
ESAIM: M2AN 51 (2017) 641–677 ESAIM: Mathematical Modelling and Numerical Analysis
DOI: 10.1051/m2an/2016031 www.esaim-m2an.org

HIERARCHICAL MODEL REDUCTION OF NONLINEAR PARTIAL
DIFFERENTIAL EQUATIONS BASED ON THE ADAPTIVE EMPIRICAL

PROJECTION METHOD AND REDUCED BASIS TECHNIQUES
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Abstract. In this paper we extend the hierarchical model reduction framework based on reduced basis
techniques recently introduced in [M. Ohlberger and K. Smetana, SIAM J. Sci. Comput. 36 (2014)
A714–A736] for the application to nonlinear partial differential equations. The major new ingredient
to accomplish this goal is the introduction of the adaptive empirical projection method, which is an
adaptive integration algorithm based on the (generalized) empirical interpolation method [M. Barrault,
et al., C. R. Math. Acad. Sci. Paris Series I 339 (2004) 667–672; Y. Maday and O. Mula, A generalized
empirical interpolation method: Application of reduced basis techniques to data assimilation. In Anal-
ysis and Numerics of Partial Differential Equations. Vol. 4 of Springer INdAM Series. Springer Milan
(2013) 221–235]. Different from other partitioning concepts for the empirical interpolation method we
perform an adaptive decomposition of the spatial domain. We project both the variational formulation
and the range of the nonlinear operator onto reduced spaces. Those reduced spaces combine the full
dimensional (finite element) space in an identified dominant spatial direction and a reduction space
or collateral basis space spanned by modal orthonormal basis functions in the transverse direction.
Both the reduction and the collateral basis space are constructed in a highly nonlinear fashion by
introducing a parametrized problem in the transverse direction and associated parametrized operator
evaluations, and by applying reduced basis methods to select the bases from the corresponding snap-
shots. Rigorous a priori and a posteriori error estimators, which do not require additional regularity
of the nonlinear operator are proven for the adaptive empirical projection method and then used to
derive a rigorous a posteriori error estimator for the resulting hierarchical model reduction approach.
Numerical experiments for an elliptic nonlinear diffusion equation demonstrate a fast convergence of
the proposed dimensionally reduced approximation to the solution of the full-dimensional problem.
Runtime experiments verify a close to linear scaling of the reduction method in the number of degrees
of freedom used for the computations in the dominant direction.
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1. Introduction

Many phenomena in nature and in particular fluid dynamics exhibit a dominant spatial direction along
which the essential dynamics occur. Examples are blood flow problems or the flow in river beds which can be
both modeled by the incompressible Navier–Stokes equations (cf. [33, 57]) or groundwater flow in unsaturated
soils which may be described by the Richards equation (cf. [5, 6]). This feature can be exploited to derive
a dimensionally reduced model for the dominant direction, which should however include information on the
transverse dynamics to improve the accuracy of the approximation. This paper is devoted to the derivation of
an efficient dimensional reduction approach for steady nonlinear partial differential equations (PDEs) of the
general type

Find p ∈ H1
0 (Ω) : 〈A(p), v〉 = 〈f, v〉 ∀v ∈ H1

0 (Ω). (1.1)

Here, Ω ⊂ Rd is a bounded domain with Lipschitz boundary, f ∈ H−1(Ω) is a given right-hand side, A :
H1

0 (Ω) → H−1(Ω) denotes a nonlinear elliptic operator and 〈·, ·〉 is the dual pairing of H−1(Ω) and H1
0 (Ω).

Note that the steady Richards equation is a PDE of type (1.1). Moreover, treating the steady incompressible
Navier–Stokes equations just requires to replace H1

0 (Ω) in (1.1) by a divergence-free space, which we do not
address in this paper to simplify the presentation. For the same reason we also restrict to d = 2 and assume
that the domain Ω is given as a tensor product, i.e. Ω := Ω1D × ω with Ω1D, ω ⊂ R.

We use the term ‘dimensional reduction’ in the sense of Vogelius and Babuška [61], which means that a
dimensional reduction method reduces the space dimension of the considered PDE by at least one. Needless to
say that a dimensional reduction method may therefore be also seen as a model order reduction procedure.

There are a large variety of dimensional reduction methods and low rank tensor based approximations. The
asymptotic expansion technique [5, 55] is based on an expansion of the solution dependent on the presumed
small ratio between the length of the domain in transverse and dominant direction. This method neglects the
transverse dynamics and is only valid if the considered domain is very thin, or equivalently, the solution is
constant along the vertical direction, which is often not the case.

To overcome this difficulty in the work by Vogelius and Babuška [61–63] the hierarchical model reduction
(HMR) approach has been introduced in the context of heat conduction in plates and shells. The idea of
HMR is to perform a Galerkin projection of the full variational problem onto a reduced, m-dimensional space,
which combines the full solution space in the dominant direction with a m-dimensional reduction space in the
transverse direction, spanned by modal orthonormal basis functions. This yields a (possibly nonlinear) system of
m equations in one space dimension. The application and applicability of the HMR approach for linear advection-
diffusion problems that exhibit a dominant flow direction has been studied and demonstrated by Perotto et al.
in [27, 50] in a more general geometric setting. Exploiting that HMR yields a hierarchy of reduced models
determined by the reduction space, the dimension of the models is chosen adaptively in different subdomains of
Ω, employing an iterative substructuring method to couple the local models [49, 50]. In all these contributions
the m-dimensional reduction space is spanned by a priori chosen boundary-adapted Legendre or trigonometric
polynomials.

The key idea of the hierarchical model reduction method based on reduced basis techniques (RB-HMR),
introduced in [45, 46], is to use a highly nonlinear approximation in the sense of [20] for the construction of
the reduction space. This is realized by first deriving a parametrized one-dimensional problem in the transverse
direction from the full problem, where the parameters reflect the influence from the unknown solution in the
dominant direction. In a second step, reduced basis (RB) methods are used to generate a snapshot set from
the solution manifold of the parametrized transverse problems and to construct the reduction space from these
snapshots by a proper orthogonal decomposition (POD). In this way, both in the construction of the solution
manifold and the subsequent choice of the basis functions, information on the full solution is included, and
the RB-HMR approach benefits from the good approximation properties of RB methods [21, 37, 51]. This
yields often an exponentially fast convergence of the RB-HMR method even for non-smooth functions and a
more rapid convergence of the RB-HMR method than the classical HMR approach based on polynomials [46].
It has also been demonstrated in [46] for linear problems that thanks to its rapid convergence and the fact
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that the parametrized problems are of lower dimension than the full problem, the RB-HMR approach yields in
many cases a very accurate approximation at a smaller runtime, including the costs for the construction of the
reduction space, than a corresponding full dimensional finite element method (FEM) solve. For these reasons,
we consider the RB-HMR approach in this paper.

While HMR constitutes an interpolation between the full model and the lower dimensional model via the
dimension of the reduction space, in the geometrical multiscale approach models in one space dimension or
lumped models, as say electronic network models, are locally enhanced with the full dimensional model by a
domain decomposition scheme (cf. [31,32]). Finally, similar to HMR also the proper generalized decomposition
method (cf. [1, 11, 17] and references therein) is a tensor based approximation, but the tensor products in the
expansion are computed iteratively by solving the Euler–Lagrange equations corresponding to the considered
problem.

The key challenge in applying dimensional reduction to nonlinear PDEs is the efficient evaluation of the
nonlinear operator, which requires in principle computations that scale with the degrees of freedom of the full
system and not the reduced one as in the linear case. This is a general issue for projection-based model order
reduction methods for nonlinear PDEs or nonlinear systems and several ways to tackle this problem have been
proposed. Common to all these approaches is a first step in which an additional basis – a so-called collateral
basis – is constructed say via a POD or a greedy algorithm to approximate the range of the nonlinear operator.
The methods then differ in the way the coefficients are computed.

The Gauss–Newton with approximated tensors method [13,14] is based on the gappy POD [3,8] and there-
fore employs a projection via a gappy inner product defined as a linear combination of evaluations in cer-
tain points in the spatial domain. The discrete empirical interpolation method (DEIM) [15] and the slightly
more general empirical operator interpolation method (EOIM) [23] employ the empirical interpolation method
(EIM) [4, 34, 41, 58]. The latter allows for the interpolation of a parametrized function via Lagrangian inter-
polants, where both the collateral basis and the interpolation points are constructed by a greedy algorithm. It
has been applied for the approximation of parametrized nonlinear PDEs within the framework of RB methods
for instance in [34]. A rigorous a posteriori error estimator for parametrically smooth functions has been intro-
duced in [25]. Moreover, a (non-rigorous) hierarchical a posteriori error estimator, which compares the solution
with an approximation obtained by employing a richer collateral basis space, has been derived in [4] for the
EIM, in [23] for the EOIM, and in [65] for the DEIM. A rigorous a posteriori error estimator for the DEIM
is presented in [15, 16] but the constant in the estimate depends on the underlying discretization. To facilitate
an approximation of functions of low regularity both in the EOIM and the recently introduced generalized em-
pirical interpolation method (GEIM) [40] the EIM is generalized by considering (also) the evaluation of linear
functionals. A priori error analysis for the GEIM as introduced in [40] has been provided in [42]. In this paper
we apply the POD to construct the collateral basis as the POD is optimal in an L2-sense and use the GEIM to
select interpolating functionals.

As the dependency of the range of the nonlinear operator on the parameter and the spatial variables is in
general non-smooth, we expect that we need many collateral basis functions and interpolating functionals to
obtain an accurate approximation. To speed up the (online) computations often localized approximations are
considered for instance by constructing (offline) a partition of the parameter space [23, 24, 64] or the time do-
main [22] and computing local collateral bases associated with each element of the partition. At the online stage,
the correct basis is chosen following a certain criterion. Recently, it has been proposed to employ machine learn-
ing techniques to form clusters of similar snapshots and compute a collateral basis for each cluster in the offline
stage for the Gauss–Newton with approximated tensors method [2] and the DEIM [48]. The appropriate local
collateral space is then chosen at the online stage either by a distance measure [2] or classification strategies
based on machine learning [48].

However, in all partitioning methods based on the EIM [22–24, 48, 64] the number of interpolating points
equals the number of (local) collateral basis functions, which may lead to an insufficient resolution of the (non-
smooth) collateral basis functions and thus a considerably less accurate approximation. Therefore, we propose
to perform an adaptive partitioning of the spatial domain driven by a suitable error indicator until a certain
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tolerance is reached and define the global interpolant as a sum of the local interpolants. We employ this adaptive
(generalized) empirical interpolant to approximate the nonlinear term in the inner products of the coefficients of
the orthogonal projection on the collateral basis. This yields an automatic numerical integration program based
on the (G)EIM which we call the adaptive empirical projection method (EPM). We emphasize that in case of
a nonlinear term, which is smooth with respect to the spatial variable, this higher regularity is maintained as
we project onto the global collateral basis and employ the localized interpolants only within the inner products
of the coefficients. We prove rigorous a priori and a posteriori error estimators for the adaptive EPM, which do
not require additional regularity of the nonlinear operator and are independent of the underlying finite element
discretization. Note that we do not propose to employ the adaptive EPM instead of the above mentioned
partitioning or clustering methods but rather suggest to combine them.

To extend the RB-HMR approach to nonlinear PDEs of type (1.1), we therefore propose to proceed in the
following way. We employ a highly nonlinear approximation for the construction of the collateral basis. To gen-
erate a manifold of parametrized one-dimensional operator evaluations we use the solutions of the parametrized
dimensionally reduced problem, derived as in the linear case, and the associated parametrization. During an
adaptive training set extension procedure the sets of solution and operator snapshots are simultaneously gen-
erated. The collateral basis space is constructed by applying a POD to the operator snapshots and for the
computation of the coefficients we employ the adaptive EPM.

The rigorous a priori and a posteriori error estimators for the adaptive EPM are employed for the derivation
of a rigorous a posteriori error estimator based on the Brezzi–Rappaz–Raviart theory [7,10] which estimates both
the error contribution caused by model reduction and by the approximation of the nonlinear operator. Hence,
another contribution of this paper is the extension of the results in [60] and particularly [12] from quadratically
nonlinear to general nonlinear PDEs of type (1.1). This a posteriori error estimator is used within the context of
the adaptive snapshot generation procedure. Numerical experiments for the elliptic nonlinear diffusion equation
show that in many cases the proposed error estimator provides a sharp upper bound for the error. Moreover, the
numerical experiments demonstrate a fast convergence of the RB-HMR approach and a close to linear scaling
in the number of degrees of freedom of the discretization used in the dominant direction.

The article is organized as follows. In Section 2 we introduce the adaptive EPM for the approximation of
parametrized functions in L2(ω). The approximation properties of the adaptive EPM are discussed and rigorous
a priori and a posteriori error estimates are derived. In the subsequent Section 3 the problem adapted RB-HMR
framework [46] is generalized to nonlinear problems, using the approximation properties of the adaptive EPM.
The resulting model reduction algorithm is discussed in detail and analyzed rigorously based on the Brezzi–
Rappaz–Raviart theory [7, 10]. Next, we analyze the convergence behavior and the computational efficiency of
the RB-HMR approach numerically for an elliptic nonlinear diffusion problem in Section 4. Furthermore, we
investigate the reliability and effectivity of the proposed error estimators and test the applicability of the a priori
and a posteriori bounds for the adaptive EPM. In Section 5 we provide some conclusions and final remarks.

2. The adaptive empirical projection method

In this section we introduce the adaptive EPM which aims at approximating all elements of a manifold
M := {u(μ, ·), μ ∈ D} ⊂ L2(ω), where u(μ, ·) ∈ L2(ω) equals for instance the evaluation of a nonlinear
differential operator in the solution of a PDE parametrized by μ. Here ω = (y0, y1) ⊂ R and D ⊂ Rp denotes
the p-dimensional parameter domain. Needless to say that we may identify the manifold M with a (target)
function u : D × ω for which we assume u ∈ L2(D × ω). Moreover, we require that we have a snapshot set
MΞ := {u(μ, ·), μ ∈ Ξ} of the function u at our disposal, where Ξ ⊂ D is a finite dimensional training set of
size |Ξ| = n. The space Wk = span{κ1, . . . , κk} with (κi, κj)L2(ω) = δij is then defined through a POD, i.e.

Wk := arg inf
W̃k⊂span{MΞ}

dim(W̃k)=k

⎛
⎝ 1

n

∑
μ∈Ξ

inf
w̃k∈W̃k

‖u(μ, ·) − w̃k‖2
L2(ω)

⎞
⎠ . (2.1)
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Algorithm 2.1. GEIM – Construction of interpolating functionals.
GEIM(KI , ΣI , I)1

Set σI
1 := arg sup

σI∈ΣI

|σI(κI
1)|, qI

1 =
κI
1

σI
1(κI

1)
, and BI,1

11 = 1.
2

for m = 1, . . . , kI do3

Solve for the coefficients αm−1
j :

∑m−1
j=1 αm−1

j σI
i (qI

j ) = σI
i (κI

m), i = 1, . . . , m − 1.4

Compute the residual rm(y) := κI
m(y) −∑m−1

j=1 αm−1
j qI

j (y).5

Set σI
m = arg sup

σI∈ΣI

|σI(rm)|, qI
m = rm

σI
m(qI

m)
, and BI,m

ij = σI
i (qI

j ), 1 ≤ i, j ≤ m.
6

end7

return SI , QI := {qI
1 , . . . , qI

kI
}, BI,kI8

We approximate the function u(μ, ·) in the integrals of the orthogonal projection

Pk[u](μ, y) :=
k∑

l=1

∫
ω

u(μ, z)κl(z) dz κl(y)

by a (generalized) empirical interpolant IL[u]. The key idea of the adaptive EPM is that we adaptively decompose
the domain ω into subdomains, construct local interpolants on each subdomain and then define the (global)
interpolant IL[u] as the sum of all local interpolants. To construct the latter we employ the set of functions
κ1, . . . , κk, restrict them to the respective subdomain, apply a local POD to obtain a localized linear independent
set of functions, and apply the GEIM [40] locally to select the evaluating linear functionals from a (given)
dictionary. Before we describe the adaptive EPM in detail we recall the GEIM and adapt some theoretical
findings for the GEIM to our setting.

We suppose that we have given a dictionary Σ of linear functionals σ ∈ L2(ω)′ of the form σ(v) = (v, ς)L2(ω)

for v ∈ L2(ω) whose (unique) Riesz representation ς ∈ L2(ω) satisfies ‖ς‖L2(ω) = 1. For I ⊂ ω and ς ∈ L2(ω),
v ∈ L2(I) we then define localized functionals σI as σI(v) := (v, ς)L2(I) and denote the corresponding localized
dictionary by ΣI . Note that the functions ς ∈ L2(ω) are the same for the functional σ and its localized version σI .
Additionally, we assume that the dictionaries ΣI are unisolvent in the sense that if we have for any g ∈ span{M}
that σI(g|I) = 0 for all σI ∈ ΣI this implies g = 0 almost everywhere in I. The selection of the interpolating
functionals SI := {σI

1 , . . . , σI
kI
} for a given set of linear independent functions KI := {κI

1, . . . , κ
I
kI
} ⊂ L2(I) is

described in Algorithm 2.1. For a function v ∈ L2(D × I) we then define the local interpolant II
kI

[v](μ, y) :=∑kI

j=1 αkI

j (μ)qI
j (y), where the coefficients are the solutions of:

∑kI

j=1 αkI

j (μ)BI,kI

i,j = σI
i (v(μ; ·)), i = 1, . . . , kI and

BI,kI

i,j = σI
i (qI

j ). The following lemma adapts some results for the GEIM to our setting.

Lemma 2.1. Let the set of interpolating functionals SI be selected by Algorithm 2.1 and let the assumptions
from the previous paragraph be fulfilled. Then we have

(1) The matrix BI,kI is lower triangular with unity diagonal and hence invertible. Moreover, there holds
|BI,kI

ij | ≤ 1, 1 ≤ i, j ≤ kI . The set of functions QI forms a basis for the space W I
kI

:= span{KI} and
the selection of the interpolating functionals is well-defined.

(2) The interpolation is exact for all w ∈ W I
kI

.
(3) There exist unique functions ϑI

j ∈ W I
kI

, that satisfy σI
i (ϑI

j ) = δij, 1 ≤ i, j ≤ kI .

Proof. To prove (i) we adapt the argumentation in [4,34] to our setting. We proceed by induction. By definition
we have that W I

1 = span{qI
1}. Let us assume that W I

kI−1 = span{qI
1 , . . . , qI

kI−1}. The construction of qI
kI

is well-
defined if BI,kI−1 is invertible and |σI

kI
(rkI )| > 0. The properties of the matrix BI,kI−1 can be proven as in [4,34],

exploiting the definition of the linear functionals σI
1 , . . . , σI

kI−1 in Line 6 of Algorithm 2.1. To show |σI
kI

(rkI )| > 0
we argue by contradiction. Assume |σI

kI
(rkI )| = 0. Thanks to the unisolvence property of the dictionary ΣI
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Algorithm 2.2. adaptive Empirical Projection Method.
adaptive EPM(K, Σ, MΞ , εint

tol , N int
max, Ξ)1

Initialize I = ω, aI = y0, bI = y1; Define I as the partition consisting of one element I .2

Compute [SI ,QI , BI,kI ]= GEIM(K,ΣI ,I).3

for j = 1, ..., N int
max do4

foreach I ∈ I do5

Compute eI :=
1

n

∑
μ∈Ξ

‖
k∑

l=1

∫
ω

(u(μ, z) − IL[u](μ, z))κl(z) dz κl‖2
L2(I) (2.2)

6

if eI > |I|
|ω| · εint

tol then7

Set Ileft := [aI , (aI + bI)/2], Iright := [(aI + bI)/2, bI ].8

Define the localized dictionaries ΣIleft and ΣIright .9

Compute KIleft := POD({κ1|Ileft , . . . , κk|Ileft}) and KIright := POD({κ1|Iright , . . . , κk|Iright})10

Compute [SIleft ,QIleft , B
Ileft,kIleft ] = GEIM(KIleft , ΣIleft , Ileft),11

[SIright ,QIright , B
Iright,kIright ] = GEIM(KIright , ΣIright , Iright),12

Update I13

end14

end15

Set eint =
∑

I∈I eI .16

if eint ≤ εint
tol then17

go to line 2118

end19

end20

return SI, QI , BI,kI , eint.21

we infer that κI
kI

=
∑kI−1

j=1 αkI−1
j qI

j almost everywhere in I. Exploiting the induction hypothesis we can express
the functions qI

1 , . . . , qI
kI−1 and thus κI

kI
in the basis κI

1, . . . , κ
I
kI−1 which is contradictory to the requirement

that the set of functions {κI
1, . . . , κ

I
kI
} is linear independent. Assertion (ii) can be proven as in [41] and assertion

(iii) follows from the invertibility of BI,kI . �

To formulate the adaptive Empirical Projection Method 2.2 and hence an adaptive integration algorithm
based on GEIM, we introduce a non-uniform partition I of ω with elements I. aI and bI denote the left and
right interval boundary of I. In Algorithm 2.2 we first apply the standard GEIM on the whole domain ω in
Line 3 to the set K := {κ1, . . . , κk}. If the integration error eI as defined in (2.2) for I = ω is smaller than
the prescribed tolerance εint

tol we stop without refining. Otherwise we bisect in each iteration those intervals for
which eI > (|I|/|ω|) · εint

tol holds. Note that the error eI is computable as it only requires the knowledge of u
for μ ∈ Ξ, which can be accessed via MΞ . On the new intervals we first define the localized dictionaries as
described above and apply a POD in Line 10 to generate linear independent localized sets of functions KIleft

and KIright such that span{KIm} = span{κ1|Im , . . . , κk|Im}, m = left, right. Note that we may alternatively
define KIm as a linear independent subset of {κ1|Im , . . . , κk|Im} with span{KIm} = span{κ1|Im , . . . , κk|Im},
m = left, right. Subsequently we perform a localized GEIM to select sets of localized interpolating functionals
SIleft and SIright which are employed to define the local interpolants IIleft

kIleft
[v] and IIright

kIright
[w] for v ∈ L2(D×Ileft)

and w ∈ L2(D × Iright), respectively. We stop either if eint =
∑

I∈I eI ≤ εint
tol or if the maximal number of

iterations N int
max is reached. The empirical projection of u ∈ L2(D × ω) is then defined as

PL
k [u](μ, y) :=

k∑
n=1

∫
ω

IL[u](μ, z)κn(z) dz κn(y), IL[u](μ, y) :=
∑
I∈I

II
kI

[u](μ, y) =
∑
I∈I

kI∑
j=1

σI
j (u(μ, ·))ϑI

j (y),

(2.3)
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where the functions ϑI
j , j = 1, . . . , kI , have been defined in Lemma 2.1 and L :=

∑
I∈I kI . Finally, we remark

that N int
max has been introduced for security purposes, as, so far, we could only prove the convergence of the

adaptive EPM under certain assumption which are relatively mild, though. This issue as well as rigorous a priori
and a posteriori bounds are addressed in the following section.

2.1. Rigorous a priori and a posteriori error analysis for the adaptive EPM

To control the projection error ‖u − Pk[u]‖L2(D×ω) by the POD error on the snapshot set, we interpret
the discrete L2-norm occurring in the definition of the POD-space (2.1) as a numerical approximation of the
corresponding integral with the Monte Carlo method, which is one new contribution of the proof, and subse-
quently use ideas of Kunisch and Volkwein [38]. The main new contribution of Theorem 2.2 is the control of the
term ‖Pk[u]− PL

k [u]‖L2(D×ω), which is possible due to the design of the adaptive EPM, using the Monte Carlo
quadrature. To assess the integration error of the latter, we introduce the following notion [29]: for sequences
{Xn}n, {Yn}n of random variables we write Xn = OP (Yn), if for any ε > 0 there exists Mε, Nε > 0 such that
P (|Xn/Yn| > Mε) < ε for all n > Nε, where P (e) denotes the probability of the event E.

We also introduce the operator Bn : L2(ω) → L2(ω), defined as

Bn(v) =
1
n

∑
μ∈Ξ

(∫
ω

v(z)u(μ, z) dz u(μ, y)
)

∀v ∈ L2(ω). (2.4)

Note that Bn is a bounded, self-adjoint, and nonnegative operator and further compact thanks to its finite dimen-
sional image. We denote by λn

l the eigenvalues that satisfy the eigenvalue problem: find (κn
l , λn

l ) ∈ (L2(ω), R+)
such that

Bnκn
l = λn

l κn
l , (2.5)

and assume that the eigenvalues λn
l are listed in non-increasing order of magnitude, i.e. λn

1 ≥ . . . ≥ λn
d(n) > 0

and λn
l = 0 for l > d(n). Note that we have added the superscript n at the eigenvectors κl to highlight their

dependency on n and Ξ.

Theorem 2.2 (A priori error bound for the adaptive EPM). We assume that the parameter values μ ∈ Ξ
are sampled from the uniform distribution over D. Then for every ε > 0 there exists an N(ε) such that for all
n > N(ε)

‖u − PL
k [u]‖L2(D×ω) ≤

⎛
⎝ d(n)∑

l=k+1

λn
l

⎞
⎠1/2

+ e
1/2
int + ε. (2.6)

If furthermore λ∞
k �= λ∞

k+1 there exists an N(ε) such that for all n > N(ε)

‖u − PL
k [u]‖L2(D×ω) ≤

√
2

( ∞∑
l=k+1

λ∞
l

)1/2

+ e
1/2
int + ε, (2.7)

and λn
l → λ∞

l for 1 ≤ l ≤ k as n → ∞ and κn
l → κ∞

l strongly in L2(ω) for 1 ≤ l ≤ k and n → ∞, where
{λ∞

l }∞l=1 are the eigenvalues and κ∞
l are the eigenfunctions of the operator B : L2(ω) → L2(ω), defined as

B(v) =
∫
D

∫
ω

v(z)u(μ, z) dz u(μ, y) dμ for v ∈ L2(ω). (2.8)
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Regarding the rate of convergence in n, we have that

‖u − PL
k [u]‖L2(D×ω) ≤

⎛
⎝ d(n)∑

l=k+1

λn
l

⎞
⎠1/2

+ e
1/2
int + OP (n−1/4) (2.9)

and ‖u − PL
k [u]‖L2(D×ω) ≤

√
2

( ∞∑
l=k+1

λ∞
l

)1/2

+ e
1/2
int + OP (n−1/4). (2.10)

If Algorithm 2.2 converges, i.e. eint ≤ εint
tol, the estimates (2.6)–(2.10) hold with e

1/2
int replaced by (εint

tol)
1/2.

Proof. We begin with splitting the error into a projection error and an integration error:

‖u − PL
k [u]‖L2(D×ω) ≤ ‖u − Pk[u]‖L2(D×ω) + ‖Pk[u] − PL

k [u]‖L2(D×ω). (2.11)

Thanks to the assumptions on Ξ we can interpret for an arbitrary function f ∈ L2(D × ω), the term In(F ) :=
(1/n)

∑
μ∈Ξ ‖f(μ, ·)‖2

L2(ω) as a numerical approximation of the integral I(f) =
∫
D
∫

ω
f2 dy dμ with the Monte

Carlo method. Thus, the strong law of large numbers (see for instance [30]) yields that for every δ > 0 there
exists an N ′(δ) such that for all n > N ′(δ)

‖u − Pk[u]‖2
L2(D×ω) =

⎛
⎝ 1

n

∑
μ∈Ξ

‖u(μ, ·) −
k∑

l=1

∫
ω

u(μ, z)κl(z) dz κl‖2
L2(ω)

⎞
⎠+ δ ≤

⎛
⎝ d(n)∑

l=k+1

λn
l

⎞
⎠+ δ,

where we have used the classical estimate for the POD error. Approximating also the integral of the second
term in (2.11) with a Monte Carlo method and using the outcome of Algorithm 2.2, we obtain that for every
δ > 0 there exists an N ′′(δ) such that for all n > N ′′(δ)

‖Pk[u] − PL
k [u]‖2

L2(D×ω) =

⎛
⎝ 1

n

∑
μ∈Ξ

‖
k∑

l=1

∫
ω

u(μ, z)κl(z) dz κl −
k∑

l=1

∫
ω

IL[u](μ, z)κl(z) dz κl‖2
L2(ω)

⎞
⎠+ δ

=

⎛
⎝ 1

n

∑
μ∈Ξ

‖
k∑

l=1

∫
ω

(u(μ, z) − IL[u](μ, z))κl(z) dz κl‖2
L2(ω)

⎞
⎠+ δ ≤ eint + δ.

Choosing δ = ε/2 and N(ε) = max{N ′(δ), N ′′(δ)} yields (2.6).
To show (2.7) we first note that the operator T : L2(ω) → L2(D), defined as (Tv)(μ) :=∫

ω u(μ, y)v(y) dy, for v ∈ L2(ω), is a Hilbert–Schmidt integral operator and thus compact. Boundedness of
the operator Y : L2(D) → L2(ω), defined as Y(w) :=

∫
D u(μ, y)w(μ) dμ, for w ∈ L2(D), yields that B is a

compact operator as well. The estimate (2.7), λn
l → λ∞

l for 1 ≤ l ≤ k as n → ∞ and κn
l → κ∞

l strongly in L2(ω)
for 1 ≤ l ≤ k can then be proven completely analogous to the argumentation in Section 3.2 of [38]. Note that
the convergence of κn

l to κ∞
l strongly in L2(ω) for 1 ≤ l ≤ k and n → ∞ leads to the well-definedness of the

interpolating functionals SI , I ∈ I also for n → ∞ and thus to the boundedness of the term eint independent
of n.

Finally, the (probabilistic) convergence rate in n is a direct consequence of the central limit theorem (see for
instance [9, 30]). �

We remark that the assumptions on Ξ can be weakened in the sense that also an adaptive sampling strategy
can be considered. This may change the convergence rate of the Monte Carlo method, but does not affect
the proof of Theorem 2.2. Alternatively, a quasi-Monte Carlo method may be used, which has an improved
convergence rate of approximately OP ((log n)cn−1) for some constant c [9].
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Next, we prove under certain assumptions that the integration error eint converges to 0 if k → ∞ and thus
that the adaptive integration Algorithm 2.2 converges. The main ingredients of the proof are the classical POD
error bound, the exploitation of the properties of the GEIM as recalled in Lemma 2.1 on the elements I ∈ I,
and the bounds of the interpolation error of the localized GEIM.

To this end we introduce for each I ∈ I the Lebesgue constant with respect to the L2(I)-norm [40] as

ΛI
kI

:= sup
g(μ)∈M

‖II
kI

[g](μ, ·)‖L2(I)

‖g(μ, ·)‖L2(I)
· (2.12)

Based on that we obtain the following bound for eint.

Proposition 2.3 (Convergence of the adaptive EPM). Let λn
l be the eigenvalues of the eigenvalue problem (2.5),

ΛI
kI

, I ∈ I the Lebesgue constants as defined in (2.12), and eint =
∑

I∈I eI with eI defined in (2.2). Then there
holds

e
1/2
int ≤

√
k

⎛
⎝1 +

(∑
I∈I

(ΛI
kI

)2
)1/2

⎞
⎠
⎛
⎝ d(n)∑

l=k+1

λn
l

⎞
⎠1/2

. (2.13)

Proof. Let I be an arbitrary interval in I. Exploiting (κi, κj)L2(ω) = δij twice, we obtain

eint ≤
1
n

∑
μ∈Ξ

k∑
l=1

(∫
ω

(u(μ, y) − IL[u](μ, y))κl(y) dy

)2

≤ 1
n

∑
μ∈Ξ

k‖u(μ, ·) − IL[u](μ, ·)‖2
L2(ω). (2.14)

For each μ ∈ Ξ we can further estimate:

‖u(μ, ·) − IL[u](μ, ·)‖L2(ω) ≤ ‖u(μ, ·) − IL[Pk[u]](μ, ·)‖L2(ω)︸ ︷︷ ︸
(i)

+ ‖IL[Pk[u]](μ, ·) − IL[u](μ, ·)‖L2(ω)︸ ︷︷ ︸
(ii)

.

As the GEIM is exact for all w ∈ W I
kI

(see Lem. 2.1), we obtain for (i):

‖u(μ, ·) − IL[Pk[u]](μ, ·)‖2
L2(ω) =

∑
I∈I

‖u(μ, ·) − IL[Pk[u]](μ, ·)‖2
L2(I) =

∑
I∈I

‖u(μ, ·) − Pk[u](μ, ·)‖2
L2(I). (2.15)

Using the definition of the Lebesgue constant we get for (ii):

‖IL[Pk[u]](μ, ·) − IL[u](μ, ·)‖2
L2(ω) =

∑
I∈I

‖IL[Pk[u]](μ, ·) − IL[u](μ, ·)‖2
L2(I)

(2.16)
≤
∑
I∈I

(ΛI
kI

)2‖Pk[u](μ, ·) − u(μ, ·)‖2
L2(I).

By combining the estimates (2.15) and (2.16) we obtain

‖u(μ, ·) − IL[u](μ, ·)‖L2(ω) ≤

⎧⎨
⎩1 +

(∑
I∈I

(ΛI
kI

)2
)1/2

⎫⎬
⎭ ‖u(μ, ·) − Pk[u](μ, ·)‖L2(ω). (2.17)

The estimates (2.14) and (2.17) together with the classical estimate of the POD-error yield the desired result

eint ≤
1
n

∑
μ∈Ξ

⎧⎪⎨
⎪⎩k

⎛
⎝1 +

(∑
I∈I

(ΛI
kI

)2
)1/2

⎞
⎠2

‖u(μ, ·) − Pk[u](μ, ·)‖2
L2(ω)

⎫⎪⎬
⎪⎭

≤ k

⎛
⎝1 +

(∑
I∈I

(ΛI
kI

)2
)1/2

⎞
⎠2⎛⎝ d(n)∑

l=k+1

λn
l

⎞
⎠ .
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�

To obtain convergence of the adaptive EPM we thus need that the Lebesgue constant increases rather moderately
for growing k. Exploiting the properties of the entries of the matrices BI,kI it can be proven (see [40]) that the
Lebesgue constants ΛI

kI
, I ∈ I can be bounded as follows:

ΛI
kI

≤ 2kI−1 max
i=1,...,kI

‖qi‖L2(I). (2.18)

Therefore the POD-error
∑d(n)

l=k+1 λn
l has to converge exponentially fast so that (2.13) yields convergence of

the adaptive EPM. However, numerical results (see [43]) show that the Lebesgue constant increases much
slower than anticipated by (2.18) and in many cases even linear. Very recently it has been demonstrated
in [43] that for v ∈ L2(I) the localized generalized empirical interpolant II

kI
[v] can be interpreted as a Petrov-

Galerkin approximation of v where the approximation space is W I
kI

and the test space is spanned by the Riesz
representations of the functionals σI ∈ SI in L2(I). The Lebesgue constant ΛI

kI
then equals the reciprocal of the

inf-sup constant associated with those approximation and trial spaces [43]. This relates the Lebesgue constant
to the considered dictionary Σ and allows some guidance on how to choose Σ.

We remark that the proofs for the convergence rates of the EIM [41] and for the GEIM [42] crucially depend
on the fact that the set of functions passed to Algorithm 2.1 are chosen by a greedy algorithm. Hence these
results do not apply in our setting where we apply a POD.

Note also that Proposition 2.3 yields an upper bound for the (computable) integration error eint. Therefore,
we employ the a priori bounds (2.6) in Theorem 2.2 to derive a rigorous a posteriori estimator by comparing
with a superior approximation PL′

k′ [u]. We emphasize that due to the usage of the Monte Carlo method the
a posteriori error estimate will be a probabilistic estimate. To determine the number of samples n needed to
ensure an integration error due to the Monte Carlo approximation of at most εMC with a confidence level C we
introduce the empirical variances

ς1 =

⎡
⎢⎣ 1

n

∑
μ∈Ξ

⎛
⎝‖u(μ, ·) − Pk[u](μ, ·)‖2

L2(ω) −

⎧⎨
⎩ 1

n

∑
μ∈Ξ

‖u(μ, ·) − Pk[u](μ, ·)‖2
L2(ω)

⎫⎬
⎭
⎞
⎠2
⎤
⎥⎦

1/2

,

ς2 =

⎡
⎢⎣ 1

n

∑
μ∈Ξ

⎛
⎝‖Pk[u](μ, ·) − PL

k [u](μ, ·)‖2
L2(ω) −

⎧⎨
⎩ 1

n

∑
μ∈Ξ

‖Pk[u](μ, ·) − PL
k [u](μ, ·)‖2

L2(ω)

⎫⎬
⎭
⎞
⎠2
⎤
⎥⎦

1/2

.

Then, we obtain the following result.

Proposition 2.4 (An a posteriori error estimate for the adaptive EPM). Let the assumptions of Theorem 2.2
be fulfilled and let εtol be a given tolerance. Then the error estimate

‖u − PL
k [u]‖L2(D×ω) ≤ εtol + ΔEPM + e

1/2
int + OP (n−1/4) (2.19)

holds with ΔEPM := ‖PL′
k′ [u] − PL

k [u]‖L2(D×ω), (2.20)

where k′ is defined as the minimal number in {k + 1, . . . , d(n)}, such that

⎛
⎝d(n)∑

j=l

λn
j

⎞
⎠1/2

≤ εtol, (2.21)

and L′ is determined by Algorithm 2.2, requiring L′ > L.
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Let εMC be a given tolerance for the error caused by the Monte Carlo approximation, C a given confidence
level, and let n satisfy n ≥ max{N1, N2}. Let in turn N1 and N2 fulfill Ni ≥ ε−2

MC ς2
i s(C), i = 1, 2, and s(C) satisfy

C = erf(s(C)/
√

2), where erf(·) denotes the error function encountered in integrating the normal distribution.
Then the estimate

‖u − PL
k [u]‖L2(D×ω) ≤ εtol + ΔEPM + e

1/2
int + εMC (2.22)

holds true with the confidence level C.

Proof. We apply the a priori bound (2.6) to obtain

‖u − PL
k [u]‖L2(Ω) ≤

⎛
⎝ d(n)∑

l=k+1

λn
l

⎞
⎠1/2

+ e
1/2
int + OP (n−1/4).

With the definition of k′, the estimates in Theorem 2.2 and by computing PL′
k′ [u] with Algorithm 2.2 we get the

result
‖u − PL

k [u]‖L2(Ω) ≤ εtol + ‖PL′
k′ [u] − PL

k [u]‖L2(Ω) + e
1/2
int + OP (n−1/4).

Estimate (2.22) then follows directly from the central limit theorem and Slutsky’s theorem (see for
instance [29]). �

Note that there might be cases where choosing k′ > k results in a situation, in which Algorithm 2.2 bisects
an interval for k but not for k′. To ensure that PL′

k′ [u] yields a better approximation than PL
k [u], we require

L′ > L. Note also that the eigenvalues in (2.21) are computed when solving an eigenvalue problem to determine
the POD basis.

2.2. The adaptive EPM based on the EIM instead of the GEIM

If u ∈ L2(D, L∞(ω)) is sufficiently regular to allow point evaluations one might want to consider point
evaluations instead of evaluating functionals as the former might be easier to implement within a programming
code. To this end, we present in this subsection the changes that have to be made if we employ the EIM as
introduced in [4] instead of the GEIM. We suppose that the considered functions are regular enough to allow
for point evaluations, which is for instance satisfied in a discrete setting where we employ a conforming finite
element approximation.

First, for a function v(μ, ·) ∈ L∞(ω) we replace the evaluation by a functional σI
j ∈ ΣI as σI

j (v(μ, ·)) by the
point evaluation v(μ, tj), tj ∈ I for I ∈ I. Apart from that no changes are required in Algorithm 2.1 and this
algorithm becomes the construction of the ‘magic points’ [41]. Then, we apply the EIM in Line 11 and 12 in
Algorithm 2.2 to the localized function sets KIleft and KIright , where the latter have been defined in Line 10 of
Algorithm 2.2. Note that the statements for the GEIM in Lemma 2.1 analogously hold true for the EIM. We
emphasize that if we do not refine ω in Algorithm 2.2, the latter reduces to the application of the EIM to a
POD basis as considered also for instance in [59]. In this paper it has also been demonstrated that this yields
the same approximation as the DEIM.

Theorem 2.2 remains valid for the adaptive EPM based on the EIM and can be proven analogously as in
the previous subsection. We just note that thanks to the assumption u ∈ L2(D, L∞(ω)) we have that the
eigenfunctions κn

l are bounded with respect to the L∞-norm on ω for all n ∈ N. Therefore, we may extract
a weakly-∗ converging subsequence in L∞(ω) and obtain that the limit eigenfunctions satisfy κ∞

l ∈ L∞(ω),
1 ≤ l ≤ k. Hence, the selection of the interpolation points with the EIM is well-defined also in the limit
n → ∞, which in turn yields the uniform boundedness of eint. One may then proceed as in Proposition 2.4 to
derive an a posteriori error estimator for the adaptive EPM based on the EIM. We emphasize that by running
Algorithm 2.2 with N int

max = 0 and additionally computing eI in (2.2) for I = ω, we obtain in this way rigorous
a priori and a posteriori bounds for the DEIM [15].
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Regarding the proof of the convergence of the adaptive EPM we note that the Lebesgue constant Λ̃I
kI

:=
supg(μ)∈M(‖ĨI

kI
[g](μ, ·)‖L∞(I)/‖g(μ, ·)‖L∞(I)) can in general not be bounded by the L2-based operator norm

of the interpolation operator. Here, the ˜ indicates that the respective quantities are defined for the adaptive
EPM based on the EIM. However, if we restrict to a discrete setting an analogous result to Proposition 2.3 may
be obtained. To this end we introduce a partition τh of ω with elements τj = (yj−1, yj) of width hj = yj − yj−1

and maximal step size h := maxτj hj , and a conforming finite element space Y h ∈ L∞(Ω) of dimension nh.
Then we may exploit the inverse estimate ‖υh‖L∞(ω) ≤ h−1/2‖υh‖L2(ω), υh ∈ Y h to obtain

sup
g(μ)∈M

‖ĨL[g](μ, ·)‖L2(ω)

‖g(μ, ·)‖L2(ω)
≤
(∑

I∈I

|I|(Λ̃I
k)2
)1/2

h−1/2. (2.23)

Replacing the estimate in (2.16) by the one in (2.23) yields the convergence of the adaptive EPM for a fixed
mesh size h for k → nh under certain assumptions as stated in the following corollary.

Corollary 2.5 (Convergence of the adaptive EPM in the discrete setting). There holds

e
1/2
int ≤

√
k

⎛
⎝1 +

(∑
I∈I

|I|(Λ̃I
k)2
)1/2

h−1/2

⎞
⎠
⎛
⎝ d(n)∑

l=k+1

λ̃n
l

⎞
⎠1/2

. (2.24)

For the Lebesgue constant Λ̃I
kI

, I ∈ I it can been shown as in [4, 34] that Λ̃I
kI

≤ 2kI − 1. Although this bound
can be actually reached [41], Λ̃I

k ≤ 2kI − 1 is a very pessimistic result and in numerical experiments a very
moderate behavior is observed (cf. [23, 34, 41]). Note that (2.24) only yields convergence of the EPM if the
POD-error converges faster than

√
k(1 + (

∑
I∈I |I|(Λ̃I

k)2)1/2h−1/2))−1. We emphasize the dependence on h−1/2

in (2.24). Therefore using the EIM within the adaptive EPM seems reasonable for moderate mesh sizes, whereas
for h → 0 we should rely on the GEIM.

Note that theoretically also the a posteriori bound for the EIM derived in [25] can be employed to obtain an
a posteriori estimate for the adaptive EPM. As the theory developed in [25] however requires that the considered
functions are parametrically smooth, it is not applicable within our context.

3. Hierarchical model reduction for nonlinear PDEs

The goal of this section is the efficient construction of a low-dimensional reduction space and a collateral
basis space, which yield a fast convergence of the RB-HMR approximation to the full solution. We recall that
the reduction space is used to define the reduced space in which we search our reduced RB-HMR solution. In
contrast the collateral basis space is constructed for the approximation of the range of nonlinear operator and
therefore facilitates the evaluation of the nonlinear term at low cost. Following the approach in [46], we derive
in Section 3.2 a parametrized nonlinear 1D PDE whose solution is employed for the definition of parametrized
1D operator evaluations in the transverse direction in Section 3.3. The sets of solution and operator snapshots
are generated simultaneously by an adaptive training set extension algorithm in Section 3.4. The principal
components of the snapshot sets then form the reduction space and the collateral basis space. We begin with
formulating the RB-HMR approach with the adaptive EPM in Section 3.1.

3.1. Formulation of the reduced problem in the RB-HMR framework employing the EPM

We follow the hierarchical model reduction (HMR) framework introduced in [27,50] and extended to the RB-
HMR setting in [46]. We recall our assumption that the considered domain is a tensor product, i.e. Ω = Ω1D×ω,
where Ω1D = (x0, x1) denotes the computational domain in the dominant direction, and ω = (y0, y1) the domain
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in the transverse direction. In more general situations a mapping to such a reference domain needs to be employed
(cf. [46]). For A : H1

0 (Ω) → H−1(Ω) and f ∈ H−1(Ω) we consider the nonlinear problem

Find p ∈ H1
0 (Ω) : 〈F (p), v〉 = 0 ∀v ∈ H1

0 (Ω), where 〈F (p), v〉 := 〈A(p), v〉 − 〈f, v〉. (3.1)

Problem (3.1) is denoted the full problem, and existence and uniqueness of a solution p ∈ H1
0 (Ω) of (3.1) is

assumed. Following the HMR framework, we introduce a set of L2-orthonormal basis functions {φk}k∈N ∈ H1
0 (ω).

At this point, we assume that the basis functions {φk}k∈N are given to us. Possible choices are trigonometric
or boundary-adapted Legendre polynomials [50] or a posteriori determined basis functions, whose construction
will be detailed in this section. We combine the reduction space Ym := span{φ1, . . . , φm} with H1

0 (Ω1D) and
define the reduced space

Vm =

{
vm(x, y) =

m∑
k=1

vk(x)φk(y), with vk(x) ∈ H1
0 (Ω1D), x ∈ Ω1D, y ∈ ω

}
, (3.2)

where vk(x) =
∫

ω vm(x, y)φk(y) dy, k = 1, . . . , m. The reduced solution pm ∈ Vm may then be obtained by
Galerkin projection, i.e.

Find pm ∈ Vm : 〈F (pm), vm〉 = 0 ∀vm ∈ Vm. (3.3)

Based on this reduced problem, fully discrete reduced approximations can be derived by replacing H1
0 (Ω1D) in

the definition of Vm by some suitable one-dimensional finite element subspace.
We emphasize that in contrast to the case of linear PDEs [27,46,50], the integrals in the transverse direction

in (3.3) cannot be precomputed due to the nonlinear operator A. This implies that (3.3) is still of full dimension.
To overcome this difficulty and hence perform a dimensional reduction of (3.3) we apply the adaptive EPM
introduced in Section 2.

We suppose that a set of collateral basis functions {κn}k
n=1 is given to us. The reduced problem based on the

adaptive EPM then reads

Find pm,k ∈ Vm : 〈PL
k [A(pm,k)], vm〉 = 〈f, vm〉 ∀vm ∈ Vm, where

PL
k [A(pm,k)](x, y) =

k∑
n=1

∫
ω

IL[A(pm,k)](x, z)κn(z) dz κn(y)

=
k∑

n=1

∑
I∈I

kI∑
j=1

∫
ω

σI
j (A(pm,k(x, ·)))ϑI

j (z)κn(z) dz κn(y). (3.4)

Note that for some nonlinear operators it might be necessary to apply the adaptive EPM component-wise,
exploiting that for any z ∈ H1

0 (Ω) there exist functions u1, u2 ∈ L2(Ω) such that

〈A(z), v〉 =
∫

Ω

u1 ∂x v + u2 ∂y v dxdy for all v ∈ H1
0 (Ω) (cf. [28], p. 283). (3.5)

Note also, that for the major part of problems which fall in the category of (1.1), we expect that for A(z) ∈
H−1(Ω), z ∈ H1

0 (Ω) we actually have A(z) ∈ L2(Ω) thanks to the lemma of J. L. Lions, which states that
for distributions v on Ω which are in H−1(Ω) and whose all partial derivatives are in H−1(Ω) there holds
v ∈ L2(Ω) (see [18] and references therein). To simplify notations we do not introduce a separate notion for
the cases where the adaptive EPM has to be applied component-wise but instead assume that such cases are
covered by the formulation in (3.4).

Rewriting pm,k as pm,k(x, y) =
∑m

s=1 ps,k(x)φs(y) we obtain: Find ps,k ∈ H1
0 (Ω1D), s = 1, . . . , m, such that

k∑
n=1

∑
I∈I

kI∑
j=1

〈
σI

j

(
A

(
m∑

s=1

ps,kφs

))∫
ω

ϑI
j (y)κn(y) dy κn, ξφj

〉
= 〈f, ξφj〉 ∀ ξ ∈ H1

0 (Ω1D) and j = 1, . . . , m.

(3.6)
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To compute an approximation of pm,k we introduce a partition TH of Ω1D with elements Ti = (xi−1, xi) of
width Hi = xi −xi−1 and maximal step size H := maxi Hi. Moreover, we introduce a conforming finite element
space XH ⊂ H1

0 (Ω1D) of dimension NH < ∞ and basis ξH
i , i = 1, . . . , NH . Then the corresponding discrete

reduced problem reads: Find pH
s,k ∈ XH , s = 1, . . . , m, such that

k∑
n=1

∑
I∈I

kI∑
j=1

〈
σI

j

(
A

(
m∑

s=1

pH
s,kφs

))∫
ω

ϑI
j (y)κn(y) dy κn, ξH

i φj

〉
= 〈f, ξH

i φj〉, (3.7)

for i = 1, . . . , NH , j = 1, . . . , m, which is equivalent to the short notation

Find pH
m,k ∈ V H

m : 〈PL
k [F (pH

m,k)], ξH
i φj〉 = 0 for i = 1, . . . , NH and j = 1, . . . , m, (3.8)

where 〈PL
k [F (pH

m,k)], ξH
i φj〉 = 〈PL

k [A(pH
m,k)], ξH

i φj〉−〈f, ξH
i φj〉, i = 1, . . . , NH , j = 1, . . . , m. We emphasize that

thanks to the application of the adaptive EPM we can now precompute the integrals in the transverse direction
in (3.6) and (3.7) and as a result the computation of p̄s,k and p̄H

s,k reduces to the solution of a coupled system
of nonlinear one-dimensional PDEs of size m (3.6) or m · NH (3.7).

Problem (3.7) can be efficiently solved by Newton’s method. It is possible to reuse the collateral basis for a
nonlinear operator also for the approximation of its Fréchet derivative [23]. To obtain a better approximation
of A′(pH

m,k(x, y)) and thus ideally a faster convergence of the Newton scheme solving for pH
m,k, we propose to

use a second collateral basis space Wf,kf
:= span{κf

1 , . . . , κf
kf
} for this approximation. Assuming that Wf,kf

is
given, the Newton scheme is defined as follows:

〈PLf

kf
[F ′((pH

m,k)j)] δ(pH
m,k)j , vH

m〉 = −〈PL
k [F ((pH

m,k)j)], vH
m〉 ∀vH

m ∈ V H
m , j = 0, 1, 2, . . .

(3.9)
(pH

m,k)j+1 = (pH
m,k)j + δ(pH

m,k)j ,

where (pH
m,k)0 is a suitable initial datum and P

Lf

kf
[F ′(pH

m,k)] is computed analogous to PL
k [F (pH

m,k)] with the
adaptive EPM. For well-posedness of the Newton scheme for nonlinear PDEs in general we refer to [19] and for
this particular framework to [54].

For future reference we finally introduce a two-dimensional finite element solution which will serve as a
reference for our approximation. To this end we introduce the subdivision T := TH × τh of Ω with elements
Ti,j := Ti × τj , Ti ∈ TH and τj ∈ τh, and the reference FE-space

V H×h :=
{
vH×h ∈ C0(Ω) | vH×h|Ti,j ∈ Qk,l, Ti,j ∈ T

}
. (3.10)

Here, Qk,l is defined as Qk,l := {
∑

j cjvj(x)wj(y) : vj ∈ P1
k, wj ∈ P1

l }, and P1
l denotes the space of polynomials

of order ≤ l in one variable. We will see in Sections 3.2 and 3.4 that we have for the RB-HMR approach Ym ⊂ Y h

and as a consequence V H
m ⊂ V H×h. The reference FE approximation of problem (3.1) reads:

Find pH×h ∈ V H×h : 〈F (pH×h), vH×h〉 = 0 ∀ vH×h ∈ V H×h, (3.11)

where 〈F (pH×h), vH×h〉 = 〈A(pH×h), vH×h〉 − 〈f, vH×h〉 for all vH×h ∈ V H×h.

3.2. Derivation of a parametrized 1D problem in transverse direction

To derive a lower dimensional parametrized PDE in the transverse direction we proceed as in [46] and assume
that

p(x, y) ≈ U(x) · P(y), (3.12)

where the function U(x) represents the unknown behavior of the full solution in the dominant direction. Using
the test functions v(x, y) = U(x) · υ(y) for all υ ∈ H1

0 (ω) yields the reduced problem with quadrature

Given any U ∈ H2
0 (Ω1D), find P ∈ H1

0 (ω) : 〈A(UP), Uυ〉q = 〈f, Uυ〉q ∀υ ∈ H1
0 (ω). (3.13)
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Here, we denote by 〈·, ·〉q the approximation obtained by substituting the integral I(t) :=
∫

ω

∫
Ω1D

t(x, y) dxdy
in 〈·, ·〉 by the quadrature formula

Q(t) :=
Q∑

l=1

αl

∫
ω

t(xq
l , y) dy, (3.14)

where αl, xq
l , l = 1, . . . , Q denote quadrature weights and points respectively. Note that we require U ∈

H2
0 (Ω1D) to facilitate point evaluations of U and thus obtain the well-definedness of (3.13). Note also that

this assumption is reasonable in the sense that in many cases we have indeed that the solution p belongs to a
Sobolev space of higher order (see for instance [10]). To include the unknown dynamics in dominant direction
U in the lower-dimensional problem in transverse direction and to find optimal locations of the quadrature
points with RB methods (see Sect. 3.4 below), we parametrize (3.13) by introducing a parameter vector μ =
(xq

l , U(xq
l ), ∂xU(xq

l ))l=1,...,Q
. The P -dimensional parameter space D containing all admissible parameter values

of μ, is defined as D := [Ω1D × I0 × I1]Q, where the intervals Ik ⊂ R contain the ranges of ∂k
xU(x), k = 0, 1.

Compared to the linear setting, we expect a greater sensitivity of the RB-HMR approach with respect to the
choice of the intervals Ik ⊂ R, k = 0, 1, as the nonlinearity of A also applies to the parameter via the term
A(UP). This can indeed be observed in the numerical experiments provided in Section 4. To get a rough estimate
on the possible ranges of ∂k

xU(x), k = 0, 1, and therefore obtain an optimal convergence rate of the RB-HMR
approach, we may for instance compute a coarse approximation of the solution p of (3.1). Using the definition
of μ, problem (3.13) can be recast into a parametrized 1D nonlinear PDE in transverse direction as follows:

Given any μ ∈ D, find P(μ) ∈ H1
0 (ω) : 〈A(P(μ); μ), υ; μ〉q = 〈f(μ), υ; μ〉q ∀υ ∈ H1

0 (ω). (3.15)

Here, 〈·, ·; μ〉q denotes the parameter dependent dual pairing of H−1(ω) and H1
0 (ω), A(·; μ) : H1

0 (ω) → H−1(ω),
and f(μ) ∈ H−1(ω). Possible choices for the quadrature formula (3.14) are a modified rectangle formula or a
standard composite trapezoidal rule. The number of quadrature points is chosen automatically by an adaptive
algorithm, described in Section 3.4. To compute snapshots we use the subdivision τh of ω and the associated
conforming FE space Y h ⊂ H1

0 (ω) with basis υh
j , j = 1, . . . , nh as introduced in Section 2.2. We obtain the

parameter dependent discrete 1D problem:

Given any μ ∈ D, find Ph(μ) ∈ Y h : 〈A(Ph(μ); μ), υh
j ; μ〉q = 〈f(μ), υh

j ; μ〉q for j = 1, . . . , nh, (3.16)

which can be solved by Newton’s method. Well-posedness of (3.16) and the conditions for the convergence of
Newton’s method may be verified a posteriori (cf. [12,54]). We may then define the solution manifold MP as

MP := {Ph(μ) |μ ∈ D}. (3.17)

Finally, we remark that instead of the heuristic assumption in (3.12) one might alternatively consider a linear
combination of tensor products. Note that we would then have to consider a system of nonlinear equations
in (3.15) and that the number of parameters would of course increase. How this change affects the approximation
properties of the RB-HMR approach is subject of future research.

3.3. The generation of parametrized 1D operator evaluations

In this subsection we define a manifold of operator evaluations which is formed by parametrized 1D oper-
ator evaluations of the nonlinear operator A in the transverse direction. For this purpose we consider (3.15)
and (3.16) and define parametrized 1D operator evaluations A(μ) and Ah(μ) of the operators A(p(x, y)) and
A(pH×h(x, y)) as

A(μ) :=
Q∑

l=1

αl

|Ω1D|A(P(μ); μl), and Ah(μ) :=
Q∑

l=1

αl

|Ω1D|A(Ph(μ); μl). (3.18)

Here, |Ω1D| denotes the length of the interval Ω1D, μl := (xq
l , U(xq

l ), ∂
k
xU(xq

l )), P(μ) is the solution of (3.15) and
Ph(μ) solves (3.16). Provided that P(μ) is able to capture the behavior of the full solution p in the transverse
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Algorithm 3.1. Computation of k′.

EPM-Indicator(Ph
G,Ah

G, εerr
tol , tolk′ , εc

tol, ε
int
tol, N int

max, mmax, NH′ , ΞG, Σ)1

{φl}mmax
l=1 := POD(Ph

G, mmax)2

[{κl}kP OD
l=1 , {λl}kP OD

l=1 ] := POD(Ah
G, εerr

tol )3

[SI
kPOD

,QI
kPOD

, BI
kP OD

, eint] :=adaptive EPM({κl}kP OD
l=1 , Σ,Ah

G,εint
tol, N int

max, ΞG, {φl}mP OD
l=1 , NH′)4

k′ =EPM-Aposteriori-Bound(eint, tolk′ · εc
tol, {λl}kP OD

l=1 )5

Wk′ := {κl}k′
l=16

SI
k′ :=adaptive EPM({κl}k′

l=1, Σ, Ah
G, εint

tol, N int
max, ΞG, {φl}mP OD

l=1 , NH′)7

return Wk′ ,SI
k′8

direction, we expect that A(μ) is a good approximation of the range of A(p(x, y)) in that direction, which will
be validated in Section 4. Moreover, we define parametrized 1D operator evaluations of the respective Fréchet
derivatives A′(p(x, y)) and A′(pH×h(x, y)) as

A′(μ) :=
Q∑

l=1

αl

|Ω1D|A
′(P(μ); μl), and (Ah)′(μ) :=

Q∑
l=1

αl

|Ω1D|A
′(Ph(μ); μl). (3.19)

Finally, we define a manifold of operator evaluations MA through

MA := {Ah(μ) |μ ∈ D}. (3.20)

3.4. Reduced and collateral basis generation – the ADAPTIVE-RB-HMR algorithm

In this subsection we introduce the Adaptive-RB-HMR algorithm which simultaneously constructs the
reduction space Ym = span{φ1, . . . , φm} ⊂ Y h and the collateral basis space Wk = span{κ1, . . . , κk} using
sampling strategies from the RB framework. First, the snapshot sets

MP
Ξ := {Ph(μ) |μ ∈ Ξ} ⊂ MP , and MA

Ξ := {Ah(μ) |μ ∈ Ξ} ⊂ MA, Ξ ⊂ D, (3.21)

are efficiently constructed in Algorithm 3.2 by an adaptive training set extension which generalizes the
algorithm proposed in [46]. Subsequently, we apply a POD to determine the principal components of MP

Ξ and
MA

Ξ which in turn span the reduction space Ym and the collateral basis space Wk, respectively.

Algorithm 3.2 (AdaptiveTrainExtension). Let G denote a hyper-rectangular possibly non-conforming grid
in the parameter space D, g a cell of G and NG the number of cells in G. The parameter values in the
training set Ξg are sampled from the uniform distribution over the cell g, where Ξg has the same size nΞ

for all cells g and ΞG = ∪g∈GΞg. As in [46] and originally in [35, 36] we use a local mesh adaptation with a
SOLVE → ESTIMATE → MARK → REFINE strategy for the generation of G and ΞG beginning with a given
coarse partition G0 and an associated initial training set ΞG0 . In Section 3.5 we derive an a posteriori error
estimate Δk

m for the error between the solution pH′
m,k of (3.7) and the reference solution pH′×h defined in (3.11)

which takes into account both the model error and the error due to the approximation of the nonlinear operator.
For the latter we use the a posteriori bound for the EPM derived in Proposition 2.4. A richer collateral basis
space Wk′ with associated interpolating functionals SI

k′ has thus to be provided before starting the SOLVE →
ESTIMATE → MARK → REFINE-loop. Therefore, we initially compute the snapshots Ph

c and Ah
c for a coarse

train sample Ξc of G0 with |Ξc| = NG0nc in line 4 in Algorithm 3.2. To compute Wk′ and the functionals SI
k′

with Algorithm 3.1 EPM-Indicator, we first use a POD to find the principal components {κl}kPOD

l=1 such that
the POD-error ePOD

kPOD
= (
∑NG0nc

l=kP OD+1 λl)1/2 ≤ εerr
tol , where εerr

tol < εEPM

tol . Note that εerr
tol has to be chosen rather
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Algorithm 3.2. Adaptive training set extension and snapshot generation.
AdaptiveTrainExtension(G0, ΞG0 , Ξc, mmax, imax, nΞ , θ, σthres, NH′ , . . .1

. . . εerr
tol , ε

c
tol, tolk′ , εint

tol , N
int
max, Q0, Qmax, Σ)2

Initialize G = G0, ΞG = ΞG0 , φ0 = ∅, κ0 = ∅, ρ(G) = 0, Q = Q03

Compute Ph
c (Q), Ah

c (Q)4

[Wk′ ,SI
k′ ] =EPM-Indicator(Ph

c ,Ah
c , εerr

tol , tolk′ , εc
tol, ε

int
tol, N int

max, mmax, NH′ , Ξc, Σ)5

Q =QP-Indicator(Ph
c , NH′ , Wk′ ,SI

k′ , Qmax)6

Possibly adapt G and ΞG if Q has changed.7

for m = 1, . . . , mmax do8

Compute Ph
G(Q), Ah

G(Q)9

[η(G), σ(G)] =ElementIndicators({φk}m−1
k=1 ,Ph

G, {κk}kc
k=1,Ah

G, Wk′ ,SI
k′ , G, ρ(G), NH′)10

for i = 1, . . . , imax do11

G := Mark(η(G), σ(G), θ, σthres)12

(G, ΞG) := Refine(G,ΞG , nΞ)13

ρ(G \ G) = ρ(G \ G) + 114

Compute Ph
G(Q), Ah

G(Q)15

[η(G), ρ(G), σ(G)] =ElementIndicators({φk}m−1
k=1 ,Ph

G , {κk}kc
k=1,Ah

G , Wk′ ,SI
k′ , NH′)16

end17

{φk}m
k=1 := POD(Ph

G, m)18

{κk}kc
k=1 := POD(Ah

G, εc
tol)19

[Wk′ ,SI
k′ ] =EPM-Indicator(Ph

G,Ah
G, εerr

tol , tolk′ , εc
tol, ε

int
tol, N int

max, mmax, NH′ , ΞG, Σ)20

Q =QP-Indicator(Ph
G, NH′ , Wk′ ,SI

k′ , Qmax)21

Possibly adapt G and ΞG if Q has changed.22

end23

return MP
Ξ ,MA

Ξ , ΞG24

small to obtain an a posteriori error estimate for the EPM which is as accurate as possible. Next, we apply
Algorithm 2.2 adaptive EPM for the computation of the interpolating functionals SI

kP OD
, the basis QI

kPOD

and the matrix BI
kP OD

, where the computation of the interpolant in (2.3) necessitates the solution of (3.7)
and thus the computation of {φl}mmax

l=1 in line 2. As the error bound is only employed during the adaptive
training set extension, it is sufficient to restrict to m = mmax. Then we use the a priori bound for the EPM
from Theorem 2.2 to compute k′, which yields Wk′ and apply again Algorithm 2.2 to determine SI

k′ . Here, εc
tol

denotes the tolerance for the POD employed to compute the collateral basis of size kc within Algorithm 3.2.
The factor tolk′ results in a smaller tolerance tolk′ · εc

tol for the POD which is used to compute the collateral
basis of size k′ solely for error estimator purposes and ensures k′ > kc. Wk′ and SI

k′ are updated at the end of
each loop over m in line 20 to include the information from the snapshots generated during lines 9 and 15.

A main difference to the Algorithm in [46] is the usage of the QP-Indicator, which chooses the number of
quadrature points Q used in (3.16). To decide whether Q has to be increased or not we apply a POD to Ph

c

in line 6 (Ph
G in line 21) and compare the convergence rates of the eigenvalues of the POD with ‖p̄H′

l,k′‖2
L2(Ω1D),

l = 1, .., 10, where the coefficients p̄H′
l,k′ ∈ XH′

solve (3.7). If we observe that the decay rate of the coefficients is
worse than the rate of the eigenvalues by at least 50% on 5 consecutive values2, and Q is smaller than Qmax, we
increment Q by one. Note that we want to increment Q only if we observe a significant deviation of the coefficients
from the eigenvalues, which is why we proceed rather conservatively. Note also that the QP-Indicator thus
enforces the adaptation of the reduction space Ym and the collateral basis space Wk to the reference solution
pH×h and the nonlinear operator A(pH×h) by increasing the amount of information on the dynamics in the
dominant direction in the spaces Ym and Wk, if necessary. The initial value Q0 is usually set to 1. Note that

2This can be verified by comparing the slope of the tangents.
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Algorithm 3.3. Construction of the reduction space Ym and the collateral basis space Wk.
Adaptive-RB-HMR(G0, mmax, imax, nΞ , nc, θ, σthres, NH′ , εHMR

tol , εEPM

tol , . . .1

. . . εerr

tol, ε
c

tol, tolk′ , εint
tol , N

int
max, Q0, Qmax, Σ)2

Initialize ΞG0 , Ξc3

[MP
Ξ ,MA

Ξ , ΞG] = AdaptiveTrainExtension(G0, ΞG0 , Ξc, mmax, imax, nΞ , . . .4

. . . θ, σthres, NH′ , εerr

tol, ε
c
tol, tolk′ , εint

tol, N
int
max, Q0, Qmax, Σ)5

Ym := POD(Ph
G, εHMR

tol ), such that ePOD
m ≤ εHMR

tol .6

Wk := POD(Ah
G, εEPM

tol ), such that ePOD
k ≤ εEPM

tol .7

SI
k =adaptive EPM(Wk,Ah

G, εint
tol, N

int
max, ΞG, Ym, NH′)8

return Ym, Wk, SI
k9

the fact that G is a product-like hyper-rectangular grid prevents the applicability of Algorithm 3.2 to high
parameter dimensions. However, if dim(D) � 1 we may instead consider an anisotropic adaptive refinement
strategy or use a clustering algorithm (cf. [48]).

Apart from the just stated differences and the additional computation of the snapshots Ah
G in lines 9 and 15,

and the POD for the computation of the small collateral basis {κk}kc

k=1 in line 3.2, Algorithm 3.2 follows the
lines of the corresponding Algorithm in [46]. Thus, we use the cell indicators η(g) := minμ∈Ξg Δk

m(μ) and
σ(g) := diam(g) · ρ(g), where ρ(g) counts the number of loops in which the cell g has not been refined, since
its last refinement. We mark for fixed θ ∈ (0, 1] in each iteration the θNG cells g with the smallest indicators
η(g) and additionally the cells for which σ(g) lies above a certain threshold σthres. Then, all cells marked for
refinement are bisected in each direction. Finally, we note that for each parameter value in ΞG we compute the
snapshots Ph(μ) and Ah(μ), add these snapshots to the already computed small bases {φl}m−1

l=1 and {κl}kc

l=1,
compute the (coarse) solution pH′

m,k of (3.7), and use the a posteriori error estimator to assess whether the span
of the small bases and the current snapshots yields a good approximation. Note that both for the computation of
pH′

m,k and the error estimator within the adaptive refinement procedure we employ a coarser discretization in the
dominant direction with a mesh size H ′ and an associated coarser finite element space XH′

of dimension NH′
.

Algorithm 3.3 (Adaptive-RB-HMR). At first, the training sets ΞG0 and Ξc are formed by sampling nΞ or nc

parameter values from the uniform distribution over each g ∈ G0, where nc > nΞ . Subsequently Algorithm 3.2
is called to generate the discrete manifolds MP

Ξ (3.17) and MA
Ξ (3.20). Finally, we apply a POD to determine

the principal components {φ1, . . . , φm} and {κ1, . . . , κk} of MP
Ξ and MA

Ξ , which then span the reduction space
Ym and the collateral basis space Wk.

Finally, we point out that the spaces Ym and Wk approximate the discrete manifolds MP
Ξ and MA

Ξ . However,
thanks to the design of the parametrized 1D problem and the parametrized operator evaluations we expect that
our choices of Ym and Wk also allow for a good approximation of the reference solution pH×h and the range
of the operator A(pH×h). This is demonstrated in Section 4. For details on the choice of the input parameters
mmax, imax, nΞ , σthres and NH′ we refer to [46].

3.5. A posteriori error estimates

We apply the Brezzi–Rappaz–Raviart (BRR) theory [7,10] to derive a rigorous a posteriori error bound for the
error between the reduced solution pH

m,k of (3.7) and a reference solution pH×h (3.11), which takes into account
both the contributions of the model reduction and the approximation of the nonlinear operator. To this end



HIERARCHICAL MODEL REDUCTION FOR NONLINEAR PDES 659

we first define the inf-sup stability factor and the continuity and the Lipschitz constant:

βp := inf
wH×h∈V H×h

|wH×h|W1,p(Ω) �=0

sup
vH×h∈V H×h

|vH×h|W1,q(Ω) �=0

〈F ′(pH
m,k)wH×h, vH×h〉W−1,p(Ω)W 1,q(Ω)

|wH×h|W 1,p(Ω)|vH×h|W 1,q(Ω)
, (3.22)

γp := sup
wH×h∈V H×h

|wH×h|W1,p(Ω) �=0

sup
vH×h∈V H×h

|vH×h|W1,q(Ω) �=0

〈F ′(pH
m,k)wH×h, vH×h〉W−1,p(Ω)W 1,q(Ω)

|wH×h|W 1,p(Ω)|vH×h|W 1,q(Ω)
, (3.23)

Lp := sup
wH×h∈B(pH

m,k,R)

‖F ′(wH×h) − F ′(pH
m,k)‖W 1,p(Ω),W−1,p(Ω)

|wH×h − pH
m,k |W 1,p(Ω)

, (3.24)

where B(pH
m,k, R) := {wH×h ∈ V H×h : | z − pH

m,k |W 1,p(Ω) ≤ R, R ∈ R+} and the index p comes from the space
W 1,p(Ω). Note that we compute the Lipschitz constant only on B(pH

m,k, R) both in order to obtain a sharper
estimate and to include nonlinear operators whose Fréchet derivative is not Lipschitz continuous on the whole
space V H×h. We comment in Section 3.5.1 on how we may obtain estimates for the constants defined in (3.22)–
(3.24). Now we may define a proximity indicator [12, 60] τk

m,p := 2Lp

β2
p

(‖F (pH
m,k) − PL

k [F (pH
m,k)]‖W−1,p(Ω) +

‖PL
k [F (pH

m,k)]‖W−1,p(Ω)) and obtain the following result.

Proposition 3.1 (A rigorous a posteriori error bound). Let 2 ≤ p < ∞. If τk
m,p < 1 then there exists a unique

solution pH×h ∈ B(pH
m,k,

βp

Lp
) of (3.11) and the following a posteriori error estimate holds

|pH×h − pH
m,k|W 1,p(Ω) ≤ Δk

m,p :=
βp

Lp
(1 −

√
1 − τk

m,p). (3.25)

Proof. The proof follows the ideas of [12], which in turn is based on [10,60]. �

Next, we analyze as in [12] the effectivity Δk
m,p/|pH×h − pH

m,k|W 1,p(Ω) of the error bound (3.25).

Proposition 3.2 (Effectivity). Let 2 ≤ p < ∞ and let us assume that

‖F (pH
m,k) − PL

k [F (pH
m,k)]‖W−1,p(Ω) ≤ cerr‖PL

k [F (pH
m,k)]‖W−1,p(Ω) (3.26)

for cerr ∈ [0, 1) and set Cerr := 1−cerr
1+cerr

. If τk
m,p ≤ 1

2Cerr we have

Δk
m,p ≤ 4C−1

err

γp

βp
|pH×h − pH

m,k|W 1,p(Ω). (3.27)

Proof. We simplify notations by setting 〈·, ·〉 := 〈·, ·〉W−1,p(Ω)W 1,q(Ω). It is easy to see (cf. [12]) that (3.26)
implies

‖PL
k [F (pH

m,k)]‖W−1,p(Ω) + ‖F (pH
m,k) − PL

k [F (pH
m,k)]‖W−1,p(Ω)

≤ C−1
err

(
‖PL

k [F (pH
m,k)]‖W−1,p(Ω) − ‖F (pH

m,k) − PL
k [F (pH

m,k)]‖W−1,p(Ω)

)
. (3.28)

The following estimate differs from [12], as in [12] a quadratic nonlinear PDE in a Hilbert space is considered
and the proof of the effectivity of the error bound heavily relies on these two assumptions. As τk

m,p ≤ 1
2Cerr ≤ 1

we may apply Proposition 3.1 to obtain〈
F (pH

m,k) − PL
k [F (pH

m,k)],vH×h
〉

+
〈
PL

k [F (pH
m,k)], vH×h

〉
= −〈F ′(pH

m,k)(pH×h − pH
m,k), vH×h〉

+
〈∫ 1

0

{
F ′(pH

m,k) − F ′(pH
m,k + t(pH×h − pH

m,k))
}

(pH×h − pH
m,k) dt, vH×h

〉
.
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Exploiting (3.23), (3.24), and (3.28) then yields

‖PL
k [F (pH

m,k)]‖W−1,p(Ω) + ‖F (pH
m,k) − PL

k [F (pH
m,k)]‖W−1,p(Ω)

≤ C−1
err

(
γp |pH×h − pH

m,k|W 1,p(Ω) +
Lp

2
|pH×h − pH

m,k|2W 1,p(Ω)

)
. (3.29)

Thanks to τk
m,p ≤ 1 we have 1 −

√
1 − τk

m,p ≤ τk
m,p and may thus estimate [12]

Δk
m,p =

βp

Lp

(
1 −

√
1 − τk

m,p

)
≤ 2

βp

(
‖PL

k [F (pH
m,k)]‖W−1,p(Ω) + ‖F (pH

m,k) − PL
k [F (pH

m,k)]‖W−1,p(Ω)

)
. (3.30)

Following the ideas in [12] we invoke (3.29), (3.30) and Proposition 3.1 to get

1
2
CerrβpΔ

k
m,p ≤ γp |pH×h − pH

m,k|W 1,p(Ω) +
Lp

2
|pH×h − pH

m,k|2W 1,p(Ω)

≤ γp |pH×h − pH
m,k|W 1,p(Ω) +

1
2
Δk

m,p(LpΔ
k
m,p).

Finally, we employ (3.30) again and τk
m,p ≤ 1

2Cerr to obtain

Δk
m,p ≤ 4C−1

err

γp

βp
|pH×h − pH

m,k|W 1,p(Ω). �

Note that the terms ‖F (pH
m,k)−PL

k [F (pH
m,k)]‖W−1,p(Ω) and ‖PL

k [F (pH
m,k)]‖W−1,p(Ω) are computable as V H×h

is a finite dimensional space. Alternatively, the dual norms may be further estimated by a localized residual
type estimator (cf. [53]). To obtain the required interpolation estimate for the terms |vH×h − vH

m |W 1,p(Ω) we
propose to replace vH×h in the latter term by vH

m′ with m′ > m.
Note that the formulation in (1.1) also includes nonlinear operators which have to be considered as a mapping

from W 1,p(Ω) onto W−1,p(Ω) for p > 2 for instance because they are not C1-mappings with respect to the space
H1(Ω). Therefore we also derive an error bound for |pH×h − pH

m,k|H1(Ω) for problems with p > 2. As in [10] we
assume that for all z ∈ B(pH

m,k, R), F ′(z) : W 1,p(Ω) → W−1,p(Ω) can be continuously extended as an operator
in L(H1(Ω), H−1(Ω)). In general this can be achieved by applying the Hahn–Banach theorem. Furthermore,
we require that

0 < β2,p := inf
wH×h∈V H×h

|wH×h|H1(Ω) �=0

sup
vH×h∈V H×h

|vH×h|H1(Ω) �=0

〈F ′(pH
m,k)wH×h, vH×h〉

|wH×h|H1(Ω)|vH×h|H1(Ω)
, (3.31)

and that there exist constants γ2,p and L2,p such that

〈F ′(pH
m,k)wH×h, vH×h〉 ≤ γ2,p|wH×h|H1(Ω)|vH×h|H1(Ω), (3.32)

‖F ′(pH
m,k) − F ′(wH

m)‖H1(Ω),H−1(Ω) ≤ L2,p | pH
m,k − wH

m |W 1,p(Ω) for wH
m ∈ B(pH

m,k, R). (3.33)

Here, the subscript 2, p indicates that the argument of F
′
(·) has to be in W 1,p

0 (Ω), p > 2. By transferring ideas
of [10] we obtain under the assumptions of Proposition 3.1

|pH×h − pH
m,k|H1(Ω) ≤

1
β2,p

(
L2,p|pH×h − pH

m,k|H1(Ω)Δ
k
m,p

+ ‖F (pH
m,k) − PL

k [F (pH
m,k)]‖H−1(Ω) + ‖PL

k [F (pH
m,k)]‖H−1(Ω)

)
.

Note that this bound requires the computation or estimation of the dual norms and the appearing constants
both for the W 1,p- and the H1-norm. Thus, we employ the inverse estimate | vH×h |W 1,p(Ω) ≤ ch| vH×h |H1(Ω)
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with ch := c(H2 + h2)(2−p)/(2p) and a constant c which is independent of H , h, p, and 2 [26]. Note that the
equivalence of norms on the finite dimensional space of polynomials on an element Ti,j of the partition T of Ω
can be used to obtain an estimate for c. Note also that thanks to exponent in ch we expect that ch depends
only very weakly on h and H . Based on that we introduce the proximity indicator

τk
m,2 :=

2L2,pch

β2
2,p

(‖F (pH
m,k) − PL

k [F (pH
m,k)]‖H−1(Ω) + ‖PL

k [F (pH
m,k)]‖H−1(Ω)) (3.34)

to derive the following computationally more feasible H1-error bound.

Proposition 3.3 (An error bound for the H1-norm). Let τk
m,2 < 1 and (3.31), (3.32) and (3.33) be fulfilled.

Then there exists an unique solution pH×h ∈ B(pH
m,k,

β2,p

L2,pch
) of (3.11) and the following a posteriori error

estimate holds

|pH×h − pH
m,k|H1(Ω) ≤ Δk

m :=
β2,p

L2,pch

(
1 −

√
1 − τk

m,2

)
. (3.35)

If we further assume that

‖F (pH
m,k) − PL

k [F (pH
m,k)]‖H−1(Ω) ≤ cerr‖PL

k [F (pH
m,k)]‖H−1(Ω) (3.36)

for cerr ∈ [0, 1) and τk
m,2 ≤ 1

2Cerr, where Cerr := (1 − cerr)/(1 + cerr), we have

Δk
m ≤ 4C−1

err

γ2,pch

β2,p
|pH×h − pH

m,k|H1(Ω). (3.37)

Proof. The proof uses the same arguments that have been applied in the proofs of Propositions 3.1
and 3.2. �

To further estimate Δk
m we invoke the a posteriori error bound for the EPM in Proposition 2.4 to replace

F (pH
m,k) by PL′

k′ [F (pH
m,k)]. Then we define the Riesz representations RH×h

m and EH×h
k as the solutions of

(RH×h
m , vH×h)H1(Ω) = (PL

k [F (pH
m,k)], vH×h)H1(Ω) ∀vH×h ∈ V H×h, (3.38)

and (EH×h
k , vH×h)H1(Ω) = (PL′

k′ [F (pH
m,k)] − PL

k [F (pH
m,k)], vH×h)H1(Ω) ∀vH×h ∈ V H×h. (3.39)

Here, (·, ·)H1(Ω) denotes the inner product associated with the H1-semi norm. We thus obtain

|RH×h
m |H1(Ω) = ‖PL

k [F (pH
m,k)]‖H−1(Ω) and | EH×h

k |H1(Ω) = ‖PL′
k′ [F (pH

m,k)] − PL
k [F (pH

m,k)]‖H−1(Ω). (3.40)

Note that due to the definition of the snapshot set MA
Ξ (3.20), the a priori bound (2.6) for the EPM is

only applicable, if MA
Ξ is a good approximation of {A(pH×h(μ, y)), μ ∈ Ξ}. This may be verified by com-

paring the convergence rates of the eigenvalues {λEPM
l }kPOD

l=1 of the POD applied to MA
Ξ and the coeffi-

cients ‖
∫

ω IL[A(pH
m,k)]κl‖2

L2(Ω1D), l = 1, . . . , kPOD. If the convergence rates do not coincide one may either

increase the number of quadrature points in (3.16) as discussed in Section 3.4 or replace {λEPM
l }kPOD

l=1 by
‖
∫

ω IL[A(pH
m,k)]κl‖2

L2(Ω1D), l = 1, . . . , kPOD, in the a priori bound (2.6) for the EPM. The latter requires only the
computation of kPOD − k additional integrals in y-direction. As the behavior of the coefficients

∫
ω
IL[A(pH

m,k)]κl

strongly influences the convergence behavior of PL
k [A(pH

m,k)] for increasing k we expect that (2.6) remains a
reliable a priori bound when substituting {λEPM

l }kPOD
l=1 by ‖

∫
ω IL[A(pH

m,k)]κl‖2
L2(Ω1D), l = 1, . . . , kPOD. This is

demonstrated by the numerical experiments in Section 4.
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3.5.1. Estimation of the constants

We close this section by addressing the computation or estimation of the constants βp, γp, and Lp for
p ≥ 2. As the constants (3.22)–(3.24) are in general not computable for p > 2 or only at unfeasible costs,
we rely on estimating these constants in this case. For instance in the case of the nonlinear diffusion equation
considered in the numerical examples an estimate of γ2,p and L2,p relies on estimates for Friedrich’s inequality
‖v‖Lp(Ω) ≤ cF |v|W 1,p(Ω) and the constant in the Sobolev inequality ‖v‖C0(Ω) ≤ cE‖v‖W 1,p(Ω). To obtain an
upper bound for the constant cF we suggest to proceed as in [47, 52]. A bound for the constant cE,2 in the
inequality ‖v‖C0(R2) ≤ cE,2|v|W 1,p(R2) can be found for instance in [56], Theorem 2.D. To obtain an estimate for
cE we to multiply v ∈ W 1,p

0 (Ω) with a cut-off function η defined as η(x, y) ≡ 1 for dist((x, y), ∂Ω) ≥ δ, η ≡ 0
outside Ω and with ‖η‖C0(Ω) ≤ 1 and ∂iη ≤ C(δ), i = 1, 2 for a given constant C(δ). Then we expect that
‖vη‖C0(Ω) ≈ ‖v‖C0(Ω) as v ∈ W 1,p

0 (Ω). Moreover, we have that

‖ηv‖C0(Ω) ≤ cE,2|ηv|W 1,p(Ω) ≤ cE,2

(
C(δ)‖v‖Lp(Ω) + |v|W 1,p(Ω)

)
, (3.41)

and therefore propose to employ the constant cE,2C(δ) as an estimate for cE , where C(δ) should be adapted to
the considered domain.

To derive a lower bound for βp we suggest to proceed as in [10, 53] where a finite element approximation of
the nonlinear diffusion equation is considered and a lower bound of the occurring inf-sup constant is derived.
However, such an estimate is beyond the scope of this paper and therefore subject of future work. For other
nonlinear operators we expect the estimates also to rely on the above inequalities.

As we have continuously extended F ′(z) ∈ L(W 1,p(Ω), W−1,p(Ω)) to an operator in L(H1(Ω), H−1(Ω)) for
z ∈ B(pH

m,k, R) and p > 2 an upper bound for L2,p follows directly from the estimate for Lp. If we consider p = 2
the Lipschitz constant L2 depends in general on a Sobolev embedding constant (see for instance [12,47,60]). A
simple procedure to obtain an upper bound for this Sobolev embedding constant is described in [47, 52].

Finally, we propose a method for approximating β2,p and β2. We present the approach for β2,p but it is
identically applicable to β2. Inspired by the idea in [65] to employ a matrix-DEIM approximation of the Jacobian
for the computation of the Lipschitz constant of the considered nonlinear operator, we propose to use the
adaptive EPM to approximate β2,p. Precisely, we use the a posteriori error bound for the EPM derived in
Proposition 2.4, to find k′ such that PL′

k′ [F ′(pH
m,k)] approximates F ′(pH

m,k) up to a given tolerance and define

βapp
2,p := inf

wH×h∈V H×h

|wH×h|H1(Ω) �=0

sup
vH×h∈V H×h

|vH×h|H1(Ω) �=0

〈PL′
k′ [F ′(pH

m,k)]wH×h, vH×h〉
|wH×h|H1(Ω)|vH×h|H1(Ω)

· (3.42)

Theorem 2.2 yields the convergence of PL′
k′ [F ′(pH

m,k)] to F ′(pH
m,k) as k′ → K, which implies βapp

2,p → β2,p as
k′ → K. Although we therefore expect βapp

2,p to be a very good approximation of β2,p, which is demonstrated by
the numerical experiments in Section 4, we note that it cannot be expected that βapp

2,p provides a lower bound
for β2,p.

4. Numerical experiments

In this section we demonstrate the applicability of the RB-HMR approach using the adaptive EPM to
nonlinear PDEs by verifying both its good approximation properties and computational efficiency. Moreover,
we analyze the effectivity of the a posteriori error estimator derived in Section 3.5 and validate the a priori
and a posteriori bounds for the adaptive EPM stated in Theorem 2.2 and Proposition 2.4. For this purpose we
consider the following model problem, which is inspired by the model for immiscible two-phase flow in porous
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media studied in [44].

Find p ∈ H1
0 (Ω) :

∫
Ω

d(p)∇p · ∇v dxdy =
∫

Ω

sv dxdy ∀v ∈ H1
0 (Ω), (4.1)

where s ∈ L2(Ω), and d(p) :=
36
c4

p2(1 − p)2

(p3 + 12
c4

(1 − p)3)2
+ c0, for constants c0, c4 > 0. (4.2)

We consider various functions s in the numerical experiments and specify the function prescribed in each test case
at the beginning of the respective subsection. As c0 > 0 ensures uniform ellipticity and d(p), d′(p) and d′′(p) are
bounded in the relevant regions, we have that problem (4.1) is well-posed [10]. Existence of a (discrete) reduced
RB-HMR solution follows from Brouwer’s fixed point theorem. We note that the structure of (4.1) necessitates
to consider F : W 1,p

0 (Ω) → W−1,p(Ω) for p > 2 which in turn requires that the HMR basis functions fulfill
φk ∈ W 1,p(ω) ∩ H1

0 (ω), k = 1, . . . , m. This improved regularity for solutions of (3.15) can be proven with
standard arguments (see for instance [39]). For further details on well-posedness issues of problem (4.1) in the
context of RB-HMR and the corresponding parameter dependent lower dimensional problem (3.15) we refer
to [54].

In the first test case we prescribe the analytical solution of test case 1 in [46] to compare the convergence
rates of the RB-HMR approach for linear and nonlinear problems. Also in the nonlinear case the RB-HMR
approach converges exponentially fast in the model order m, regardless whether the adaptive EPM is applied
or not. However, the convergence rate is worse than for the linear problem. In the other test case we prescribe
a discontinuous source term s resulting in a solution with little spatial regularity both in the dominant and
transverse direction. Still, we observe an exponential convergence rate of the RB-HMR approach using the
adaptive EPM in the model order m. Both test cases have been computed employing linear FE in x- and y-
direction, i.e. XH =

{
vH ∈ C0(Ω1D) : vH |Ti ∈ P1

1(Ti), Ti ∈ TH

}
, Y h =

{
vh ∈ C0(ω) : vh|τj ∈ P1

1(τj), τj ∈ τh

}
,

and V H×h = {vH×h ∈ C0(Ω) : vH×h|Ti,j ∈ Q1,1, Ti,j ∈ T }, using equidistant grids in x- and y-direction. We
have used the following quadrature weights in (3.14)

α1 :=
xq

1 + xq
2

2
− x0, αl :=

xq
l+1 − xq

l−1

2
, l = 2, . . . , Q − 1, αQ := x1 −

xq
Q−2 + xq

Q−1

2
, (4.3)

where the quadrature points xq
l , l = 1, . . . , Q are expected to be sorted in ascending order. We have only applied

a simplified version of Algorithm 3.3 Adaptive-RB-HMR in the numerical experiments, as we have chosen
the number of quadrature points employed in the parameter dependent 1D problem (3.16) a priori. However, a
comparison of the performance of the RB-HMR approach using 1 or 2 quadrature points in (3.16) is provided
for the second test case. Furthermore, we have applied the adaptive EPM 2.2 based on the EIM with N int

max = 0
and we thus obtain k = L in (2.3). To simplify notations we omit the ∼ as introduced in Section 2.2. We have
employed the estimate∫

Ω

∇
{(

d(pH
m,k) − d(z)

)
w
}
∇v ≤ cE(1 + cp

F )1/p
(
2c2 + c3cE(1 + cp

F )1/pch|pH
m,k|H1(Ω)

)
, (4.4)

to obtain an estimate for the Lipschitz constant L2,p, where ‖d′(z)v‖ ≤ c2‖v‖, ‖d′′(z)v‖ ≤ c3‖v‖, for v ∈ R2,
z ∈ B(pH

m,k, R), and cF and cE have been introduced above. Since d is only locally bounded for some choices
of c4, we computed local approximations of c2 and c3 by evaluating d′ and d′′ in the discrete reduced solution
pH

m,k of (3.7). Moreover, we have estimated the constants c in ch, (1 + cp
F )1/p, and cE by 1, which seems to be a

reasonable estimate as for instance the procedure proposed in [47, 52] yields a bound of 1.0856 for (1 + cp
F )1/p

and the value of the sharp bound cE,2 stated in [56] is about 1.54.
Setting ek

m := pH×h − pH
m,k, where pH×h solves (3.11) and pH

m,k (3.7), we define the relative model error
in the H1-semi norm or L2-norm as |ek

m|rel
H1 := |ek

m|H1/|pH×h|H1 and ‖ek
m‖rel

L2(Ω) := ‖ek
m‖L2(Ω)/‖pH×h‖L2(Ω).

The relative total error |e|rel
H1 is either defined as |e|rel

H1 := |p − pH
m,k|H1/|p|H1 if the full solution p of (4.1)
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Figure 1. Test case 1: Comparison of the behavior of the relative model error |em|rel
H1(Ω) =

|pH×h − pH
m|H1(Ω)/|pH×h|H1(Ω) (a) and the relative total error for |e|rel

H1(Ω) = |p −
pH

m|H1(Ω)/|p|H1(Ω) (b) for the linear problem (test case 1 in [46]) and the nonlinear prob-
lem (4.1); Comparison of the behavior of the relative model error when applying the adaptive
EPM (|ek

m|rel
H1(Ω)) or not (|em|rel

H1(Ω)) (c).

is available as in test case 1 or as |e|rel
H1 := |pfine − pH

m,k|H1/|pfine|H1 , where pfine denotes a very finely
resolved bilinear FE solution. We denote the POD-error associated with the HMR by ePOD

m and the POD-
error corresponding to the adaptive EPM by ek

POD. Moreover, we set ēL2

m := (
∑M

j=m+1 ‖p̄H
j,k‖2

L2(Ω1D))
1/2 and

ek
L2 := (

∑K
j=k+1 ‖

∫
ω
IL[A(pH

m,k)]κk‖2
L2(Ω1D))

1/2, where M = dim(MP
Ξ), K = dim(MA

Ξ), and IL[·] has been
defined in (2.3). For the validation of the effectivity of the error bounds, we finally shorten the notation by setting
‖emod‖ := ‖PL

k [F (pH
m,k)]‖, ‖eEPM‖ := ‖PL′

k′ [F (pH
m,k)] − PL

k [F (pH
m,k)]‖ and ‖eex

EPM‖ := ‖F (pH
m,k) − PL

k [F (pH
m,k)]‖

either for the H−1- or the L2-norm. The implementation of Algorithm 3.3 Adaptive-RB-HMR has been
realized in MATLAB. All computations have been performed on a computer with an Intel Core i7 (8 cores)
with 2.93 GHz.

Test case 1:

First, we investigate the convergence behavior of the RB-HMR approach for an analytical solution p(x, y) =
y2(1−y)2(0.75−y)x(2−x) exp(sin(2πx)), which has already been considered in test case 1 in [46] and originally
in [27, 50] solving the Poisson problem. We choose Ω = (0, 2) × (0, 1) and c0 = 0.1 and c4 = 36 in (4.2). We
compare the convergence behavior of the relative model error |em|rel

H1(Ω) = |pH×h − pH
m|H1(Ω)/|pH×h|H1(Ω) for

the nonlinear case, where pH
m is the solution of the discrete reduced problem (discretization of (3.3)) with the

linear case where pH
m is an RB-HMR approximation of the solution of a Poisson problem. Note that both the

nonlinear problem and the Poisson problem have the same analytical solution p(x, y), where we refer to [46] for
details on the linear problem and the respective RB-HMR approximation.

We observe an exponential convergence rate of |em|rel
H1(Ω) for the nonlinear problem (4.1), which is worse than

the one for the Poisson problem (Fig. 1a). Nevertheless, also for the nonlinear case still 9 basis functions are
sufficient to achieve |em|rel

H1(Ω) ≤ 10−3 (Fig. 1a). Taking also into account the discretization error and hence
considering the relative total error |e|rel

H1 = |p − pH
m|H1/|p|H1(Ω) we observe that at least for the considered

mesh sizes the effects of the detoriation of the convergence rate of the RB-HMR due to the nonlinearity on the
behavior of the total error are rather small (Fig. 1b). That is because the discretization error is dominating
over the model error in this example already for an RB-HMR approximation using only a small number of basis
functions (Fig. 1b). Applying the adaptive EPM preserves the convergence rate of the model error |em|rel

H1(Ω)

(Fig. 1c) until a so-called EPM-plateau (see [23, 58] for the EIM-plateau) is reached. The model error enters



HIERARCHICAL MODEL REDUCTION FOR NONLINEAR PDES 665

1 5 10 15 19

10
−3

10
−2

10
−1

10
0

m

|e
k m
|r

e
l

H
1

 

 

tol = 10−7, H = 0.02

tol = 10−7, H = 0.01

tol = 10−7, H = 0.005

tol = 10−5, H = 0.01

tol = 10−5, H = 0.005

tol = 10−4, H = 0.01

tol = 10−4, H = 0.005

(a) |ek
m|rel

H1

1 5 10 15 19

10
−3

10
−2

10
−1

10
0

m
|e
|r

e
l

H
1
;

|e
k m
|r

e
l

H
1

 

 

H = 0.02
H = 0.01
H = 0.005
|ekm|re lH 1

(b) |e|rel
H1

1 5 10 15 18
10

−8

10
−6

10
−4

10
−2

10
0

m

‖e
k m
‖r

e
l

L
2
(
Ω
)
;

e
P
O
D

m
;

ē
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Figure 2. Test case 1: Comparison of the convergence behavior of |ek
m|rel

H1 for EPM-tolerances
εEPM

tol = 10−4, 10−5, 10−7 (a), and for εEPM

tol = 10−7: |e|rel
H1 for different mesh sizes and |ek

m|rel
H1

for H = 0.005 (b), ‖ek
m‖rel

L2(Ω), e
POD
m and ēL2

m (c) and λm and ‖p̄H
m,k‖2

L2(Ω1D) (d) for H = 0.005;
Convergence behavior of |ek

m|rel
H1 for increasing model order m and collateral basis size k for

H = 0.01 (e); all plots NH′ = 10.

an EPM-plateau if the approximation properties of the collateral basis space Wk prevent a further reduction of
the model error, i.e. k is chosen too small compared to m, and the nonlinear operator is hence not approximated
accurate enough. Our experiments showed that the tolerance of the POD for the adaptive EPM εEPM

tol should
be set to εEPM

tol = ctolε
HMR

tol with ctol ∈ [10−4, 10−3], to ensure that k is chosen large enough. However, even if
Wk is spanned by all linear independent functions Ah(μ) ∈ MA

Ξ (3.21), a small error and thus a EPM plateau
cannot be avoided due to the necessary projection of the snapshots onto a discrete space and other numerical
constraints. Note that the level of the EPM-plateau becomes smaller for decreasing H and lies for all considered
mesh sizes well below the total error |e|rel

H1 (Figs. 1b and 1c). Finally, we remark that in all computations for the
plots in Fig. 1 we used the exact error in the application of the Algorithm 3.3 Adaptive-RB-HMR (Fig. 1c)
to assess only the influence of the nonlinearity in Figures 1a and 1b or the application of the adaptive EPM in
Figure 1c.

Comparing the convergence behavior of |ek
m|rel

H1(Ω) for different POD-tolerances for the adaptive EPM in
Figure 2a, we observe that for εEPM

tol = 10−4, 10−5 the error can even increase when entering the EPM-plateau.
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Figure 3. Test case 1: Comparison of ek
POD and ek

L2 for H = 0.005, NH′ = 10, and εEPM

tol = 10−7.

For εEPM

tol = 10−7 the error stagnates in the EPM-plateau and the level of the plateau decreases uniformly for
dropping mesh sizes (Fig. 2a). Figure 2e illustrates the error convergence of |ek

m|rel
H1(Ω) for a simultaneous increase

of the model order m and collateral basis size k for H = 0.01. Again we see that for small k the scheme might
even get unstable if m exceeds a certain limit, which is however not the case for higher values of k. Moreover,
we observe that if the approximation of the nonlinear operator is good enough, a further increase of k does
not reduce |ek

m|rel
H1(Ω) if m is kept fixed. Choosing εEPM

tol = 10−7 and thereby ensuring that the approximation
properties of Wk are sufficient, we finally see that for the considered mesh sizes the EPM-plateau has no effect on
the relative total error |e|rel

H1(Ω) (Fig. 2b). If we compare ‖em‖rel
L2(Ω), e

POD
m and ēL2

m for H = 0.005 in Figure 2c, we
detect that all three quantities exhibit the same exponential convergence rate until ‖em‖rel

L2(Ω) reaches the EPM-
plateau. As also the convergence behavior of the eigenvalues of the POD λm and of the coefficients ‖p̄H

m,k‖2
L2(Ω1D)

coincide (Fig. 2d), we conclude that for the present test case the convergence behavior of the POD transfers to
the coefficients ‖p̄H

m,k‖2
L2(Ω1D), ēL2

m and to the model error ‖ek
m‖rel

L2(Ω),|ek
m|rel

H1(Ω). Thus, we infer that the discrete
solution manifold MP

Ξ (3.17) and the reference solution pH×h are approximated with the same approximation
accuracy by the reduction space Ym. Note that thanks to the coincidence of the convergence rates of λm and
‖p̄H

m,k‖2
L2(Ω1D) (Fig. 2d), the QP-Indicator introduced in Section 3.4 would not have increased the number of

quadrature points used in (3.15).
To assess the approximation quality of the collateral basis spaces, we finally compare in Figure 3 the con-

vergence rates of the respective POD-error ek
POD and ek

L2. We observe that the rates for the approximation of
d(pH

m,k)∂xpH
m,k, d′(pH

m,k)∂xpH
m,k and d(pH

m,k) coincide perfectly. The deviation for the other two might be ex-
plained by the fact, that we have projected the snapshots corresponding to d(pH

m,k)∂ypH
m,k and d′(pH

m,k)∂ypH
m,k

onto the space of piecewise constant functions to account for the structure of the nonlinear operator. This yields
a worse convergence behavior for decreasing h as the projection onto the space Y h we have employed for the
others. As apart from this deviation the convergence rates coincide, we nevertheless conclude that the nonlin-
ear operator A(pH×h), its Fréchet derivative A′(pH×h), and the discrete manifolds of operator evaluations are
approximated with the same quality.

Next, we investigate the effectivity of the a posteriori error estimators derived in Section 3.5. For the present
test case we obtained the following approximate values of the inf-sup stability factor βapp

2,p ≈ 0.09820 (H = 0.02),
βapp

2,p ≈ 0.09736 (H = 0.01), βapp
2,p ≈ 0.09637 (H = 0.005), which seems consistent with the considered choice

of the ellipticity constant c0 = 0.1. A comparison of the approximate values with the exact inf-sup stability
factor in Table 1 shows that the approximation procedure proposed in Section 3.5.1 yields a very accurate
approximation but does in general not provide a lower bound for the inf-sup stability factor.
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Table 1. Test case 1: Comparison of the exact inf-sup stability factor (ex) with its approximate
value (app) for H = 0.02 and different tolerances εEPM

tol in the adaptive EPM and increasing
model order m.

m εEPM

tol = 10−5 (app) εEPM

tol = 10−5 (ex) εEPM

tol = 10−7 (app) εEPM

tol = 10−7 (ex)

1 0.0984390 0.0989506 0.0984566 0.0989346
2 0.0982283 0.0982740 0.0981483 0.0982654
3 0.0981121 0.0982542 0.0981655 0.0982556
4 0.0981349 0.0982402 0.0982860 0.0982506
5 0.0980797 0.0981840 0.0982739 0.0981820
10 0.0980739 0.0981621 0.0980968 0.0981864
12 0.0982229 0.0981288 0.0982790 0.0981867
15 0.0981518 0.0981433 0.0980749 0.0981867

We obtain τk
m,2 < 1 for m ≥ 2 for εEPM

tol = 10−7 for all considered discretizations and for εEPM

tol = 10−5 for all
m ≥ 2 except m = 12, 13 for H = 0.01 and m = 13 for H = 0.005 due to the instability in the EPM plateau. It
can be seen in Figure 4a for εEPM

tol = 10−5 that Δk
m (3.35) is an upper bound for |ek

m|H1(Ω), which is very sharp
as the effectivities vary between 1.1 and 3.4 for the considered mesh sizes in Figure 4a.

For εEPM

tol = 10−7 we observe in Figure 4b that Δk
m is an upper bound for |ek

m|H1(Ω) for m ≤ 7 (H = 0.02),
for m ≤ 8 (0.01), and m ≤ 10 (H = 0.005), respectively. The fact that Δk

m underestimates the error for higher
model orders for εEPM

tol = 10−7 is probably due to the fact that ‖eex
EPM‖H−1(Ω) lies above ‖eEPM‖H−1(Ω) (see

Fig. 4c), as the former also takes discretization errors into account which are not included in the latter. Note
that this explanation is consistent with the observation that the finer the mesh the higher the model error for
which Δk

m starts to underestimate the error (see Fig. 4b) and the finding that for H = 0.02 an error estimator
Δ̃k

m in which ‖eEPM‖H−1(Ω) is replaced by ‖eex
EPM‖H−1(Ω) provides an upper bound for |ek

m|H1(Ω) (see Fig. 4e).
For εEPM

tol = 10−5, ‖eEPM‖H−1(Ω) and ‖eex
EPM‖H−1(Ω) nearly coincide (see Fig. 4c). We therefore conclude that

the a posteriori bound for the adaptive EPM (2.19) yields a very good approximation of ‖eex
EPM‖L2(Ω) and thus

‖eex
EPM‖H−1(Ω) if the discretization error is not dominant. A (standard) term which estimates this discretization

error may be added to error estimator but this is beyond the scope of this paper.
Here, we have set the tolerance for the POD determining the richer collateral basis space Wk′ to tolk′εEPM

tol
with tolk′ = 10−2 (Sect. 3.4). This yielded on average k′ − k ≈ 5 during the adaptive refinement procedure and
for the certification for the method we obtained k′ − k ≈ 6.33 for εEPM

tol = 10−7 and k′ − k ≈ 11 for εEPM

tol = 10−5.
We recall that we have assumed (3.36)

‖eEPM‖H−1(Ω) ≤ ‖eex
EPM‖H−1(Ω) ≤ cerr‖emod‖H−1(Ω) for cerr ∈ [0, 1) (4.5)

and τk
m,2 ≤ 0.5Cerr with Cerr := (1 − cerr)/(1 + cerr) to prove the effectivity of Δk

m. Figure 4d illustrates the
convergence behavior of ‖eEPM‖H−1(Ω) and ‖emod‖H−1(Ω) for increasing m and H = 0.005. We observe that for
εEPM

tol = 10−5 inequality (4.5) is satisfied for m ≤ 8 and for εEPM

tol = 10−7 for m ≤ 15, keeping in mind that
‖eex

EPM‖H−1(Ω) might be higher for εEPM

tol = 10−7. As a consequence the (tighter) requirement τk
m,2 ≤ 0.5Cerr is

satisfied for H = 0.005 for εEPM

tol = 10−5 for m = 5, . . . , 8 and for εEPM

tol = 10−7 for m = 5, . . . , 15, and for fewer
number of basis functions for coarser discretizations. However, we emphasize that also for values of m for which
the assumption τk

m,2 ≤ 0.5Cerr is not fulfilled, we often observe that the effectivity of Δk
m can be bounded by a

constant smaller than 5 which is independent of m (see Figs. 4a and 4b).
Finally, we investigate the a priori bound of the adaptive EPM derived in Theorem 2.2. As the convergence

behavior of λk and ‖
∫
ω
IL[A(pH

m,k)]κk‖2
L2(Ω1D) coincides (see Fig. 3) we may follow Proposition 2.4 to obtain an

error estimator for the adaptive EPM. Note that (2.19) is a probabilistic result and that the term OP(n−1/4) does
not provide an upper bound for the integration error due to the application of the Monte-Carlo method [9].
However, Figure 4f shows that apart from some deviations due to the EPM-plateau the error ‖eEPM‖L2(Ω)
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Figure 4. Test case 1: Comparison of the a posteriori error estimator Δk
m with |ek

m|H1(Ω) for
decreasing H for εEPM

tol = 10−5 (a) and εEPM

tol = 10−7 (b). Comparison of ‖eEPM‖H−1(Ω) and
‖eex

EPM‖H−1(Ω) for εEPM

tol = 10−5, 10−7 and H = 0.02 (c), and ‖emod‖H−1(Ω) and ‖eEPM‖H−1(Ω)

for εEPM

tol = 10−5, 10−7 and H = 0.005 (d). Comparison of Δk
m with Δ̃k

m and |ek
m|H1(Ω) for

εEPM

tol = 10−7 and H = 0.02 (e), and ‖eEPM‖L2(Ω), ‖eex
EPM‖H−1(Ω), and ek

POD for εEPM

tol = 10−7 and
H = 0.02 (f).

and the POD-error have approximately the same convergence rate. The integration error can thus be estimated
by the POD-error. Hence, we employed the sum of the POD-error ek

POD and ‖eEPM‖H−1(Ω) as a bound in our
numerical experiments and decreased the tolerance εtol in (2.19) by 10−1 to account for the integration error
and thus the deviation between the curves in Figure 4f.

For the sake of completeness we note that the input arguments of Algorithm 3.3 Adaptive-RB-HMR, have
been chosen as G0 = [0, 0.5, 1, 1.5, 2]× [−0.5, 0.5]× [−1, 1], mmax = 2, imax = 2, nΞ = 10, |Ξc| = 50, θ = 0.05,
σthres = (imax − 1) · �diam(g)� + 1 for an element g ∈ G0 and εHMR

tol = 10−5, εerr
tol = 10−9, εc

tol = 0.1 for all
computations for this test case. The average sample size has been ntrain ≈ 520.

Test case 2:

In this test case we investigate the convergence behavior and computational efficiency of the RB-HMR approach
for the approximation of non-smooth solutions of (4.1). We choose Ω = (0, 2) × (0, 1), c4 = 12 and unless
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Figure 5. Test case 2: Comparison from top to bottom: The reference 2D bilinear FE solution
pH×h (3.11) and the discrete reduced solution pH

m,k using 2 and 5 basis functions for c0 = 0.15
(left) and c0 = 0.075 (right); c4 = 12, NH = 400, nh = 200, NH′ = 10.

otherwise stated c0 = 0.075. We prescribe as a source term the characteristic function s(x, y) = χD1∪D2∪D3 ,
where D1 = {(x, y) ∈ Ω : 0.4 ≤ x ≤ 0.6 and 0.2 ≤ y ≤ 0.36}, D2 = {(x, y) ∈ Ω : 0.4 ≤ x ≤ 0.6 and 0.64 ≤
y ≤ 0.8} and D3 = {(x, y) ∈ Ω : 1.4 ≤ x ≤ 1.6 and 0.4 ≤ y ≤ 0.6} and thus have that the solution p of (4.1)
is in W 2,q(Ω) for q < ∞ [10]. The reference solutions pH×h (3.11) for c0 = 0.15 and c0 = 0.075 are depicted
at the top of Figure 5 for NH = 400 and nh = 200, where a convergence study has been done to ensure that
pH×h contains all essential features of the exact solution. The strengthened nonlinear effects for decreasing c0

can nicely be observed by means of the increased range of pH×h for c0 = 0.075 and the much more localized
peaks for c0 = 0.15. Comparing the reference solutions with its RB-HMR approximations, we see that for both
c0 = 0.15 and c0 = 0.075 already pH

2,20 contains the three peaks and that the contour lines of pH
5,20 and pH×h

coincide (Fig. 5).
The input arguments of Algorithm 3.3 (Adaptive-RB-HMR) have been chosen as G0 = [0, 0.4, 0.8, 1.2, 1.6, 2]

×[0, 1] × [−1, 1], mmax = 2, imax = 2, nΞ = 10, |Ξc| = 50, θ = 0.05, σthres = (imax − 1) · �diam(g)� + 1 for an
element g ∈ G0 and εHMR

tol = 10−3, εEPM

tol = 10−7, εerr
tol = 10−9 for all computations for this test case employing

one quadrature point in (3.15) and thus setting Q = 1 in (3.14). This resulted in an average sample size of
ntrain ≈ 580. For two quadrature points in (3.15) or Q = 2 in (3.14) we have chosen G0 = [0, 0.4, 0.8, 1.2, 1.6, 2]×
[0, 0.2] × [−0.5, 0.5],mmax = 2, imax = 1, nΞ = 4, θ = 0.01, σthres = imax · �diam(g)� + 1, εEPM

tol = 10−8, and
εerr
tol = 10−10, which yielded on average ntrain ≈ 600. Figure 6a illustrates the training set Ξ generated with

Algorithm 3.2 AdaptiveTrainExtension for Q = 1. It can be seen that the training set is mainly refined at
the two peaks at x = 0.5 and near x = 0, but not around the other peak in the solution at x = 1.5. Using two
quadrature points in (3.15) we observe a refinement of the training set in the expected regions, namely around
the peaks at x = 0.5 and x = 1.5 (Fig. 6b).

Analyzing the convergence behavior of |ek
m|rel

H1(Ω) we detect an exponential convergence rate, which is much
better for Q = 2 (Fig. 7a). Furthermore, we have observed for Q = 1 a much stronger increase of |ek

m|rel
H1(Ω)

when entering the EPM-plateau especially for coarser mesh sizes. Note that additionally D has been shrunk
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Figure 6. Test case 2: Plot of the adaptively refined training set generated by Algorithm 3.3
Adaptive-RB-HMR when using 1 quadrature point in (3.15) (a) or 2 (b) for NH = 200,
nh = 100, NH′ = 10.
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Figure 7. Test case 2: Comparison of the convergence behavior of |ek
m|rel

H1 for one quadrature
point (1qp) and two quadrature points (2qp) in (3.15) (a); ‖ek

m‖rel
L2(Ω) and ePOD

m for Q = 1, 2
in (3.14) for H = 0.0025 (b); ‖p̄H

m,k‖2
L2(Ω1D) and λm for Q = 1, 2 in (3.14) for H = 0.0025 (c).

NH′ = 10 for all pictures.

when passing from Q = 1 to Q = 2, which further improved the rates. However, shrinking D without increasing
Q had no effect. A comparison of ‖em‖rel

L2(Ω) and ePOD
m in Figure 7b shows that for Q = 2 the convergence rates

coincide until ‖em‖rel
L2(Ω) approaches the EPM-plateau, but differ for Q = 1. Regarding λm and ‖p̄H

m,k‖2
L2(Ω1D)

we observe in Figure 7c that their convergence rates significantly differ for Q = 1, but coincide for Q = 2 for
m ≤ 12. The rise of ‖p̄H

m,k‖2
L2(Ω1D) for m > 12 might be caused by the EPM-plateau. Thus, we conclude that for

the present test case for Q = 2 the discrete solution manifold MP
Ξ (3.17) and the reference solution pH×h are

approximated with the same approximation quality by the reduction space Ym. Note that the QP-Indicator

would have detected in line 3.2 of Algorithm 3.2 that an increase of Q is necessary, but would not have raised
Q further in line 3.2 due to the coincidence of the rates of λm and ‖p̄H

m,k‖2
L2(Ω1D) for m ≤ 10.

Figure 8a shows the error convergence of |ek
m|rel

H1(Ω) for a simultaneous growth of m and k for H = 0.01. We
see on the one hand a strong increase of the error if m exceeds k but on the other hand a nice error decay and
only a small increase in the EPM-plateau if k ≥ m + 5 is satisfied. We suppose that the worse behavior of pH

m,k
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Figure 8. Test case 2: Convergence behavior of |ek
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H1 for increasing m and k for NH = 200,
nh = 100 (a) and |e|rel

H1 for decreasing mesh size (b); both pictures: Q = 2 in (3.14), NH′ = 10.
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Figure 9. Test case 2: Comparison of λk and ‖
∫

ω
IL[A(pH

m,k)]κk‖2
L2(Ω1D) for Q = 1 in (3.14)

(1qp) and Q = 2 in (3.14) (2qp) for H = 0.005 and NH′ = 10.

in the EPM-plateau compared to the previous test case (compare Figs. 2e and 8a) is due to the fact that the
full solution of the present test case is non-smooth. An investigation of the convergence behavior of the relative
total error demonstrates that for Q = 2 the EPM-plateau has no effect on |e|rel

H1(Ω) (cf. Fig. 8b), whereas for
Q = 1 the EPM-plateau influences the convergence of |e|rel

H1(Ω).

Comparing the convergence rates of λk with ‖
∫

ω IL[A(pH
m,k)]κk‖2

L2(Ω1D) for the employed collateral basis
spaces, we see in Figure 9 that they are comparable for k ≤ 5 for Q = 1 and k ≤ 12 for Q = 2, but clearly
differ for higher values. This is due to the behavior of ‖p̄H

m,k‖2
L2(Ω1D) (cf. Fig. 7c), which stagnate exactly for

m = 5 (Q = 1) and m = 12 (Q = 2). However, we have observed that the level of the plateau of the coefficients
‖p̄H

m,k‖2
L2(Ω) and ‖

∫
ω
IL[A(pH

m,k)]κk‖2
L2(Ω1D) reduces for decreasing mesh sizes which might indicate that their

stagnation is related to the EPM-plateau. We hence suppose that since the solution of the present test case is
non-smooth, in contrast to the previous example, the behavior of pH

m,k in the EPM-plateau (compare Figs. 2e
and 8a) also affects the coefficients ‖p̄H

m,k‖2
L2(Ω) and ‖

∫
ω IL[A(pH

m,k)]κk‖2
L2(Ω1D).
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Figure 10. Test case 2: Comparison of the a posteriori error estimator Δk
m, the error indicator

τk
m,2 with |ek

m|H1(Ω) for Q = 1 in (3.14) (1qp) and H = 0.005 (solid) and H = 0.0025 (dashed)
(a) and Q = 2 in (3.14) (2qp) and H = 0.02 and H = 0.01 (b) and H = 0.005 and H = 0.0025
(c). Comparison of ‖eEPM‖H−1(Ω), ‖eex

EPM‖H−1(Ω), and ‖emod‖H−1(Ω) for H = 0.02 and Q = 2
(d), and ‖emod‖H−1(Ω) and ‖eEPM‖H−1(Ω) for Q = 1, 2 and H = 0.0025 (e), and ‖eEPM‖L2(Ω),
‖eex

EPM‖H−1(Ω), ek
POD, and ek

L2 for Q = 2 and H = 0.02 (f).

Next, we analyze the a posteriori error bounds derived in Section 3.5. The approximate values of the inf-
sup stability factor βapp

2,p (3.31) obtained with the method proposed in Section 3.5.1 are βapp
2,p ≈ 0.073907 (H =

0.02), βapp
2,p ≈ 0.074120 (H = 0.01), βapp

2,p ≈ 0.073955 (H = 0.005), and βapp
2,p = 0.072911 (H = 0.0025) for

Q = 1 and βapp
2,p ≈ 0.074403 (H = 0.02), βapp

2,p ≈ 0.074436 (H = 0.01), βapp
2,p ≈ 0.073969 (H = 0.005), and

βapp
2,p = 0.072923 (H = 0.0025) for Q = 2, which seems consistent with the considered ellipticity constant

c0 = 0.075.

For Q = 2 and H = 0.005 and H = 0.0025 we obtain τk
m,2 < 1 for m ≥ 8 and we observe in Figure 10c that

Δk
m provides an upper bound for |ek

m|H1(Ω). Moreover, it can be seen that Δk
m reproduces the error behavior

very well and provides a sharp bound as the effectivities vary between 3.5 and 8.5 for H = 0.005 and 2.8 and 5.5
for H = 0.0025. Although we have ‖eEPM‖H−1(Ω) < ‖emod‖H−1(Ω) for all m (see Fig. 10e) both for H = 0.005
and H = 0.0025, for neither of the two the assumption τk

m,2 ≤ 0.5Cerr in Proposition 3.3 is satisfied. However,
note that as in the previous test case, Δk

m reproduces the behavior of |ek
m|H1(Ω) very well also for model orders
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for which τk
m,2 ≤ 0.5Cerr is not satisfied. For Q = 2 and the coarser discretizations H = 0.02 and H = 0.01 we

obtain τk
m,2 < 1 only for m = 18, 19 for H = 0.01 (see Fig. 10b) and for Q = 1 we have τk

m,2 > 1 for all considered
mesh sizes (see Fig. 10a). This is probably due to the fact that in the present test case the solution exhibits
limited spatial regularity, making it difficult to provide a satisfactory approximation with coarser discretizations
and Q = 1. Nevertheless, as τk

m,2 captures the behavior of |ek
m|H1(Ω) quite well (see Figs. 10a–10c), τk

m,2 may
serve as an error indicator in those cases, suggesting that say Q has to be increased.

Figure 10d shows that for Q = 2 and k ≥ 20 we obtain ‖eex
EPM‖H−1(Ω) > ‖eEPM‖H−1(Ω), while for k < 20 it

can be seen that ‖eex
EPM‖H−1(Ω) and ‖eEPM‖H−1(Ω) coincide perfectly. This numerically proves that also for the

present test case for a non-dominant discretization error, the a posteriori bound for the adaptive EPM (2.20)
results in a very good approximation of ‖eex

EPM‖L2(Ω) and thus ‖eex
EPM‖H−1(Ω). Note that for Q = 1 in (3.14)

the behavior of |ek
m|H1(Ω) is reproduced perfectly (Fig. 10a) and that ‖eex

EPM‖H−1(Ω) and ‖eEPM‖H−1(Ω) mainly
coincide even for high values of k due to the higher level of the EPM-plateau. As in the previous test case
we have set εerr

tol = tolk′εEPM

tol with tolk′ = 10−2 (Sect. 3.4), which yielded on average k′ − k ≈ 4 for Q = 1
and k′ − k ≈ 6 for Q = 2 during the adaptive refinement procedure and for the certification of the RB-HMR
approach we obtained k′ − k ≈ 2 for Q = 1 and k′ − k ≈ 4 for Q = 2.

Comparing ‖emod‖H−1(Ω) and ‖eEPM‖H−1(Ω) for Q = 1, 2 in Figure 10e we observe that ‖eEPM‖H−1(Ω) has
improved much more than ‖emod‖H−1(Ω) due to the increase of Q. Hence, increasing Q seems to significantly
reduce the level of the EPM-plateau which in turn considerably improves the error behavior as has already
been assessed in the analysis of Figure 7. In contrast to the previous test case, also for small tolerances εEPM

tol
a stagnation of ‖emod‖H−1(Ω) can be observed (compare Figs. 4e and 10e). Thus, we suppose that due to the
worse behavior of pH

m,k in the EPM-plateau compared to the previous test case, the EPM-plateau affects the
convergence behavior of the model error for the present example.

As the convergence behavior of λk and ‖
∫

ω IL[A(pH
m,k)]κk‖2

L2(Ω1D) does not coincide (see Fig. 9), we replace, as
proposed in Section 3.5, λk by ‖

∫
ω IL[A(pH

m,k)]κk‖2
L2(Ω1D) in the a priori bound (2.6) of Theorem 2.2. Figure 10f

shows that ek
L2 captures the behavior of ‖eEPM‖L2(Ω) and ‖eex

EPM‖H−1(Ω) perfectly for k ≥ m. The deviations
for k < m are due to the EPM-plateau. Although the snapshots set MA

Ξ and A(pH×h) are not approximated
with the same approximation quality due to the EPM-plateau (Fig. 9), we observe that ‖eEPM‖L2(Ω) and
‖eex

EPM‖H−1(Ω) coincide for k ≤ 23. Thus, we conclude that for the present test case the modified version of the
a priori bound (2.6) of Theorem 2.2, obtained by substituting λk by ‖

∫
ω
IL[A(pH

m,k)]κk‖2
L2(Ω1D), can be applied

to obtain a robust and efficiently computable a posteriori error estimator Δk,rel
m .

Finally, we compare the total computational costs of the RB-HMR approach using the adaptive EPM to
compute pH

m,k (3.7), with the costs of the 2D bilinear FEM for the computation of pH×h ∈ V H×h (3.11). Here,
by the term “total computational costs” we mean all costs that are required to compute an approximation.
Thus the total computational costs for the RB-HMR method comprise the costs for the construction of the
reduction space and the collateral basis space by Algorithm 3.3. Amongst others the costs for the RB-HMR
approach therefore include the costs for the adaptive generation of the snapshot sets by Algorithm 3.2 and the
within this algorithm employed a posteriori error estimator. They also comprise the costs for the PODs which
ultimately yield the reduction space and the collateral basis space. Finally, the total computational costs for
the RB-HMR approximation also include the costs for the assembling and solution of the nonlinear system of
equations (3.7).

For the solution of the nonlinear system of equations within Newton’s method we employed in both cases a
bicgstab method with the same settings. Also the tolerance for Newton’s method has been chosen identically.
In Figure 11a we see that the bilinear FEM scales quadratically in NH , while the RB-HMR approach with the
adaptive EPM scales nearly linearly in NH both for Q = 1 and Q = 2 in (3.14). In detail, we observe for Q = 1
a scaling in NH of order 1.3 and for Q = 2 of order 1.35. Note that this deviation from a linear scaling is due
to the eigenvalue problems which need to be solved for the approximation of the inf-sup stability factor. In
Figure 11c the total computational costs of the bilinear FEM and the RB-HMR approach are plotted versus
the respective relative total error |e|rel

H1(Ω). Due to the EPM-plateau the total error |e|rel
H1(Ω) for Q = 1 lies well
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Figure 11. Test case 2: Comparison of the total computational costs for the 2D bilinear FEM
and the RB-HMR approach for Q = 1 in (3.14) (1qp) and Q = 2 in (3.14) (2qp) and NH′ = 10.
Solely in (b) we provide the runtimes if we compute Δk

m not only during the generation of the
bases but also after the computation of pH

m,k to certify the approximation.

above the one of the bilinear FEM for the same mesh size, while only minimal deviations can be observed for
Q = 2. However, the runtime required to achieve a certain error tolerance is much smaller for the RB-HMR
approach than for the bilinear FEM. Finally, we note that even if we additionally compute Δk

m to estimate the
model error |ek

m|H1(Ω) of the RB-HMR approximation and thus certify the approximation, the runtimes of the
RB-HMR approach are much smaller than the runtimes of the bilinear FEM approximation (see Fig. 11b).

5. Conclusions

To generalize the RB-HMR approach, introduced in [46], to nonlinear PDEs we expanded the range of the
nonlinear operator in an orthonormal (collateral) basis in the transverse direction. Both for the construction
of the reduction space in the RB-HMR approach and the collateral basis space we used a highly nonlinear
approximation. A manifold of parametrized lower dimensional operator evaluations has been generated by using
the solutions of a parametrized dimensionally reduced problem and the corresponding parametrization. Solution
and operator snapshot sets have been simultaneously generated with an adaptive training set extension and the
reduction and collateral basis space have been constructed by applying a POD. In this way, we included both
in the construction of the manifold of operator evaluations and the selection of the collateral basis information
on the evaluation of the nonlinear operator in the unknown full solution. The coefficients of the operator
approximation have been computed with the newly introduced adaptive EPM, which is an adaptive integration
algorithm based on the (G)EIM [4, 40]. While for the basis selection with the greedy algorithm and the POD
several convergence results have already been proven, to the best of our knowledge no result that could have
been employed has been proved until now for the approximation of the range of a nonlinear operator. This has
been realized in this article by the introduction of the adaptive Empirical Projection Method and the proven
rigorous a priori and a posteriori error bounds. We used these bounds to derive a rigorous a posteriori error
estimator based on the Brezzi–Rappaz–Raviart theory, which is employed for the construction of the snapshot
sets. Here, we extended the results on the effectivity of the error estimator in [12] from quadratically nonlinear
PDEs to general nonlinear PDEs of type (1.1). We note that some of the proposed procedures for estimating
the constants within this a posteriori error bound may be improved.

The numerical experiments for the nonlinear diffusion equation show that the reference solution and the
set of solution snapshots are approximated by the reduction space with the same approximation quality.
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Here, a quadrature formula of higher accuracy had to be employed for a test case with a non-smooth solu-
tion in the parametrized lower dimensional problem. The evaluation of the nonlinear operator in the reference
solution and the set of operator snapshots are approximated by the collateral basis space with the same ap-
proximation accuracy for a problem with an analytic solution and a comparable quality for a problem with
a non-smooth solution. Hence, we conclude that by employing the suggested ansatz for the generation of the
solution manifold and the manifold of operator manifolds we are able to transfer the relevant features of the
reference solution and the operator evaluation to the respective manifolds to a great extent. Furthermore, the
numerical experiments demonstrate an exponential convergence behavior of the RB-HMR approach both for a
problem with an analytical solution and a test case with a non-smooth solution also for small ellipticity con-
stants. The applicability of the theoretical results including the bounds for the adaptive EPM is demonstrated,
too. In particular we observed that in many cases the a posteriori error estimator provides a sharp upper bound
of the error. Runtime experiments show a close to linear scaling of the RB-HMR approach in the number of
degrees of freedom used for the computations in the dominant direction, while the respective finite element
reference approximation scales quadratically. This demonstrates the computational efficiency of the proposed
method also in the nonlinear setting.

Acknowledgements. We would like to thank the anonymous reviewers very much for their careful review and their helpful
remarks which have significantly improved the presentation of the paper.
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