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A PRIORI DIFFUSION-UNIFORM ERROR ESTIMATES FOR NONLINEAR
SINGULARLY PERTURBED PROBLEMS: BDF2, MIDPOINT AND TIME DG ∗

Václav Kučera1 and Miloslav Vlasák1

Abstract. This work deals with a nonlinear nonstationary semilinear singularly perturbed convection-
diffusion problem. We discretize this problem by the discontinuous Galerkin method in space and by
the midpoint rule, BDF2 and quadrature variant of discontinuous Galerkin in time. We present a priori
error estimates for these three schemes that are uniform with respect to the diffusion coefficient going
to zero and valid even in the purely convective case.
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1. Introduction

The discontinuous Galerkin (DG) finite element method developed by Reed and Hill in [19] is a popular
numerical method for the solution of advective and convective problems. The method uses high order piecewise
polynomial approximations on a triangulation which are generally discontinuous between elements, unlike the
standard conforming finite element method. The discontinuous nature of the approximation is natural for
problems where discontinuities or sharp gradients and boundary layers occur in the solution, e.g. nonlinear
convective problems or singular perturbations thereof.

Among the basic goals of numerical analysis is to prove a priori error estimates for the given problem
and numerical method. For partial differential equations such techniques are usually based on some form of
ellipticity/monotonicity in some part of the equation considered. The other terms are then dominated by this
‘nice’ part. In our case, for convection-diffusion problems, the convective terms are dominated by the elliptic
diffusion terms, which, after the application of Gronwall’s inequality leads to error estimates that blow up
exponentially with respect to the diffusion parameter ε → 0. Moreover this technique cannot be applied for
purely convective problems, where the elliptic/monotone term is missing.

The fact that the DG scheme performs well for small or vanishing diffusion ε and even for the purely convective
case is well known. When applied to smooth solutions, we know from practice that the error does not blow up
exponentially, but rather stays bounded with respect to ε → 0. Many numerical experiments confirming this
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can be found throughout the literature for various discretizations in time and varying ε, very small ε and ε = 0.
For example, for the implicit-explicit (IMEX) variants of the backward difference formulas applied to the DG
scheme, such results are contained in the papers [7,9]. In [9], the experiments are especially interesting as they
are performed on general, very unusual grids, e.g. based on nonconvex quadrilaterals. For a combination of
IMEX and time-DG, results are presented in the paper [22]. For explicit schemes and small ε, such results can
be found in [8]. A comparison of small ε and ε = 0 and other similar numerical experiments, we refer to the
recent book [6]. For purely convective problems, i.e. ε = 0, namely for the Euler equations, such results are
obtained e.g. in [3,11]. Other works include for example [5,13]. In the presented paper we prove these observed
results theoretically.

We will follow the ideas of Zhang and Shu [24], who developed a technique for a priori analysis of explicit time
stepping DG schemes for convective problems. The technique is based on a specific estimate of the convective
form which leads to the following: If the error is of the order O(h(1+d)/2), where d is the spatial dimension of
the computational domain, then we can prove the error estimate of the order O(hp+1/2), where p is the spatial
approximation order. A bootstrapping argument using mathematical induction is then applied to remove the a
priori O(h(1+d)/2) assumption. The argument works for explicit schemes under the assumption p > (1 + d)/2.

In [16], the technique of Zhang and Shu was extended to the space semidiscretized DG and to the implicit
Euler scheme. There it is proved that for implicit schemes, more information about the discrete solution is
necessary to perform the bootstrapping argument. In [16], this difficulty is overcome by constructing a suitable
continuation of the discrete solution with respect to time. The error analysis is then performed for the continued
discrete solution, which implies error estimates for the original discrete solution. In the presented paper, we
generalize these ideas to the BDF2, midpoint and quadrature version of time DG schemes. Specifically, we
construct suitable continuations for these three schemes and then apply the induction argument presented
in [16]. The quadrature time-DG scheme is especially interesting, since the continuation then depends on two
variables, one of which is used for the induction argument, while the other represents the time variable of the
original problem. In this case, the construction of the continuation is not complicated, however proving its
necessary properties needed in the analysis is rather technical. Moreover, we were able to carry out the analysis
only for the scheme where a quadrature formula in time is applied to the nonlinear terms. We do not view
this as a limitation, since for practical computations, one must apply some form of quadrature to these terms
anyway in order to evaluate them.

The structure of the paper is as follows. In Sections 2 and 3, we introduce the continuous problem, its spatial
discretization by the DG method and the three considered time discretizations. In Section 4 we review the
basic tools for our analysis, such as the basic estimate of the convective terms. Sections 5 and 6 deal with the
analysis of the BDF2 and midpoint rules. We prove O(hp+1/2 + εhp + τ2) error estimates in the L∞(L2)-norm
with the constant in the estimate independent of ε, h and τ . The estimates are derived under the τ = O(h) and
p > 1 + d/2 conditions. For ε = 0, we obtain the weaker condition p > (1 + d)/2 and the estimate of order
O(hp+1/2 + τ2).

Finally, Section 7 deals with the quadrature variant of the time-DG scheme. Under the same assumptions as
for the BDF2 and midpoint schemes, we prove estimates of the order O(hp+1/2 + εhp + τq+1), where q is the
approximation order in time.

2. Continuous problem

Let Ω ⊂ R
d be a bounded polyhedral domain and T > 0. We set QT = Ω × (0, T ). Let us consider the

following problem: Find u : QT → R such that

∂u

∂t
+ ∇ · f(u) − εΔu = g in QT , (2.1)

u
∣∣
∂Ω×(0,T ) = 0,

u(x, 0) = u0(x), x ∈ Ω.



A PRIORI DIFFUSION-UNIFORM ERROR ESTIMATES FOR NONLINEAR SINGULARLY PERTURBED PROBLEMS 539

Here f = (f1, . . . , fd), fs ∈ C2(R) ∩W 2,∞(Ω), fs(0) = 0, s = 1, . . . , d represents convective terms, ε ≥ 0,
g ∈ C([0, T ];L2(Ω)) and u0 ∈ L2(Ω) is an initial condition. We assume that the weak solution of (2.1) is
sufficiently regular and we will specify the exact assumptions on the smoothness of the weak solution for each
time discretization method individually.

We note that in [16], mixed Dirichlet–Neumann boundary conditions are treated along with only locally
Lipschitz nonlinearities fs ∈ C2(R). This is also possible in our context, however we stay in the simpler setting
to avoid too many technicalities.

To simplify the notation, we use (·, ·) to denote the L2 scalar product and ‖ · ‖ for the L2 norm. To further
simplify notation, we shall drop the argument Ω in Sobolev norms, e.g. ‖ · ‖Hp+1 denotes the Hp+1(Ω)-norm.
We will also denote the Bochner norms over the whole interval (0, T ) in concise form, e.g. ‖u‖L∞(Hp+1) denotes
the L∞(0, T ;Hp+1(Ω))-norm.

3. Discrete problem

3.1. Space discretization

Let {Th}h∈(0,h0) be a system of partitions of Ω into a finite number of closed d-dimensional simplices K with
mutually disjoint interiors. Let Fh the system of all faces (edges in 2D) of Th and let FI

h be the set of interior
edges and FB

h the set of boundary edges. For each Γ ∈ Fh we fix a unit normal nΓ , which for Γ ∈ FB
h has

the same orientation as the outer normal to Ω. For each Γ ∈ FI
h there exist two neighbours K(L)

Γ , K
(R)
Γ ∈ Th

such that nΓ is the outer normal to K
(L)
Γ . For v piecewise defined on Th and Γ ∈ FI

h we introduce v|(L)
Γ as

the trace of v|
K

(L)
Γ

on Γ , v|(R)
Γ as the trace of v|

K
(R)
Γ

on Γ , 〈v〉Γ = 1
2

(
v|(L)
Γ + v|(R)

Γ

)
and [v]Γ = v|(L)

Γ − v|(R)
Γ .

On ∂Ω, we define v|(L)
Γ as the trace of v|

K
(L)
Γ

, i.e. on the element adjacent to Γ and v|(R)
Γ = 0 corresponds to

the homogeneous Dirichlet boundary conditions. If [· ]Γ , 〈· 〉Γ , v|(L)
Γ , v|(R)

Γ appear in an integral over Γ ∈ Fh, we
omit the subscript Γ . Let

Sh = {w; w|K ∈ Pp(K), ∀K ∈ Th}

denote the space of discontinuous piecewise polynomial functions of degree p on each K ∈ Th. We say that the
function uh ∈ C1(0, T ;Sh) is the semi-discrete approximate solution of (2.1) if it satisfies the equation(

∂uh
∂t

(t), w
)

+ εAh(uh(t), w) + bh(uh(t), w) = �h(w) (t) ∀w ∈ Sh, ∀ t ∈ [0, T ],

and (uh(0), w) = (u0, w) ∀w ∈ Sh. Here the following forms are used: The convective form

bh(v, ϕ) = −
∑
K∈Th

∫
K

f(v) · ∇ϕdx +
∫
FI

h

H(v(L), v(R),n)[ϕ]dS +
∫
FB

h

H(v(L), v(R),n)ϕ(L)dS,

the diffusion terms are defined as
Ah(v, ϕ) = ah(v, ϕ) + Jh(v, ϕ),

where the bilinear diffusion form corresponding to the symmetric interior penalty Galerkin (SIPG) is

ah(v, ϕ) =
∑
K∈Th

∫
K

∇v·ϕdx −
∫
FI

h

〈∇v〉·n[ϕ]dS −
∫
FI

h

〈∇ϕ〉·n[v]dS −
∫
FB

h

∇v·nϕdS −
∫
FB

h

∇ϕ·nvdS

and the interior and boundary penalty jump terms are defined by

Jh(v, ϕ) =
∫
FI

h

σ[v][ϕ]dS +
∫
FB

h

σvϕdS.
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Here the parameter σ is constant on every edge and defined by σ|Γ = CW /|Γ | for all Γ ∈ Fh, where CW > 0 is
a constant, which must be chosen large enough to ensure coercivity of the form Ah (cf . e.g. [10]).

Finally, we have the right-hand side form:

lh(ϕ)(t) =
∫
Ω

g(t)ϕdx.

As stated earlier, this is the case of homogeneous Dirichlet boundary conditions, for general mixed Dirichlet–
Neumann conditions Ah has a more complicated form (cf . [16]), which we do not consider for simplicity.

We assume the numerical fluxes H in the convective form bh to be Lipschitz continuous, conservative and
consistent. Moreover, we assume that the numerical fluxes are E-fluxes:

(H(v, w, n) − f(q) · n)(v − w) ≥ 0, ∀v, w ∈ R, ∀q between v and w,

where n ∈ R
d is an unit vector, cf . e.g. [2, 18] for details.

We find that a sufficiently regular weak solution of (2.1) satisfies the identity(
∂u

∂t
(t), w

)
+ εAh(u(t), w) + bh(u(t), w) = �h(w) (t) (3.1)

for all w ∈ Sh and all t ∈ (0, T ).
Throughout this paper, we assume the mesh system {Th}h∈(0,h0) to be shape regular, satisfying the inverse

assumption [4].

3.2. Time discretization

For simplicity we assume a uniform time partition tm = mτ , m = 0, . . . , r with time intervals Im = (tm−1, tm)
and with the time step τ = T/r = |Im|. To simplify the notation, we set vm = v(tm).

3.2.1. BDF2

Definition 3.1. The set of functions Um ∈ Sh, m = 0, . . . , r is an approximate solution of problem (2.1)
obtained by the BDF2-DG scheme if for all w ∈ Sh(

3
2
Um − 2Um−1 +

1
2
Um−2, w

)
+ τεAh(Um, w) + τbh(Um, w) = τ�h(w)(tm) (3.2)

for m ≥ 2. For m = 1 we define U1 by

(U1 − U0, w) + τεAh(U1, w) + τbh(U1, w) = τ�h(w)(tm), ∀w ∈ Sh. (3.3)

The initial condition U0 ∈ Sh is the L2(Ω)-projection of u0 onto Sh, i.e.

(U0, w) = (u0, w), ∀w ∈ Sh. (3.4)

Remark 3.2. Since the BDF2 is a 2-step method, we need to specify two initial values U0 and U1 to start the
method. The value U0 can be obtained by L2 projection of initial condition u0 and U1 can be obtained by one
step of the implicit Euler method. In this case the resulting scheme does not lose its second order of accuracy
in time.

3.2.2. Midpoint rule

Definition 3.3. The set of functions Um ∈ Sh, m = 0, . . . , r is an approximate solution of problem (2.1)
obtained by the midpoint-DG scheme if

(Um − Um−1, w) +
τε

2
Ah(Um + Um−1, w) + τbh

(
Um + Um−1

2
, w

)
= τ�h(w)(tm−1 + τ/2), ∀w ∈ Sh,

(3.5)

where U0 is the initial condition obtained by (3.4).
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3.2.3. Discontinuous Galerkin method in time

We define the space

Sτh = {v ∈ L2(0, T ;Sh) : v|Im =
q∑
j=0

v
(m)
j tj , v

(m)
j ∈ Sh, m = 1, . . . , r},

which represents the space of piecewise polynomials up to degree p in space and up to degree q in time. For the
functions from such a space we need to define one-sided values at nodes of the time partition:

vm± = v(tm±) = lim
t→tm±

v(t)

and the jumps

{v}m = vm+ − vm− .

Definition 3.4. The function U ∈ Sτh is an approximate solution of problem (2.1) obtained by the space-time
discontinuous Galerkin scheme if for all w ∈ Sτh ,∫

Im

(U ′, w) + εAh(U,w) + bh(U,w)dt+
(
{U}m−1, w

m−1
+

)
=
∫
Im

�h(w)(t)dt,

for all m = 1, . . . , r. Here U0
− := U0 is the initial condition obtained by (3.4).

Let us define the Radau quadrature on each interval Im:∫
Im

Φ(t)dt ≈ Qmτ [Φ] := τ

q∑
i=0

ωiΦ(tm−1 + τψi),

where ψi are Radau quadrature nodes in [0, 1] with ψq = 1. Such a quadrature has algebraic order 2q and the
quadrature weights are positive and satisfy

q∑
i=0

ωi = 1.

When we apply Radau quadrature to the integrals in Definition 3.4 we obtain the quadrature version of the
time-DG scheme.

Definition 3.5. The function U ∈ Sτh is an approximate solution of problem (2.1) obtained by the quadrature
time discontinuous Galerkin (QT-DG) scheme if for all w ∈ Sτh∫

Im

(U ′, w) + εAh(U,w)dt+Qmτ [bh(U,w)] + ({U}m−1, w
m−1
+ ) = Qmτ [�h(w)(t)], (3.6)

for all m = 1, . . . , r. Here U0
− := U0, the initial condition obtained by (3.4).

Remark 3.6. We note that the first integral in (3.6) does not need to be approximated by quadrature. Due
to the linearity of the terms (U ′, w) and Ah(U,w) w.r.t. both arguments, these terms are a polynomial of
degree at most 2q on each Im and can therefore be integrated exactly by Radau quadrature. However, due to
the nonlinearity of the convective fluxes fs, the term bh(U,w) cannot be, in general, integrated analytically
w.r.t. time and quadrature must be applied in practice. The same holds for the right-hand side form lh(w)(t)
containing the general function g.

Remark 3.7. The numerical solution U from Definition 3.4 or 3.5 is constructed on each Im independently,
inductively for m = 1, . . . , r, with only Um−1

− coming from the previous time interval Im−1 or the initial
condition U0.
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4. Auxiliary results

We denote the energy norm |||w|||2 := Ah(w,w) for all w ∈ Sh. Note that the inverse inequality takes the
following form |||w||| ≤ Ch−1‖w‖ for w ∈ Sh. Let Π be the L2(Ω)-orthogonal projection on Sh.

Throughout this work we denote by C a generic constant independent of h, τ, t and the diffusion coefficient ε.

Lemma 4.1. Let u ∈W 1,∞(Hp+1). Then

‖Πu(t) − u(t)‖ ≤ Chp+1|u(t)|Hp+1 , (4.1)
‖Πu′(t) − u′(t)‖ ≤ Chp+1|u′(t)|Hp+1 , (4.2)(

(Πu− u)(s1) − (Πu− u)(s2), w
)
≤ C|s1 − s2|hp+1‖u‖W 1,∞(Hp+1)‖w‖, (4.3)

for all w ∈ Sh and s1, s2, t ∈ [0, T ].

Proof. Estimates (4.1) and (4.2) are a standard estimate for the L2(Ω)-projection approximation. Estimate (4.3)
can be found e.g. in [9]. �

We summarize the properties of the forms Ah and bh.

Lemma 4.2. Let u ∈ Hp+1(Ω). Then

Ah(v, w) ≤ C|||v||| |||w|||, ∀v, w ∈ Sh, (4.4)
Ah(Πu− u,w) ≤ Chp|||w|||, ∀w ∈ Sh. (4.5)

Proof. The proof of (4.4) and (4.5) can be done in a similar way as in ([8], Lem. 9). �

Lemma 4.3. Let u ∈ Hp+1(Ω) ∩W 1,∞(Ω). Then

bh(v, w) − bh(v̄, w) ≤ C‖v − v̄‖ |||w|||, ∀v, v̄, w ∈ Sh, (4.6)

bh(v, v −Πu) − bh(u, v −Πu) ≤ C

(
1 +

‖v − u‖2
∞

h2

)
(h2p+1 + ‖v −Πu‖2), ∀v ∈ Sh. (4.7)

Proof. The proof of (4.6) can be found in [8]. The proof of (4.7) is essentially the same as that of ([16], Lem. 5.1),
however there the statement and proof are written for the specific choice v := uh, ξ := uh −Πu. �

In the following analyses, it will be important to eliminate the unpleasant term ‖e(t)‖2
∞/h

2 in (4.7), where
e = uh−u. This is possible if we know a priori that ‖e(t)‖∞ = O(h). Since we are concerned in L2(Ω)-estimates,
we want to reformulate this in terms of the L2(Ω)-norm. The following result is proven in [16], we include the
proof here for convenience:

Lemma 4.4. Let p ≥ d/2 and u satisfy the regularity assumptions (5.1). Then

‖e(t)‖ ≤ h1+d/2 =⇒ ‖e(t)‖∞ ≤ Ch,

where C is independent of h, ε, t.

Proof. We write the error as e(t) = η(t) + ξ(t), where η = Πu − u and ξ = uh − Πu ∈ Sh. Due to standard
approximation properties of Π and the inverse inequality between the L∞ and L2-norms, we have

‖e(t)‖∞ ≤ ‖η(t)‖∞ + ‖ξ(t)‖∞ ≤ Ch|u(t)|W 1,∞ + Ch−d/2‖ξ(t)‖
≤ Ch+ Ch−d/2‖e(t)‖ + Ch−d/2‖η(t)‖ ≤ Ch+ Chp+1−d/2|u(t)|Hp+1 ≤ Ch. �
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5. Error estimates for BDF2

We want to estimate the error emh = Um−um, where the values of Um are obtained by the BDF2-DG method.
To do so, we construct a suitable continuation U(t) (i.e. continuous function with respect to time) such that
U(tm) = Um. Then we can also generalize the error as eh = U − u. Our aim is to investigate the generalized
error at arbitrary time t ∈ (0, T ) and prove a suitable a priori error bound. Then the error bound for the
BDF2-DG method is a trivial consequence of the more general error estimate. For the purpose of analysis of
the BDF2-DG scheme we assume following regularity

u ∈W 1,∞(Hp+1) ∩ L∞(W 1,∞) ∩W 3,∞(L2). (5.1)

Definition 5.1. We define the continued approximate solution U : [0, T ] → Sh of problem (2.1) obtained by
the BDF2-DG scheme in the following way: Let m ≥ 2 and s ∈ [0, τ ], we seek U(tm−1 + s) ∈ Sh such that(τ + 2s

τ + s
U(tm−1 + s) − τ + s

τ
Um−1 +

s2

τ2 + τs
Um−2, w

)
+ sεAh(U(tm−1 + s), w) + sbh(U(tm−1 + s), w)

= s�h(w)(tm−1 + s), ∀w ∈ Sh. (5.2)

This defines U on Im for m ≥ 2. For m = 1 we define U on I1 by seeking U(s) ∈ Sh such that

(U(s) − U0, w) + sεAh(U(s), w) + sbh(U(s), w) = s�(w)(s), ∀w ∈ Sh. (5.3)

Remark 5.2. Equation (5.3) was already used for general m in [16] to define the continuation of the implicit
Euler scheme. It represents the implicit Euler method with a variable time step s. By taking s = 0, we get
U(0) = U0, while setting s = τ , we get U(τ) = U(t1) = U1 and it can be proven that between these two values,
U(·) changes continuously.

The motivation for (5.2) is similar. This equation is in fact the backward difference formula with variable time
step, cf . [14]. Setting s = 0, we get U(tm−1) = Um−1, while setting s = τ , we recover the original BDF2-DG
scheme (3.2), hence U(tm) = Um. Similarly as in [16], we shall prove that between the s = 0 and s = τ , U(·)
changes continuously.

Lemma 5.3. There exist constants C1, C2 > 0 independent of h, τ, t, ε, such that the following holds. Let
h ∈ (0, h0) and τ ∈ [0, τ0), where τ0 = max{C1ε, C2h}. Then U , the continued solution from Definition 5.1
exists, is uniquely determined, ‖U(t)‖ is uniformly bounded with respect to t ∈ [0, T ], U(tm) = Um for all
m = 0, . . . , r and ‖U(t)‖ depends continuously on t.

Proof. For m = 1, it is already proven in [16] that the resulting solution U is continuous on I1 and U(0) =
U0, U(t1) = U(τ) = U1. Therefore it is sufficient to consider the case m ≥ 2.

(i) Existence: Let m ≥ 2 and s ∈ [0, τ ], we consider U on Im. We denote the left- and right-hand sides
from (5.2):

Bs(v, w) =
τ + 2s
τ + s

(v, w) + sεAh(v, w) + sbh(v, w),

Lms (w) =
(
τ + s

τ
Um−1 − s2

τ2 + τs
Um−2, w

)
+ s�h(w)(tm−1 + s).

We will show that Bs is strictly monotone and Lipschitz continuous on Sh equipped with the L2(Ω)-scalar
product. Existence and uniqueness then follows from the nonlinear Lax–Milgram lemma, cf . [23].

Monotonicity: using the ellipticity of Ah, the boundedness of bh and the inverse inequality, we get

Bs(v, v − w) −Bs(w, v − w) ≥ τ + 2s
τ + s

‖v − w‖2 + sε|||v − w|||2 − Cs‖v − w‖|||v − w|||

≥
(

1 − Cs

h

)
‖v − w‖2 = M‖v − w‖2, ∀v, w ∈ Sh,

for s, τ sufficiently small with respect to h.
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On the other hand, we may estimate using Young’s inequality:

Bs(v, v − w) −Bs(w, v − w) ≥ τ + 2s
τ + s

‖v − w‖2 + sε|||v − w|||2 − Cs‖v − w‖|||v − w|||

≥ ‖v − w‖2 + sε|||v − w|||2 − sε|||v − w|||2 − C2s

4ε
‖v − w‖2

≥
(

1 − C2s

4ε

)
‖v − w‖2 = M‖v − w‖2, ∀v, w ∈ Sh, (5.4)

in this case we get the condition s, τ sufficiently small with respect to ε.

Lipschitz continuity: We shall show that Bs is Lipschitz continuous:

Bs(v, w) −Bs(v̄, w) ≤ 3
2
‖v − v̄‖ ‖w‖ + Csε|||v − v̄||| |||w||| + Cs‖v − v̄‖ |||w|||

≤
(3

2
+
Csε

h2
+
Cs

h

)
‖v − v̄‖ ‖w‖ = L‖v − v̄‖ ‖w‖.

Since the right-hand side Lms is a linear functional on the finite-dimensional space Sh, it is also bounded
and by the nonlinear Lax–Milgram lemma we obtain the existence and uniqueness of the continued discrete
solution and classical discrete solution, respectively. Finally, we obtain the uniform boundedness of ‖U(t)‖ w.r.t.
t ∈ Im, since the nonlinear Lax–Milgram lemma gives us ‖U(t)‖ ≤ C‖Lms ‖L(L2(Ω),R), which can be bounded
independent of s similarly as in [16].

Since we have existence and uniqueness, we see that U(tm) = Um by setting s = τ in (5.2).

(ii) Continuity: Now we show that the continued discrete solution is continuous with respect to time. Let
m > 1 and t, t̄ ∈ (tm−1, tm] and s = t− tm−1, s̄ = t̄− tm−1. Then by monotonicity,

M‖U(t) − U(t̄)‖2 ≤ Bt(U(t), U(t) − U(t̄)) −Bt(U(t̄), U(t) − U(t̄))

= Lmt (U(t) − U(t̄)) − Lmt̄ (U(t) − U(t̄)) +Bt̄(U(t̄), U(t) − U(t̄)) −Bt(U(t̄), U(t) − U(t̄)). (5.5)

We estimate the B and L terms individually.

|Bt̄(U(t̄), U(t) − U(t̄)) −Bt(U(t̄), U(t) − U(t̄))|

≤ |τ + 2s̄
τ + s̄

− τ + 2s
τ+s

|‖U(t̄)‖‖U(t)−U(t̄)‖+|s̄−s|εAh(U(t̄), U(t) − U(t̄)) + |s̄− s|bh(U(t̄), U(t) − U(t̄))

≤ |s̄− s|
(
τ +

Cε

h2
+ +

C

h

)
‖U(t̄)‖‖U(t) − U(t̄)‖. (5.6)

Similarly we get

|Lmt (U(t) − U(t̄)) − Lmt̄ (U(t) − U(t̄))| ≤
(
|τ + s̄

τ
− τ + s

τ
|‖Um−1‖+| s̄2

τ2 + τ s̄
− s2

τ2 + τs
|‖Um−2‖

)
‖U(t) − U(t̄)‖

+ |s�h(U(t) − U(t̄))(t) − s̄�h(U(t) − U(t̄))(t̄)|
≤ |s̄− s|

(
τ−1‖Um−1‖ + 3τ−1‖Um−2‖

)
‖U(t) − U(t̄)‖ + |s�h(U(t) − U(t̄))(t) − s̄�h(U(t) − U(t̄))(t̄)|. (5.7)

Assuming |s̄− s| = |t̄− t| → 0, we get the limit for the terms on the last row

|s�h(U(t) − U(t̄))(t) − s̄�h(U(t) − U(t̄))(t̄)| ≤ |s− s̄|︸ ︷︷ ︸
→0

|�h(U(t) − U(t̄))(t)|︸ ︷︷ ︸
bounded

+s̄|(g(t) − g(t̄)︸ ︷︷ ︸
→0

, U(t) − U(t̄)︸ ︷︷ ︸
bounded

)| → 0,

since ‖U(t)‖, ‖U(t̄)‖ are uniformly bounded with respect to t, t̄ ∈ (tm−1, tm].
From now it is possible to see that the terms in (5.6) and (5.7) tend to zero as |t− t̄| tends to zero. Together

with (5.5) we get
‖U(t) − U(t̄)‖ → 0 as |s̄− s| = |t̄− t| → 0.
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Now, we prove the continuity at tm−1, i.e. U(tm−1 + s) → Um−1 as s tends to 0+. Since τ+2s
τ+s → 1, τ+sτ → 1,

s2

τ2+τs → 0 and the terms Ah(U(tm−1 + s), w), bh(U(tm−1 + s), w) and �h(w) are bounded, we get from (5.2)

τ + 2s
τ + s

(U(tm−1 + s), w)︸ ︷︷ ︸
→(U(tm−1+s),w)

− τ + s

τ
(Um−1, w)︸ ︷︷ ︸

→(Um−1,w)

+
s2

τ2 + τs
(Um−2, w)︸ ︷︷ ︸
→0

+ sεAh(U(tm−1 + s), w) + sbh(U(tm−1 + s), w)︸ ︷︷ ︸
→0

= s�h(w)(tm−1 + s)︸ ︷︷ ︸
→0

,

i.e. continuity at tm−1.
It remains to prove continuity of U(·) on I1. In the case of computing initial condition by (3.3), we can

continuate the solution on I1 = [0, τ ] by

(U(s) − U0, w) + sεAh(U(s), w) + sbh(U(s), w) = s�(w)(s).

It is already proved in [16] that such a continuation is continuous on [0, τ ]. �

Due to the regularity assumptions (5.1) the exact solution u ∈ C([0, T ];L2(Ω)) and therefore uniformly
continuous on the closed interval [0, T ]. Therefore, by Lemma 5.3, the error eh = U(t) − u(t) is also uniformly
continuous. We divide the error eh = ξ + η, where ξ = U −Πu and η = Πu− u.

Lemma 5.4. Let u satisfy regularity assumptions (5.1). Let s ∈ (0, τ ]. Then(τ + 2s
τ + s

u(tm−1 + s) − τ + s

τ
um−1 +

s2

τ2 + τs
um−2 − su′(tm−1 + s), w

)
≤ Csτ2‖u‖W 3,∞(L2)‖w‖, (5.8)(

u(s) − u0 − su′(s), w
)
≤ Csτ‖u‖W 2,∞(L2)‖w‖, (5.9)(τ + 2s

τ + s
η(tm−1 + s) − τ + s

τ
ηm−1 +

s2

τ2 + τs
ηm−2, w

)
≤ Cshp+1‖u‖W 1,∞(Hp+1)‖w‖. (5.10)

Proof. Let us denote y = tm−1 + s. Since

τ + s

τ
− s2

τ2 + τs
=
τ + 2s
τ + s

,
τs+ s2

τ
− τs2 + s3

τ2 + τs
= s,

τs2 + s3

2τ
− s2(τ + s)2

2τ2 + 2τs
= 0,

we can formally rewrite

τ + 2s
τ + s

u(y) − τ + s

τ
um−1 +

s2

τ2 + τs
um−2 − su′(y) =

τ + s

τ

(
u(y) − su′(y) +

s2

2
u′′(y) − um−1

)

− s2

τ2 + τs

(
u(y) − (τ + s)u′(y) +

(τ + s)2

2
u′′(y) − um−2

)
(5.11)

and

τ + 2s
τ + s

η(y) − τ + s

τ
ηm−1 +

s2

τ2 + τs
ηm−2 =

τ + s

τ
(η(y) − ηm−1) − s2

τ2 + τs
(η(y) − ηm−2). (5.12)

Then it is simple to see

τ + s

τ

(
u(y) − su′(y) +

s2

2
u′′(y) − um−1, w

)
=
τ + s

τ

∫ y

tm−1

∫ y

z1

∫ y

z2

(u′′′(z3), w)dz3dz2dz1

≤ τ + s

τ
‖u‖W 3,∞(L2)‖w‖

∫ y

tm−1

∫ y

z1

∫ y

z2

1dz3dz2dz1 =
τ + s

τ

s3

6
‖u‖W 3,∞(L2)‖w‖ ≤ Csτ2‖u‖W 3,∞(L2)‖w‖
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and

s2

τ2 + τs

(
u(y) − (τ + s)u′(y) +

(τ + s)2

2
u′′(y) − um−2, w

)
=

s2

τ2 + τs

∫ y

tm−2

∫ y

z1

∫ y

z2

(u′′′(z3), w)dz3dz2dz1

≤ s2

τ2 + τs
‖u‖W 3,∞(L2)‖w‖

∫ y

tm−2

∫ y

z1

∫ y

z2

1dz3dz2dz1

=
s2

τ(τ + s)
(τ + s)3

6
‖u‖W 3,∞(L2)‖w‖ ≤ Csτ2‖u‖W 3,∞(L2)‖w‖,

which proves (5.8). The proof of (5.9) follows from

(u(s) − u0 − su′(s), w) = −
∫ s

0

∫ s

z1

(u′′(z2), w)dz2dz1 ≤ 1
2
s2‖u‖W 2,∞(L2)‖w‖.

The proof of (5.10) follows directly from (5.12) and Lemma 4.1. �

In the proof of the error estimate of Lemma 5.7, we will need to estimate the BDF coefficients at U(tm−1 +s),
Um−1, Um−2 in (5.2). For this purpose we define the sequence {γj}∞j=0 by

γ0 =
τ + s

τ + 2s
,

3
2
γ1 −

τ + s

τ
γ0 = 0,

3
2
γ2 − 2γ1 +

s2

τ2 + τs
γ0 = 0,

3
2
γj+2 − 2γj+1 +

1
2
γj = 0, ∀j = 1, 2, 3, . . . (5.13)

Lemma 5.5. Let the sequence {γj}∞j=0 be defined by (5.13). Then such a sequence is positive and bounded, i.e.
0 < γj < γ∞ for all j = 0, 1, . . . for some γ∞ ∈ R. Moreover,

γ1 − 2
s2

τ2 + τs
γ0 > 0 (5.14)

and for j ≥ 1 the sequence γj is increasing.

Proof. Let us calculate the initial values for γj . γ0 is defined already by (5.13).

γ1 =
2
3

(τ + s)2

τ(τ + 2s)
,

γ2 =
8
9

(τ + s)2

τ(τ + 2s)
− 2

3
s2

τ(τ + 2s)
·

From this (5.14) immediately follows. For j = 1, 2, . . ., γj are defined by a difference equation with the initial
condition γ1 and γ2 and with the solution

γj =
(

(τ + s)2

τ(τ + 2s)
− s2

τ(τ + 2s)

)
+
(

1
3

s2

τ(τ + 2s)
− 1

9
(τ + s)2

τ(τ + 2s)

)(
1
3

)j−2

·



A PRIORI DIFFUSION-UNIFORM ERROR ESTIMATES FOR NONLINEAR SINGULARLY PERTURBED PROBLEMS 547

Since

(τ + s)2

τ(τ + 2s)
− s2

τ(τ + 2s)
> 0,

1
3

s2

τ(τ + 2s)
− 1

9
(τ + s)2

τ(τ + 2s)
< 0,

we can see that the sequence γj is increasing, positive and bounded. �

Let us start with the result on the initial condition defined by (3.3).

Lemma 5.6. Let p > d/2. Let s ∈ (0, τ ]. If ‖e(t)‖ ≤ h1+d/2 for t ∈ [0, s], then

sup
t∈[0,s]

‖e(t)‖2 ≤ C̃2
T (h2p+1 + εh2p + τ4),

where the constant C̃T is independent of h, τ, ε.

Proof. Since U0 = Πu0 we can see that ‖e0‖ ≤ Chp+1. Multiplying (3.1) for t = s by s, subtracting from (5.3)
and adding several terms we get(

ξ(s) − ξ0, w
)

+ sεAh(ξ(s), w) =
(
su′(s) − u(s) + u0, w

)
−
(
η(s) − η0, w

)
+ s
(
bh (u(s), w) − bh (U(s), w)

)
− sεAh(η(s), w).

Setting w = 2ξ(s) and using Lemmas 4.1, 4.2, 4.3 and 5.4, we get

‖ξ(s)‖2 − ‖ξ0‖2 + ‖ξ(s) − ξ0‖2 + sε|||ξ(s)|||2 ≤ Cτ

(
1 +

‖e(s)‖2
∞

h2

)
(h2p+1 + ‖ξ(s)‖2)

+ Cτ4 + Ch2p+2 + Cεh2p +
1
2
‖ξ(s)‖2.

Using the assumptions and Lemma 4.4, we can get rid of the unpleasant term ‖e(s)‖2
∞/h

2 and we get

‖ξ(s)‖2 ≤ C(‖ξ0‖2 + h2p+1 + εh2p + τ4).

The proof is completed by taking similar estimates for η and the triangle inequality to estimate e(s). �

Now, we extend Lemma 5.6 to the rest of [0, T ] by analyzing the BDF scheme (5.2).

Lemma 5.7. Let p > d/2. Let n > 0 and s ∈ (0, τ ]. If ‖e(t)‖ ≤ h1+d/2 for t ∈ [0, tn−1 + s], then

sup
t∈[0,tn−1+s]

‖e(t)‖2 ≤ C2
T (h2p+1 + εh2p + τ4),

where the constant CT is independent of h, τ, ε.

Proof. To simplify the relations we set y = tn−1 + s. Multiplying (3.1) for t = y by s, subtracting from (5.2)
and adding several terms we get(

τ + 2s
τ + s

ξ(y) − τ + s

τ
ξn−1 +

s2

τ2 + τs
ξn−2, w

)
+ sεAh(ξ(y), w)

=
(
su′(y) − τ + 2s

τ + s
u(y) +

τ + s

τ
un−1 − s2

τ2 + τs
un−2, w

)
−
(
τ + 2s
τ + s

η(y) − τ + s

τ
ηn−1 +

s2

τ2 + τs
ηn−2, w

)
+ s (bh (u(y), w) − bh (U(y), w)) − sεAh(η(y)), w).
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For lower time levels m ≤ n− 1 we obtain analogically(
3
2
ξm − 2ξm−1 +

1
2
ξm−2, w

)
+ τεAh(ξm, w) =

(
τu′(tm) − 3

2
um + 2um−1 − 1

2
um−2, w

)

−
(

3
2
ηm − 2ηm−1 +

1
2
ηm−2, w

)
+ τ (bh (um, w) − bh (Um, w)) − τεAh(ηm, w).

Setting w = 2ξ(y) we obtain on the left-hand side using the fact s ∈ (0, τ ]

2
(
τ + 2s
τ + s

ξ(y) − τ + s

τ
ξn−1 +

s2

τ2 + τs
ξn−2, ξ(y)

)
+ 2sεAh(ξ(y), ξ(y))

= 2
τ + s

τ
(ξ(y) − ξn−1, ξ(y)) − 2

s2

τ2 + τs
(ξ(y) − ξn−2, ξ(y)) + 2sε|||ξ(y)|||2

=
τ + s

τ
(‖ξ(y)‖2 − ‖ξn−1‖2 + ‖ξ(y) − ξn−1‖2) − s2

τ2 + τs
(‖ξ(y)‖2 − ‖ξn−2‖2 + ‖ξ(y) − ξn−2‖2) + 2sε|||ξ(y)|||2

≥ τ + 2s
τ + s

‖ξ(y)‖2 − τ + s

τ
‖ξn−1‖2 +

s2

τ2 + τs
‖ξn−2‖2 +

τ + s

τ
‖ξ(y) − ξn−1‖2

− 2
s2

τ2 + τs
‖ξ(y) − ξn−1‖2 − 2

s2

τ2 + τs
‖ξn−1 − ξn−2‖2 + 2sε|||ξ(y)|||2

≥ τ + 2s
τ + s

‖ξ(y)‖2 − τ + s

τ
‖ξn−1‖2 +

s2

τ2 + τs
‖ξn−2‖2 +

s

τ
‖ξ(y) − ξn−1‖2

− 2
s2

τ2 + τs
‖ξn−1 − ξn−2‖2 + 2sε|||ξ(y)|||2.

Setting s = τ (i.e. with w = 2ξm), the relations simplify to the usual

2
(

3
2
ξm − 2ξm−1 +

1
2
ξm−2, ξm

)
+ 2τεAh(ξm, ξm)

≥ 3
2
‖ξm‖2 − 2‖ξm−1‖2 +

1
2
‖ξm−2‖2 + ‖ξm − ξm−1‖2 − ‖ξm−1 − ξm−2‖2 + 2τε|||ξm|||2.

Using Lemmas 4.1, 4.2, 4.3 and 5.4 to estimate the right-hand side terms, we get

τ + 2s
τ + s

‖ξ(y)‖2 − τ + s

τ
‖ξn−1‖2 +

s2

τ2 + τs
‖ξn−2‖2 − 2

s2

τ2 + τs
‖ξn−1 − ξn−2‖2

≤ Cs

(
1 +

‖e(y)‖2
∞

h2

)
(εh2p + h2p+1 + τ4 + ‖ξ(y)‖2)

and
3
2
‖ξm‖2 − 2‖ξm−1‖2 +

1
2
‖ξm−2‖2 + ‖ξm − ξm−1‖2 − ‖ξm−1 − ξm−2‖2

≤ Cτ

(
1 +

‖em‖2
∞

h2

)
(εh2p + h2p+1 + τ4 + ‖ξm‖2).

Using the assumptions and Lemma 4.4, we can eliminate the terms ‖e(y)‖2
∞/h

2 and ‖em‖2
∞/h

2:

τ + 2s
τ + s

‖ξ(y)‖2 − τ + s

τ
‖ξn−1‖2 +

s2

τ2 + τs
‖ξn−2‖2 − 2

s2

τ2 + τs
‖ξn−1 − ξn−2‖2

≤ Cs(εh2p + h2p+1 + τ4 + ‖ξ(y)‖2), (5.15)
3
2
‖ξm‖2 − 2‖ξm−1‖2 +

1
2
‖ξm−2‖2 + ‖ξm − ξm−1‖2 − ‖ξm−1 − ξm−2‖2

≤ Cτ(εh2p + h2p+1 + τ4 + ‖ξm‖2). (5.16)
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Multiplying (5.15) by γ0 and (5.16) by γn−m for m = 2, . . . , n − 1, where the sequence {γj}∞j=0 is defined
by (5.13), and by summing all these inequalities together, we get by Lemma 5.5

‖ξ(y)‖2 ≤ Csγ0‖ξ(y)‖2 + Cγ∞(‖ξ1‖2 + ‖ξ0‖2) + Cτγ∞

n−1∑
j=2

‖ξj‖2 + Cγ∞y(εh2p + h2p+1 + τ4).

Analogically we can obtain a similar result for ‖ξm‖ for m = 2, . . . , n − 1. Only this time the sequence for
{γj}∞j=0 used for multiplying the equations is modified by taking (5.13) with s = τ :

‖ξm‖2 ≤ Csγ0‖ξm‖2 + Cγ∞(‖ξ1‖2 + ‖ξ0‖2) + Cτγ∞

m−1∑
j=2

‖ξj‖2 + Cγ∞tm(εh2p + h2p+1 + τ4).

Since ‖ξ1‖2 and ‖ξ0‖2 are bounded according to Lemma 5.6, we obtain the result using the discrete Gronwall
lemma. �

Now we get rid of the a priori assumption ‖e(t)‖ ≤ h1+d/2 from Lemmas 5.6 and 5.7.

Theorem 5.8. Let p > 1+ d/2. Let τ0 be defined as in Lemma 5.3. Let h ∈ (0, h0) and τ1 ∈ (0, τ0) be such that

C2
T (h2p+1 + εh2p + τ4) ≤ 1

4
h2+d, (5.17)

where CT is the constant from Lemma 5.7 independent of h, τ, ε. Then the error of the BDF2-DG scheme
satisfies

sup
t∈[0,T ]

‖e(t)‖2 ≤ C2
T (h2p+1 + εh2p + τ4). (5.18)

Proof. We will follow the idea of continuous mathematical induction from [16]. Since the proof essentially follows
the same pattern therein, we only give a brief description without details.

For time t = 0 it is easy to see that the error estimate holds, because the error is in fact the error of L2

projection in initial data, which is sufficiently small under the assumptions of the theorem. Let us assume that
the error estimate (5.18) holds on the interval [0, s] for some s ∈ [0, T ]. According to the assumption (5.17) we
can see that the error can be estimated by ‖e(t)‖ ≤ 1

2h
1+d/2, t ∈ [0, s]. Since the error e(·) is continuous (even

uniformly continuous) with respect to time, we know that there exists some δ > 0 such that ‖e(t)‖ ≤ h1+d/2,
t ∈ [0, s+δ] and we can see that it is possible to use Lemma 5.7 on the larger interval [0, s+δ], which guarantees
the error estimate (5.18) on [0, s + δ]. Since the error is uniformly continuous in time, we have a fixed δ > 0
independent of s during the induction process and using the argument repeatedly we obtain the result up to
s = T . �

Remark 5.9. The condition (5.17) can be essentially split into two parts, e.g. C2
T (h2p+1 + εh2p) ≤ 1

8h
2+d

and C2
T τ

4 ≤ 1
8h

2+d. The first condition can be satisfied for sufficiently small h only if p > 1 + d/2. The second
condition is satisfied only if the CFL-like condition τ = O(h1/2+d/4) holds. Of course, we still need the continued
error e(·) to exist uniquely and be continuous in time, for which we need τ = O(max{ε, h}) by Lemma 5.3.

Remark 5.10. We note that if ε = 0, we obtain the improved estimate O(hp+1/2 + τ2) under the weaker
condition p > (1 + d)/2. This is also the case for Theorems 6.6 and 7.15 for the midpoint rule and QT-DG
scheme.

The reader might ask why such an elaborate construction of the continuation as (5.2) is used, why not use
e.g. some simple interpolation in time. In the proof of the estimates we proceed by induction from one time
node to the next. Starting from the error of the initial condition, we want to prove that if the error em−1
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at tm−1 is of the desired order, e.g. O(hp+1/2), then so is em. The estimates of the convective terms allow us
to do this if we know a priori that ‖em‖ = O(h1+d/2). But in [16] it is proven, given the presented estimates,
that the implication ‖em−1‖ = O(hp+1/2) =⇒ ‖em‖ = O(h1+d/2) does not hold for implicit schemes (the proof
is for the backward Euler scheme, however exactly the same reasoning holds e.g. for the BDF2 scheme). The
proposed solution is to work with a continuous in time variant of the error, not discrete, and the continuity
will help us go from tm−1 to tm via suitably small intermediate steps while satisfying the necessary assumption
‖e‖ = O(h1+d/2) along the way simply by continuity. Therefore the three requirements on the continuation
are that e(t) is continuous w.r.t. t, that it coincides with em−1 and em at tm−1, tm and that it has the same
order of approximation in time as the analyzed scheme for all t. If we used e.g. a simple Lagrange interpolation
of em, em−1, . . . or Um, Um−1, . . ., in order to prove anything about this interpolation between tm−1, tm we
would first need to know the behavior of the interpolated function at the interpolation nodes, including the
last one: tm. In other words, we would need to have estimates for em in advance, which we do not, we only
have estimates for em−1 and earlier. In our approach, for t ∈ (tm−1, tm) the continuation is constructed only
from Um−1, Um−2 without any knowledge of Um or em. We start from tm−1 and by varying the time step in a
variable time step BDF2 scheme, we go continuously from tm−1 to tm and obtain Um at tm in a natural way.
The estimates for the continuation are therefore obtained only from estimates of em−1, em−2 (which we have
from the induction assumption) while having the advantage of continuity in time to help control the a priori
assumption ‖e‖ = O(h1+d/2). To work with the Lagrange interpolation of the error in time, we would need to
know not only the behavior at em−1, but also at em as stated earlier. Another possibility, to use some form
of extrapolation from tm−1, tm−2, . . . would also not work, since at tm we would not obtain Um and therefore
would not be estimating the BDF2 scheme but some different extrapolated solution.

Moreover, since our continuation is constructed using the BDF2 scheme itself (albeit with variable coeffi-
cients), the analysis of its properties is done using tools that would be used anyway. Perhaps a slightly simpler
form than (5.2) could be possible, but given the presented reasoning, in the end it must be some variation on
the BDF2 scheme itself, not simple interpolation.

6. Error estimates for the Midpoint rule

In this section, we investigate the error estimates of the approximate solution Um, m = 0, . . . , r obtained
by the method (3.5). As in the case of the BDF2-DG scheme, we construct a continuous extension of the
discrete solution similar to Definition 5.1. For the purpose of analysis of the midpoint-DG scheme we assume
the following regularity

u ∈W 1,∞(Hp+1) ∩W 2,∞(H2 ∩W 1,∞
0

)
∩W 3,∞(L2) (6.1)

Definition 6.1. We define the continued approximate solution U : [0, T ] → Sh of problem (2.1) obtained by
the midpoint-DG scheme in the following way: Let m > 0 and s ∈ [0, τ ], we seek U(tm−1 + s) ∈ Sh such that

(
U(tm−1 + s) − Um−1, w

)
+
sε

2
Ah
(
U(tm−1 + s) + Um−1, w

)
+ sbh

(
U(tm−1 + s) + Um−1

2
, w

)
= s�h(w)(tm−1 + s/2), ∀w ∈ Sh. (6.2)

As in Definition 5.1, by setting s := 0, we obtain U(tm−1) = Um−1. By setting s := τ , we obtain U(tm) = Um.
Similarly as for the BDF2 scheme we can prove existence, uniqueness and time-continuity of the continued

midpoint-DG solution from Definition 6.1.

Lemma 6.2. There exist constants C1, C2 > 0 independent of h, τ, t, ε, such that the following holds. Let
h ∈ (0, h0) and τ ∈ [0, τ0), where τ0 = max{C1ε, C2h}. Then U , the continued solution from Definition 6.1
exists, is uniquely determined, ‖U(t)‖ is uniformly bounded with respect to t ∈ [0, T ], U(tm) = Um for all
m = 0, . . . , r and ‖U(t)‖ depends continuously on t.
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Proof.
(i) Existence: We denote the left- and right-hand side from (6.2)

Bms (v, w) = (v − Um−1, w) +
sε

2
Ah(v + Um−1, w) + sbh

(
v + Um−1

2
, w

)
,

Lms (w) = s�h(w)(tm−1 + s/2).

Then Bms is strongly monotone on Sh:

Bms (v, v − w) −Bms (w, v − w) ≥ ‖v − w‖2 +
sε

2
|||v − w|||2 − Cs‖v − w‖ |||v − w|||

≥
(

1 − Cs

h

)
‖v − w‖2 = M‖v − w‖2

for sufficiently small s, τ with respect to h. On the other hand, we may estimate using Young’s inequality as
in (5.4) to obtain monotonicity for s, τ sufficiently small with respect to ε.

Now, we show that Bms is Lipschitz continuous on Sh:

Bms (v, w) −Bms (v̄, w) ≤ ‖v − w‖ ‖w‖ + C
sε

2
|||v − v̄||| |||w||| + Cs‖v − v̄‖ |||w|||

≤
(

1 +
Csε

h2
+
Cs

h

)
‖v − v̄‖ ‖w‖ = C‖v − v̄‖ ‖w‖.

The right-hand side Lms is bounded, hence continuous, on Sh the nonlinear Lax-Milgram lemma gives us existence
and uniqueness of the continued discrete solution and classical discrete solution, respectively.

(ii) Continuity: Continuity with respect to time can be proved in the same way as in the proof of Lemma 5.3.
Again, we use the monotonicity of the form Bms and write

M‖U(t) − U(t̄)‖2 ≤ Bmt (U(t), U(t) − U(t̄)) −Bmt (U(t̄), U(t) − U(t̄))
= Lmt (U(t) − U(t̄)) − Lmt̄ (U(t) − U(t̄)) +Bmt̄ (U(t̄), U(t) − U(t̄)) −Bmt (U(t̄), U(t) − U(t̄)).

Similarly as in BDF case we can estimate the terms on the second and third row and prove that they tend
to zero as |t − t̄| tends to zero, therefore ‖U(t) − U(t̄)‖ tends to zero as well. Analogically we can prove the
continuity at tm−1+. Since the exact solution u is continuous and since we have continuity on the closed interval
[0, T ], we can see that the error U(t) − u(t) is uniformly continuous. �
Lemma 6.3. Let u satisfy regularity assumptions (6.1). Let s ∈ (0, τ ]. Then

(u(tm−1 + s) − um−1 − su′(tm−1 + s/2), w) ≤ Csτ2‖u‖W 3,∞(L2)‖w‖

Proof. The proof is analogical to the proof of Lemma 5.4. We can formally rewrite

u(tm−1 + s) − um−1 − su′(tm−1 + s/2) = u(tm−1 + s) − um−1 − su′(tm−1)

− s2

2
u′′(tm−1) − su′(tm−1 + s/2) + su′(tm−1) +

s2

2
u′′(tm−1).

Then it is easy to see that

(
u(tm−1 + s) − um−1 − su′(tm−1 + s/2), w

)
=
∫ tm−1+s

tm−1

∫ z1

tm−1

∫ z2

tm−1

(u′′′(z3), w)dz3dz2dz1

− s

∫ tm−1+s/2

tm−1

∫ z1

tm−1

(u′′′(z2), w)dz2dz1

≤
(
s3

6
+
s3

8

)
‖u‖W 3,∞(L2)‖w‖. �
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Lemma 6.4. Let u satisfy regularity assumptions (6.1). Let s ∈ (0, τ ]. Then

Ah

(
u(tm−1 + s/2)− u(tm−1 + s) + um−1

2
, w

)
≤ Cτ2‖u‖W 2,∞(H2)|||w||| (6.3)

bh
(
u(tm−1 + s/2), w

)
− bh

(
u(tm−1 + s) + um−1

2
, w

)
≤ Cτ2‖u‖W 2,∞(H2)‖w‖ (6.4)

Proof. Let us denote u1 = u(tm−1 + s/2) and u2 = u(tm−1+s)+um−1

2 . Moreover, it is possible to see that

u1 − u2 = u(tm−1 + s/2)− u(tm−1 + s) + um−1

2

=
1
2
u(tm−1 + s/2) − 1

2
u(tm−1 + s) +

s

2
u′(tm−1 + s/2) +

1
2
u(tm−1 + s/2)− 1

2
um−1 − s

2
u′(tm−1 + s/2)

= −1
2

∫ tm−1+s

tm−1+s/2

∫ z1

tm−1+s/2

u′′(z2)dz2dz1 −
1
2

∫ tm−1+s/2

tm−1

∫ tm−1+s/2

z1

u′′(z2)dz2dz1. (6.5)

Following the proof of ([8], Lem. 9) it can be shown

Ah(u1 − u2, w) ≤ C(|||u1 − u2||| + |u1 − u2|H2)|||w|||. (6.6)

Since u1, u2 ∈ H1
0 (Ω), we can simplify (6.6) to

Ah(u1 − u2, w) ≤ C‖u1 − u2‖H2 |||w|||.

Using (6.5) we get

Ah(u1 − u2, w) ≤ C
s2

2
‖u‖W 2,∞(H2)|||w|||,

which implies (6.3). Since u1 and u2 are smooth enough, it implies

bh(u1, w) − bh(u2, w) =
∫
Ω

∇ · (f(u1) − f(u2))wdx ≤ ‖∇ · (f(u1) − f(u2))‖ ‖w‖.

To prove (6.4) it is sufficient to estimate ‖∇ · (f(u1) − f(u2))‖.

‖∇ · (f(u1) − f(u2))‖ ≤
d∑
i=1

∥∥∥∥f ′
i(u1)

∂u1

∂xi
− f ′

i(u2)
∂u2

∂xi

∥∥∥∥
≤

d∑
i=1

(∥∥∥∥f ′
i(u1)

(
∂u1

∂xi
− ∂u2

∂xi

)∥∥∥∥+
∥∥∥∥(f ′

i(u1) − f ′
i(u2))

∂u2

∂xi

∥∥∥∥
)

≤ dmax
i

‖f ′
i(u1)‖L∞ |u1 − u2|H1 + dmax

i
‖f ′
i(u1) − f ′

i(u2)‖L∞ |u2|H1 .

Then (6.4) is a consequence of (6.5) and ‖f ′
i(u1) − f ′

i(u2)‖L∞ ≤ C‖u1 − u2‖L∞ . �

Now, we shall derive the error estimate of the continued solution at arbitrary time t ∈ [0, T ] which immediately
implies the error estimate for the original midpoint scheme (3.5).

Lemma 6.5. Let p > d/2. Let m > 0 and s ∈ (0, τ ]. If ‖e(t)‖ ≤ h1+d/2 for t ∈ [0, tm−1 + s], then

sup
t∈[0,tm−1+s]

‖e(t)‖2 ≤ C2
T (h2p+1 + εh2p + τ4),

where the constant CT is independent of h, τ, ε.
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Proof. We set y = tm−1 +s. Multiplying (3.1) for t = tm−1 +s/2 by s, subtracting from (6.2) and adding several
terms we get

(ξ(y) − ξm−1, w) +
sε

2
Ah
(
ξ(y) + ξm−1), w

)
≤
(
s
∂u

∂t
(tm−1 + s/2) − u(y) + um−1, w

)

+ s

(
bh
(
u(tm−1 + s/2), w

)
− bh

(u(y) + um−1

2
, w
))

+
(
η(y) − ηm−1, w

)
+ s

(
bh

(u(y) + um−1

2
, w
)
− bh

(U(y) + Um−1

2
, w
))

− sε

2
Ah
(
η(y) + ηm−1), w

)
+ s

(
Ah(u(tm−1 + s/2), w) −Ah

(u(y) + um−1

2
, w
))

.

Setting w = ξ(y) + ξm−1 and using Lemmas 4.1–4.3 and Lemma 6.4 to estimate the right-hand side, we get

‖ξ(y)‖2 − ‖ξm−1‖2 ≤ Cs

(
1 +

‖e(y) + em−1‖2
∞

h2

)
(εh2p + h2p+1 + τ4 + ‖ξ(y)‖2 + ‖ξm−1‖2).

Using the assumptions we can get rid of the unpleasant term ‖e(s)+ em−1‖2
∞/h

2. Finally, by taking s := τ and
m = 1, . . ., we obtain a similar estimate for ‖ξm‖2 − ‖ξm−1‖2. By the discrete Gronwall lemma we can finish
the proof. �

Theorem 6.6. Let p > 1+ d/2. Let τ0 be defined as in Lemma 6.2. Let h ∈ (0, h0) and τ1 ∈ (0, τ0) be such that

C2
T (h2p+1 + εh2p + τ4) ≤ 1

4
h2+d, (6.7)

where CT is the constant from Lemma 6.5 independent of h, τ, ε. Then the error of the midpoint–DG scheme
satisfies

sup
t∈[0,T ]

‖e(t)‖2 ≤ C2
T (h2p+1 + εh2p + τ4).

Proof. The proof is essentially identical to that of Theorem 5.8. We have the desired estimate for t = 0 and due
to continuity and Lemma 6.5, we can extend its validity to time T by induction. �

Remark 6.7. Similarly as in Remark 6.7, the condition (6.7) can be essentially split into two parts: p > 1+d/2
and τ = O(h1/2+d/4). The latter condition is weaker than for the backward Euler method, where we needed
τ = O(h1+d/2).

7. Quadrature variant of time-DG

In this section, we will prove error estimates for the quadrature variant of the QT-DG. As in the previous
sections, we will construct a suitable continuation of U from Definition 3.5. While for the BDF2 and midpoint
schemes, the discrete solution is defined only in the nodes of the partition tm and the continuation “fills in the
gaps” between these points, the DG solution U is already inherently defined on the whole interval (0, T ). It is
therefore a question how to define a continuation w.r.t. time for such an object. In our approach, we construct
the continuation Uy with respect to an auxiliary parameter y. Then Uy will be a piecewise polynomial function
defined on (0, y) which will depend continuously on y in the L∞(L2)-norm. Again, we will use an induction
argument to pass with y from 0 to T . For our analysis we will need the following regularity

u ∈ W 1,∞(Hp+1) ∩ L∞(W 1,∞) ∩W q+1,∞(H1). (7.1)
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7.1. Construction of the continuation

Throughout this section, let s ∈ (0, τ ] and m ∈ {1, . . . , r}. We denote y = tm−1 + s, the continuation
parameter and define Im(s) = (tm−1, y). Let us generalize the quadrature Qmτ to Qms :∫

Im(s)

Φ(t)dt ≈ Qms [Φ] = s

q∑
i=0

ωiΦ(tm−1 + sψi).

We define the space of piecewise polynomials up to degree p in space and up to degree q in time defined
on Im:

Smh =
{
v ∈ L2(Im;Sh) : v =

q∑
j=0

vjt
j , vj ∈ Sh

}
.

Definition 7.1. Let y ∈ Im ∪ {tm}. We say that the function Uy ∈ L2(0, tm;Sh) is a continued approximate
solution of problem (2.1) obtained by the QT-DG scheme if Uy|Il

= U |Il
for l = 0, . . . ,m − 1, where U is the

space-time DG solution from Definition 3.5 and Uy|Im ∈ Smh satisfies∫
Im(s)

(U ′
y, w) + εAh(Uy, w)dt +Qms [bh(Uy, w)] + ({Uy}m−1, w

m−1
+ ) = Qms [�h(w)] ∀w ∈ Smh . (7.2)

Remark 7.2. We note that by taking s = τ, or equivalently y = tm, we get Uy|(0,tm) = U |(0,tm), i.e. we obtain
the original space-time DG solution on (0, tm). Specifically, by taking y = T , we get UT = U on the whole
interval (0, T ). We note also that relation (7.2) provides naturally the definition of Uy on Im(s). Since Uy|Im is
a polynomial with respect to time, Uy is uniquely defined on the remaining part of Im and corresponds to the
natural prolongation of Uy|Im(s).

In order to prove existence, uniqueness and continuous dependence on y, we first need to establish mono-
tonicity and Lipschitz continuity of the corresponding forms in (7.2). The same results can then be derived
for (3.6) by taking s := τ . Let us denote the left- and right-hand side of (7.2) by

Bms (v, w) =
∫
Im(s)

(v′, w) + εAh(v, w)dt +Qms [bh(v, w)] + (vm−1
+ , wm−1

+ ),

Lms (w) = Qms [�h(w)] + (Um−1
− , wm−1

+ ).

Definition 7.3. We define the projection Pms : C(Im(s);L2(Ω)) → Smh by

(Pms v)(tm−1 + sψi) = v(tm−1 + sψi), ∀i = 0, . . . , q. (7.3)

Furthermore, for any function v ∈ Smh we denote

ṽ(t) = Pms

( s

t− tm−1
v(t)

)
. (7.4)

We point out that the relevant factors s
tm−1+sψi−tm−1

= 1
ψi

≥ 1. We have the following approximation
properties of Pms :

Lemma 7.4. Let u ∈W q+1,∞(H1). Then

sup
Im(s)

‖Pms u− u‖ ≤ Csq+1 sup
Im(s)

‖u(q+1)‖,

sup
Im(s)

|||Pms u− u||| ≤ Csq+1 sup
Im(s)

|||u(q+1)|||,

where the constant C does not depend on s.
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Proof. The proof is an analogy to (e.g. [4], Thm. 3.1.5) for Bochner spaces. The result is also derived in the
Appendix of [20]. �

We shall use following technical lemmas.

Lemma 7.5. For any v ∈ Smh the following terms are equivalent with the equivalence constants depending only
on q:

sup
Im(s)

‖v‖2, sup
Im(s)

‖ṽ‖2,
1
s

∫
Im(s)

‖ṽ‖2dt.

Proof. The proof follows immediately from the fact that Smh has finite dimension. �

Lemma 7.6. Let v ∈ Smh and ṽ defined by (7.4). Then∫
Im(s)

(v′, 2ṽ)dt+ (vm−1
+ , 2ṽm−1

+ ) = ‖v(y)‖2 +
1
s

∫
Im(s)

‖ṽ‖2dt.

Proof. The proof can be made as a simple extension of ([1], Lem. 2.1), which describes the same result for scalar
polynomials and on the unit time interval. �

Lemma 7.7. Let v ∈ Smh and ṽ be defined by (7.4), then

0 ≤
∫
Im(s)

Ah(v, v)dt ≤
∫
Im(s)

Ah(v, ṽ)dt.

Proof.

0 ≤
∫
Im(s)

Ah(v, v)dt = Qms [Ah(v, v)] = s

q∑
i=0

ωiAh(v(tm−1 + sψi), v(tm−1 + sψi))

≤ s

q∑
i=0

ωi
1
ψi
Ah(v(tm−1 + sψi), v(tm−1 + sψi)) = Qms [Ah(v, ṽ)] =

∫
Im(s)

Ah(v, ṽ)dt,

since 1/ψi ≥ 1. �

Now we are ready to prove fundamental properties of the forms Bms and Lms . We note that the mapping
v → ṽ is a bijection on Smh , therefore we can reformulate problem (7.2), i.e. Bms (Us, w) = Lms (w), for all w ∈ Smh
to the equivalent problem Bms (Us, w̃) = Lms (w̃) for all w ∈ Smh . Hence for the purpose of proving existence and
uniqueness of Uy, we can deal either with Bms (., .) or Bms (., .̃) and similarly for Lms .

Lemma 7.8. Let s ≤ τ ≤ C1h, where C1 is a suitable constant. Then the form Bms (., .̃) is strongly monotone
and Lipschitz continuous on Smh with respect to the L2(Ω)-norm, with the monotonicity and Lipschitz constants
independent of s. Furthermore, Lms is bounded on this space, with norm uniformly bounded with respect to s but
depending on ‖Um−1

− ‖.

Proof. To simplify the notation, all of the suprema in this proof are over the relevant interval Im(s).
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(i) Monotonicity of Bms : Let v, w ∈ Smh , then

Bms (v, ṽ − w̃) −Bms (w, ṽ − w̃) =
∫
Im(s)

(v′ − w′, ṽ − w̃) + εAh(v − w, ṽ − w̃)dt

+Qms [bh(v, ṽ − w̃) − bh(w, ṽ − w̃)] + (v0
+ − w0

+, ṽ
0
+ − w̃0

+)

≥ 1
2
‖v(y) − w(y)‖2 +

1
2s

∫
Im(s)

‖ṽ − w̃‖2dt+ ε

∫
Im(s)

Ah(v − w, v − w)dt

− Cs sup ‖v − w‖ sup |||ṽ − w̃|||

≥ c sup ‖v − w‖2 − C

h
s sup ‖v − w‖ sup ‖ṽ − w̃‖

≥
(
c− Cs

h

)
sup ‖v − w‖2,

where the constant c comes from Lemma 7.5 and the generic constant C comes from Lemmas 4.3 and 7.5.
If s ≤ τ ≤ C1h with a sufficiently small constant C1, we obtain strong monotonicity with the monotonicity
constant M = c− Cτ

h .

(ii) Lipschitz continuity of Bms : Let v, v̄, w ∈ Smh . We estimate individual terms in Bms :∫
Im(s)

(v′ − v̄′, w)dt+ (vm−1
+ − v̄m−1

+ , wm−1
+ ) ≤ s sup ‖v′ − v̄′‖ sup ‖w‖ + sup ‖v − v̄‖ sup ‖w‖

≤ C sup ‖v − v̄‖ sup ‖w‖,

ε

∫
Im(s)

A(v − v̄, w)dt ≤ Cε

∫
Im(s)

|||v − v̄||| |||w|||dt ≤ Ch−2sε sup ‖v − v̄‖ sup ‖w‖,

Qms [b(v, w) − b(v̄, w)] ≤ CQms [‖v − v̄‖ |||w|||] ≤ Csh−1 sup ‖v − v̄‖ sup ‖w‖.

Hence, we have

Bms (v, w) −Bms (v̄, w) ≤ C sup ‖v − v̄‖ sup ‖w‖,
Bms (v, w̃) −Bms (v̄, w̃) ≤ C sup ‖v − v̄‖ sup ‖w̃‖ ≤ C sup ‖v − v̄‖ sup ‖w‖.

Here the resulting constants C depend also on ε, h, s, however, for the sake of the existence and uniqueness
proof, these may be considered as fixed quantities. Elsewhere, we can bound s ≤ τ to obtain s-independence of
the Lipschitz constant.

(iii) Boundedness of Lms :

Lms (v) = Qms [�(v)] + (Um−1
− , vm−1

+ ) ≤ s sup ‖g‖ sup ‖v‖ + ‖Um−1
− ‖ sup ‖v‖ ≤ C sup ‖v‖,

Lms (ṽ) ≤ C sup ‖ṽ‖ ≤ C sup ‖v‖.

The constant C in the resulting estimate depends also on ‖Um−1
− ‖ and s, however by bounding s ≤ τ , we obtain

s-independence of the boundedness constant. �

Existence and uniqueness of the continued solution Uy follows immediately from Lemma 7.8. We will also
need uniform boundedness of ‖Uy‖ and ‖U ′

y‖ with respect to t ∈ [0, y]. The resulting boundedness constants
depend on ε and negative powers of h, however since the main goal is to prove continuous dependence of Uy
on y, this is not a problem.

Lemma 7.9. There exist constants C1, C2 > 0 independent of h, τ, t, ε, such that the following holds. Let
h ∈ (0, h0) and τ ∈ [0, τ0), where τ0 = max{C1ε, C2h}. Then Uy, the continued solution from Definition 7.1
exists, is uniquely determined and ‖Uy(t)‖, ‖U ′

y(t)‖ are uniformly bounded with respect to t ∈ [0, y]. Furthermore,
for fixed ‖Um−1

− ‖, the norms supt∈Im(s) ‖Uy(t)‖, supt∈Im(s) ‖U ′
y(t)‖ are uniformly bounded with respect to y ∈ Im.
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Proof. Remark 3.7 holds for Uy as well, therefore, we can prove unique existence and boundedness of Uy on
each interval independently. From Lemma 7.8, we obtain existence and uniqueness of Uy.

(i) Boundedness of Uy: Due to Lemma 7.8,

M sup
Im(s)

‖Uy‖2 = M sup
Im(s)

‖Uy − 0‖2 ≤ Bms (Uy, Ũy) −Bms (0, Ũy) = Bms (Uy, Ũy) = Lms (Ũy) ≤ C sup
Im(s)

‖Uy‖.

Due to Lemma 7.8, all the constants involved are independent of s, hence y.

(ii) Boundedness of U ′
y: setting v(t) = (t− tm−1)U ′

y(t) ∈ Smh∫
Im(s)

(t− tm−1)‖U ′
y‖2 + (t− tm−1)εAh(Uy, U ′

y)dt+Qms [(t− tm−1)bh(Uy, U ′
y)] = Qms [(t− tm−1)�h(U ′

y)].

From this follows

cs

∫
Im(s)

‖U ′
y‖2dt ≤

∫
Im(s)

(t− tm−1)‖U ′
y‖2dt

≤−
∫
Im(s)

(t−tm−1)εAh(Uy, U ′
y)dt−Qms

[
(t−tm−1)bh(Uy, U ′

y)−(t−tm−1)�h(U ′
y)
]

≤ s

∫
Im(s)

Cεh−2‖Uy‖‖U ′
y‖dt+ sQms

[
(Ch−1‖Uy‖ + C)‖U ′

y‖
]

= s

∫
Im(s)

‖U ′
y‖(Cεh−2‖Uy‖ + Ch−1‖Uy‖ + C)dt

≤ cs

2

∫
Im(s)

‖U ′
y‖2dt+ C(ε, h)s2,

where we have used Hölder’s and Young’s inequality in the last step. Since

s sup
Im(s)

‖U ′
y‖2 ≤ C

∫ y

tm−1

‖U ′
y‖2dt,

we get the boundedness of ‖U ′
y‖. Moreover, after cancellation of the term s2 from the resulting estimate, we

obtain s-independence of the upper bound. �

Before we prove the main property of Uy, continuous dependence on y, we need one more technical lemma
concerning the estimation of quadratures.

Lemma 7.10. Let s, s̄ ∈ (0, τ ] and m ∈ 1, . . . , r. Let v, w ∈ Smh . Then |s− s̄| → 0 implies

Qms [bh(v, w)] −Qms̄ [bh(v, w)] → 0,
Qms [�h(v)] −Qms̄ [�h(v)] → 0.

Proof. Let us assume |s − s̄| → 0. In order to simplify the notation of quadrature points, we shall set si :=
tm−1 + sψi and s̄i := tm−1 + s̄ψi. Then

Qms [bh(v, w)] −Qms̄ [bh(v, w)] =
q∑
i=0

(sωibh(v, w)|si − s̄ωibh(v, w)|s̄i )

= s

q∑
i=0

ωi (bh(v, w)|si − bh(v, w)|s̄i ) +
q∑
i=0

(s− s̄)ωibh(v, w)|s̄i
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and

Qms [�h(v)] −Qms̄ [�h(v)] =
q∑
i=0

(sωi�h(v)|si − s̄ωi�h(v)|s̄i) = s

q∑
i=0

ωi (�h(v)|si − �h(v)|s̄i) +
q∑
i=0

(s− s̄)ωi�h(v)|s̄i .

From continuity of bh(., .) and v, w we get

bh(v, w)|si − bh(v, w)|s̄i → 0

and since �h(v) = (g, v), where g is continuous with respect to time, we get

�h(v)|si − �h(v)|s̄i → 0.

From boundedness of bh(v, w)|s̄i and �h(v)|s̄i we obtain (s − s̄)ωibh(v, w)|s̄i → 0 and
(s− s̄)ωi�h(v, w)|s̄i → 0. �
Lemma 7.11. Let the assumptions of Lemma 7.9 hold. Then Utm = U |(0,tm) for all m = 0, . . . , r and Uy
depends continuously on the parameter y in the following sense:

sup
(0,min(y,ȳ))

‖Uy − Uȳ‖→0, as |y − ȳ| → 0,

sup
(tm−1,y)

‖Uy − Um−1
− ‖→0, as y → tm−1+ . (7.5)

Proof. Let y = tm−1 + s, ȳ = tm−1 + s̄ for some m. Without loss of generality, let 0 < s < s̄ ≤ τ . Since
Uy = Uȳ = U on (0, tm−1), it is sufficient to prove the first relation only on (tm−1, y). Let us denote w = Uy−Uȳ.
Due to monotonicity of Bms (., .̃) and Lemma 7.10, we have

M sup
(tm−1,y)

‖Uy − Uȳ‖2 ≤ Bms (Uy, w̃) −Bms (Uȳ, w̃) = Lms (w̃) − Lms̄ (w̃) +Bms̄ (Uȳ, w̃) −Bms (Uȳ, w̃)

=
∫ tm−1+s̄

tm−1+s

(U ′
ȳ, w̃) + εAh(Uȳ, w̃)dt+Qms̄ [bh(Uȳ, w̃)] −Qms [bh(Uȳ, w̃)] −Qms̄ [�h(w̃)] +Qms [�h(w̃)].

Since the terms in the integral are bounded, the integral tends to zero as |s− s̄| → 0. According to Lemma 7.10
the quadrature terms tend to zero as well. From this it follows that sup(tm−1,y) ‖Us − Us̄‖ → 0 for |s− s̄| → 0.

It remains to prove the second formula in (7.5). Since Uy is continuous on (tm−1, y), it is sufficient to prove
Uy

m−1
+ → Um−1

− as y → tm−1+, i.e. s→ 0+: Testing (7.2) with w ≡ Uy
m−1
+ − Um−1

− , we get∫ y

tm−1

(U ′
y, Uy

m−1
+ − Um−1

− ) + εAh(Uy, Uym−1
+ − Um−1

− )dt+Qms [b(Uy, Uym−1
+ − Um−1

− )] + ‖Uym−1
+ − Um−1

− ‖2

= Qms [�h(Uym−1
+ − Um−1

− )].

Except for the last left-hand side term ‖Uym−1
+ −Um−1

− ‖2, all remaining terms tend to zero as s→ 0+, therefore
‖Uym−1

+ − Um−1
− ‖2 tends to zero as well. �

7.2. Error estimates

As the final step we shall derive the error estimate of the continued solution at arbitrary time t ∈ [0, T ] which
immediately implies the error estimate for the classical method.

As usual, we shall split the error ey(t) = Uy(t) − u(t) into two parts ey(t) = ξy(t) + ηy(t), where we define:

ηy|Ii =

{
πiτu|Ii − u|Ii , i = 0, . . . ,m− 1,

πms u|Im − u|Im , i = m,

ξy |Ii =

{
Uy|Ii − πiτu|Ii , i = 0, . . . ,m− 1,

Uy|Im − πms u|Im , i = m,
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where πis = P isΠ . We have the following estimates for ηy and ξy:

Lemma 7.12. Let u satisfy regularity assumptions (7.1). Then for all v ∈ Smh

sup
Im(s)

‖ηy‖ ≤ C(hp+1 + sq+1), (7.6)

Qms [(η′y, v)] + ({ηy}m−1, v
m−1
+ ) ≤ sC(hp+1 + sq+1) sup

Im(s)

‖v‖. (7.7)

Proof. The estimate (7.6) follows directly from Lemmas 4.1 and 7.4. The estimate (7.7) is proved in ([21],
Lem. 4). �
Lemma 7.13. Let u satisfy regularity assumptions (7.1). Then

Qms [bh(u, ξy) − bh(Uy, ξy)] ≤ Cs

(
1 +

supIm(s) ‖Uy − u‖2

h2

)
(h2p+1 + sup

Im(s)

‖ξy‖2),

Qms [bh(u, ξ̃y) − bh(Uy, ξ̃y)] ≤ Cs

(
1 +

supIm(s) ‖Uy − u‖2

h2

)
(h2p+1 + sup

Im(s)

‖ξy‖2).

Proof. The proof is analogical for both of these inequalities, so we will prove only the second (more difficult)
one.

Qms [b(u, ξ̃y) − b(Uy, ξ̃y)] = s

q∑
i=0

ωi

(
bh(u, ξ̃y) − bh(Uy, ξ̃y)

)
|t=tm−1+sψi

= s

q∑
i=0

ωi
1
ψi

(
bh(u, Uy −Πm

s u) − bh(Uy, Uy −Πm
s u)

)
|t=tm−1+sψi

≤ s
1
ψ0

sup
Im(s)

(
bh(u, Uu −Πm

s u) − bh(Uy, Uu −Πm
s u)

)
.

Now it is sufficient to apply Lemma 4.3. �

Now, we shall prove the analogy to Lemmas 5.7 and 6.5.

Lemma 7.14. Let p > d/2. Let s ∈ (0, τ ] and y = tm−1 + s. If ‖ey(t)‖ ≤ h1+d/2 for t ∈ [0, y], then

sup
t∈[0,y]

‖ey(t)‖2 ≤ C2
T (h2p+1 + εh2p + τ2q+2),

where the constant CT is independent of h, τ, ε.

Proof. Again, it is sufficient to estimate the error only on the last time interval Im(s), the previous ones are
treated similarly. The error equation reads∫

Im(s)

(ξ′y , v) + εAh(ξy, v)dt+ ({ξy}m−1, v
m−1
+ ) = Qms [εAh(ηy, v)] −Qms [(η′y, v)]

− ({ηy}m−1, v
m−1
+ ) +Qms [bh(u, v) − bh(Uy, v)].

By setting v = 2ξy we get

‖ξy(y)‖2 − ‖ξm−1
y− ‖2 + ‖{ξy}m−1‖2 + 2ε

∫
Im(s)

|||ξy |||2dt

≤ Csε(h2p + s2q+2) + ε

∫
Im(s)

|||ξy |||2dt+ sC(hp+1 + sq+1) sup
Im(s)

‖ξy‖

+ Cs
(
1 +

supIm(s) ‖Uy − u‖2
∞

h2

)
(h2p+1 + sup

Im(s)

‖ξy‖2).
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Therefore

‖ξy(y)‖2 − ‖ξm−1
y− ‖2 + ε

∫
Im(s)

|||ξy |||2dt ≤ Cs

(
1 +

supIm(s) ‖Uy − u‖2
∞

h2

)
(h2p+1 + εh2p + s2q+2 + sup

Im(s)

‖ξy‖2).

(7.8)

With the aid of Lemmas 7.5–7.7 we get

c sup
Im(s)

‖ξy‖2 ≤ 1
s

∫
Im(s)

‖ξy‖2 ≤
∫
Im(s)

(ξ′y, 2ξ̃y)dt+ (ξm−1
y+ , 2ξ̃m−1

y+ )

≤
∫
Im(s)

(ξ′y , 2ξ̃y) + 2εAh(ξy, ξ̃y)dt+ (ξm−1
y+ , 2ξ̃m−1

y+ ). (7.9)

By setting v = 2ξ̃y in the error equation we get∫
Im(s)

(ξ′y , 2ξ̃y) + 2εAh(ξy, ξ̃y)dt+ (ξm−1
y+ , 2ξ̃m−1

y+ )

= Qms [εAh(ηy, 2ξ̃y)] −Qms [(η′y , 2ξ̃y)] − ({ηy}m−1, 2ξ̃m−1
y+ ) + (ξm−1

y− , 2ξ̃m−1
y+ ) +Qms [b(u, 2ξ̃y) − b(Uy, 2ξ̃y)]

≤ Csε(h2p + s2q+2) + (ξm−1
y− , 2ξ̃m−1

y+ ) + ε

∫
Im(s)

|||ξy |||2dt+ sC(hp+1 + sq+1) sup
Im(s)

‖ξy‖

+ Cs
(
1 +

supIm(s) ‖Uy − u‖2
∞

h2

)
(h2p+1 + sup

Im(s)

‖ξy‖2)

≤ Cs
(
1 +

supIm(s) ‖Uy − u‖2
∞

h2

)
(h2p+1 + εh2p + s2q+2 + sup

Im(s)

‖ξy‖2) +
2C
c
‖ξm−1
y− ‖2 +

c

4
sup
Im(s)

‖ξy‖2, (7.10)

where ε
∫
Im(s)

|||ξy |||2dt is estimated with the aid of (7.8).

Under the assumption ‖e(t)‖ ≤ h1+d/2 inequality (7.8) can be simplified to

‖ξy(y)‖2 − ‖ξm−1
y− ‖2 ≤ Cs(h2p+1 + εh2p + s2q+2 + sup

Im(s)

‖ξy‖2) (7.11)

and inequalities (7.9) and (7.10) give

sup
Im(s)

‖ξy‖2 ≤ C

c
s(h2p+1 + εh2p + s2q+2 + sup

Im(s)

‖ξy‖2) +
2C
c2

‖ξm−1
y− ‖2 +

1
4

sup
Im(s)

‖ξy‖2.

If s ≤ τ ≤ c/4C than the last inequality can be simplified to

sup
Im(s)

‖ξy‖2 ≤ h2p+1 + εh2p + s2q+2 +
4C
c2

‖ξm−1
y− ‖2

Substituting this estimate into (7.11), we get

‖ξ(y)‖2 − ‖ξm−1
y− ‖2 ≤ Cs(h2p+1 + εh2p + s2q+2 + ‖ξm−1

y− ‖2).

Similar estimates can be obtained on all previous time intervals. By application of the discrete Gronwall lemma
we finish the proof. �
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Theorem 7.15. Let p > 1 + d/2. Let τ0 be defined as in Lemma 7.9. Let h ∈ (0, h0) and τ1 ∈ (0, τ0) be such
that

C2
T (h2p+1 + εh2p + τ2q+2) ≤ 1

16
h2+d,

where CT is the constant from Lemma 7.14 independent of h, τ, ε. Then the error of the QT-DG scheme satisfies

sup
t∈[0,T ]

‖e(t)‖2 ≤ C2
T (h2p+1 + εh2p + τ2q+2).

Proof. Since the continuation Uy(t) now depends on two variables, y and t, we proceed more carefully. We define
the propositional function ϕ by

ϕ(y) ≡
{

max
t∈[0,y]

‖ey(t)‖2 ≤ C2
T (h2p+1 + εh2p + τ2q+2)

}
.

Due to the approximation of the initial condition, ϕ(0) holds trivially. We want to prove ϕ(T ). We will proceed
by continuous induction, cf . [17]. For this we need to prove that

(A) ∀y ∈ [0, T ) ∃δ(y) > 0 : ϕ(y) implies ϕ(y + δ), ∀δ ∈ [0, δ(y)] : y + δ ∈ [0, T ]
(B) ∀y1, y2 ∈ [0, T ], y1 < y2 : If ϕ holds on (y1, y2) then ϕ(y2) holds. (7.12)

First we note, that due to the construction of U,Uy, it is sufficient to assume y, y + δ ∈ [tm−1, tm] and then
proceed by induction with respect to m = 1, . . . , r. Our main tools will be the continuity of Uy with respect
to y, cf . Lemma 7.11, the uniform boundedness of ‖U ′

y(t)‖ with respect to t and y, cf . Lemma 7.9 and uniform
continuity of u from [tm−1, tm] to L2(Ω). Specifically, if y ∈ [tm−1, tm) there exists δ(y) > 0 such that

δ ∈ [0, δ(y)], t ∈ [y, y + δ] =⇒ ‖u(y) − u(t)‖ ≤ 1
4
h1+d/2,

δ ∈ [0, δ(y)] =⇒ sup
(tm−1,y)

‖Uy+δ − Uy‖ ≤ 1
4
h1+d/2.

Without loss of generality, δ(y) can be taken small enough so that Cδ(y) ≤ 1
4h

1+d/2, where C is the uniform
bound for ‖U ′

y(t)‖ from Lemma 7.9.

Induction step (A): Let us assume that ϕ(y) holds. We want to prove that ϕ(y+ δ) holds, where δ ∈ [0, δ(y)].
In other words, we want to estimate

max
t∈[0,y+δ]

‖ey+δ(t)‖ = max{ max
t∈[0,y]

‖ey+δ(t)‖, max
t∈[y,y+δ]

‖ey+δ(t)‖}. (7.13)

We estimate the first right-hand side term in (7.13) by

max
t∈[0,y]

‖ey+δ(t)‖ = max
t∈[0,y]

‖Uy+δ(t) − u(t)‖ ≤ max
t∈[0,y]

‖Uy+δ(t) − Uy(t)‖ + max
t∈[0,y]

‖Uy(t) − u(t)‖

= max
t∈[tm−1,y]

‖Uy+δ(t) − Uy(t)‖ + max
t∈[0,y]

‖ey(t)‖ ≤ 1
4
h1+d/2 + CT

√
h2p+1 + εh2p + τ2q+2 ≤ 1

2
h1+d/2 (7.14)

by Lemma 7.11 and the induction assumption. As for the second right-hand side term in (7.13), we have

max
t∈[y,y+δ]

‖ey+δ(t)‖ = max
t∈[y,y+δ]

‖Uy+δ(t) − u(t)‖

≤ max
t∈[y,y+δ]

‖Uy+δ(t) − Uy+δ(y)‖ + ‖Uy+δ(y) − Uy(y)‖ + ‖Uy(y) − u(y)‖ + max
t∈[y,y+δ]

‖u(y)− u(t)‖

≤ δ max
t∈[tm−1,y]

‖U ′
y+δ(t)‖ + max

t∈[0,y]
‖Uy+δ(t) − Uy(t)‖ + max

t∈[0,y]
‖ey(t)‖ +

1
4
h1+d/2

≤ Cδ +
1
4
h1+d/2 + CT

√
h2p+1 + εh2p + τ2q+2 +

1
4
h1+d/2 ≤ h1+d/2, (7.15)
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due to Lemmas 7.9, 7.11 and the induction assumption. Collecting (7.13)–(7.15) gives us

max
t∈[0,y+δ]

‖ey+δ(t)‖ ≤ h1+d/2. (7.16)

Lemma 7.14 then gives us ϕ(y + δ).

Induction step (B): We prove (B) in (7.12) by contradiction. Fix y1, y2 ∈ [0, T ]. Assume that for all y ∈ (y1, y2)
the statement ϕ(y) holds, but ϕ(y2) is false. In other words assume that

max
t∈[0,y]

‖ey(t)‖2 ≤ C2
T (h2p+1 + εh2p + τ2q+2) and max

t∈[0,y2]
‖ey2(t)‖2 > C2

T (h2p+1 + εh2p + τ2q+2). (7.17)

Therefore, after taking the square root,

max
t∈[0,y2]

‖ey2(t)‖ − max
t∈[0,y]

‖ey(t)‖ ≥ c0 > 0, for all y ∈ (y1, y2), (7.18)

where c0 > 0 is an appropriate constant independent of y ∈ (y1, y2).
We can estimate by the triangle inequality

max
t∈[y,y2]

‖ey2(t)‖ ≤ ‖ey2(y)‖ + max
t∈[y,y2]

‖ey2(t) − ey2(y)‖ ≤ max
t∈[0,y]

‖ey2(t)‖ + C|y2 − y|,

since u is uniformly continuous and U ′
y(t) is uniformly bounded with respect to y, t. Therefore,

max
t∈[0,y2]

‖ey2(t)‖ ≤ max{ max
t∈[0,y]

‖ey2(t)‖, max
t∈[y,y2]

‖ey2(t)‖} ≤ max
t∈[0,y]

‖ey2(t)‖ + C|y2 − y|.

Hence, the left-hand side of (7.18) can be estimated as

max
t∈[0,y2]

‖ey2(t)‖ − max
t∈[0,y]

‖ey(t)‖ ≤ max
t∈[0,y]

‖ey2(t)‖ + C|y2 − y| − max
t∈[0,y]

‖ey(t)‖

≤ max
t∈[0,y]

‖Uy2(t) − Uy(t)‖ + max
t∈[0,y]

‖Uy(t) − u(t)‖ + C|y2 − y| − max
t∈[0,y]

‖ey(t)‖

= max
t∈[0,y]

‖Uy2(t) − Uy(t)‖ + C|y2 − y| −→ 0, as y → y2, (7.19)

which is a contradiction with (7.18), i.e. (7.17). Thus (B) is proved, which completes the proof. �

8. Conclusions

We have proved a priori error estimates for the discontinuous Galerkin method applied to a nonlinear time-
dependent singularly perturbed, convection-diffusion problem. The BDF-2, midpoint and quadrature version of
the space-time DG scheme were analyzed. The main contribution of the paper is that L∞(L2)-estimates are
derived that are uniform with respect to the diffusion parameter ε→ 0 and valid even in the purely convective
case ε = 0. The paper extends the work [16], where similar estimates were derived for the space-semidiscretization
and implicit Euler scheme as well as the paper [17], where similar estimates are obtained for the conforming
finite element method. The basis of the technique is the idea of [24], where the analysis is carried out for an
explicit Runge–Kutta scheme in time.

Similarly as in [16], the presented error analysis is based on construction of suitable continuations of the
discrete solution with respect to time and performing, via induction. The resulting estimates are of the order
O(hp+1/2 + εhp + τ4) for the BDF-2 and midpoint schemes and O(hp+1/2 + εhp + τq+1) for q-order quadrature
time-DG. The estimates are derived under the CFL-like τ = O(h) condition guaranteeing the unique existence
and continuity of the continuation. Furthermore, the estimates are derived under the order condition p > 1+d/2,
or p > (1 + d)/2 for ε = 0, where d is the spatial dimension of the problem.

Future work includes removing of the CFL and order conditions and extension to more difficult equations,
e.g. nonlinear diffusion as in [15], derivation of optimal order L∞(L2)-error estimates and analysis of other
temporal discretizations, especially the space-time DG scheme without quadratures.
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[17] V. Kučera, Finite element error estimates for nonlinear convective problems. J. Numer. Math. 24 (2016) 143–165.

[18] S. Osher, Riemann solvers, the entropy condition, and difference approximations. SIAM. J. Numer. Anal. 21 (1984) 217–235.

[19] W.H. Reed and T.R. Hill, Triangular mesh methods for the neutron transport equation. Technical Report LA–UR–73–479, Los
Alamos Scientific Laboratory (1973).

[20] M. Vlasák, Optimal spatial error estimates for DG time discretizations. J. Numer. Math. 21 (2013) 201–230.

[21] M. Vlasák and H.G. Roos, An optimal uniform a priori error estimate for an unsteady singularly perturbed problem. Int. J.
Numer. Anal. Model. 11 (2014) 24–33.
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