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CONVERGENCE OF SOLUTIONS TO FINITE DIFFERENCE SCHEMES
FOR SINGULAR LIMITS OF NONLINEAR EVOLUTIONARY PDES

L. Even-Dar Mandel1,∗ and S. Schochet1

Abstract. Solutions of certain finite-difference schemes for singularly-perturbed evolutionary PDEs
converge as the perturbation parameter and/or the discretization parameters tend to zero. Under suit-
able hypotheses a sharp convergence rate of order one-half in the time step, uniform in the perturbation
parameter, is obtained.
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1. Introduction

This paper continues the development initiated in [8] of a theory for finite difference schemes analogous to
the theory of singular limits for systems of PDEs containing large terms, such as

A(εu)ut =
d∑

j=1

Aj(t, x, u)uxj +
d∑

j,k=1

∂xj

[
Bjk∂xk

u
]
+

1
ε

[ d∑
j=1

Cjuxj + Du

]
+ F (t, x, u), (1.1)

where ε is a small parameter [11, 12, 15, 17, 21]. Under appropriate assumptions on the matrices Aj , Bj,k, Cj,
and D and vector F , solutions of (1.1) with fixed smooth initial data exist and satisfy uniform bounds for a
time independent of ε, and the difference between those solutions and the solutions of certain limit or profile
equations tends to zero with ε. Singular limits of equations of the form (1.1) and variants thereof occur not only
in the original motivating example of slightly-compressible fluid dynamics [15, 17, 22] and its variants [4, 19, 30]
but also in a variety of other fields (e.g., [1,5,24]). It is therefore of much interest to obtain convergence results
for numerical methods for equations of the form (1.1) that are uniform in the parameter ε.

Here we prove the convergence of solutions of appropriate finite-difference approximations to equations
like (1.1) to the solutions of limit equations as the perturbation parameter ε and/or the discretization parame-
ters Δ := (Δt, Δx) tend to zero, provided that the solution of the difference scheme and its first time-difference
are bounded uniformly in ε and Δ in discrete Sobolev spaces of sufficiently high order and the initial data of
the numerical scheme converges under the same limit. The uniform bounds needed to apply this convergence
result were proven for a class of finite-difference schemes in [8], and the results there are extended to certain
finite-volume schemes in [23]. In contrast, as discussed in [8], neither the well-known convergence results of [25]
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for finite difference approximations to nonlinear evolution equations nor the somewhat improved results of [29]
yield bounds for discretizations of (1.1) that are uniform in ε.

Three convergence results will be proven in Section 4. The first result shows convergence without a rate,
under the conditions outlined above. The second result justifies that for systems without a large parameter the
rate of convergence is determined by the order of accuracy of the difference scheme and its initial data. For the
case when large terms are present, a uniform-in-ε (Δt)1/2 rate of convergence is obtained under appropriate
assumptions, and that rate is shown to be sharp. Precise statements of all results are presented in Section 2,
along with statements of all the definitions and lemmas to which they refer. In particular, the numerical schemes
may approximate certain evolutionary PDEs more general than (1.1). As noted in Section 2, the results of [8]
imply that the convergence theorems presented here apply to the schemes considered there. The lemmas stated
in Section 2 are proven in Section 3.2.

Convergence results for PDEs usually compare solutions of the differential and difference equations at the
grid points of the latter (e.g. [13], Thm. 5.1.3; [18], Sect. 10.1.1; [26], Def. 1.4.1; [28], Def. 2.2.2). However, for
PDEs like (1.1), whose natural energy estimates involve L2-based Sobolev space norms, that approach requires
that the solution of the PDE be very smooth, because projecting a function such as the solution of a PDE onto
a discrete grid loses smoothness in those norms. An alternative approach is to compare a spatial interpolation
of the discrete solution to the PDE solution (e.g. [13], Thm. 2.1.1; [26], Thm. 10.1.2). Since the latter approach
potentially yields sharp estimates for the amount of smoothness required by solutions of the PDE, that is
the method we use here. Moreover, although projecting onto the time grid does not lose smoothness because the
estimates are assumed to be L∞ in time, we also use time interpolation. This approach is more natural since
it allows us to actually take the limit of the interpolated discrete solution rather than just showing that the
difference between certain values of the discrete and PDE solutions is small. However, using interpolation for
the nonlinear PDEs considered here does require us to develop certain preliminary results about interpolation,
in order to show that the interpolation of a solution to a nonlinear difference scheme is almost a solution of that
scheme. Although linear estimates for interpolation are well known, we need here estimates in Sobolev norms for
the “nonlinear commutator” of interpolation operators with nonlinear functions. Those interpolation estimates
are derived in Appendix A, and the estimate of how close the interpolation of a solution is to being a solution
itself is obtained in Section 3.1.

For equations not containing large terms, our approach makes it feasible to obtain sharp results about the
smoothness of numerical approximations and the norms in which convergence is obtained. In order to actually
achieve those sharp results, it is necessary to approximate that initial data by numerical initial data that
both maintain smoothness and achieve an arbitrary order of approximation. The required approximation of
initial data for equations not containing large terms is developed in Appendix B. However, in order to obtain
convergence results for equations that do contain large terms, it is necessary to approximate slow initial data
for the PDE by slow initial data for the numerical scheme, i.e., to approximate initial data such that the first
time derivative at time zero of the solution to the PDE is bounded uniformly in ε by initial data such that the
first time difference at time zero of the solution to the numerical scheme is bounded uniformly in ε. Although
the fact that the numerical scheme has a finite order of accuracy means that such initial data cannot achieve
arbitrary accuracy, it is shown in Section 3.3 how to make the initial data for the numerical scheme satisfy the
above condition while still maintaining smoothness and achieving the same accuracy as the numerical scheme.

The authors thank the anonymous reviewer for pointing out a couple of mis-statements in a previous version
and for providing a large number of suggestions for improving the readability of the paper.

2. Schemes and results

Before stating the theorems to be proven we need to specify the domains on which the PDEs and difference
schemes will be defined and the norms in which we will measure the size of their solutions, the forms those
PDEs and difference schemes will take, and the methods used to interpolate solutions of the difference schemes.
We will also define notions of stability and order of accuracy that will be used in the theorems, state some
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lemmas whose hypotheses will be assumed in some of the theorems, and derive formally the equations that
should be satisfied under various limits.

2.1. Domains and norms

We will let d denote the spatial dimension. For notational simplicity we let the spatial domain be periodic of
length 2π in each spatial variable and assume that the grid spacing Δx is the same in all directions. The cases
when some or all of the components of the spatial variable range over R, the grid spacing is different in different
spatial directions, or the lengths of the spatial domain are different may be treated similarly. In particular,
changing the length of the spatial domain to 2L in each direction merely introduces factors of π

L into various
formulas. The spatial domain for the PDE is therefore X := [−π, π)d taken periodically, and the corresponding
Fourier domain is Π := Zd. From now on we also assume for simplicity that the half-period π of the spatial
domain is an integer multiple of Δx, so that Δx

⌊
π

Δx

⌋
equals π. Then the discrete spatial and Fourier domains

reduce to XΔx = [−π, π)d ∩ ΔxZd and ΠΔx = [− π
Δx , π

Δx )d ∩ Zd, with the former also taken periodically.
Before defining discrete analogues of Sobolev norms we recall some notations: The forward and backwards

shift operators are [Sj,Δxu](x) := u(x + Δxej) and [(Sj,Δx)−1 u](x) := u(x− Δxej), and the forward difference
operator is Dj,Δx := Sj,Δx−1

Δx , where as usual ej denotes the vector whose component j equals one and other
components equal zero. Note that in operator formulas a number denotes the operator of multiplication by that
number; these are all scalar operators, but will be extended to operate on vectors componentwise. The time-shift
operator and time-difference operator are [SΔtu](t, x) = u(t + Δt, x) and

DΔt := SΔt−1
Δt , (2.1)

respectively. Higher-order shift and difference operators are defined by Sα
Δx := (S1,Δx)α1 . . . (Sd,Δx)αd , where α

is a multi-index vector with integer components, and Dα
Δx := (D1,Δx)α1 . . . (Dd,Δx)αd , where α is a multi-index

vector with nonnegative integer components. The length |α| of a multi-index is the sum
∑

j |αj | of the absolute
values of its components.

To define the discrete analogues of the Sobolev norms ‖ ‖Hs , we begin with the discrete spatial �2 norm
defined by ‖v‖�2 :=

√〈v, v〉�2 , where 〈v, w〉�2 :=
∑

x∈XΔx
v(x) ·w(x) (Δx)d is the discrete �2 inner product. The

discrete Sobolev norms are then defined for nonnegative integers s by ‖u‖hs :=
√〈u, u〉hs , where 〈u, v〉hs :=∑

|α|≤s 〈Dα
Δxu, Dα

Δxv〉�2 is the discrete Sobolev inner product, and any points in the formula for Dα
Δx that lie

outside the discrete domain XΔx are understood periodically as mentioned above. An equivalent norm

‖f‖hs :=

⎡⎣ ∑
ξ∈ΠΔx

(1 + |ξ|2)s|f̂(ξ)|2
⎤⎦1/2

(2.2)

can be defined using the discrete Fourier transform, which as noted in [8], (4.1), may be written as

f̂(ξ) =
∑

x∈XΔx

f(x)e−iξ·x(Δx)d. (2.3)

The use of the same notation for the two equivalent norms should not cause confusion since each calculation
makes clear which version is being used. The usual Fourier inversion formula (f̂)∨ ≡ f holds (e.g. [10], pp. 250–
252), where the discrete inverse Fourier transform may be written as ([8], Eq. (4.2))

g∨(x) =
1

(2π)d

∑
ξ∈ΠΔx

g(ξ)eiξ·x. (2.4)

The discrete �∞ and wk,p norms are defined similarly as the discrete analogues of the continuous L∞ and
W k,p norms. For discrete functions depending on both time and spatial variables, we will use the space-time
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norms

‖u‖wk,∞([0,T ];hs) :=
k∑

j=0

‖(DΔt)ju‖�∞([0,T ];hs) =
k∑

j=0

max
t∈[0,T ]∩ΔtZ

‖(DΔt)ju(t, ·)‖hs , (2.5)

which are the discrete analogues of the continuous norms

‖u‖W k,∞([0,T ];Hs) :=
k∑

j=0

‖∂j
t u‖L∞([0,T ];Hs) =

k∑
j=0

sup
t∈[0,T ]

‖∂j
t u(t, ·)‖Hs . (2.6)

However, as discussed in Remark A.2, the time interpolation scheme described in Section 2.4 that we use yields
functions that are only piecewise smooth. When dealing with time-interpolated functions we will therefore
replace (2.6) with “piecewise-W k,∞” norms

‖u‖W k,∞
PW ([0,T ];Hs) :=

k∑
j=0

‖∂j
t u‖L∞

PW([0,T ];Hs) :=
k∑

j=0

sup
t∈[0,T ]\ΔtZ

‖∂j
t u(t, ·)‖Hs . (2.7)

2.2. PDEs and numerical schemes

The general form of the PDE that will be considered here is

0 = N0,ε[u] :=A(εu)(ut − μC(∂x)u) + 1
εLu + F(ε, t, x, {Dαu}0≤|α|≤p) (2.8)

where μ is a constant and C and L are constant-coefficient spatial partial differential operators. In typical exam-
ples allowed by the results of [8], μC(∂x) is identically zero, L =

∑
j Lj∂xj with the Lj being symmetric matrices,

and F =
∑

j,k Bjk∂xj ∂xk
u+

∑
j Aj(t, x, u)uxj +F (t, x, u), with the matrices Aj and Bjk satisfying suitable hy-

potheses. However, each of those operators could include terms of higher order. Although −μA(εu)C(∂x) could
be absorbed into F it will be convenient to write that term separately because for certain schemes the presence
or absence of the term C(∂x) in the PDE obtained by taking the limit of a difference scheme will depend on the
relationship between Δt and Δx as both tend to zero. Keeping the parameter μ separate from C(∂x) allows us
to treat the cases when that term is present or is absent simultaneously.

In order to write the corresponding difference schemes we will let LΔx :=
∑

|α|≤M LαSα
Δx, and similarly CΔx,

etc., denote general spatial shift operators; the arguments of LΔx, if any, will denote the variables and parameters
that the coefficients Lα may depend on. Using these notations the difference schemes that we consider may be
written as

0 = NΔ,ε[v] := A(εv)
{

DΔtv − (Δx)q

Δt CΔxv
}

+ 1
εLΔx(ρSΔtv + (1 − ρ)v)

+ FΔ(ε, t, x, {Dα
Δxṽ}0≤|α|≤p, {Dα

ΔxSΔtṽ}0≤|α|≤p),
(2.9)

where

ṽ := {Sβ
Δxv}|β|≤M (2.10)

denotes a finite collection of spatial shifts of the variable v. A typical example in which the shift operator CΔx is
nonzero is the Lax–Friedrichs scheme, for which q in (2.9) equals two and CΔx equals 1

2d

∑d
j=1

Sj,Δx−2+(Sj,Δx)−1

(Δx)2 .
Since the operators L in (2.8) and LΔx in (2.9) are multiplied there by the large value 1

ε , we will refer to them
as the large operators.
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We do not claim that all difference schemes of the form (2.9) have uniformly bounded solutions, nor that the
initial-value problem for all PDEs of the form (2.8) is well posed. In this paper we demonstrate convergence
of solutions to difference schemes under the assumption that solutions to the scheme are uniformly bounded,
and therefore want the form of the equations to be as general as possible. The issue of showing that solutions
to particular classes of schemes indeed have the uniformly bounded solutions needed to apply the convergence
theory developed here has been and will be considered elsewhere (e.g., [8,23]). However, in order to understand
the various results presented in this paper the reader may wish to keep in mind the numerical scheme

1
ρ0+εr

[
DΔtr − |u|Δx

2
ΔΔxr + u · ∇Δxr

]
+ 1

ε∇Δx · SΔtu = 0

ρ0+εr
P′(ρ′+ε∇)

[
DΔtu − |u|Δx

2
ΔΔxu + u · ∇Δxu

]
+ 1

ε∇ΔxSΔtr = 0,

(2.11)

where

∇Δx :=
∑

j

Sj,Δx − (Sj,Δx)−1

2Δx
and ΔΔx :=

∑
j

Sj,Δx − 2 + (Sj,Δx)−1

(Δx)2
,

which approximates the Euler equations of barotropic compressible inviscid fluid dynamics

1
ρ0+εr [rt + u · ∇r] + 1

ε∇ · u = 0
ρ0+εr

P′(ρ′+ε∇) [ut + u · ∇u] + 1
ε∇r = 0,

(2.12)

where ρ0 + εr is the fluid density, P(ρ0 + εr) is the pressure, and u is the velocity. The numerical scheme (2.11)
is the local Lax–Friedrichs scheme with the large terms treated implicitly, which was shown in ([8], Sect. 3.1)
to have solutions that are bounded uniformly in ε.

2.3. Stability, consistency, and order

Although the basic convergence theorem without a rate of convergence does not require the stability of the
PDE or difference scheme, the convergence theorems that include a rate of convergence do require such stability.

Definition 2.1. Let r be the largest order of any derivative in the PDE (2.8). That PDE is stable if there exists
a finite k0 such that for any k ≥ k0 and any functions u(1) and u(2) in L∞([0, T ]; Hk+r) ∩ W 1,∞([0, T ]; Hk),

‖u(1) − u(2)‖L∞([0,T ];Hk) ≤ Ck

{
‖N0,ε[u(1)] −N0,ε[u(2)]‖L∞([0,T ];Hk) + ‖u(1)(0, ·) − u(2)(0, ·)‖Hk

}
, (2.13)

where Ck depends on the equation, T , and the L∞([0, T ]; Hk+r) and W 1,∞([0, T ]; Hk) norms of both u(1) and
u(2). If Ck is independent of ε then the equation is stable uniformly in ε.

Given u ∈ L∞([0, T ]; Hk+r) ∩ W 1,∞([0, T ]; Hk), the operator linearized around u associated to N0,ε is

N ′
0,ε,u[U ] := A(εu)(Ut − μC(∂x)U) + U · {ε[∇uA](εu)} (ut − μC(∂x)u) + 1

εLU

+
∑

0≤|β|≤p

∂F(ε, t, x, {Dαu}0≤|α|≤p)
∂(Dβu)

DβU
(2.14)

The PDE (2.8) is linearly stable uniformly in ε if there is a k0 such that for k ≥ k0, 0 ≤ k1 ≤ k, and 0 ≤ t ≤ T ,

‖U(t, ·)‖2
Hk1 ≤ Ck

{∫ t

0

‖N ′
0,ε,u[U(s, ·)]‖2

Hk1 ds + ‖U(0, ·)‖2
Hk1

}
, (2.15)

where Ck depends on the equation, T , and the L∞([0, T ]; Hk+r) and W 1,∞([0, T ]; Hk) norms of u but not on ε.
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Similarly, let r be the largest order of any difference in the difference scheme (2.9). That difference scheme
is stable uniformly in ε if there exists a finite k0 such that for any k ≥ k0 and any functions u(1) and u(2) in
�∞([0, T + Δt] ∩ ΔtZ; hk+r) ∩ w1,∞([0, T + Δt] ∩ ΔtZ; hk),

‖u(1) − u(2)‖�∞([0,T ]∩ΔtZ;hk) ≤ Ck

{
‖NΔ,ε[u(1)] −NΔ,ε[u(2)]‖�∞([0,T ]∩ΔtZ;hk) + ‖u(1)(0, ·) − u(2)(0, ·)‖hk

}
,

(2.16)
where Ck depends on the equation and the �∞([0, T + Δt] ∩ ΔtZ; hk+r) and w1,∞([0, T ] ∩ ΔtZ; hk) norms of
both u(1) and u(2) but not on ε.

Although the basic notions of consistency of a difference operator with a differential operator and its order
of accuracy are fairly standard, we will use continuous Sobolev norms rather than the more usual discrete �2 or
�∞ norms in the definitions of those concepts, and consider the difference between the discrete and continuous
operators for arbitrary sufficiently-smooth functions rather than just for solutions of the PDE. That approach
is common only for defining the order of individual difference operators such as SΔx−(SΔx)−1

2Δx but will be used
here both for such operators and for the full difference scheme (2.9).

Definition 2.2. A difference operator NΔ,ε[v] is consistent with a differential operator N0,ε[u] provided that
there exist nonnegative integers kmin, m, and k− such that ‖NΔ,ε[u] −N0,ε[u]‖L∞([0,T ];Hk−k− ) tends to zero as
Δt and Δx tend to zero whenever k ≥ kmin and u ∈ ∩m

j=0W
j,∞([0, T ]; Hk−jk−).

Let σt and σx be positive numbers. A difference operator approximation NΔ,ε[v] is σt-order accurate in time
and σx-order accurate in space for the differential operator N0,ε[u] provided that there exist nonnegative integers
kmin, J , and k− and functions Ck such that for all k ≥ kmin and u ∈ ∩J

j=0W
j,∞([0, T ]; Hk−jk−),

‖NΔ,ε[u] −N0,ε[u]‖L∞([0,T ];Hk−k−−max{σtk−,σx}) ≤ Ck

⎛⎝ J∑
j=0

‖u‖W j,∞([0,T ];Hk−jk− )

⎞⎠ [(Δt)σt + (Δx)σx ] .

(2.17)

Remark 2.3. Since the functions Ck in Definition 2.2 depend on both N0,ε and NΔ,ε, when those operators
include coefficients of order 1

ε then Ck will depend on 1
ε , so the estimate (2.17) will be non-uniform in ε. For this

reason, the general convergence-rate theorem, Theorem 2.8, will not be uniform in ε. A uniform convergence
rate will be proven under additional hypotheses in Theorem 2.9.

2.4. Interpolation and projection

A spatial interpolation operator from the discrete grid XΔx of the difference scheme to the spatial domain X
of the PDE can be obtained by first taking the discrete Fourier transform and then taking the inverse discrete
Fourier transform of the result but allowing the spatial variable to vary over all of X rather than just XΔx, i.e.,

[Intx f ](x) :=
1

(2π)d

∑
ξ∈ΠΔx

⎡⎣ ∑
y∈XΔx

f(y)e−iξ·y(Δx)d

⎤⎦ eiξ·x, x ∈ X. (2.18)

Applying the inverse Fourier transform in that manner is equivalent to defining the result of taking the discrete
Fourier transform to be zero outside the domain of the discrete inverse Fourier transform and then taking the
ordinary inverse Fourier transform. Hence the Fourier-space formulas for Sobolev norms imply that Intx is a
bounded operator from hs(XΔx) to Hs(X) for any s ([8]).

Besides the spatial interpolation operator we will also need a time interpolation operator from �∞([0, T ] ∩
ΔtZ; Hs(X)) to L∞([0, T ]; Hs(X)) for s ≥ 0. Since only the first time derivative of solutions will be assumed to
be bounded uniformly in ε at time zero, for the most part we will use the piecewise linear interpolation operator
defined by

[Intt v] (t, x) :=
(⌈

t
Δt

⌉− t
Δt

)
v
(
Δt
⌊

t
Δt

⌋
, x
)

+
(

t
Δt −

⌊
t

Δt

⌋)
v
(
Δt
⌈

t
Δt

⌉
, x
)
, (2.19)
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where �s� := min{n ∈ Z | n > s} and s� := max{n ∈ Z | n ≤ s} are defined so that �s� − s� = 1 for all
real s. However, when large terms are absent and the numerical scheme has order p greater than one it will
be convenient to interpolate functions in each interval [αΔt, (α + 1)Δt] by polynomial interpolation at p + 1
points {(α + j)Δt}j0+p

j=j0
. In order to avoid complications at the first few time intervals we henceforth assume

that j0 ≥ 0. Formula (2.19) is the special case of polynomial interpolation in which p = 1.
The inverse operation to interpolation is pointwise projection onto the numerical grid. We will let Prx denote

pointwise evaluation on the spatial grid and Prt denote pointwise evaluation on the time grid. By construction,
the space and time interpolation operators satisfy

Prx Intx = I, Prt Intt = I. (2.20)

2.5. Limit equations

We will assume that the difference equation (2.9) is consistent with the PDE (2.8). When the limit C(∂x)
of the shift operator CΔx is nonzero then consistency means that NΔ,ε[u] tends to N0,ε[u] as Δ → 0 in such
a way that (Δx)q

Δt tends to μ, with ε fixed. When the difference operator CΔx is identically zero then we place
no restriction here on the relation between Δt and Δx, although it should be noted that for some difference
schemes a restriction of the form

Δt ≤ c(Δx)k (2.21)

is needed to ensure the boundedness of the solutions of the difference scheme assumed in the statements of the
theorems. Examples of schemes that require a condition of the form (2.21) and of schemes that do not are given
in ([8], Sects. 2 and 3).

We also wish to consider the case when ε tends to zero, either with Δ fixed or with Δ also tending to zero.
We therefore need to determine the formal limit equations satisfied in those two cases. Taking the formal limit
means calculating the limit of an equation applied to a fixed function as the coefficients of that equation vary.
Although showing the formal limit of an equation does not prove that solutions of the original equation tend
to solutions of the limit equation, it can be used as one step in a proof of that fact, as will be seen in the Proof
of Theorem 2.7 in Section 4.1.

Since we will be assuming that both the solution v and the first time difference DΔtv of the solution of the
difference equation (2.9) are bounded uniformly in ε in certain Sobolev spaces, after multiplying that equation
by ε we obtain

LΔx(ρSΔtv + (1 − ρ)v) = O(ε). (2.22)

If Δ tends to zero along with ε then, after relabeling v as u for later convenience, (2.22) tends formally to

Lu = 0 (2.23)

since the difference operator LΔx will be assumed to be a consistent approximation of the differential operator L,
while SΔt tends formally to the identity operator when Δt → 0.

The limit equation (2.23) and the corresponding equation for the difference equations can be expressed in
terms of the L2 orthogonal projection operator P onto the null space of L and the �2 orthogonal projection
operator PΔx onto the null space of LΔx. Equation (2.23) is equivalent to

(1 − P)u = 0 (2.24)

Furthermore, applying PΔx to (2.9) so as to eliminate the large term, then taking the formal limit assuming
that the difference equation is consistent with the PDE (2.8) and that the discrete projection PΔx converges to
the continuous one P as Δx → 0, and using (2.24) yields the complementary limit equation

0 = PN0,0[Pu] = PA(0)(Put − μC(∂x)Pu) + PF(0, t, x, {DαPu}0≤|α|≤p). (2.25)
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Since (2.25) will be taken in conjunction with (2.24), the appearance of Pu rather than just u in (2.25) is not
strictly necessary, but it makes the “coefficient” of the time derivative be the symmetric operator PA(0)P .

Taking the formal limit of (2.22) as ε tends to zero with Δ fixed yields

LΔx(ρSΔtv + (1 − ρ)v) = 0. (2.26)

The initial data will be assumed to satisfy LΔxvε(0, x) = O(ε), so the limit initial data will satisfy
LΔxv0(0, x) = 0. Together these imply by finite induction that the the discrete analogue

(1 − PΔx)v = 0 (2.27)

of (2.24) holds. Applying PΔx to (2.9) to eliminate the large term and taking the formal limit as ε → 0 with Δ
fixed while using (2.27) yields the complementary equation.

0 = PΔxNΔ,0[PΔxv]

= PΔxA(0)
{
PΔxDΔtv − (Δx)q

Δt CΔxPΔxv
}

+ PΔxFΔ(0, t, x, {Dα
ΔxPΔxṽ}0≤|α|≤p, {Dα

ΔxPΔxSΔtṽ}0≤|α|≤p).
(2.28)

2.6. Rate of convergence of the projection operator

The basic convergence theorem without a rate merely requires that the projection operator PΔx onto the
null space of the large difference operator LΔx converge to the projection operator P onto the null space of the
large differential operator L as Δx → 0, However, the uniform convergence theorem requires a sufficiently high
rate of convergence of that projection operator. Two lemmas giving sufficient conditions for that to occur are
therefore stated here, but are proven in Section 3.2. These lemmas are also used in Lemma 3.3 to obtain slow
difference-scheme initial data that approximates slow PDE initial data. Some operators L and LΔx for which
that convergence does not hold, and other cases in which the hypotheses of the two lemma either do or do not
hold, will be presented in Example 3.2.

The hypotheses of both lemmas are expressed in terms of the symbols of the differential and difference
operators. The symbol of a differential operator is obtained from that operator by replacing ∂xj with iξj , while
the symbol of a shift operator is obtained from that operator by replacing Sj,Δx with eiΔxξj . The symbols of
constant-coefficient differential or shift operators are related to the Fourier transform by the formulas

L̂u(ξ) = [Symb(L)](ξ)û(ξ), [Symb(LΔx)](ξ)û(ξ) = L̂Δxu(ξ). (2.29)

The first result is simpler and stronger but places a condition on the symbol of large differential operator L.
Specifically, the number of nonzero eigenvalues of that symbol must either be independent of ξ for all nonzero ξ,
or more generally be independent of ξ when at least one component of ξ actually appearing in that symbol is
nonzero. The former condition is satisfied by the large operator occurring in the equations (2.12) of slightly
compressible fluid dynamics and various other physical systems with one spatial scale, while the more general
condition remains satisfied for slightly compressible fluid dynamics with multiple spatial scales, considered
in [16, 22] and references therein. In addition, the first result assumes that the difference operator is obtained
from the differential operator in a specific, albeit quite natural, way. However, the assumption on the number
of nonzero eigenvalues of the large operator is not satisfied in general by the equations of multi-phase geometric
optics (e.g., [21], Sect. 5). Hence we also present a second result that does not make that assumption and in
addition allows the large difference operator to have a fairly general form, but yields an estimate that depends on
the size of the nonzero eigenvalues of both large operators. Neither result requires the large differential operator
to be of first order, but it must be anti-hermitian. In addition, even when the simpler lemma holds one of the
hypotheses of the second lemma is needed elsewhere in the proof of the uniform convergence theorem.
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Lemma 2.4. Let L :=
∑

0≤|α|≤m Lα∂α
xj

be a constant-coefficient anti-hermitian matrix-valued differential op-
erator. Reorder the components of ξ to the form ξ = (ξ′, ξ′′) such that every component of ξ′ appears in Symb(L)
but no component of ξ′′ appears there, and assume that the rank of [Symb(L)](ξ′) is independent of ξ′ for ξ′ �= 0.

Define an anti-hermitian difference operator

LΔx :=
∑

0≤|α|≤m

Lα(∂j,Δx,c)α,

where ∂j,Δx,c := 1
Δx

∑m
i=−m ci(Sj,Δx)i is a central difference operator approximating ∂x, i.e., satisfies c−i = −ci

as well as
∑

ici = 1. Suppose that there exist a positive constant σ and a finite constant c such that each of
those difference operators satisfies

|Symb(∂j,Δx,c) − iξj | ≤ c∂(Δx)σ |ξj |σ+1. (2.30)

Then there is a constant c such that the L2-orthogonal projection P onto the null space of L and the �2-orthogonal
projection PΔx onto the null space of LΔx satisfy

‖(PΔx − P)u‖Hk ≤ cP (Δx)σ‖u‖Hk+σ . (2.31)

Lemma 2.5. Let L be a constant-coefficient anti-hermitian matrix-valued differential operator, and let LΔx be
a constant-coefficient anti-hermitian finite-difference approximation to L whose coefficients are analytic in the
spatial discretization parameter Δx for Δx �= 0. Assume that there exists a positive constant δ such that the
following hold:
(1) The rank of [Symb(LΔx)](ξ) equals the rank of [Symb(L)](ξ) for ξ ∈ ΠΔx = [− π

Δx , π
Δx )d ∩ Zd satisfying

Δx|ξ| ≤ δ.
(2) The difference operator LΔx is an approximation of some positive order σ to L, i.e., for some c < ∞ and

m < ∞,
‖[Symb(LΔx)](ξ) − [Symb(L)](ξ)‖ ≤ c(Δx)σ(1 + |ξ|)σ+m for ξ ∈ ΠΔx. (2.32)

(3) For some M < ∞, c > 0, and ν ∈ [−m,∞), all nonzero eigenvalues λ(ξ) of [Symb(L)](ξ) and nonzero
eigenvalues λ(Δx, ξ) of [Symb(LΔx)](ξ) satisfy

|λ(ξ)| ≥ c|ξ|−ν for |ξ| > M , (2.33)
|λ(Δx, ξ)| ≥ c|ξ|−ν for |ξ| > M and Δx|ξ| ≤ δ. (2.34)

Then there is a constant c such that

‖(PΔx − P)u‖Hk ≤ c (Δx)σ‖u‖Hk+σ+m+ν , (2.35)

where P and PΔx denote the orthogonal projection operators onto the null spaces of L and LΔx, respectively.

Remark 2.6.
(1) The nonzero eigenvalues of the large operator of the equation (2.12) of slightly compressible fluid dynamics

are O(|ξ|), so (2.33) holds with ν = −1. An example where ν is positive is provided by the operator

L :=
(

0 ∂x 0
∂x ∂3

x 1
0 −1 0

)
: The nonzero eigenvalues of its symbol are −i ξ3

2 ± i

√
4+4ξ2+ξ6

2 , and the eigenvalue having

a smaller absolute value is O(|ξ|−1), so (2.33) holds with ν = 1.
(2) When the spatial domain of the PDE is the whole space Rd rather than the periodic domain considered here

then the corresponding Fourier space is a continuum, and then an assumption is also needed on the behavior
of the nonzero eigenvalues of [Symb(L)](ξ) and [Symb(LΔx)](ξ) in a neighborhood of any exceptional point
ξ where the number of such eigenvalues is not constant in some neighborhood.

(3) Although the assumptions of the lemma do not require that the multiplicity of the zero eigenvalue of
[Symb(L)](ξ) be constant for nonzero ξ, the condition that the multiplicity of the zero eigenvalue of
[Symb(LΔx)](ξ) equal that of [Symb(L)](ξ) can be difficult to achieve when that multiplicity is not constant,
as will be seen in Example 3.2 below.
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2.7. Statements of theorems

We first present a variety of general convergence theorems assuming that a sequence of solutions of the
difference equation satisfies uniform energy estimates in discrete Sobolev spaces of sufficiently high order and
converges at time zero. After that we will show that the uniform energy estimates obtained in [8] allow the
convergence results given here to be applied to the classes of difference schemes considered there. This approach
of separating the problem of obtaining uniform estimates from the issue of convergence allows the results
obtained here to be applied to other systems for which uniform estimates may eventually be obtained, such as
the class of finite-volume schemes on rectangular grids treated in [23].

Theorem 2.7. Let r denote the largest order of any derivative or difference appearing in the PDE N0,ε in (2.8)
or difference scheme NΔ,ε in (2.9), and let s be an integer at least d/2�+1+r, where d is the spatial dimension.
Assume that the coefficients of N0,ε and NΔ,ε belong to Cs and that the difference operators CΔx, LΔx, and
FΔx from NΔ,ε are consistent approximations of the differential operators C, L, and F from N0,ε, respectively.
Let vΔ,ε be a sequence of solutions of the difference scheme NΔ,ε[vΔ,ε] = 0 satisfying

‖vΔ,ε‖�∞([0,T+Δt]∩ΔtZ;hs) + ‖DΔtvΔ,ε‖�∞([0,T ]∩ΔtZ;hs−r) ≤ c < ∞ (2.36)

for some T > 0. Let Intx denote the trigonometric interpolation operator (2.18) and Intt denote the time-
interpolation operator (2.19) or its generalization described in Section 2.4.

(1) Assume that solutions in L∞([0, T ]; Hs)∩W 1,∞([0, T ]; Hs−r) of the initial-value problem for the PDE (2.8)
are unique, and that the spatial interpolation Intx vΔ,ε(0, x) of the initial data for the difference scheme
converges in Hs−1 to some function u0

ε as Δ → 0. If the difference operator CΔx is nonzero, assume in
addition that the limit Δ → 0 is taken in such a way that (Δx)q

Δt converges to some μ. Then as Δ → 0 with ε
fixed, the space-time interpolant Intt Intx vΔx,ε of the solution vΔ,ε of the difference scheme (2.9) converges
in the L∞([0, T ]; Hs−1) norm to the solution of the PDE (2.8) having initial data u0

ε.
(2) Assume that solutions in �∞([0, T ]∩ΔtZ; hs)∩w1,∞([0, T ]∩ΔtZ; hs−r) of the initial-value problem for the

limit equations (2.27)–(2.28) are unique, and that the initial data vΔ,ε(0, x) converges in hs−1 as ε tends
to zero to a function v0

Δ satisfying (2.27). Then as ε converges to zero with Δ fixed the solution vΔ,ε of
the difference scheme (2.9) converges in the �∞([0, T ] ∩ ΔtZ; hs−1) norm to the solution of (2.27)–(2.28)
having initial data v0

Δ.
(3) Assume that solutions in L∞([0, T ]; Hs) ∩ W 1,∞([0, T ]; Hs−r) of the initial-value problem for the limit

equations (2.24)–(2.25) are unique, that the projection PΔx onto the null space of the difference operator LΔx

converges as Δx → 0 to the projection operator P onto the null space of the differential operator L, and
that as both Δ and ε tend to zero the spatial interpolation Intx vΔ,ε(0, x) of the initial data converges in
Hs−1 to a function u0 satisfying (2.24). If the difference operator CΔx is nonzero, assume in addition that
the limit Δ → 0 is taken in such a way that (Δx)q

Δt converges to some μ. Then as both Δ and ε converge
to zero the space-time interpolation Intt Intx vΔ,ε of the solution of the difference scheme (2.9) converges in
the L∞([0, T ]; Hs−1) norm to the solution of (2.24)–(2.25) having initial data u0.

In order to obtain a rate of convergence equal to the order of accuracy of the scheme we will assume that ε
is a fixed parameter, because the coefficients of the discretization parameters in the estimate of the rate of
convergence depend on higher time derivatives/differences of the solutions, which will not be bounded uniformly
in ε. However, under appropriate assumptions it should be possible to generalize the following result to the case
when ε tends to zero together with Δ provided that the initial data are specially chosen as in [2] and the proof
of Lemma 4.2 below so as to make those higher time derivatives and differences be uniformly bounded.

Theorem 2.8. Let r denote the largest order of any derivative or difference appearing in the PDE N0,ε in (2.8)
or difference scheme NΔ,ε in (2.9), and let ε in the PDE (2.8) and the difference scheme (2.9) be a fixed param-
eter. Assume that the difference operator approximation NΔ,ε in (2.9) is σt-order accurate in time and σx-order
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accurate in space for the differential operator N0,ε in (2.8), with the parameters from Definition 2.2 having the
values kmin ≤ d

2� + 1 + r + max{rσt, σx}, J = σt + 1, and k− = r. Assume in addition that the PDE (2.8) is
stable in the sense of Definition 2.1 with the parameter k0 equal to d

2�+1+ r, where d is the spatial dimension.
Assume further that both the basic hypotheses and the additional hypotheses of the first part of Theorem 2.7
hold, with s at least d/2� + 1 + r + max{σtr, σx}.

Finally, assume that the chosen initial data v0
Δx for the difference scheme (2.9) and u0 for the PDE (2.8)

satisfy ‖ Intx v0
Δx − u0‖Hs−r−max{σtr,σx} ≤ c(Δx)σx . Let T denote the minimum of the time of existence of the

solution u and the uniform time of existence of vΔ with those initial data. Then

‖ Intt Intx vΔ − u‖L∞([0,T ];Hs−r−max(rσt,σx)) ≤ c((Δt)σt + (Δx)σx ). (2.37)

Theorem 2.9. Let r be the largest order of any derivative or difference appearing in the PDE N0,ε in (2.8) or
difference scheme NΔ,ε in (2.9). Assume that the nonzero eigenvalues λ(ξ) of Symb(L) satisfy (2.33) for some
ν ∈ [−r,∞), that all the hypotheses of either Lemma 2.4 or Lemma 2.5 hold, and that A(εu) is a positive-definite
symmetric matrix.

Assume also that the difference operator FΔ from (2.9), after replacing SΔtṽ in its last argument by ṽ,
is an approximation of some order σx in Δx to the differential operator F in (2.8), with parameter values
k0 ≤ d

2� + 1 + r, k− ≤ r, and J = 0. If the difference operator CΔx in (2.9) is nonzero then let CΔx be an
approximation of order σx in Δx to the differential operator C in (2.8) with the same parameter values as above,
restrict Δx to satisfy

∣∣∣ (Δx)q

Δt − μ
∣∣∣ ≤ c(Δt)1/2, where q and μ are the parameters appearing in (2.9) and (2.8)

respectively, and assume that
min{σx, σ}

q
≥ 1

2 , (2.38)

where σ is the parameter from Lemma 2.4 or Lemma 2.5. Alternatively, if CΔx is identically zero then restrict
Δx by Δx ≤ c(Δt)1/q, where q is any positive number for which (2.38) holds.

Assume that the PDE (2.8) is stable uniformly in ε and linearly stable uniformly in ε, and the difference
scheme (2.9) is stable uniformly in ε, all in the sense of Definition 2.1 with the parameter k0 equal to d

2�+1+r,
where d is the spatial dimension.

Let m be zero if the hypotheses of Lemma 2.4 hold, or the parameter from Lemma 2.5 if the hypotheses of
that lemma hold. Assume that the integer s satisfies

s ≥ max{d/2� + 1 + r + (σx + m) + 2(r + ν), 3r + ν}, (2.39)

and that the coefficients of the PDE (2.8) are at least Cs.
Assume that the initial data v0

Δ,ε for the difference scheme (2.9) and the initial data u0
ε for the PDE (2.8)

satisfy
‖ Intx v0

Δ,ε − u0
ε‖Hs−σx ≤ c(Δx)

q
2 . (2.40)

and
‖LΔxv0

Δ,ε‖hs−r ≤ cε. (2.41)

Finally, let cslow be the constant from Lemma 4.2, and assume that the solution vΔ,ε of the difference
scheme (2.9) having the initial value v0

Δ,ε satisfies (2.36), the solution uε of the PDE (2.8) having the ini-
tial value u0

ε satisfies the analogous bound

‖uε‖L∞([0,T ];Hs) + ‖(uε)t‖L∞([0,T ];Hs−r) ≤ c < ∞, (2.42)

and that for every initial data ũ0
ε satisfying ‖ũ0

ε − u0
ε‖Hs−r−ν + ‖L(ũ0

ε −u0
ε)‖Hs−2r−ν ≤ cslow ε the solution of the

PDE (2.8) with initial data ũ0
ε satisfies (2.42) with s replaced by s− r − ν, all for some positive T independent

of ε. Then
‖ Intt Intx vΔ,ε − uε‖L∞([0,T ];Hs−max{3r+2ν+σx+m,3r+ν}) ≤ c

√
Δt (2.43)

uniformly in ε.
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Remark 2.10.

(1) When the operator L is elliptic on the orthogonal complement of its null space then ν = −r, which reduces
significantly the number of derivatives lost in the estimate (2.43). The slightly-compressible Euler equations
of fluid dynamics (2.12) provide an example in which this condition holds. For the discretization of those
equations in (2.11) in dimension three, the other parameters in the statement of Theorem 2.9 have the
values

⌊
d
2

⌋
= 1, m = 0, r = 1, σx = 1, and hence s ≥ 4 and the norm in estimate (2.43) is Hs−2.

(2) Initial data of the form (B.4) below satisfies the assumptions on the initial data in part 1 of Theorem 2.7
and in Theorem 2.8. Initial data of the form (3.13) below satisfies the assumptions on the initial data in
part 2 of Theorem 2.7. Initial data of the form (3.20) below satisfies the assumptions on the initial data in
part 3 of Theorem 2.7 and in Theorem 2.9.

(3) The consistency assumption (2.17) holds when NΔ,ε in (2.9) is obtained from N0,ε in (2.8) by replacing each
derivative operator ∂xj by a difference approximation of order σx and discretizing in time using a numerical
scheme of order σt.

Lemma 2.11.

(1) Let the PDE have the somewhat more specific form

A(εu)ut + 1
εLu +

d∑
j=1

Aj(t, x, u)uxj +
d∑

j,k=1

Bj,kuxjxk
+ F (t, x, u) = 0, (2.44)

where all the coefficients are sufficiently smooth, the A is strictly positive definite, A and the Aj are symmet-
ric, the operator

∑
j,k Bj,k∂xj ∂xk

is strongly elliptic or more generally the Bj,k satisfy either ([8], Eq. (2.11)
or [8], Eq. (2.12)), and L is an antisymmetric constant-coefficient spatial differential operator. As before, let r
denote the order of the highest derivative appearing in (2.44). Then the nonlinear and linearized uniform-in-ε
stability assumptions (2.13) and (2.15) hold with k0 := d

2�+1+r, the uniqueness assumption holds for both
the PDE and its limit equations (2.24)–(2.25), and every initial data satisfying ‖u0

ε‖Hs + 1
ε‖Lu0

ε‖Hs−r ≤ c
yields a solution satisfying the uniform boundedness condition (2.42).

(2) As before we let r denote the order of the highest difference appearing in a difference scheme. The difference
schemes from [8] satisfy the stability estimate (2.16) with k0 := d

2� + 1 + r and the uniqueness condition
for both the original scheme and for the limit scheme (2.27)–(2.28).

The first part of Lemma 2.11 follows from standard estimates for singular limits of evolutionary PDEs
in [12, 20]. The second part of the lemma follows from estimates in [8] plus straightforward extensions of those
estimates. In particular, the differences schemes treated in [8] satisfy estimates in the continuous spaces Hs

analogous to those shown there in the discrete spaces hs since all the discrete estimates used to produce
those estimates are analogues of known continuous estimates. In addition, uniqueness for the limit difference
scheme (2.27)–(2.28) can be obtained via an �2 estimate for the difference of two solutions just like the uniqueness
of the original difference scheme, because after multiplying the equation satisfied by the difference of two
solutions by that difference the projection operators may be omitted since the difference lies in the range of the
projection.

Since the discretization (2.11) of the equations (2.12) of slightly-compressible fluid dynamics is a particular
case of the difference scheme from ([8], Sect. 3.1), that PDE satisfies the conditions of Lemma 2.4, and that
discretization is a first-order approximation to the PDE, the following result shows that all the above convergence
theorems apply to that example.

Corollary 2.12. The results of Theorems 2.7–2.9 apply to systems satisfying the hypotheses of Theorem 1 or
Theorem 4 of [8], provided that the assumptions on the consistency or order of approximation and the hypotheses
from Lemma 2.4 or Lemma 2.5 hold where needed.
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3. Order of approximation

3.1. Order of accuracy of interpolation

By making repeated use of the estimate from Lemma A.5 of the “nonlinear commutator” IntF (u)−F (Intu) of
interpolation operators with nonlinear functions, along with the fact that the interpolation operators considered
here commute with difference operators, we can estimate how close the interpolation of a solution of the difference
equation (2.9) is to being itself a solution of that equation. No O(1

ε ) terms occur in the estimate because the
O(1

ε ) terms in the difference equation are linear with constant coefficients and so commute with interpolations.
Moreover, even though an estimate on the second time difference of the solution is needed in order to obtain the
minimal time accuracy σt = 1, the norm of that second time difference appears in the estimate (3.1) multiplied
by a factor of ε, so only the first time difference of the solution needs to be uniformly bounded in order to obtain
an estimate that is uniform in ε.

Lemma 3.1. Let k be an integer satisfying k ≥ d
2� + 1 + r, where r is the maximal order of any difference

appearing in the difference equation (2.9). Let σt be a positive integer, and σx be an integer satisfying 0 ≤
σx < k − (d

2� + 1 + r). Let NΔ,ε be the difference operator from (2.9), Intx be the trigonometric interpolation
operator (2.18), and Intt be the time interpolation operator defined in Section 2.4 using at least σt + 1 points.
Assume that A ∈ Ck+σt+1 and that the other functions and coefficients appearing in NΔ,ε from (2.9) belong to
Ck+σt . Finally, if CΔx is nonzero then assume that ε(Δx)q

Δt is bounded. Then for any v ∈ �∞([0, T ]∩ΔtZ; hk) ∩
wσt,∞([0, T + Δt] ∩ ΔtZ; hk−σx) satisfying NΔ,ε[v] = 0,

‖NΔ,ε[Intt Intx v]‖L∞([0,T ];Hk−r−σx ) ≤
C(‖v‖wσt,∞([0,T+Δt]∩ΔtZ;hk−σx ))[1 + ε‖DΔtv‖wσt,∞([0,T ]∩ΔtZ;hk−r−σx )](Δt)σt

+ C(‖v‖�∞([0,T+Δt]∩ΔtZ;hk))[1 + ε‖DΔtv‖�∞([0,T ]∩ΔtZ;hk−r)](Δx)σx . (3.1)

Proof. The basic idea is to estimate T [Intt Intx v]−Intt Intx T [v] for every term T [v] occurring in NΔ,ε from (2.9);
summing those estimates yields an estimate for NΔ,ε[Intt Intx v] since Intt Intx NΔ,ε[v] = Intt Intx 0 = 0.

Note first that since the shift operator LΔx(ρSΔt + (1 − ρ)) is linear and has constant coefficients, so the
shift-invariance properties (A.2) and (A.10) of the interpolation operators ensure that 1

εLΔxSΔt(Intt Intx v) −
Intt Intx

(
1
εLΔxSΔtv

)
= 0. Hence that term contributes nothing to the estimate, which ensures that the final

estimate will be uniform in ε.
When estimating the term FΔ from (2.9) we will make the notation more compact by omitting the dependence

of that function on arguments other than u. Since r ≥ p, applying (A.18) with k := σt to FΔ(w) with w :=
({Dα

Δxũ}0≤|α|≤p, {Dα
ΔxSΔtũ}0≤|α|≤p) and using the commutativity of difference and interpolation operators and

the invariance of hk norms under spatial shifts yields

‖FΔ({Dα
Δx Intt Intx ũ}0≤|α|≤p, {Dα

ΔxSΔt Intt Intx ũ}0≤|α|≤p)
− Intt Intx FΔ({Dα

Δxũ}0≤|α|≤p, {Dα
ΔxSΔtũ}0≤|α|≤p)‖L∞([0,T ];Hk−r−σx )

= ‖FΔ(Intt Intx w) − Intt Intx FΔ(w)‖L∞([0,T ];Hk−r−σx )

≤ C(‖w‖wσt,∞([0,T ]∩ΔtZ;hk−r−σx))(Δt)σt + C(‖w‖�∞([0,T ]∩ΔtZ;hk−r))(Δx)σx

≤ C(‖v‖wσt,∞([0,T+Δt]∩ΔtZ;hk−σx ))(Δt)σt + C(‖v‖�∞([0,T+Δt]∩ΔtZ;hk))(Δx)σx .

(3.2)

The remaining term in NΔ,ε is the term involving A. If A were constant then that term would also commute
with the interpolation operators we are using. To treat the case when A is not constant, note that

A(εṽ) − A(0) =
∫ 1

0

d
ds

A(sεṽ) ds = ε

[∫ 1

0

ṽ · ∇uAu(sεṽ) ds

]
:= εÃ(εṽ, ṽ). (3.3)
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Using the fact that constant-coefficient linear difference operators commute with the interpolation operators we
are using, (3.3), the fact that the order of C is at most r, and the assumption that ε(Δx)q

Δt is bounded, we obtain

‖A(ε Intt Intx v)(DΔt Intt Intx v − (Δx)q

Δt CΔx Intt Intx v)

− Intt Intx

{
A(ε Intt Intx v)(DΔtv − (Δx)q

Δt CΔxv)
}
‖L∞([0,T ];Hk−r−σx )

= ‖[A(ε Intt Intx v) − A(0)](DΔt Intt Intx v − (Δx)q

Δt CΔx Intt Intx v)

− Intt Intx

{
[A(ε Intt Intx v) − A(0)](DΔtv − (Δx)q

Δt CΔxv)
}
‖L∞([0,T ];Hk−r−σx )

= ε‖Ã(ε Intt Intx ṽ, Intt Intx ṽ)(DΔt Intt Intx v − (Δx)q

Δt CΔx Intt Intx v)

− Intt Intx

{
Ã(εṽ, ṽ)(DΔtv − (Δx)q

Δt CΔxv)
}
‖L∞([0,T ];Hk−r−σx )

≤ C(‖v‖wσt,∞([0,T ]∩ΔtZ;hk−r−σx))ε
[‖DΔtv‖wσt,∞([0,T ]∩ΔtZ;hk−r−σx ) + ‖v‖wσt,∞([0,T ]∩ΔtZ;hk−σx)

]
(Δt)σt

+ C(‖v‖�∞([0,T ]∩ΔtZ;hk−r))ε
[‖DΔtv‖�∞([0,T ]∩ΔtZ;hk−r) + ‖v‖�∞([0,T ]∩ΔtZ;hk)

]
(Δx)σx . (3.4)

Adding (3.2) and (3.4) and combining terms yields (3.1). �

3.2. Approximation of the null space of the large operator

Proof of Lemma 2.4. By the definition of the Sobolev Hk norms, in order to show that (2.35) holds it suffices
to show that

| Symb(PΔx) − Symb(P)| ≤ cP |ξ|σ(Δx)σ . (3.5)

Since eliminating the components of ξ that do not appear in Symb(L) reduces the norm of that vector, we may
ignore those components when proving (3.5). The assumption on Symb(L) then reduces to the assertion that
its rank is independent of ξ for ξ �= 0.

Since L and LΔx are antisymmetric operators, the symbols of the orthogonal projections P and PΔx onto
their null spaces are matrix orthogonal projections for each value of ξ, and hence have norms bounded by one.
First choose a constant positive μ such that dc∂μ < 1, where d is the spatial dimension and c∂ is the constant
from (2.30). For all ξ satisfying |ξ|Δx ≥ μ,

| Symb(PΔx) − Symb(P)| ≤ 2 ≤ 2
μσ (|ξ|Δx)σ ,

so for this case (3.5) holds with cP := 2
μσ . It therefore suffices to show that (3.5) also holds when

|ξ|Δx ≤ μ, (3.6)

possibly with a different value of cP .
Since the ∂j,Δx,c are central difference operators, their symbols are imaginary and odd, and hence ηj(Δx, ξ) :=

−i[Symb(∂j,Δx,c)](ξ) is real. Since odd functions vanish at zero, [Symb(LΔx)](0) = [Symb(L)](0), which im-
plies that (3.5) also holds for ξ = 0. More generally, [Symb(LΔx)](ξ) = [Symb(L)](η(Δx, ξ)) and hence
[Symb(PΔx)](ξ) = [Symb(P)](η(Δx, ξ)), where η is the vector having components ηj .

For ξ �= 0 the integral formula ([14], Eq. (II.1.16)), for the projection matrix [Symb(P)](ξ) onto the zero
eigenspace of the matrix [Symb(L)](ξ) is

[Symb(P)](ξ) =
1

2πi

∮
|z|=δ(ξ)

(z − [Symb(L)](ξ))−1 dz, (3.7)

where δ(ξ) is chosen smaller than the absolute value of all nonzero eigenvalues of [Symb(L)](ξ). Recall that
inverse of a matrix equals the transpose of its cofactor matrix divided by its determinant. Since the components
of [Symb(L)] are polynomials in ξ, both cofactor matrix and the determinant of z−[Symb(L)](ξ) are polynomials
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in (z, ξ). Hence their ratio (z − [Symb(L)](ξ))−1 is a rational function of those variables. Hence (3.7) shows
that the projection [Symb(P)](ξ) equals the coefficient of z−1 in the partial fraction decomposition of (z −
[Symb(L)](ξ))−1, which is a rational function of ξ.

Let r be the fixed number of zero eigenvalues of [Symb(L)](ξ) for ξ �= 0. Then det(z − [Symb(L)](ξ)) =
zrΛ(z, ξ) for some polynomial Λ such that Λ(0, ξ) nonzero for all nonzero ξ. Moreover, since the entries of
the cofactor matrix of z − [Symb(L)](ξ) are the determinants of that matrix with one row and one column
omitted, that matrix has the form zr−1C(z, ξ) for some polynomial ξ. Hence the coefficient of z−1 in the
partial fraction decomposition of (z − [Symb(L)](ξ))−1 equals C(0,ξ)

Λ(0,ξ) , which shows that the denominator of the
rational matrix-valued function [Symb(P)](ξ) is nonzero for nonzero ξ. Hence both [Symb(P)](ξ) and its gradient
∇[Symb(P)](ξ) are well-defined for all nonzero ξ. Furthermore, the fact that the norm of [Symb(P)](ξ) equals
one for all ξ implies that the maximum degree of any component of the numerator of that rational function
with respect to any component of ξ is the same as the degree of there common denominator with respect to
that component. The quotient rule therefore implies that |∂ξj [Symb(P)](ξ)| ≤ c

|ξj | . Moreover, (3.6) together
with (2.30) and the definition of η(Δx, ξ) imply that |η(Δx, ξ) − ξ| ≤ dc∂μ|ξ| < c|ξ| for some constant c < 1,
which implies that |sη + (1 − s)ξ| ≥ (1 − cs)|ξ| for 0 ≤ s ≤ 1 and hence that ∇[Symb(P)](sη + (1 − s)ξ) is
well-defined for such s. Together with the above bounds for ∂ξj Symb(P) this yields

|[Symb(P ](η(Δx, ξ)) − [Symb(P)](ξ)| =
∣∣∣∣∫ 1

0

d
ds

[Symb(P)](sη(Δx, ξ) + (1 − s)ξ) ds

∣∣∣∣
=

∣∣∣∣∣∣
d∑

j=1

(ηj(Δx, ξ) − ξj) ·
∫ 1

0

∂ξj [ Symb(P)](sη(Δx, ξ) + (1 − s)ξ) ds

∣∣∣∣∣∣
≤ c

∑
j

|ηj(Δx, ξ) − ξj |
|ξj | · (3.8)

Hence assumption (2.30) together with the fact that [Symb(P)](η(Δx, ξ))) is the symbol of PΔx

yields (2.31). �

Proof of Lemma 2.5. Since LΔx is a finite difference operator, Symb(LΔx) is a sum of trigonometric polynomials
of Δxξ divided by powers of Δx, times coefficients that are assumed analytic in Δx. Consider first the case
when Δx|ξ| ≤ δ, where δ is the constant mentioned in the lemma.

The fact that LΔx approximates L implies that [Symb(L)](ξ) = limΔx→0[Symb(LΔx)](ξ) and hence that the
singularity of [Symb(LΔx)](ξ) at Δx = 0 is removable. This means that [Symb(LΔx)](ξ) is an analytic pertur-
bation of [Symb(L)](ξ). Hence there is an integral formula ([14], Eq. (II.1.16), p. 77), for the projection operator
onto the eigenspace of the eigenvalues that tend to zero with Δx, provided that the path of integration is chosen
so as to include all those and only those eigenvalues. By assumption all those eigenvalues are identically zero,
so that projection is the projection Symb(PΔx) onto the zero eigenspace of [Symb(LΔx)](ξ). Assumption (2.34)
ensures that the path of integration can be taken to be a circle whose radius depends only on ξ, for all values
of Δx under consideration. Hence

Symb(PΔx) =
1

2πi

∮
|z|=ε(ξ)

(z − [Symb(LΔx)](ξ))−1 dz. (3.9)

Moreover, since the multiplicity of the zero eigenvalue is constant in a neighborhood of Δx = 0, that point
is not an exceptional point in the sense of ([14], Sect. II.1) so the limit of (3.9) as Δx → 0 yields Symb(P).
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Subtracting that limiting formula from (3.9) and using the identity A−1 − B−1 = A−1(B − A)B−1 yields

Symb(PΔx) − Symb(P) =
1

2πi

∮
|z|=ε(ξ)

[
(z − [Symb(LΔx)](ξ))−1 − (z − [Symb(L)](ξ))−1

]
dz

=
1

2πi

∮
|z|=ε(ξ)

(z − [Symb(LΔx)](ξ))−1 ([Symb(LΔx)](ξ)

−[Symb(L)](ξ)) (z − [Symb(L)](ξ))−1 dz. (3.10)

By assumptions (2.34) and (2.33), ε(ξ) may be taken to equal c
2 |ξ|−ν for |ξ| > M , and since there are only a

finite number of wavenumbers satisfying |ξ| ≤ M it may be taken to equal some constant for such ξ. Using
assumption (2.32) plus the fact that both inverses appearing in the last integral of (3.10) are O((1 + |ξ|)ν) on
the chosen contour of integration but the length of that contour cancels one of those factors, we obtain the
estimate

‖ Symb(PΔx − P)‖ = ‖ Symb(PΔx) − Symb(P)‖ ≤ c(Δx)σ(1 + |ξ|)σ+m+ν (3.11)

for 0 ≤ Δx|ξ| ≤ δ. On the other hand, for Δx|ξ| ≥ δ (3.11) holds trivially, with a possibly larger constant c,
since the left side is bounded by 2 while the right side will be at least that big provided that c is sufficiently
large. Hence (3.11) holds for all Δx and all ξ ∈ ΠΔx, which by the definition of the Hs norms yields (2.35). �
Example 3.2.

(1) The projection operator onto the null space of the operator

L =

⎛⎝ 0 0 ∂x

0 0 2∂y

∂x 2∂y 0

⎞⎠
has symbol

Symb(P) =

⎛⎜⎜⎜⎝
4ξ2

2

ξ2
1+4ξ2

2

− 2ξ1ξ2

ξ2
1+4ξ2

2

0

− 2ξ1ξ2

ξ2
1+4ξ2

2

ξ2
1

ξ2
1+4ξ2

2

0

0 0 0

⎞⎟⎟⎟⎠ ,

which, in agreement with the Proof of Lemma 2.4, is a rational function of ξ. The matrix Symb(L) has
constant rank for real nonzero ξ, as does the symbol of the difference operator LΔx obtained by replacing ∂x

and ∂y in L by the central difference operators [∂x,Δx,cu](x, y) := u(x+Δx,y)−u(x−Δx,y)
2Δx and [∂y,Δx,cu](x, y) :=

u(x,y+Δx)−u(x,y−Δx)
2Δx , provided that Δxmaxj |ξj | < π. The operators L and LΔx satisfy all the assumptions

of Lemmas 2.4 and 2.5.
(2) The symbol of the operator

L :=
(

∂x 1
−1 ∂x

)
has a zero eigenvalue only when ξ = ±1. Hence Lemma 2.4 is not applicable. Replacing ∂x by the standard
central difference operator ∂x,Δx,c := SΔx−(SΔx)−1

2Δx would yield a difference operator whose symbol vanishes
when ξ satisfies sin(Δxξ)

Δx = ±1 rather then when ξ = ±1 as required by Lemma 2.5. Moreover, while ξ = ±1
belongs to the Fourier domain Z, for sufficiently small Δx the solutions of sin(Δxξ)

Δx = ±1 do not. Hence the
projection operator PΔx onto the null space of LΔx is the zero operator, which does not converge to the
nonzero projection operator P onto the null space of L.

Nevertheless, Lemma 2.5. can be applied provided that we define LΔx by replacing ∂x in L by Δx
sin(Δx) times

∂x,Δx,c, since the analytic coefficient multiplying the difference operator shifts the zeros of the symbol of LΔx

back to the location of the zeros of the symbol of L. However, this method of moving the zeros of the symbol
of the discretization is not always possible for more complicated operators.
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3.3. Approximate initial data in the null space of the large operator

The results of Appendix B show how to obtain initial data for the difference scheme (2.9) satisfying the
desirable conditions (B.1) and (B.2) for the case when the parameter ε is held constant. However, for the cases
that include the limit as ε → 0 the convergence theorems proven in this paper require that the first time
difference of the numerical approximation be bounded uniformly in the small parameter ε. Theorems 1 and 4
of [8] show that this condition will hold for the schemes considered in those theorems provided that the initial
data v0

Δx,ε of the numerical scheme satisfies

‖LΔxv0
Δx,ε‖hs−p ≤ cε (3.12)

for some finite p and sufficiently large s, where as usual LΔx denotes the large operator of the numerical
scheme. Moreover, the proof of Theorem 1 of [8] shows that for any scheme of the form (2.9) considered here
condition (3.12) ensures that the initial data for that scheme is slow, i.e., is such that the first time-difference
is bounded uniformly in ε at time zero.

If the initial data is not required to converge as Δ → 0 then initial data of the desired form can be obtained
by letting ṽ0

0 and ṽ0
1(ε) be arbitrary functions that are uniformly bounded in hs and setting

v0
Δx,ε = PΔxṽ0

0 + εṽ0
1(ε), (3.13)

where PΔx is the projection operator onto the null space of the discrete large operator LΔx. However, more
care is required when that initial data is required to converge to slow initial data for the PDE (2.8) as Δ → 0.
Slow initial data for the PDE depending smoothly on ε has the form

u0
ε(x) := u0

0(x) + εu0
1(x, ε), (3.14)

where
Lu0

0 = 0 (3.15)

and
‖u0

0‖Hs + ‖u0
1‖Hs ≤ c (3.16)

for some appropriate value of s. We then seek initial data for the difference scheme (2.9) of the form

v0
Δx,ε = v0

Δx,0 + εv0
Δx,1(ε), (3.17)

where
LΔxv0

Δx,0 = 0 (3.18)

and
‖v0

Δx,0‖hs + ‖v0
Δx,1(ε)‖hs ≤ c, (3.19)

which will ensure that (3.12) holds with p equal to the order of the difference operator LΔx.

Lemma 3.3. Suppose that the large operators L of the PDE and LΔx of the numerical scheme satisfy the
conditions of either Lemma 2.4 or 2.5 for some positive σ, and let s be an integer greater than d

2 + 2 + z, where
z = 0 when the assumptions of Lemma 2.4 hold or z = m + ν if the assumptions of Lemma 2.5 hold.

Let the initial data for the PDE have the form (3.14), where u0
0 and u0

1 satisfy (3.15)–(3.16). Define ṽ0
Δx,0

and v0
Δx,1 by the right side of formula (B.4) with u0 replaced with u0

0 and u0
1, respectively, where in that formula

ρ satisfies the hypotheses of Lemma B.1 and its Fourier transform ρ̂(ξ) vanishes for |ξ| ≥ π. Define v0
Δx,0 :=

PΔxṽ0
Δx,0, where PΔx is the projection operator onto the null space of LΔx. Then the modified discrete initial

data of the form (3.17), i.e.,

v0
Δx,ε := v0

Δx,0 + εv0
Δx,1,ε = PΔxṽ0

Δx,0 + εv0
Δx,1,ε (3.20)
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satisfies (3.18), (3.19), and

‖u0
ε − Intx v0

Δ,ε‖Hs−σ1 ≤ c (Δx)σ1 (‖u0
0‖Hs + ε‖u0

1‖Hs) for σ1 ≤ min{σ, s}, (3.21)

‖v0
Δx,ε‖hs ≤ c (‖u0

0‖Hs + ε‖u0
1‖Hs). (3.22)

Proof. Condition (3.18) is satisfied on account of the projection operator PΔx in the order one term of (3.20).
Lemma B.1 ensures that ṽ0

Δx,0 satisfies (B.2), and the projection PΔx is a bounded operator, so (3.22) holds,
and that estimate together with (3.16) ensures that (3.19) holds. The assumption on the spectrum of ρ ensures
that there is no aliasing error, i.e., Intx Prx(ρΔx � f) = ρΔx � f , and since PΔx is a multiplication operator in
Fourier space it commutes with Intx. Together with (3.15) and formula (B.4), these facts imply that

Intx PΔxṽ0
Δx,0 = Intx PΔx Prx(ρΔx � u0

0) = PΔx Intx Prx(ρΔx � u0
0) = PΔx(ρΔx � u0

0).

Hence, for σ restricted as stated in the lemma,

‖ Intx v0
Δx,0 − u0

0‖Hs−z−σ = ‖ Intx PΔxṽ0
Δx,0 − u0

0‖Hs−z−σ = ‖PΔx(ρΔx � u0
0) − Pu0

0‖Hs−z−σ

≤ ‖(PΔx − P)(ρΔx � u0
0)‖Hs−z−σ + ‖P((ρΔx � u0

0) − u0
0)‖Hs−z−σ ≤ c(Δx)σ‖u0

0‖Hs ,
(3.23)

where z equals zero or m + ν depending which of Lemma 2.4 or 2.5 holds. Estimate (3.23) together with the
corresponding estimate (B.1) for Intx v0

Δx,1 − u0
1 implies that (3.21) holds �

4. Convergence

4.1. Convergence as Δ and/or ε tend to zero

Proof of Theorem 2.7. We present here the proof for the case when both Δ and ε tend to zero. The proof for
the case when Δ → 0 with ε fixed is similar, and that case is also considered in the Proof of Theorem 2.8. The
proof for the case when ε → 0 with Δ fixed only requires substituting time differences for time derivatives, sums
over time for integrals over time, and discrete versions developed in [8] for the continuous estimates used here.

By assumption (2.36), vΔ,ε is uniformly bounded in �∞([0, T + Δt] ∩ ΔtZ; hs) and DΔtvΔ,ε is uniformly
bounded in �∞([0, T ] ∩ ΔtZ; hs−r). The interpolation estimates (A.1) and (A.11) then show that Intt Intx vΔ,ε

is uniformly bounded in C0([0, T ]; Hs) and ∂t Intt Intx vΔ,ε is uniformly bounded in C0([0, T ]; Hs−r), in view
of the continuity of the time-interpolation operator. Hence by Ascoli’s theorem plus interpolation of Sobolev
spaces, every sequence of solutions vΔ,ε has a subsequence such that Intt Intx vΔ,ε converges in L∞([0, T ]; Hs−1)
to some limit u.

The standard estimate

‖F(t, x, u) −F(t, x, v)‖Hs ≤ C(‖u‖Hs , ‖v‖Hs)‖u − v‖Hs (4.1)

for s > d
2 follows from the identity F(t, x, u)−F(t, x, v) =

∫ 1

0
d
dsF(t, x, su+(1−s)v) ds = (u−v)·∫ 1

0 ∇uF(t, x, su+
(1 − s)v) ds together with (A.8) and the Sobolev embedding estimate. Using (4.1) together with the con-
vergence of Intt Intx vΔ,ε on PΔx applied to each term T in NΔ,ε except for the time-difference term shows
that PΔxT [Intt Intx vΔ,ε] − PΔxT [u] tends to zero in L∞([0, T ]; Hs−1−r) as Δ and ε tend to zero. Similarly,
LΔx(ρSΔt + (1 − ρ)) Intt Intx vΔ,ε − LΔx(ρSΔt + (1 − ρ))u tends to zero in the same norm. To deal with the
time-difference term, note that the uniform boundedness of the time difference implies that after taking a fur-
ther subsequence ∂t Intt Intx vΔ,ε converges weak-∗ L∞([0, T ]; Hs−r) to some limit w. Moreover, taking the limit
of the identity Intt Intx vΔ,ε(t2, x) − Intt Intx vΔ,ε(t1, x) =

∫ t2
t=t1

∂t Intt Intx vΔ,ε(t, x) shows that the limit w of
∂t Intt Intx vΔ,ε is the time derivative of the limit u of Intt Intx vΔ,ε. Since the factor involving A converges
strongly, the expression A(ε Intt Intx vΔ,ε)DΔt Intt Intx vΔ,ε − A(0)∂tu converges weak-∗ to zero Δ and ε tend
to zero. To see this, let φ belong to the space C∞

0 ([0, T ]× X) of compactly-supported smooth functions. Then

〈φ, A(ε Intt Intx vΔ,ε)DΔt Intt Intx vΔ,ε − A(0)ut〉 = 〈{A(ε Intt Intx vΔ,ε) − A(0)}φ, DΔt Intt Intx vΔ,ε〉
+ 〈A(0)φ, DΔt Intt Intx vΔ,ε − ut〉 ,
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and the first term on the right converges to zero since A(ε Intt Intx vΔ,ε) − A(0) tends to zero in C0 and
DΔt Intt Intx vΔ,ε is uniformly bounded, while the second term on the right converges to zero on account of
the weak-∗ convergence of DΔt Intt Intx vΔ,ε − ut to zero. Since the projection PΔx is bounded and preserves
smoothness, applying that operator to expressions that tend weak-∗ to zero yields results that still converge
weak-∗ to zero.

Note that by applying the operator PΔx to the terms of NΔx,ε and considering the operator LΔx(ρSΔt+(1−ρ))
separately without the factor 1

ε we have avoided the difficulty of trying to take the limit of a term of order 1
ε ,

as would occur if we tried to take the limit of the term 1
εLΔx(ρSΔt + (1 − ρ)) Intt Intx vΔ,ε directly.

Together with estimate (3.1) of NΔ,ε[Intt Intx vΔ,ε], the above estimates imply that in order to show that
the limit u satisfies the claimed limit equations it suffices to show that PΔxNΔ,ε[u] and LΔx(ρSΔt + (1 − ρ))u
tend to those limit equations. Given the assumed consistency of the difference equation with the PDE, plus the
assumed consistency of PΔx with P , those limits follow from the formal calculation of those limit equations
in Section 2.5. Finally, since the initial data are assumed to converge, every subsequence of Intt Intx vΔ,ε has
been shown to converge to a solution of the limit equations having the same initial data. Since solutions of
the initial-value problem for the limit equations have been assumed to be unique, every such limit is therefore
the same. By a standard result for limits, Intt Intx vΔ,ε therefore converges without the need to restrict to a
subsequence. �

4.2. Rate of convergence without large terms

Proof of Theorem 2.8. Since vΔ,ε is assumed to be a solution of (2.9), Lemma 3.1 with k = s+σx−max{σtr, σx}
shows that

‖NΔ,ε[Intt Intx vΔx,ε]‖L∞([0,T ];Hs−r−max{σtr,σx}) ≤ c((Δt)σt + (Δx)σx ), (4.2)

where c depends only on the �∞([0, T + Δt] ∩ ΔtZ; hs) norm of v, since the �∞([0, T ] ∩ ΔtZ; hs−jr) norms
of Dj

Δtv can be estimated in terms of the former norm by repeatedly using the difference equation plus the
estimate ([8], Eq. (4.17)), for hs norms of smooth functions F (v) of an hs function v. By the assumption that the
difference scheme is an approximation of order σt in t and σx in x, with the assumed values of the parameters
of Definition 2.2, we then obtain that

‖N0,ε[Intt Intx vΔx,ε]‖L∞([0,T ];Hs−r−max{σtr,σx})

≤ ‖NΔ,ε[Intt Intx vΔx,ε]‖L∞([0,T ];Hs−r−max{σtr,σx})

+ ‖NΔ,ε[Intt Intx vΔx,ε] −N0,ε[Intt Intx vΔx,ε]‖L∞([0,T ];Hs−r−max{σtr,σx})

≤ c((Δt)σt + (Δx)σx ). (4.3)

Applying the assumed estimate (2.13) with k := s − r − max{σtr, σx} to the functions u(1) := Intt Intx v and
u(2) := u while taking into account the fact that N0,ε[u] = 0 and the assumed bound for ‖ Intx v0 − u0‖Hk then
yields (2.37). �

4.3. Uniform-in-ε convergence rate

Before proving the uniform-in-ε convergence rate, we present an example to show the sharpness of that rate.

Example 4.1. Let f be a non-constant periodic function. The function u(t, x) = ε[f(x) − f(x − t
ε)] is the

solution of the initial-value problem ut + 1
εux = f ′(x), u(0, x) = 0, and its Fourier transform is û(t, ξ) =

εf̂(ξ)
[
1 − e−iξt/ε]

]
. The function v(nΔt, x) whose Fourier transform is v̂(nΔt, ξ) = εf̂(ξ)

[
1 − (1 + iξΔt

ε )−n
]

is

the solution of the time-discretized semi-discrete approximation DΔtv + 1
εSΔtvx = f ′(x) with the initial value

v(0, x) = 0. Since |eis| = 1 and |1 + is| = (1 + s2)1/2 for real s, |v̂(nΔt, ξ) − û(nΔt, ξ)| ≥ ε|f̂(ξ)|(1 − (1 +
ξ2(Δt)2

ε2 )−n/2). For positive α and β, let α = OS(β) denote that α is strictly of the order of β, i.e., that there
exist positive constants c± such that c− ≤ α

β ≤ c+. For |ξ| = OS(1) for which |f̂(ξ)| = O(1), n = OS( 1
Δt ),
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and ε = OS(
√

Δt), the expression
(
1 + ξ2(Δt)2

ε2

)−n/2

equals (1+OS(Δt))−OS(
1

Δt ), which in turn equals e−OS(1).

Since 1− e−OS(1) = OS(1), |v̂(nΔt, ξ)− û(nΔt, ξ)| ≥ OS(
√

Δt). This implies that when ε = OS(
√

Δt) the error
satisfies ‖v(t, x) − u(t, x)‖Hs ≥ OS(

√
Δt) for t = OS(1) and all Hs that f belongs to.

Before proving the O(
√

Δt) convergence rate for the full equations we need a technical lemma. In that lemma
and the proof of the theorem we will use the notations

M[u] := −μA(εu)C(∂x)u + F(ε, t, x, {Dαu}0≤|α≤p) = N0,ε[u] − A(εu)ut − 1
εLu (4.4)

and
MΔ[v] := − (Δx)q

Δt A(εv)CΔxv + FΔ(ε, t, x, {Dαṽ}0≤|α≤p, SΔt{Dαṽ}0≤|α≤p)

= NΔ,ε[v] − A(εv)DΔtv − 1
εLΔx(ρSΔtv + (1 − ρ)v).

(4.5)

Lemma 4.2. Let L be an antisymmetric differential operator, and A(0) be a symmetric positive-definite matrix.
Assume that the nonzero eigenvalues iλ(ξ) of Symb(L) satisfy (2.33) for some ν ∈ [−r,∞), where r is the highest
order of any derivative in (2.8). Let the initial data u0

ε for (2.8) satisfy ‖u0
ε‖Hs ≤ c and ‖Lu0

ε‖Hs−r ≤ cε, where
s satisfies (2.39), and assume that the coefficients of the PDE (2.8) are at least Cs.

Then there exist a constant cslow and initial data ũ0
ε for (2.8) satisfying

‖ũ0
ε − u0

ε‖Hs−r−ν + ‖L(ũ0
ε − u0

ε)‖Hs−2r−ν ≤ cslow ε (4.6)

such that the initial first and second time derivatives ũt(0) = −A(εũ0
ε)−1(1

εLũ0
ε + M[ũ0

ε]) and ũtt(0) calculated
formally from the PDE (2.8) using ũ0

ε as the initial value of u satisfy ‖ũt(0)‖Hs−2r−ν + ‖ũtt(0)‖Hs−3r−ν ≤ c.

Proof. We will look for ũ0
ε in the form ũ0

ε = u0
ε + εU0

ε , with ‖U0
ε ‖Hs−r−ν bounded. Then ‖ũ0

ε − u0
ε‖Hs−r−ν ≤ c

and ‖Lũ0
ε‖Hs−2r−ν ≤ cε, which together with the assumptions on u0

ε will imply that (4.6) holds and that
‖ũt(0)‖Hs−2r−ν is bounded uniformly in ε. We now calculate how to choose U0

ε so that the remaining condition
‖ũtt(0)‖Hs−3r−ν ≤ c also holds. Differentiating (4.4) with respect to t, setting t equal to zero and u(0) equal to
ũ0

ε, using the above bounds, and defining L̂ := A(0)−1/2LA(0)−1/2 yields

ũtt(0) = − 1
εA(0)−1Lũt(0) + O(1) = 1

εA(0)−1LA(0)−1
{

1
εLu0

ε + LU0
ε + M[u0

ε]
}

+ O(1)

= 1
εA(0)−1/2L̂

{
L̂A(0)1/2U0

ε + A(0)−1/2
[

1
εLu0

ε + M[u0
ε]
]}

+ O(1),
(4.7)

where O(1) means a term bounded in Hs−2r uniformly in ε.
Recall that P is the orthogonal projection onto the null space of L. Since the matrix A(0) is posi-

tive definite, the operator PA(0)P has a pseudo-inverse “[PA(0)P ]−1” from PHk to itself for any k. Then
P̂ := (A(0))1/2P“[PA(0)P ]−1”P(A(0))1/2 is the orthogonal projection onto the null space of L̂. The assump-
tion that (2.33) holds with ν ∈ [−r,∞) ensures that L̂ has a bounded pseudo-inverse “L̂−1” from (I − P̂)Hk to
(I − P̂)Hk−ν . Since L̂ = L̂(I − P̂), we may insert a factor of (I − P̂) before the term A(0)−1/2

[
1
εLu0

ε + M[u0
ε]
]

in the last line of (4.7). Hence that equation shows that defining

U0
ε := −A(0)−1/2“L̂−1”(I − P̂)A(0)−1/2

[
1
εLu0

ε + M[u0
ε]
]

satisfies all the requirements of the lemma. �

Proof of Theorem 2.9. The assumed bounds for ∂tuε and DΔtvΔ,ε imply that both u and Intt Intx vΔ differ
from their values at the nearest multiple of Δt by O(Δt), so it suffices to prove the estimate (2.43) for times
that are multiples of Δt. It would suffice to prove that

NΔ,ε[uε] = O(
√

Δt) (4.8)
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uniformly in ε, since Lemma 3.1 implies that

NΔ,ε[Intt Intx vΔ,ε] = O(Δt + (Δx)σx ) = O(
√

Δt) (4.9)

uniformly in ε, and hence the assumed uniform stability of the difference scheme NΔ,ε would then yield the
desired result, in similar fashion to the proof of Theorem 2.8. Although we will not quite obtain (4.8), we will
obtain a modified version of that estimate in which uε is replaced by the sum of uε and a small term, and that
variant will suffice.

Hence we want to determine the remainder term R in the difference equation NΔ,ε[uε] = R satisfied by a
solution of the PDE N0,ε[uε] = 0. For that purpose we will use Taylor’s formula to write a time derivative ut as a
time difference DΔtu plus an integral remainder. However, because the large operator in the difference equation
is applied to {ρSΔt + (1 − ρ)}v we will take ρ times the formula SΔtut = DΔtu + Δt

∫ 1

0
sutt(t + sΔt, x) ds plus

1 − ρ times the formula ut = DΔtu − Δt
∫ 1

0 (1 − s)utt(t + sΔt, x) ds to obtain

ρSΔtut + (1 − ρ)ut = DΔtu + ΔtI[utt], (4.10)

where

I[utt] :=
∫ 1

0

(ρs − (1 − ρ)(1 − s))utt(t + sΔt, x) ds. (4.11)

Formula (4.10) with u := uε lets us write ρ times SΔt applied to the PDE (2.8) plus 1 − ρ times that PDE as

0 = ρSΔtN0,ε[uε] + (1 − ρ)N0,ε[uε]
= A(εuε)DΔtuε + ρ {A(εSΔtuε) − A(εuε)}SΔt(uε)t + ΔtA(εuε)I[(uε)tt]

+ 1
εL(ρSΔtuε + (1 − ρ)uε) + ρSΔtM[uε] + (1 − ρ)M[uε]

= NΔ,ε[uε] + ρ {A(εSΔtuε) − A(εuε)}SΔt(uε)t + ρ(SΔt − 1)M[uε]
+ (M[uε] −MΔ[uε]) + 1

ε (L − LΔx)(ρSΔtuε + (1 − ρ)uε) + ΔtA(εuε)I[(uε)tt].

(4.12)

Hence
NΔ,ε[uε] = T1 + T2 + T3 + T4 + T5, (4.13)

where

T1 := ρ {A(εuε) − A(εSΔtuε)}SΔt(uε)t,

T2 := ρ(1 − SΔt)M[uε],
T3 := MΔ[uε] −M[uε],
T4 := 1

ε (LΔx − L)(ρSΔtuε + (1 − ρ)uε),
and

T5 := −ΔtA(εuε)I[(uε)tt].

The uniform bounds (2.42) on the solution uε and its first time derivative together with the fact the order of
the highest derivative in M is at most r imply that

‖T1‖L∞([0,T ];Hs−r) + ‖T2‖L∞([0,T ];Hs−2r) ≤ cΔt. (4.14)

Since the assumptions of the theorem imply that

(Δx)σx ≤ c(Δt)1/2, (4.15)

the uniform bounds (2.42) together with the fact that MΔ is an approximation of order σx to M with parameters
k− = r and J = 0 yield

‖T3‖L∞([0,T ];Hs−r−σx ) ≤ c(Δx)σx ≤ c̃(Δt)1/2. (4.16)
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To deal with the term T4, divide it into the terms

T4,a := 1
ε (LΔx − L)P(ρSΔtuε + (1 − ρ)uε) and T4,b := 1

ε (LΔx − L)(I − P)(ρSΔtuε + (1 − ρ)uε), (4.17)

where P is the projection operator onto the null space of L. Begin with T4,b. Since (2.33) holds with ν ∈ [−r,∞)
and the order of L is at most r, the operator L has a bounded pseudo-inverse “L−1” from LHs ⊂ Hs−r to
(I −P)Hs−r−ν . Also, solving the PDE (2.8) for Luε and using the assumed uniform bounds (2.42) to estimate
the result shows that ‖Luε‖L∞([0,T ];Hs−r) ≤ cε. Together these yield the estimate

‖(I − P)(ρSΔtuε + (1 − ρ)uε)‖L∞([0,T ];Hs−r−ν) = ‖“L−1”L(ρSΔtuε + (1 − ρ)uε)‖L∞([0,T ];Hs−r−ν) ≤ cε. (4.18)

In addition, by the hypotheses of either Lemma 2.4 or 2.5 plus (4.15),

‖(LΔx − L)u‖Hk−r−σx−m ≤ c‖u‖Hk(Δx)σx ≤ c̃‖u‖Hk(Δt)1/2, (4.19)

where m equals zero if Lemma 2.4 holds or the value that parameter has in Lemma 2.5. Substituting u :=
(I − P)(ρSΔtuε + (1 − ρ)uε) into (4.19) and using (4.18) to estimate the result yields

‖T4,b‖L∞([0,T ];Hs−2r−ν−σx−m) = ‖ 1
ε (LΔx − L)(I − P)(ρSΔtuε + (1 − ρ)uε)‖L∞([0,T ];Hs−2r−ν−σx−m) ≤ c(Δt)1/2.

(4.20)
Next, using the identities LP = 0 = LΔxPΔx, where PΔx is the projection onto the null space of LΔx, the

term T4,a can be rewritten as

T4,a = 1
ε (LΔx − L)P(ρSΔtuε + (1 − ρ)uε) = 1

εLΔxP(ρSΔtuε + (1 − ρ)uε)
= 1

εLΔx(P − PΔx)(ρSΔtuε + (1 − ρ)uε)
= − 1

εLΔx(ρSΔtU + (1 − ρ)U),
(4.21)

where
U := (PΔx − P)uε (4.22)

Lemma 2.4 or 2.5 plus (4.15) and the bounds (2.42) for uε imply that U satisfies

‖U‖L∞([0,T ];Hs−σx−m) + ‖DΔtU‖L∞([0,T ];Hs−σx−m−r) ≤ c(Δx)σx ≤ c̃(Δt)1/2. (4.23)

It does not seem possible to obtain a uniform-in-ε estimate for T4,a. Instead, we will rewrite NΔ,ε[uε] − T4,a in
terms of NΔ,ε[uε + U ], obtaining

NΔ,ε[uε] − T4,a = NΔ,ε[uε + U ] − T6, (4.24)

where

T6 := [A(εuε + U) − A(ε(uε))] DΔtuε + A(ε(uε + U))DΔtU + (MΔ[uε + U ] −MΔ[uε]) . (4.25)

In similar fashion to the derivation of (4.14), (4.23) together with the bounds (2.42) for uε implies that

‖T6‖L∞([0,T ];Hs−σx−m−r) ≤ c(Δt)1/2. (4.26)

In order to treat the term T5 we must consider two separate cases. If ε ≥ √
Δt then the fact that

‖(uε)tt‖L∞([0,T ];Hs−2r) ≤ c
ε implies that

‖T5‖L∞([0,T ];Hs−2r) = ‖ΔtA(εuε)I[(uε)tt]‖L∞([0,T ];Hs−2r) ≤ c
Δt

ε
≤ c(Δt)1/2. (4.27)
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Otherwise ε ≤ √
Δt, in which case we replace uε by the solution ũε having the initial data ũ0

ε from Lemma 4.2,
whose existence and boundedness on the time interval [0, T ] is guaranteed by the assumptions of the theorem.
However, since ũε only satisfies (2.42) with s replaced by s − r − ν, that substitution must also be made in
the norms in the estimates (4.14), (4.16), (4.20), and (4.26). Since ε ≤ √

Δt, estimate (4.6) plus the assumed
uniform nonlinear stability of the PDE (2.8) imply that

‖ũε − uε‖L∞([0,T ];Hs−r−ν) ≤ c‖ũ0
ε − u0

ε‖L∞([0,T ];Hs−r−ν) ≤ cε ≤ c(Δt)1/2. (4.28)

Moreover, (ũε)tt satisfies the modified linearized equation

N ′
0,ε,ũε

[(ũε)tt] = −2(ũε)t · ∇uA(εũε)(ũε)tt + G[ũε, (ũε)t] (4.29)

for some spatial differential operator G of order at most r. Since ũε satisfies (2.42) with s replaced by s− r− ν,
the assumed uniform linear stability of the PDE (2.8) implies that

‖(ũε)tt(t, ·)‖2
Hs−3r−ν ≤ c

{∫ t

0

[‖(ũε)tt(s, ·)‖2
Hs−3r−ν + c

]
ds + ‖(ũε)tt(0, ·)‖2

Hs−3r−ν

}
. (4.30)

Since Lemma 4.2 implies that ‖(ũε)tt(0, ·)‖Hs−3r−ν is bounded uniformly in ε, Gronwall’s lemma says that (4.30)
implies that ‖(ũε)tt‖L∞([0,T ];Hs−3r−ν) is also bounded uniformly in ε. Hence

‖T5‖L∞([0,T ];Hs−3r−ν) = ‖ΔtA(εuε)I[(uε)tt]‖L∞([0,T ];Hs−3r−ν) ≤ cΔt (4.31)

Substituting formula (4.13) into the formula (4.24) for NΔx,ε[uε + U ], replacing uε with ũε in the result when
ε ≤ √

Δt, using (4.23) and (4.28) to estimate the difference between the argument of NΔ,ε and uε, and using
the estimates (4.14), (4.16), (4.20), (4.26), (4.27), and (4.31) for the terms Tj shows that in both cases

NΔ,ε[uε + O(
√

Δt)] = O(
√

Δt). (4.32)

Since uε+O(
√

Δt) differs at time zero from Intt Intx vΔ,ε by at most O(
√

Δt), estimates (4.9) and (4.32) together
with the assumed uniform stability of the difference scheme (2.9) yields (2.43) upon taking into account the
norms in which the various estimates hold. �

Appendix A. Estimates for interpolation operators

As noted in ([8], Lem. 4.3), the trigonometric interpolation operator (2.18) satisfies

‖ Intx f‖Hs ≤ cs‖f‖hs. (A.1)

Other interpolation operators could also be used as long as they satisfy (A.1) and the identities (2.20) and (A.2)
and estimate (A.3) below; for problems without large terms the identities could even be relaxed by allowing the
difference between the two sides to be sufficiently small rather than identically zero.

In order to obtain estimates for interpolation operators it will be convenient to use the projection operator
Prx defined by pointwise evaluation on the spatial computational grid. Since the formula for Intx reduces at
grid points to the formula for the inverse discrete Fourier transform of the discrete Fourier transform, the first
part of (2.20) holds. The definition of Intx also implies that it commutes with shift operators, i.e.,

[Intx, (SΔt)pSα
Δx] = 0, (A.2)

where as usual [A, B] denotes the commutator of the two operators A and B.
In order to show that interpolants of solutions of finite-difference schemes are nearly solutions of the

PDEs approximated by such schemes we will need to estimate the difference between F (Intx u) and Intx F (u)
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when F is a nonlinear function. A key point of our analysis is that such estimates can be obtained by combining
estimates for norms of F (u) in terms of norms of u with an estimate for the linear operator 1 − Intx Prx. The
combination Intx Prx is commonly known as the Fourier pseudospectral projection operator, so the estimate

‖(1 − Intx Prx)f‖Hs−σ ≤ c (Δx)σ‖f‖Hs for s > d
2 and 0 ≤ σ ≤ s (A.3)

is a particular case of ([3], Thm. 1.2). The case σ = 0 of (A.3) implies that

‖ Intx Prx f‖Hs ≤ ‖f‖Hs + ‖(1 − Intx Prx)f‖Hs ≤ c‖f‖Hs . (A.4)

Lemma A.1. Let σ and s be integers satisfying 0 ≤ σ ≤ s and s > d
2 , where d is the spatial dimension, and let

F be any function in Cs, and if the domain is infinite then assume in addition that ‖F(t, x, 0)‖Hs is finite. Let
Intx be any scalar operator applied componentwise satisfying (A.1), the first part of (2.20), and (A.3). Then
there exists a function C and a constant c such that for all u ∈ Hs and v in hs,

‖F(t, x, Intx Prx u) − Intx F(t, Prx x, Prx u)‖Hs−σ

≤ C(‖ Intx Prx u‖Hs)(Δx)σ ≤ c C(c‖u‖Hs)(Δx)σ ,
(A.5)

‖F(t, x, Intx v) − Intx F(t, Prx x, v)‖Hs−σ ≤ C(‖v‖hs)(Δx)σ . (A.6)

Proof. By the identity Prx F(t, x, u) = F(t, Prx x, Prx u) and (2.20),

Intx Prx F(t, x, Intx Prx u) = Intx F(t, Prx x, Prx Intx Prx u) = Intx F(t, Prx x, Prx u). (A.7)

By (A.7), (A.3), and the continuum version (cf . [17], Prop. 2.1)

‖F(t, x, u) −F(t, x, 0)‖Hs ≤ C(‖u‖Hs)‖u‖Hs (A.8)

of [8], (4.17), plus the assumptions on F ,

‖F(t, x, Intx Prx u) − Intx F(t, Prx x, Prx u)‖Hs−σ

= ‖(1 − Intx Prx)[F(t, x, Intx Prx u) −F(t, x, 0)] + (1 − Intx Prx)F(t, x, 0)‖Hs−σ

≤ c (Δx)σ (‖F(t, x, Intx Prx u) −F(t, x, 0)‖Hs + ‖F(t, x, 0)‖Hs)
≤ C(‖ Intx Prx u‖Hs)(Δx)σ ,

(A.9)

which yields the first inequality of (A.5); the second inequality there then follows by (A.4). Estimate (A.6)
follows from (A.5) upon taking u := Intx v since Prx u then equals v and the Hs norm of u is bounded by the
hs norm of v by (A.1). �

As discussed in Section 2.4, the time interpolation operator may be either the piecewise-linear operator (2.19)
or its generalization to polynomial interpolation of order p using p + 1 points. Any such time interpolation
operator Intt also reduces to the identity at grid points and commutes with shifts, i.e. satisfies (2.20) and[

Intt, (SΔt)jSα
Δx

]
= 0. (A.10)

The divided-difference formula for polynomial interpolation implies that

‖(∂t)j Intt f‖L∞([mΔt,(m+1)Δt];Hs) ≤ c‖(DΔt)jf‖L∞([0,T ]∩ΔtZ;Hs) (A.11)

for 0 ≤ j ≤ p + 1, which in turn yields

‖(∂t)j Intt Prt f‖L∞([mΔt,(m+1)Δt];Hs) ≤ c‖(∂t)jf‖L∞([0,T ];Hs) (A.12)

for such j since the formula DΔtf = 1
Δt

∫Δt

0 f ′(t + s) ds can be used recursively to write difference operators in
terms of derivatives.
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Remark A.2. The reason why the norms on the left sides of (A.11)–(A.12) involve individual time intervals of
length Δt is that the derivatives of the interpolation are in general only piecewise continuous, with discontinuities
at the time grid points. Hence derivatives of the interpolation of order at least two do not belong to L∞([0, T ])
when considered in the distributional sense. However, interval-by-interval estimates suffice for the purpose of
showing that interpolants of solutions of a difference scheme are approximate solutions of that scheme. As a
more compact notation for estimates that hold in each interval [mΔt, (m+1)Δt] we henceforth let L∞

PW denote
the space of distributions that equal a bounded function on each interval (mΔt, (m + 1)Δt). Similarly, W k,∞

PW is
the subspace of L∞

PW of functions whose time derivatives through order k also belong to L∞
PW, with the norm

defined in (2.7). Note that in the case of the L∞ norm the piecewise interpretation is only needed when time
derivatives of order at least two are applied to the time interpolation.

Estimates (A.11) and (A.12) are the analogues of (A.1) and (A.4) for the time interpolation operator. We
now prove an analogue of estimate (A.3).

Lemma A.3. Let Intt be any polynomial time-interpolation operator using p + 1 points, as described above.
Then for any f ∈ W k,∞([0, T ]; Hs) with s ≥ 0,

‖(∂t)k−σ(1 − Intt Prt)f‖L∞
PW([0,T ];Hs) ≤ c (Δt)σ‖(∂t)kf‖L∞([0,T ];Hs) (A.13)

for 0 ≤ σ ≤ k ≤ p + 1.

Proof. When σ = 0 then (A.13) follows from (A.11). Now assume that σ ≥ 1. Since k ≤ p + 1, the error
of polynomial interpolation of order p certainly vanishes for polynomials for order k − 1, so the Peano kernel
theorem (e.g. [6], Thm. 3.7.1)) with remainder of order k is applicable to interpolation of order p. Moreover,
by ([7], Thm. 2.1) that theorem remains valid for Banach-space-valued functions, with the same kernel function
as in the scalar case. The Peano kernel theorem yields (e.g. [6], Eqs. (3.7.2) and (3.7.3), Ex. 1, p. 71)

[(1 − Intt Prt)f ](mΔt + t) =
∫ pΔt

0

f (k)(mΔt + s)K(t, s) ds, (A.14)

where

K(t, s) :=
1

(k − 1)!

[
(t − s)k−1

+ −
p∑

i=0

(iΔt − s)k−1
+ �i(t)

]
. (A.15)

Here �i(t) are the polynomials of order p from the Lagrange interpolation formula, which are uniquely determined
by the condition that li(jΔt) = δij . Scaling considerations or the explicit formula ([6], Eq. (2.5.1)), for the �i

show that (∂t)j�i = O((Δt)−j), so (∂t)jK(t, s) = O((Δt)k−1−j) for 0 ≤ j ≤ k−1 when t and s lie in the domain
of integration in (A.14). Since the interval of integration in (A.14) is O(Δt), differentiating (A.14) k − σ times
and substituting the estimate for derivatives of K into the result yields (A.13). �

Following the proof of Lemma A.1 but using (A.11), the second part of (2.20), and (A.13) in place of (A.1),
the first part of (2.20), and (A.3) yields the following result for time interpolation analogous to Lemma A.1 for
spatial interpolation. The smoothness requirement s > d

2 still applies to the spatial dependence because that
requirement arises from (A.8); the time norm index k has no such requirement because L∞ based norms W k,∞

are used for the time dependence.

Lemma A.4. Let σ and k be integers satisfying 0 ≤ σ ≤ k ≤ p+1, where p is the order of the time interpolation
operator, assume that s > d

2 , and let F be any function in Ck+s. Let Intt be any scalar operator applied
componentwise satisfying (A.11), the second part of (2.20), and (A.13).
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Then there exists a function C and a constant c such that for all u ∈ W k,∞([0, T ]; Hs) and v in wk,∞([0, T ]∩
ΔtZ; Hs),

‖F(t, x, Intt Prt u) − Intt F(Prt t, x, Prt u)‖W k−σ,∞
PW ([0,T ];Hs)

≤ C(‖ Intt Prt u‖W k,∞
PW ([0,T ];Hs))(Δt)σ ≤ cC(c‖u‖W k,∞([0,T ];Hs))(Δt)σ (A.16)

‖F(t, x, Intt v) − Intt F(Prt t, x, v)‖W k−σ,∞
PW ([0,T ];Hs) ≤ C(‖v‖wk,∞([0,T ]∩ΔtZ;Hs))(Δt)σ (A.17)

Lemmas A.1 and A.4 can be combined in various ways to estimate the time and space interpola-
tion operator Intt Intx, such as in the following lemma, which is obtained by writing F(t, x, Intt Intx v) −
Intt Intx F(Prt t, Prx x, v) as

[F(t, x, Intt Intx v) − Intt F(Prt t, x, Intx v)] + Intt [F(Prt t, x, Intx v) − Intx F(Prt t, Prx x, v)] .

Lemma A.5. Let the integers k, s, σ1 and σ2 satisfy 0 ≤ σ1 ≤ k and 0 ≤ σ2 ≤ s − (d
2� + 1), and let F

be any function in Ck+s−min(σ1,σ2). Let Intx and Intt be any scalar operators applied componentwise satisfy-
ing (A.1), (2.20), (A.3), (A.11), and (A.13).

Then there exists a function C and a constant c such that for all v in wk,∞([0, T ]∩ΔtZ; hs−σ2 )∩wk−σ1 ([0, T ]∩
ΔtZ; hs),

‖F(t, x, Intt Intx v) − Intt Intx F(Prt t, Prx x, v)‖
W

k−σ1,∞
PW ([0,T ];Hs−σ2)

≤ C(‖v‖wk,∞([0,T ]∩ΔtZ;hs−σ2))(Δt)σ1 + C(‖v‖wk−σ1,∞([0,T ]∩ΔtZ;hs))(Δx)σ2 .
(A.18)

Appendix B. Approximation of initial data

It is desirable that the initial data v0
Δ for the numerical scheme should approximate the initial data u0 of the

PDE both accurately and boundedly, i.e., that

‖u0 − Intx v0
Δ‖Hs−σ ≤ c(s)(Δx)σ‖u0‖Hs (B.1)

when s > d
2 and σ ≤ s, and

‖v0
Δx‖hs ≤ c(s)‖u0‖Hs . (B.2)

Neither direct pointwise evaluation nor taking cell averages satisfy both these conditions. However, both can
be obtained by taking the pointwise projection of a smoother average:

Lemma B.1. Let ρ : Rd �→ R satisfy
∫

Rd |ρ| < ∞,
∫

Rd ρ = 1,

ρ̂(ξ) ≡ 1 for |ξ| ≤ δ, for some positive δ, (B.3)

and supx∈[− 1
2 , 1

2 ]d
∑

n∈Zd |ρ(n+x)| < ∞. Then, defining ρΔx(x) := 1
(Δx)d ρ( x

Δx ) and f � g :=
∫

Rd f(z)g(x− z) dz,

v0
Δx := Prx(ρΔx � u0) (B.4)

satisfies (B.1)–(B.2).

Remark B.2. A function ρ satisfying the assumptions of Lemma B.1 cannot have L1 norm equal to one, and
hence cannot be nonnegative, since the fact that cos(s) is less than one almost everywhere implies that for
0 < |k| < δ,

1 = Re 1 = Re ρ̂(k) =
∫

Rd

ρ(x) cos(k · x) dx <

∫
Rd

|ρ|.
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Example B.3. The function ρ(x) := 2(cos(x)−cos(2x))
x2 , whose Fourier transform is ρ̂(ξ) =

{
1 |ξ|≤1

2−|ξ| 1≤|ξ|≤2
0 |ξ|≥2

, satis-

fies all the hypotheses of Lemma B.1 for the case d = 1. So does ρd(x) :=
∏

j ρ(xj) for arbitrary d.

Proof of Lemma B.1. By a slight generalization of ([27], Eq. (1.38) of Chap. 16)

‖f − ρΔx � f‖Hs−σ ≤ c δ−σ (Δx)σ‖f‖Hs (B.5)

for 0 ≤ σ ≤ s, where δ is the constant appearing in (B.3) and c := 1+
∫

Rd |ρ|. Taking s = 0 in (B.5) shows that

‖ρΔx � f‖Hs ≤ ‖f‖Hs + ‖f − ρΔx � f‖Hs−σ ≤ c‖f‖Hs . (B.6)

Combining (B.5) with f := u0, (A.3) with f := ρΔx � u0 and (B.6) with f := u0 yields (B.1).
The main step towards proving (B.2) is to show that

‖Prx(ρΔx � u)‖�2 ≤
[∫

Rd

|ρ|
]1/2 [

sup
x∈[− 1

2 , 1
2 ]d

∑
n∈Zd

|ρ(n + x)|
]1/2

‖u‖L2.

Since the sum in the definition of the �2 norm has the form of a Riemann sum for the L2 norm, we follow as
far as possible the proof (e.g., [9], Eq. 0.C) of Young’s inequality: By the definitions of ρΔx and the convolution
operator �, the periodicity of u, and the Cauchy–Schwartz inequality applied to

√∑
m∈2πZd |ρΔx(y + m)| and√∑

m∈2πZd |ρΔx(y + m)||u(y)|,

‖Prx(ρΔx � u)‖2
�2 =

∑
x∈XΔx

∣∣∣∣∫
Rd

ρΔx(z)u(x − z) dz

∣∣∣∣2 (Δx)d y=x−z
=

∑
x∈XΔx

∣∣∣∣∫
Rd

ρΔx(x − y)u(y) dy

∣∣∣∣2 (Δx)d

=
∑

x∈XΔx

∣∣∣∣∣∣
∫

[−π,π]d

[ ∑
m∈2πZd

ρΔx(x − y − m)
]
u(y) dy

∣∣∣∣∣∣
2

(Δx)d

≤
∑

x∈XΔx

∫
[−π,π]d

[ ∑
m∈2πZd

|ρΔx(x − y − m)|
]
dy

∫
[−π,π]d

[ ∑
m∈2πZd

|ρΔx(x − y − m)|
]
|u(y)|2 dy(Δx)d

=
∑

x∈XΔx

∫
Rd

|ρΔx(x − y − m)| dy

∫
[−π,π]d

[ ∑
m∈2πZd

|ρΔx(x − y − m)|
]
|u(y)|2 dy(Δx)d

z=x−m=
[∫

Rd

|ρ|
] ∫

[−π,π]d

⎡⎣ ∑
z∈(Δx)Zd

(Δx)d|ρΔx(z − y)|
⎤⎦ |u(y)|2 dy

z=(Δx)n
=

[∫
Rd

|ρ|
] ∫

[−π,π]d

∑
n∈Zd

|ρ(n − y
Δx )||u(y)|2 dy ≤

[∫
Rd

|ρ|
] [

sup
x∈[− 1

2 , 12 ]d

∑
n∈Zd

|ρ(n + x)|
]
‖u‖2

L2([−π,π]d).

The corresponding result for Sobolev norms follows from the facts that the difference operators Dj,Δx = Sj,Δx−1
Δx

commute with pointwise evaluation on the grid with spacing Δx and with convolution, and that
∣∣∣ eiΔxξj−1

Δx

∣∣∣ ≤ |ξj |
(e.g., [9], Proof of Thm. 6.21), which implies that for any difference operator Dα

Δx =
∏d

j=1 D
αj

j,Δx, ‖Dα
Δxu‖Hs ≤

‖Dαu‖Hs . �



614 L. EVEN-DAR MANDEL AND S. SCHOCHET

References

[1] G. Al̀ı and L. Chen, The zero-electron-mass limit in the Euler-Poisson system for both well- and ill-prepared initial data.
Nonlin. 24 (2011) 2745–2761.

[2] G. Browning and H.O. Kreiss, Problems with different time scales for nonlinear partial differential equations. SIAM J. Appl.
Math. 42 (1982) 704–718.

[3] C. Canuto and A. Quarteroni, Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput. 38 (1982)
67–86.

[4] L. Chen, D. Donatelli and P. Marcati, Incompressible type limit analysis of a hydrodynamic model for charge-carrier transport.
SIAM J. Math. Anal. 45 (2013) 915–933.

[5] S. Cordier and E. Grenier, Quasineutral limit of an Euler-Poisson system arising from plasma physics. Commun. Partial Differ.
Eq. 25 (2000) 1099–1113.

[6] P.J. Davis, Interpolation and approximation. Dover Publications Inc., New York (1975).

[7] S. De Marchi and M. Vianello, Peano’s kernel theorem for vector-valued functions and some applications. Numer. Funct. Anal.
Optim. 17 (1996) 57–64.

[8] L. Even-Dar Mandel and S. Schochet, Uniform discrete Sobolev estimates of solutions to finite difference schemes for singular
limits of nonlinear PDEs. To appear in ESAIM: M2AN (2017). Doi: 10.1051/m2an/2016038.

[9] G.B. Folland, Introduction to partial differential equations. Princeton University Press, Princeton, N.J. (1976).

[10] G.B. Folland, Fourier analysis and its applications. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove,
CA (1992).

[11] I. Gallagher, Applications of Schochet’s methods to parabolic equations. J. Math. Pures Appl. 77 (1998) 989–1054.

[12] E. Grenier, Pseudo-differential energy estimates of singular perturbations. Comm. Pure Appl. Math. 50 (1997) 821–865.

[13] B. Gustafsson and H.O. Kreiss, J. Oliger, Time dependent problems and difference methods. Pure and Applied Mathematics.
John Wiley & Sons Inc., New York (1995).

[14] T. Kato, A short introduction to perturbation theory for linear operators. Springer-Verlag, New York (1982).

[15] S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible
limit of compressible fluids. Comm. Pure Appl. Math. 34 (1981) 481–524.

[16] R. Klein, Multiple spatial scales in engineering and atmospheric low Mach number flows. ESAIM: M2AN 39 (2005) 537–559.

[17] A. Majda, Compressible fluid flow and systems of conservation laws in several space variables. Vol. 53 of Appl. Math. Sci.
Springer-Verlag, New York (1984).

[18] V.S. Ryaben′kii, S.V. Tsynkov, A theoretical introduction to numerical analysis. Chapman & Hall/CRC, Boca Raton, FL
(2007).

[19] S. Schochet, The incompressible limit in nonlinear elasticity. Comm. Math. Phys. 102 (1985) 207–215.

[20] S. Schochet, Symmetric hyperbolic systems with a large parameter. Comm. Partial Differ. Eq. 11 (1986) 1627–1651.

[21] S. Schochet, Fast singular limits of hyperbolic PDEs. J. Differ. Eq. 114 (1994) 476–512.

[22] S. Schochet, The mathematical theory of low Mach number flows. ESAIM: M2AN 39 (2005) 441–458.

[23] S. Schochet, Convergence of finite-volume schemes to smooth solutions of multidimensional hyperbolic systems. In preparation
(2016).

[24] S. Schochet and M.I. Weinstein, The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence.
Comm. Math. Phys. 106 (1986) 569–580.

[25] G. Strang, Accurate partial difference methods. II. Non-linear problems. Numer. Math. 6 (1964) 37–46.

[26] J.C. Strikwerda, Finite difference schemes and partial differential equations. Wadsworth & Brooks/Cole Advanced Books &
Software, Pacific Grove, CA (1989).

[27] M.E. Taylor, Partial differential equations, III. Vol. 117 of Appl. Math. Sci. Springer-Verlag, New York (1997).

[28] J.W. Thomas, Numerical partial differential equations: finite difference methods. Vol. 22 of Texts Appl. Math. Springer-Verlag,
New York (1995).

[29] K. Tomoeda, Convergence of difference approximations for quasilinear hyperbolic systems. Hiroshima Math. J. 11 (1981)
465–491.

[30] D. Wang and C. Yu, Incompressible limit for the compressible flow of liquid crystals. J. Math. Fluid Mech. 16 (2014) 771–786.

http://dx.doi.org/10.1051/m2an/2016038

	Introduction
	Schemes and results
	Domains and norms
	PDEs and numerical schemes
	Stability, consistency, and order
	Interpolation and projection
	Limit equations
	Rate of convergence of the projection operator
	Statements of theorems

	Order of approximation
	Order of accuracy of interpolation
	Approximation of the null space of the large operator
	Approximate initial data in the null space of the large operator

	Convergence
	Convergence as  and/or  tend to zero
	Rate of convergence without large terms
	Uniform-in- convergence rate

	Estimates for interpolation operators
	Approximation of initial data
	References


