of v at each vertex s ∈ V .

The corresponding local set of dofs is denoted

X(K) =
{

v = (vK , (vs)s∈VK ) ∈ R × R
card(VK)

}
3.1. Discrete spaces in dimension 2

Following the construction of virtual element methods of [7], we start by defining a projector π∇
K : H1(K) �−→

P1(K) by:∣∣∣∣∣∣∣
aK
(
π0,K(Λ); π∇

Kv, q
)

= −
∫

K

v div (π0,K(Λ)∇q)) +
∫

∂K

v π0,K (Λ)∇q · n∂K ∀q ∈ P1(K)

1
|K|

∫
K

π∇
Kv =

1
|K|

∫
K

v
(3.1)
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where n∂K denotes the unit normal vector to ∂K outward to K. Denoting ΛK = π0,K(Λ), the expression
of aK

(
π∇

Kv, q
)

(since div(π0,K(Λ)∇q)) = div(ΛK∇q) = 0 for any q ∈ P1(K)) can even be simplified for any
v ∈ H1(K) in

aK
(
ΛK ; π∇

Kv, q
)

=
∫

∂K

vΛK∇q · n∂K ∀q ∈ P1(K), (3.2)

or, equivalently

aK
(
ΛK ; π∇

Kv, q
)

=
∑

σ∈FK

∫
σ

(v − vK)ΛK∇q · n∂K ∀q ∈ P1(K). (3.3)

Then, for any K ∈ T , we consider the space:

B1(∂K) = {v ∈ C0(∂K) | v|σ ∈ P1(σ), ∀σ ⊂ ∂K} (3.4)

Obviously, B1(∂K) is a space of dimension card(FK) = card(VK), as any continuous function on ∂K which
is linear on each face (which coincides with edges in dimension 2) is uniquely determined by its values at the
vertices. With this space, we can consider the finite dimensional space Ṽ (K) defined as:

Ṽ (K) = {v ∈ H1(K) | v|∂K
∈ B1(∂K) and − div(Λ∇v) ∈ P1(K)} (3.5)

Now, instead of considering the space V (K) described in [14], we follow the alternative approach of [7] and
consider the space

W (K) = {w ∈ Ṽ (K) | (w − π∇
Kw, q)0,K = 0, ∀q ∈ M1(K)} (3.6)

for which the projector π∇
K coincides with the classical L2 orthogonal projector π1,K on P1(K) by construction.

Notice that we did not enforce (w−π∇
Kw, q)0,K = 0 for the monomial of M0(K), as is the case in [7]. This is due

to the fact that our additional cell dof takes automatically care of this constant part through the definition of
π∇

K . The key idea behind this space is the fact that the operator π∇
K can be directly computed from the degrees

of freedom for elements of W (K), which then leads to a straightforward approximation of the diffusion term.
The corresponding global space is:

W = {w ∈ H1 | w|K ∈ W (K)} (3.7)

In the same way as in [7], we have:

Proposition 3.1. The degrees of freedom of X(K) are unisolvent for W (K).

Proof. The proof is identical to the proof given in [7] for W (K). As we detail the proof in the more complex
case of dimension 3, we refer the reader to either [7] or Proposition 3.5 for more details. �

Still following the idea of the VEM, at this point we consider an approximation of the bilinear form a(·, ·) for
functions in W (K) by combining a(·, ·) and π∇

K and adding a stabilization term for the H1 norm:

ah(u, v) =
∑
K∈T

aK
h (u, v) aK

h (u, v) = aK(ΛK ; π∇
Ku, π∇

Kv) + sK(u − π∇
K(u), v − π∇

K(v)) ∀(u, v) ∈ W (K)

(3.8)
The bilinear form sK(·, ·), added to ensure the coercivity of the resulting scheme, is given by

sK(u, v) = hd−2
K

∑
s∈VK

∑
s′∈VK

SK,s,s′ u(xs)v(xs′ ) ∀(u, v) ∈ W (K) (3.9)

and SK = (SK,s,s′ )s,s′∈VK
can be any symmetric positive definite matrix independent on h. As for any q ∈

P1(K), we have π∇
K(q) = q, the consistency property:

aK
h (u, q) = aK(ΛK ; u, q) ∀u ∈ H1(K), ∀q ∈ P1(K) (3.10)
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is obtained by construction. Notice that this stabilization says a priori nothing on the cell degree of freedom.
However, for any v ∈ W (K), we get π0,K(v) = π0,K(π∇

K(v)), so the a priori missing term is in fact zero on
W (K). Following [13, 14], it is clear that the scaling hd−2

K of the stabilization terms ensures that:

Lemma 3.2. There exists α∗ > 0 and α∗ > 0, depending on ρ but independent on h, such that for any
(u, v) ∈ W (K)2, we have

aK
h (u, v) ≤ α∗||∇u||L2(K)||∇v||L2(K) (3.11)

and for any u ∈ W (K)
α∗||∇u||2L2(K) ≤ aK

h (u, u) (3.12)

3.2. Diffusion fluxes in dimension 2

To obtain diffusion fluxes, we have to rewrite a little the bilinear form a on each cell K. Using again the fact
that the gradients π∇

Kv and ∇q are constant over K, we can give an explicit expression for π∇
K for elements of

W (K). Indeed, we have: ∫
K

ΛK∇π∇
Kv∇q =

∑
σ∈FK

∫
σ

(v − vK)ΛK∇q · n∂K .

As ΛK , ∇π∇
Kv and ∇q are constant over K, and ΛK is invertible, we deduce that:

∇π∇
Kv =

1
|K|

∑
σ∈FK

∫
σ

(v − vK)nK,σ,

and finally, using the fact that v is linear on each edge/face σ, we get:

∇π∇
Kv =

∑
σ∈FK

|σ|
2|K|

∑
s∈Vσ

(vs − vK)nK,σ.

Denoting

gK,s =
∑

σ∈Fs∩FK

|σ|
2|K|nK,σ (3.13)

we get
∇π∇

Kv =
∑

s∈VK

(vs − vK)gK,s and π∇
Kv = vK +

∑
s∈VK

(vs − vK)gK,s · (x − xK) (3.14)

Then, as ∀(u, v) ∈ W (K)

AK
h (u, v) = |K|ΛK∇π∇

K(u)π∇
K(v) + hd−2

K

∑
s∈VK

∑
s′∈VK

SK,s,s′ (u(xs) − π∇
K(u)(xs))(v(xs′ ) − π∇

K(v)(xs))

using the explicit formula for π∇
K and expanding everything, we get, after a straightforward computation:

aK
h (u, v) =

∑
s∈VK

∑
s′∈VK

A
s,s

′

K (us − uK)(vs′ − vK)

where ∣∣∣∣∣∣∣∣∣
A

s,s
′

K = |K|ΛKgK,s · gK,s′ + hd−2
K S

s,s
′

K ,

S
s,s

′

K = yT
K,s′SKyK,s,

yK,s = (ys
′′

K,s)s′′∈VK
, ys

′′

K,s = δs,s′′ − gK,s · (xs′′ − xK)

(3.15)
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where δs,s′′ is the Kronecker symbol. The fluxes are then defined by setting

FK,s(u) =
∑

s′∈VK

A
s
′
,s

K (uK − us′ ) (3.16)

in order to finally obtain:
ah(u, v) =

∑
K∈T

∑
s∈VK

FK,s(u)(vK − vs) (3.17)

Remark 3.3. In dimension 2, the flux FK,s we constructed are very close to those of the original VAG scheme
of [22], the difference being the stabilization term. Undoubtedly, proceeding along the same lines as [18], both
schemes could be unified at least formally in the same framework by allowing a matrix as stabilization parameter
in the VAG scheme. However, the derivation from mimetic techniques we propose here is different and appears
as very interesting in itself. In particular it allows an interpretation of the scheme as a variational approximation
using the space W (K) while allowing to handle more general meshes, in particular those with non star-shaped
cells.

3.3. Discrete spaces in dimension 3

In dimension 3, still following the ideas of [7,14], we have to introduce an intermediate approximation space
on planar faces before defining its counterpart on cells, if we wish to keep the same set of degrees of freedom.
Consequently, we start by defining a projector π∇

f : H1(f) �−→ P1(f) by setting:∣∣∣∣∣∣∣∣
(
∇π∇

f v,∇q
)
0,f

= −
∫

f

vΔq +
∫

∂f

v∇q · n∂f ∀q ∈ P1(f)

1
|∂f |

∫
∂f

π∇
f v =

1
|∂f |

∫
∂f

v

(3.18)

Again, the above expression can be simplified into:

(
∇π∇

f , v∇q
)
0,f

=
∫

∂f

v∇q · n∂f ∀q ∈ P1(f). (3.19)

We start by considering the space Ṽ (f), defined by:

Ṽ (f) = {v ∈ H1(f) | v|∂f
∈ B1(∂f) and Δv ∈ P1(f)}.

Clearly, a reasoning similar to the proof of Proposition 3.1 shows that the elements of Ṽ (f) are uniquely defined
by their their zero and first order moments on f and their values at the vertices of f , which means some vertices
of Vσ and some of the additional vertices of Ṽ∂σ ∪ Ṽσ. However, we do not wish to add degrees of freedom
related to those additional vertices. To this aim, we define the following space, which still contains the traces of
elements of P1(K) for any K ∈ Tσ:

Ṽ (σ) = {v ∈ H1(σ) | v|f ∈ Ṽ (f) , ∀f ∈ SFσ, and v|∂σ
∈ B1(∂σ)}.

On this space values at vertices of Ṽ∂σ do not add any degree of freedom: more precisely, for any s ∈ Ṽ∂σ, there
exists e ∈ Eσ and two real numbers ρe,s,se1

and ρe,s,se2
such that s belongs to the interior of e, Ve = {se1 , se2}

and for any u ∈ Ṽ (σ), we have:

u(xs) = ρe,s,se1
u(xse1

) + ρe,s,se2
u(xse2

)
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and
xs = ρe,s,se1

xse1
+ ρe,s,se2

xse2
ρe,s,se1

+ ρe,s,se2
= 1

as u is linear on e. However, this is not the case for values associated with vertices of Ṽσ. By analogy, and
inspired by [22], we associate to each element s of Ṽσ a set of real numbers (ρs,σ,s′ )s′∈Vσ

such that at most d+1
of them are non zeros, and:

xs =
∑

s′∈Vσ

ρσ,s,s′ xs′
∑

s′∈Vσ

ρσ,s,s′ = 1.

Clearly, if Tσ = {K, L} (respectively if Tσ = {K}), we have for any u ∈ P1(K ∪ L) (respectively u ∈ P1(K))

u(xs) =
∑

s′∈Vσ

ρσ,s,s′ u(xs′ ).

Thus, this barycentric interpolation is exact for traces on σ of first order polynomials. The corresponding
simplified trace space is thus defined as

V̂ (σ) =

⎧⎨⎩v ∈ Ṽ (σ) | v(xs) =
∑

s′∈Vσ

ρσ,s,s′ v(xs′ ) ∀s ∈ Ṽσ

⎫⎬⎭ . (3.20)

As remarked when we described meshes, the sets Ṽ∂σ are very often empty, and the sets Ṽσ even more often.
However we wished to allow complicated face decompositions, in particular to cover the case when one use
a classical meshing algorithm to generate subfaces, which may require those additional points in complex
situations.

Finally, our space on faces is defined as:

W (σ) =
{

w ∈ V̂ (σ) |
∫

f

(w − π∇
f w)q = 0 ∀q ∈ M0(f) ∪ M1(f), ∀f ∈ SFσ

}
(3.21)

which imposes that each projector π∇
f coincides with the classical L2 orthogonal projector π1,f on P1(f).

Obviously, we have:

Lemma 3.4. Any element of W (σ) is uniquely defined by its values at the vertices of σ.

Proof. The proof is identical to the proof given in [7] for W (K). For any f ∈ STσ , we define the operator
Δ−1

0,f : L2(f) :−→ H1(k) by setting for any q ∈ L2(f) Δ−1
0,fq = w, where∣∣∣∣∣−Δw = q in f

w = 0 on ∂f.
(3.22)

Then, we denote R : L2(f) −→ L2(f) the operator defined by Rq = π1,f (Δ−1
0,f (q)). Now, assume that the degrees

of freedom of u ∈ W (σ) and v ∈ W (σ) are identical. By construction, if u and v are equal at each s of Vσ, we
have u = v on ∂f for any f ∈ SFσ and thus by definition u − v satisfies (3.22) on each f for some qf ∈ P1(f).
Then, as for u and v in W (σ) and any f ∈ STσ, π∇

f (u) and π∇
f (v) solely depend on their values at the vertices

of Vσ, we deduce that π∇
f (u) = π∇

f (v) for any f ∈ STσ. But by definition of W (σ), this implies that for any
p ∈ P1(f):

(u − v, p)0,f = (π1,f (u − v), p)0,f = (π∇
f (u) − π∇

f (v), p)0,f = 0.

Thus we have:

(Rqf , qf )0,f = (π1,f (u − v), qf )0,f = (u − v, qf )0,f = (∇(u − v),∇(u − v))L2(f) = 0.

which immediately implies u = v on any f ∈ STσ and thus on σ. �
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Now we are in position to construct an approximation space on cells that can handle non-planar faces. We start
by setting:

Ṽ (K) =
{
v ∈ H1(K) | v|σ ∈ W (σ) ∀σ ∈ FK and − div(Λ∇v) ∈ P1(K)

}
. (3.23)

The three dimensional operator π∇
K : H1(K) �−→ P1(K) is defined by, after the simplification of the volumic

term we are used to now:∣∣∣∣∣∣∣∣
aK
(
ΛK ; π∇

Kv, q
)

=
∫

∂K

vΛK∇q · n∂K =
∫

∂K

(v − vK)ΛK∇q · n∂K ∀q ∈ P1(K)

1
|K|

∫
K

π∇
Kv =

1
|K|

∫
K

v.

(3.24)

Then, the approximation space is naturally:

W (K) = {v ∈ Ṽ (K) | (v − π∇
Kv, q)0,K = 0, ∀q ∈ M1(K)}, (3.25)

the associated global space is
W = {v ∈ H1 | v|K ∈ W (K) ∀K ∈ T }. (3.26)

Proposition 3.5. The degrees of freedom of X(K) are unisolvent for W (K).

Proof. The proof is again identical to the proof given in [7] for W (K). We define the operator Δ−1
0,K,Λ :

L2(K) :−→ H1(k) by setting for any q ∈ L2(K) Δ−1
0,Kq = w, where∣∣∣∣∣−div(ΛK∇w) = q in K

w = 0 on ∂K.
(3.27)

Then, we denote R : L2(K) −→ L2(K) the operator defined by Rq = π1,K(Δ−1
0,K,Λ(q)). Now, assume that the

degrees of freedom of u ∈ W (K) and v ∈ W (K) are identical. Then u − v satisfies π0,K(u − v) = 0 and (3.27)
for some q ∈ P1(K). As for u and v in W (K), π∇

K(u) and π∇
K(v) solely depend on their values at the vertices

and their mean value, we deduce that π∇
K(u) = π∇

K(v). But by definition of W (K), this implies that for any
p ∈ P1(K):

(u − v, p)0,K = (π1,K(u − v), p)0,K = (π∇
K(u) − π∇

K(v), p)0,K = 0.

By construction, we then have:

(Rq, q)0,K = (π1,K(u − v), q)0,K = (u − v, q)0,K = (ΛK∇(u − v),∇(u − v))L2(K) = 0

which immediately implies u = v. �

We define our approximation of the diffusive part as

ah(u, v) =
∑
K∈T

aK
h (u, v) aK

h (u, v) = aK(ΛK ; π∇
Ku, π∇

Kv) + sK(u − π∇
K(u), v − π∇

K(v)), ∀(u, v) ∈ H1(K)

(3.28)
where the bilinear form sK(·, ·), added to ensure the coercivity of the resulting scheme, is again given by

sK(u, v) = hd−2
K

∑
s∈VK

∑
s′∈VK

SK,s,s′ u(xs)v(xs′ ) ∀(u, v) ∈ W (K) (3.29)

with SK = (SK,s,s′ )s,s′∈VK
can be any symmetric positive definite matrix independent on h. For any q ∈ P1(K),

π∇
K(q) = q implies again by construction the consistency property:

aK
h (u, q) = aK(ΛK ; u, q) ∀u ∈ H1(K), ∀q ∈ P1(K). (3.30)
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Exactly as in dimension 2, we have

Lemma 3.6. There exists α∗ > 0 and α∗ > 0, depending on ρ but independent on h, such that for any
(u, v) ∈ W (K)2, we have

aK
h (u, v) ≤ α∗||∇u||L2(K)||∇v||L2(K) (3.31)

and for any u ∈ W (K)
α∗||∇u||2L2(K) ≤ aK

h (u, u). (3.32)

3.4. Diffusion fluxes in dimension 3

For any v ∈ W (K), and any edge e ∈ EK ∪ ẼK , we have v ∈ P1(e), thus, as
∑

s∈Ve∪Ṽe
ne,s = 0:

v|e =
∑

s∈Ve∪Ṽe

vs

2
+

1
|e|

∑
s∈Ve∪Ṽe

(vs − vK)ne,s · (x − xe)
1
|e|

∫
e

v =
∑

s∈Ve∪Ṽe

vs

2
·

Then, for any f ∈ SFK , we easily get that:

∇π∇
f (v) =

∑
e∈Ef∪Ẽf

∑
s∈Ve∪Ṽe

|e|
2|f |(vs − vK)nf,e =

∑
s∈Vf∪Ṽf

∑
e∈(Ef∪Ẽf )∩(Es∪Ẽs)

|e|
2|f |(vs − vK)nf,e

and
1

|∂f |

∫
f

v =
∑

e∈Ef∪Ẽf

∑
s∈Ve∪Ṽe

|e|
2|∂f |vs =

∑
s∈Vf∪Ṽf

∑
e∈(Ef∪Ẽf )∩(Es∪Ẽs)

|e|
2|∂f |vs.

Denoting

gf,s =
∑

e∈(Ef∪Ẽf )∩(Es∪Ẽs)

|e|
2|f |nf,e and mf,s =

∑
e∈(Ef∪Ẽf )∩(Es∪Ẽs)

|e|
2|∂f | (3.33)

we get:

π∇
f v =

∑
s∈Vf∪Ṽf

mf,svs +
∑

s∈Vf∪Ṽf

(vs − vK)gf,s · (x − x∂f ) ∇π∇
f v =

∑
s∈Vf∪Ṽf

(vs − vK)gf,s (3.34)

where

x∂f =
1

|∂f |

∫
∂f

x =
∑

e∈Ef∪Ẽf

|e|
|∂f |xe.

As usual, we explicit the operator π∇
K for functions of W (K). Using our definition of W (K) and W (f), we get

that: ∫
∂K

vn∂K =
∑

f∈SFK

∫
f

(v − vK)nK,f =
∑

f∈SFK

∫
f

(π∇
f (v) − vK)nK,f .

This leads to:

∇π∇
Kv =

∑
f∈SFK

⎛⎝ ∑
s∈Vf∪Ṽf

|f |
|K| (mf,s + gf,s · (xf − x∂f ))(vs − vK)nK,f

⎞⎠ .

Then, recall that for any s ∈ Ṽf , if f ∈ SFσ, we have:

vs =
∑

s′∈Vσ

ρσ,s,s′ vs′
∑

s′∈Vσ

ρσ,s,s′ = 1,
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where we still denote ρσ,s,s′ = ρe,s,s′ when s ∈ Ṽ∂σ and s ∈ e to simplify notations. Then:

∇π∇
Kv =

∑
f∈SFK

⎛⎝∑
s∈Vf

|f |
|K| (mf,s + gf,s · (xf − x∂f ))(vs − vK)nK,f

+
∑
s∈Ṽf

∑
s′∈Vσ,f∈SFσ

|f |
|K| (mf,s + gf,s · (xf − x∂f ))ρσ,s,s′ (vs′ − vK)nK,f

⎞⎠ .

Denoting
pf,s = (mf,s + gf,s · (xf − x∂f )) (3.35)

∇π∇
Kv rewrites:

∇π∇
Kv =

∑
s∈VK

∑
f∈SFK∩SFs

|f |pf,s

|K| (vs − vK)nK,f +
∑

s∈VK

∑
σ∈FK∩Fs

∑
f∈SFσ

∑
s′∈Ṽf

|f |pf,s′ ρσ,s′ ,s

|K| (vs − vK)nK,f .

Introducing

gK,s =
∑

f∈SFK∩SFs

|f |pf,s

|K| nK,f +
∑

σ∈FK∩Fs

∑
f∈SFσ

∑
s′∈Ṽf

|f |pf,s′ρσ,s′ ,s

|K| nK,f (3.36)

we obtain:
∇π∇

Kv =
∑

s∈VK

(vs − vK)gK,s.

Exactly as in dimension 2, we can equivalently rewrite:

π∇
Kv = vK +

∑
s∈VK

(vs − vK)gK,s · (x − xK) ∇π∇
Kv =

∑
s∈VK

(vs − vK)gK,s, (3.37)

but with a more complicated formula for the gK,s. As we have kept the same analytical form for our projectors,
we can immediately deduce from the results in dimension 2 that the bilinear form a(·, ·) rewrites

ah(u, v) =
∑
K∈T

∑
s∈VK

FK,s(u)(vK − vs), (3.38)

with the fluxes given by

FK,s(u) =
∑

s′∈VK

A
s
′
,s

K (uK − us′ ), (3.39)

and the matrix AK given by∣∣∣∣∣∣∣∣∣
A

s,s
′

K = |K|ΛKgK,s · gK,s′ + hd−2
K S

s,s
′

K ,

S
s,s

′

K = yT
K,s′ SKyK,s,

yK,s = (ys
′′

K,s)s′′∈VK
, ys

′′

K,s = δs,s′′ − gK,s · (xs′′ − xK).

(3.40)

Remark 3.7. As announced before, in dimension 3 the derivation of our fluxes FK,s is quite different from that
of the original 3d-VAG scheme of [22], as it is based on the projectors π∇

f and not on barycentric interpolators.
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However there remains an interesting link between the two constructions. To make it clearer, notice that we
can rewrite

gK,s =
∑

f∈SFK∩SFs

|f |βf,s

|K| nK,f with βf,s = pf,s +
∑

s′∈Ṽf ,f∈SFσ

pf,s′ ρσ,s′ ,s.

The question is now whether the βf,s are barycentric coefficients for the subface f or not, i.e. do they satisfy∑
s∈Vσ ,f∈SFσ

βf,sxs = xf and
∑

s∈Vσ,f∈SFσ

βf,s = 1. (3.41)

We have: ∑
s∈Vσ,f∈SFσ

⎛⎝mf,s +
∑

s′∈Ṽf ,f∈SFσ

mf,s′ ρσ,s′ ,s

⎞⎠xs =

∑
s∈Vσ,f∈SFσ

⎛⎜⎝ ∑
e∈(Ef∪Ẽf )∩(Es∪Ẽs)

|e|
2|∂f |xs +

∑
s′∈Ṽf ,f∈SFσ

∑
e∈(Ef∪Ẽf )∩(E

s
′∪Ẽ

s
′ )

|e|
2|∂f |ρσ,s′ ,sxs

⎞⎟⎠
=
∑
s∈Vf

∑
e∈(Ef∪Ẽf )∩(Es∪Ẽs)

|e|
2|∂f |xs +

∑
s′∈Ṽf

∑
e∈(Ef∪Ẽf )∩(E

s
′∪Ẽ

s
′ )

|e|
2|∂f |xs′ =

∑
e∈(Ef∪Ẽf)

|e|
|∂f |xe = x∂f

.

Proceeding in the same way, we get:

∑
s∈Vσ,f∈SFσ

⎛⎝gf,s · (xf − x∂f ) +
∑

s′∈Ṽf ,f∈SFσ

gf,s′ · (xf − x∂f )ρσ,s′ ,s

⎞⎠xs

=
∑
s∈Vf

∑
e∈(Ef∪Ẽf )∩(Es∪Ẽs)

|e|
2|f |nf,e · (xf − x∂f )xs +

∑
s′∈Ṽf

∑
e∈(Ef∪Ẽf )∩(E

s
′∪Ẽ

s
′ )

|e|
2|f |nf,e · (xf − x∂f )xs′

=
∑

e∈(Ef∪Ẽf )

|e|
|f |nf,e · (xf − x∂f )xe = xf − x∂f

and thus the first part of (3.41) is satisfied. Then

∑
s∈Vσ,f∈SFσ

⎛⎝mf,s +
∑

s′∈Ṽf ,f∈SFσ

mf,s′ ρσ,s′ ,s

⎞⎠ =
∑

e∈(Ef∪Ẽf )

|e|
|∂f | = 1

and

∑
s∈Vσ,f∈SFσ

⎛⎝gf,s · (xf − x∂f ) +
∑

s′∈Ṽf ,f∈SFσ

gf,s′ · (xf − x∂f )ρσ,s′ ,s

⎞⎠ =
∑

e∈(Ef∪Ẽf )

|e|
|f |nf,e · (xf − x∂f ) = 0

implies the second part. This means that our scheme could be considered as a very special VAG scheme with
carefully designed barycentric weights. However the converse is very unlikely: not any barycentric interpolation
formula allows a clear reinterpretation of the VAG scheme as a conforming variational approximation with well
identified local spaces on each cell. Thus, our 3d fluxes seem to constitute a very interesting subfamily that
allows a pleasant variational interpretation in W (K) of the scheme, and in the process gives access to the wide
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range of admissible meshes of the mimetic technology (a classical consistency analysis without this variational
framework would in particular be very difficult to conduct on non star-shaped cells). We insist on the fact that
our scheme provides a conforming approximation, which a generic barycentric formula in 3d cannot guarantee:
this is a direct consequence of the VEM approach we followed to design the method. As in dimension 2, our
scheme differs from the original VAG scheme through its stabilization part: a general framework following the
lines of [18] that allows a matrix as stabilization parameter could again be introduced to unify both approaches,
at least formally.

Finally, it is also clear that our construction is different from the alternative VAG construction described
in [8, 23, 24, 28], which uses a piecewise linear reconstruction based on finite elements and a splitting of each cell
into simplices, thus strongly requiring cells to be star-shaped.

3.5. Reaction term

We now turn to the approximation of the reaction term in (2.1). We define, ∀ (u, v) ∈ W (K):

rh(u, v) =
∑
K∈T

rK
h (u, v) where rK

h (u, v) = rK(π0,K(β); π0,K(u), π0,K(v)) + sK
0 (u − π0,K(u), v − π0,K(v))

(3.42)
where

sK
0 (u, v) = hd

K

∑
s∈VK

∑
s′∈VK

B
s,s

′

K u(xs)v(xs) (3.43)

with BK = (Bs,s
′

K )s,s′∈VK
any symmetric positive matrix independent on h. Denoting βK = π0,K(β), we get for

any (u, v) ∈ H1(K)2:

rK
h (u, v) = (π0,K(β)π0,K(u), π0,K(v))0,K + hd

K

∑
s∈VK

∑
s′∈VK

B
s,s

′

K (us − uK)(vs′ − vK).

After a straightforward computation, this leads to:

rK
h (u, v) = |K|βKuKvK +

∑
s∈VK

FR
K,s(u)(vK − vs)

where the ”reaction fluxes” are defined by:

FR
K,s(u) = hd

K

∑
s′∈VK

B
s
′
,s

K (uK − u
′
s). (3.44)

Remark 3.8. The second term of (3.42), which gives birth to these surprising “reaction fluxes”, is not needed
to ensure convergence. However, as will be illustrated by numerical experiments, it greatly improves the behavior
of the scheme when the diffusion tensor is vanishing. In [8, 23, 24], a different approach is proposed to ensure
this additional robustness: an abstract volume decomposition of each cell K ∈ T is introduced, by assuming
that one has a decomposition of the volume of K under the form:

K = KK

⋃
s∈VK

Ks.

On each of these volumes, one approximates the unknown by the associated dof value, the corresponding
approximation of the reaction term being thus given by:

∑
K∈T

π0,K(β)

(
|KK |uKvK +

∑
s∈VK

|Ks|usvs

)
.
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Doing so, we would give a volume to each vertex, but without modifying the fluxes between cell and vertices,
contrary to our scheme that gives no volume to vertices but modify the fluxes.

Proceeding as in [13, 14], it is not difficult to establish that:

Lemma 3.9. There exists b∗ ≥ 0 and b∗ > 0, depending on ρ but independent on h, such that for any (u, v) ∈
W (K)

rK
h (u, v) ≤ b∗||u||L2(K)||v||L2(K) (3.45)

and for any u ∈ W (K)
b∗||u||2L2(K) ≤ rK

h (u, u). (3.46)

For any u ∈ W (K) and any q ∈ P0(K),

rK
h (u, q) = (π0,K(β)u, q)0,K . (3.47)

3.6. Finite volume formulation

Combining all the previous definitions, we approximate our model problem (2.1) by the discrete variational
formulation, with W0 = W ∩ H1

0 (Ω):

Find u ∈ W0 such that for all v ∈ W0

Ah(u, v) = ah(u, v) + rh(u, v) =
∑
K∈T

∫
K

π0,K(f)v. (3.48)

Using the flux formulation of each part, we get, denoting fK = π0,K(f):∑
K∈T

∑
s∈VK

(FK,s(u) + FR
K,s(u))(vK − vs) +

∑
K∈T

|K|βKuKvK =
∑
K∈T

|K|fKvK .

Taking one degree of freedom of v equal to one and all others equal to 0, and doing so for every dof, we obtain∣∣∣∣∣∣∣∣∣∣∣

|K|βKuK +
∑

s∈VK

FK,s(u) + FR
k,s(u) = |K|fK ∀K ∈ T

∑
K∈Ts

Fs,K(u) + FR
s,K(u) = 0 ∀ s ∈ Vint

us = 0 ∀ s ∈ Vext

(3.49)

where we have denoted

Fs,K(u) = −FK,s(u) =
∑

s′∈VK

A
s
′
,s

K (us′ − uK) ∀u ∈ W (K) (3.50)

and
FR

s,K(u) = −FR
K,s(u) =

∑
s′∈VK

B
s
′
,s

K (us′ − uK) ∀u ∈ W (K). (3.51)

In other words, our method shares the same analytical formulation than classical finite volume methods, with
some “real” volumes (those associated with cells) exchanging with some “virtual” ones (those associated with
vertices, as vertices are entities with no volume). We also recover the balance of the global diffusion-reaction
fluxes ensured by (3.50) and (3.51). This is due to the introduction of our additional cell degree of freedom, as
well as the careful choice of stabilization terms. Notice that we were able to obtain explicit expressions for each
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quantity involved in our scheme, which greatly simplifies its implementation: no local inversion, such as those
required for MPFA schemes, is necessary to compute the fluxes. Also notice that we can use static condensation
to drastically decrease the size of the linear system: the cell equations in (3.49) can be locally inverted, thus
reducing the linear system to the vertex unknowns only.

Let us mention that it seemed logical to call our new method a “virtual volume” method, as we obtain a
finite volume scheme derived from virtual element principles and its associated virtual basis, and because of the
formal exchange between real and virtual volumes.

4. Convergence analysis

In this section, we consider the convergence properties of our virtual volume method. The variational approach
we followed, based on the mimetic technology, will prove all its interest here: indeed, most of the work will be
greatly simplified, as we will be able to use directly classical approximation properties. This section follows
exactly the lines of [7,14] applied to our enhanced VEM space, as the VEM technology provides convergence in
a rather automatic way. Consequently, we claim no originality here: we only detail the convergence analysis for
the sake of completeness and the reader’s convenience.

A direct consequence of the optimal polynomial approximation properties of our mesh sequence is the following
approximation result for the operator π∇

K :

Lemma 4.1. Let d = 2 or 3 and M a mesh that has optimal polynomial approximation properties. Then, for
any u ∈ H2(K)

||∇u −∇π∇
K(u)||L2(K) ≤ CpolyhK |u|H2(K) (4.1)

Proof. By definition of π∇
K(u) and as for any q ∈ P1(K), ∇π∇

K(q) = ∇q, we get:

(∇u −∇π∇
K(u),∇u −∇π∇

K(u))0,K = (∇u −∇π∇
K(u),∇u −∇q)0,K

which leads to
||∇u −∇π∇

K(u)||L2(K) ≤ inf
q∈P1(K)

||∇u −∇q||L2(K)

and concludes the proof. �

Moreover, following Scott–Dupond theory, as a consequence of our regularity hypothesis (A1) on the mesh and
as P1(K) ⊂ W (K) it is not difficult to see that we have (see [7, 9, 14]):

Proposition 4.2. Let d = 2 or 3 and M be a mesh of Ω, that satisfies (A1). There exists CW > 0 such that
for any v ∈ H2(K) there exists w ∈ W such that for any K ∈ T

||v − w||L2(K) + hK |v − w|H1(K) ≤ CW h2
K |v|H2(K).

4.1. Convergence theorems and error estimates

Convergence results are based on the following abstract result:

Proposition 4.3. Let d = 2 or 3, M be a mesh of Ω that satisfies (A1), and let u be the unique variational
solution of (2.1). Then, there exists C > 0 depending on ρ but independent on h such that the solution uh

of (3.48) satisfies, for any uI ∈ W , any uπ,1 piecewise in P1(K) for any K ∈ T , and any uπ,0 piecewise in
P0(K) for any K ∈ T :

||u − uh||H1(Ω) ≤ C
(
||f − πT ,0(f)||L2(Ω) + |u − uI |H1(Ω) + |u − uπ,1|1,h + ||u − uπ,0||L2(Ω) + ||u − uI ||L2(Ω)

+ sup
K∈T

||Λ − ΛK ||L∞(K)|u|H1(Ω) + sup
K∈T

||β − βK ||L∞(K)||u||L2(Ω)

)
, (4.2)
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where ΛK = π0,K(Λ), βK = π0,K(β) and:

|u|21,h =
∑
K∈T

||∇u||2L2(K)

and πT ,0(f) = π0,K(f) in K, ∀K ∈ T .

Proof. Let u be in H1, uI in W , uπ,1 be piecewise in P1(K) and uπ,0 be piecewise in P0(K). Then, using the
stability of the diffusion and reaction part on each K, the hypothesis on Λ and β, we deduce that there exist a
constant α > 0 and a constant η ≥ 0, both independent on h, such that, setting δh = uh − uI :

η||δh||2L2(Ω) + α|δh|2H1(Ω) ≤ Ah(δh, δh) =
∑
K∈T

aK
h (uh, δh) + rK

h (uh, δh) − aK
h (uI , δh) − rK

h (uI , δh)

=
∑
K∈T

(fK , δh)0,K − aK
h (uI , δh) − rK

h (uI , δh) (using (3.48))

=
∑
K∈T

(fK , δh)0,K−aK
h (uI−uπ,1, δh)−aK

h (uπ,1, δh)−rK
h (uI−uπ,0, δh)−rK

h (uπ,0, δh) (adding ±uπ,1 and ±uπ,0)

=
∑
K∈T

(fK , δh)0,K − aK
h (uI − uπ,1, δh) − rK

h (uI − uπ,0, δh) − aK(ΛK ; uπ,1, δh) − rK(uπ,0, δh)

(using (3.12),(3.32) and (3.46)). Then, adding ±u two times, we get

η||δh||2L2(Ω) + α|δh|2H1(Ω) ≤
∑
K∈T

(fK , δh)0,K − aK
h (uI − uπ,1, δh) − rK

h (uI − uπ,0, δh) − aK(ΛK ; uπ,1 − u, δh)

−aK(ΛK ; u, δh) − rK(βK ; uπ,0 − u, δh) − rK(βK ; u, δh),

which leads to, using (2.1)

η||δh||2L2(Ω) + α|δh|2H1(Ω) ≤
∑
K∈T

(π0,K(f) − f, δh)0,K − aK
h (uI − uπ,1, δh) − rK

h (uI − uπ,0, δh)

−aK(ΛK ; uπ,1 − u, δh) − aK(ΛK − Λ; u, δh) − rK(βK ; uπ,0 − u, δh) − rK(βK − β; u, δh).

Using the definition of aK and rK and the continuity bounds on aK
h and rK

h , we easily obtain the existence of
some C > 0 independent on h such that:

η||δh||2L2(Ω) + α|δh|2H1(Ω) ≤ C
(
||f − πT ,0(f)||L2(Ω) + |uI − uπ,1|1,h + |u − uπ,1|1,h + ||uI − uπ,0||L2(Ω)

+||u − uπ,0||L2(Ω) + sup
K∈T

||Λ − π0,K(Λ)||L∞(K)|u|H1(Ω) + sup
K∈T

||β − π0,K(β)||L∞(K)||u||L2(Ω)

)
.

and the result follows using the triangle inequality and Poincaré’s inequality on Ω. �

As the mesh has optimal polynomial approximation properties, assuming that f ∈ H1(Ω), β ∈ W 1,∞(Ω) and
Λ ∈ W 1,∞(Ω, M3(R)), there exists Cf > 0, Cβ > 0 and CΛ > 0, all independent on h, such that for all K ∈ Th

||f − π0,K(f)||L2(K) ≤ CfhK ||β − π0,K(β)||L∞(K) ≤ CβhK ||Λ − π0,K(Λ)||L∞(K) ≤ CΛhK .
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Then, one immediately deduces:

Proposition 4.4. Let d = 2 or 3, and M be a mesh of Ω, that satisfies (A1). Assume that the unique variational
solution u of (2.1) belongs to H2(Ω), that f ∈ H1(Ω), β ∈ W 1,∞(Ω) and Λ ∈ W 1,∞(Ω, M3(R)). Then, there
exists C > 0 depending on ρ but independent on h such that the solution uh of (3.48) satisfies

||u − uh||L2(Ω) ≤ Ch and ||∇u −∇π∇
K(uh)||L2(K) ≤ Ch (4.3)

Using the usual duality argument, one could then establish error estimates in the L2(Ω) norm assuming elliptic
regularity (see [7] for details):

Proposition 4.5. We say that an open set Ω has elliptic regularity if and only if for all g ∈ L2(Ω), the unique
solution w ∈ H1

0 (Ω) of
−div (Λ∇w) + βw = g in Ω

satisfies
||w||H2(Ω) ≤ Ce||g||L2(Ω)

with Ce > 0 only depending on Ω.
Assume that Ω has elliptic regularity, and let d = 2 or 3, and M be a mesh of Ω, that satisfies (A1). Assume

that f ∈ H1(Ω), β ∈ W 1,∞(Ω), Λ ∈ W 1,∞(Ω, M3(R)). Then, there exists C > 0 depending on ρ but independent
on h such that the solution uh of (3.48) satisfies

||u − uh||L2(Ω) ≤ Ch2 (4.4)

We see that having a variational formulation on the space W0 greatly simplifies the analysis. Also notice the
apparent paradox inherent to our method: in principle, as we are trying to match the finite volume philosophy,
one could expect that we perform an external approximation of the space H1

0 (Ω), to incorporate cellwise constant
functions. However we used a discrete variational formulation on the space W0, which is a subspace of H1

0 (Ω),
thus the approximation is internal. The trick here is the VEM notion of consistency: being much weaker than
the classical finite element one, as we are only imposing local consistency when tested against polynomials, it
allows the stabilization part to not be an approximation of the diffusion matrix. Then well chosen stabilizations
that preserve the flux balanced formulation as well as the choice for the second member are the key to recover
local conservativity.

5. Numerical exploration

Before describing our tests cases, let us precise the exact form of the stabilization terms we use in practice.
After some numerical experiments we set

SK,s,s′ = δs,s′
∑

f∈SFK∩SFs

|f |ΛKnK,f · nK,f∑
f ′∈SFK∩SFs

|f ′ |
(5.1)

and B
s,s

′

K = γβKδs,s′ , with γ > 0 a real parameter allowing to control the diffusion added by the reaction fluxes
on coarse meshes. The idea behind the choice (5.1) is simply to match the variations of the diffusion tensor,
which roughly speaking makes the stability and coercivity constants much less dependent on the variations
of Λ. Clearly, other choices can lead to more or less precise results, depending on the test case, and the above
proposition is most certainly suboptimal. However, we felt that it gives sufficiently precise results to assess the
potential of the method. Then, let us mention that for simplicity, the L2 convergence results that will be plotted
correspond to √∑

K∈T
|K|(u(xK) − uK)2,
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where u is the exact solution. For any function in H1+α, this constitutes an order 1 + α approximation of
the true L2 error. For a function with such regularity, the best approximation error than could be hoped is of
order min(2, 2α), thus this approximation is sufficient to study convergence properties. Notice that the results
developed in this paper can be extended to more general boundary conditions in a very straightforward and very
usual manner: this explains why we will exhibit examples with in particular inhomogeneous Dirichlet boundary
conditions.

For each convergence test, we will compare our virtual volume method (VVM) to the original Hybrid scheme
(described for instance in [21]), to the original VAG scheme of [22] as well as the naturally stable variant VAGRT
based on a tetrahedral subdivision of cells of [28] (like the original hybrid scheme, it strongly requires cells to
be star-shaped). They serve as reference finite volume methods, as they share the properties of symmetry and
coercivity with the VVM. The VVM, VAG and VAGR schemes have exactly the same number of unknowns (one
per cell and vertex), while the Hybrid scheme has in general much more unknowns (one per cell and face). The
constant in the stabilization term is taken equal to d for the hybrid scheme, while it is taken equal to card(VK)
in each cell for the VAG scheme. Numerical experiments on the series of test cases we are going to show have
proven these constants to be experimentally optimal. We also include the first order virtual element method in
the comparison to assess the effect of the additional cell value on the precision of the results, although this last
method does not offer a finite volume flux balanced formulation.

5.1. Numerical results in dimension 2

We begin our numerical exploration by considering the case of pure diffusion (β = 0). To assess the behavior
of the method in presence of heterogeneity, we consider the three tests cases of [4,25]: the domain Ω =]0, 1[×]0, 1[
is subdivided into four areas, denoted Di, i = 1..4, and we use a sequence of meshes fitting this partition (see
Fig. 2).

For the first test case (named ConvTest1, see Fig. 3), we choose Λ|D1
= λ1Id and Λ|Ω\D1

= λ2Id. A solution
of −div(Λ∇u) = 0 is then given by:

u =

∣∣∣∣∣ r
α cos(α(θ − π/3)) for θ ∈ [0, 2π/3]

βrα cos(α(4π/3 − θ)) for θ ∈ [2π/3, 2π]
(5.2)

with α = (3/π) arctan
√

1 + 2/κ and β = cos(απ/3)/ cos(2απ/3), and κ = λ1/λ2 = 0.1. With the same tensor,
another solution, corresponding to the second test case (named ConvTest2, see Fig. 3), is given by

u =

∣∣∣∣∣ r
α sin(α(θ − π/3)) for θ ∈ [0, 2π/3]

βrα sin(α(4π/3 − θ)) for θ ∈ [2π/3, 2π]
(5.3)

D1D2

D3 D4

2π�3

Figure 2. Domain subdivision and example of mesh.
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Figure 3. Isolines of solutions for ConvTest1, ConvTest2 and ConvTest3.
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Figure 4. Convergence curves for ConvTest1 and ConvTest2.

with α = (3/π) arctan
√

1 + 2κ and β = 1/(2 cos(απ/3)), and κ = λ1/λ2.
In the case where Λ|D1

= Λ|D3
= λ1Id and Λ|D2

= Λ|D4
= λ2Id, a solution with a stronger singularity at the

origin, corresponding to the third test case (named ConvTest3, see Fig. 3), satisfies u(r, θ) = −u(r, θ − π) and

u =

∣∣∣∣∣ r
α cos(α(θ − π/3)) for θ ∈ [0, 2π/3]

βrα sin(α(5π/6 − θ)) for θ ∈ [2π/3, π]
(5.4)

with α = (6/π) arctan
(
1/

√
1 + 2κ

)
and β = cos(απ/3)/ sin(απ/6), and κ = λ1/λ2 = 30.

In each case, the solution belongs to H1+α−ε for any ε > 0. This means that the solutions of convTest1,
ConvTest2 and ConvTest3 have the respective approximate regularities H2.29, H1.79 and H1.24, as α ≈ 1.29
for ConvTest1, α ≈ 0.79 for ConvTest2 and α ≈ 0.24 for ConvTest3. From the results displayed in Figures 4
and 5, we deduce the approximate convergence orders of Table 1, which are in agreement with the optimal order
of min(2, 2α) which is 2 for the ConvTest1, 1.58 for ConvTest2 and 0.48 for ConvTest3. Notice that the three
methods have a very close convergence behavior on these test cases. Then, to assess the behavior of the method
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Figure 5. Convergence curves for ConvTest3.

Table 1. Approximate orders of convergence for ConvTest1, ConvTest2 and ConvTest3.

ConvTest1 ConvTest2 ConvTest3
Hybrid 2.12 1.52 0.40
VAG 2.01 1.49 0.54

VAGRT 2.08 1.54 0.55
VEM 1.98 1.57 0.49
VVM 1.98 1.57 0.49

in presence of anisotropy and on distorted mesh, still on Ω =]0, 1[×]0, 1[, we consider

u(x, y) = sin(πx) sin(πy) Λ =

(
1 0

0 ε

)
(5.5)

with ε = 10−3, which will be named ConvTest4. We consider five types of mesh sequences. The first one
(2dDualDelaunay) is obtained by considering the dual meshes (the cell formed by joining the centers of the
cell of the primal mesh) of a sequence of Delaunay meshes, while the second one (2dVoronoi) is obtained by
considering the Voronoi meshes associated to the same sequence of Delaunay meshes. These two approaches
generate polygonal meshes with quite generic cells. The third sequence (2dKershawBox ) of meshes is a sequence
of Kershaw meshes of the unit square, while the fourth one (2dCheckerBoardBox ) is a sequence of checkerboard
meshes of the unit square. These two sequences have only quadrangular cells which are distorted for the sequence
2dKershawBox, while the sequence 2dCheckerBoardBox allows to test the behavior of the method in presence
of non conformities. The fifth sequence, named 2dTIE, illustrates how general meshes can be. From the results
displayed in Figures 9–11, we deduce the approximate order of convergence of Table 2 by performing a linear
regression only on the last points of the curves, to avoid the somewhat erratic behavior of some of the mesh
sequences when h is large and get significant results. In this case where the solution is smooth enough, the virtual
volume method reaches the optimal order 2 on any mesh sequence. The hybrid scheme (in the original version
of [21]) and the VAGRT scheme fail to converge on the 2dTIE mesh sequence, as cells are non star-shaped.
Of course, using the generic stabilizations terms of the HMM generalization (see [18]) of the Hybrid scheme,
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Figure 6. Example of meshes for the 2dDualDelaunay and 2dVoronoi mesh sequences.

Figure 7. Example of meshes for the 2dKershawBox and 2dCheckerBoardBox mesh sequences.

Figure 8. Example of meshes for the 2dTIE mesh sequence.
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Table 2. Approximate orders of convergence for ConvTest4.

2dDualDelaunay 2dVoronoi 2dKershawBox 2dCheckerBoardBox 2dTIE
Hybrid 1.98 1.84 1.99 2.68 –

VAG 2.08 2.11 1.81 2.00 1.97

VAGRT 2.02 1.88 1.81 1.89 –

VEM 1.99 1.96 1.89 2.01 1.97

VVM 2.01 2.20 1.94 2.03 1.99

− 9

− 8

− 7

− 6

− 5

− 4

− 3

− 2

− 1

− 4 − 3.5 − 3 − 2.5 − 2 − 1.5 − 1

lo
g

L
2

log h

2dDualDelaunay mesh, ConvTest4

Hybrid

VAG

VAGRT

VEM

VVM

− 9

− 8

− 7

− 6

− 5

− 4

− 3

− 2

− 4 − 3.5 − 3 − 2.5 − 2 − 1.5 − 1

lo
g

L
2

log h

2dVoronoi mesh, ConvTest4

Hybrid

VAG

VAGRT

VEM

VVM

Figure 9. Convergence curves for ConvTest4 for the 2dDualDelaunay and 2dVoronoi mesh
sequences.
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mesh sequences.
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Figure 11. Convergence curves ConvTest4 on the 2dTIEMesh mesh sequence.

Figure 12. Extruded solutions for the reaction dominated case, γ going from 0 on the left to 1
on the right in each figure, left: ε = 10−3, right: ε = 10−5.

convergence is retrieved. The virtual volume method is clearly more precise on this very exotic case. Also notice
that the differences between the VEM and VVM in terms of precision are very small, implying that the VVM
should be preferred to the original first order VEM only for problems where conservativity matters (as the first
order VEM can be extended to handle non planar faces following the technique we introduced here).

Finally, we consider the reaction dominated problem, inspired by [7]∣∣∣∣−εΔu + βu = 1 in Ω
u = 0 on ∂Ω

(5.6)

where Ω is still the unit square, in order to study the behavior of the virtual volume method in the case of
vanishing diffusion tensors. The domain is subdivided as in Figure 2, and we set β(x) = 0.4 for x ∈ D1, and
β(x) = 1.0 otherwise. When ε tends to zero, the solution tends to 2.5 for x ∈ D1 and 1.0 for x /∈ D1, and
presents a diffusive boundary layer. We fix the mesh, and we decrease ε from 10−3 to 10−12, for γ = 0.0, 0.01,
0.1 and 1.0. In the case where γ = 0 we do not stabilize the reaction part and the ”reaction fluxes” disappear.
Figures 12 and 13 show the qualitative behavior of the solution, for each value of γ. We display an extrusion in
the z axis of the solution according to the value at the vertices, to simplify the visualization of the differences
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Figure 13. Extruded solutions for the reaction dominated case, γ going from 0 on the left to 1
on the right, for ε = 10−12.

Figure 14. Example of meshes for the 3dSweep and 3dBoxRandom mesh sequences.
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Figure 15. Convergence curves for ConvTest5 for the 3dBox and 3dCheckerBoard mesh sequences.
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between the four cases. When ε is small, the results are very similar, for any value of γ. However, in the same
way that in [7], stabilizing the reaction part improves the behavior of the solution when ε becomes smaller. Also
notice that the parameter γ allows to control the size of the boundary layer.

5.2. Numerical results in dimension 3

We now perform a few experiments in dimension 3. To assess the behavior of the method in presence of
anisotropy and on distorted mesh, we consider

u(x, y) = sin(πx) sin(πy) sin(πz) Λ =

⎛⎜⎝ ε 0 0

0 ε 0

0 0 1.0

⎞⎟⎠ (5.7)

with ε = 10−2. We test this solution on a Cartesian mesh sequence of the unit cube (named 3dBox ) and a
checkerboard mesh sequence (3dCheckerBoardBox ), as well as the distorted mesh sequence 3dSweep displayed
in Figure 14. Meshes of this last sequence are obtained by mapping a polygonal mesh of the unit square in the
xy plane to a non planar surface. For the virtual volume method, the non planar faces are split by introducing a
point belonging to Ṽσ at the barycenter of the vertices of each face and generating triangular subfaces based on
this point and the edges of the face. From the results of Figures 15 and 16, we deduce the experimental orders
of convergence presented in Table 3. We see on these results that the virtual volume method reaches the optimal
order in these three test cases. Our numerical experiments indicate that there is probably room for improvement
in the construction of the stabilization term: we have used a very basic formula, in particular with respect to

Table 3. Approximate orders of convergence for ConvTest5.

3dBox 3dCheckerBoard 3dSweep
Hybrid 2.00 2.24 –
VAG 1.90 1.96 2.06
VAGRT 2.00 1.72 1.92
VEM 1.95 1.95 –
VVM 1.94 1.95 2.06
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Figure 16. Convergence curves for ConvTest5 on the 3dSweep mesh sequence.
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Figure 17. Convergence curves for ConvTest5 on the 3dBoxRandom mesh sequences: com-
parison of diagonal and centered face splitting.

the diffusion tensor, and a more involved design could probably further improve precision. Finally, to study the
influence of the splitting of the faces on the solution, we consider a sequence of randomly perturbed Cartesian
meshes (3dBoxRandom, see Fig. 14). On this sequence, we test two splitting strategies: the first one consist in
splitting along the diagonal of each non planar squared face, which consequently gives Ṽσ = Ṽ∂σ = ∅ for any
σ ∈ F , while the second one is again based on the introduction of a point belonging to Ṽσ at the barycenter of
the vertices of each face, and a splitting into triangles using this point and the edges.

We clearly see in Figure 17 that this choice has very little influence on the resulting precision, thus one is
completely free to choose according to practical considerations: in this particular case, it is clearly simpler to
use the diagonal splitting, that evacuates the need to compute any interpolation. For generic faces, this means
that an automatically generated triangular submesh of each face can be used.

6. Conclusion

We presented a virtual volume method based on the ideas of the VEM/mimetic technologies, keeping the clas-
sically discarded cell unknown to recover local conservativity and allow a finite volume formulation. Convergence
results and error estimates were given in a general context. Numerical results in dimension 2 and 3 illustrate the
good behavior and robustness of the method, even on very exotic meshes. As the method can be formulated as
a finite volume method, one of its main interesting features is that its extension to more complex and general
problems can follow simple, well established lines. In particular, its application to important non-linear problems
such as multiphase flow in porous media is the subject of ongoing work.
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