
ESAIM: M2AN 51 (2017) 487–507 ESAIM: Mathematical Modelling and Numerical Analysis
DOI: 10.1051/m2an/2016028 www.esaim-m2an.org

FRACTIONAL-STEP METHODS AND FINITE ELEMENTS WITH SYMMETRIC
STABILIZATION FOR THE TRANSIENT OSEEN PROBLEM
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Abstract. This paper deals with the spatial and time discretization of the transient Oseen equations.
Finite elements with symmetric stabilization in space are combined with several time-stepping schemes
(monolithic and fractional-step). Quasi-optimal (in space) and optimal (in time) error estimates are
established for smooth solutions in all flow regimes. We first analyze monolithic time discretizations
using the Backward Differentation Formulas of order 1 and 2 (BDF1 and BDF2). We derive a new
estimate on the time-average of the pressure error featuring the same robustness with respect to the
Reynolds number as the velocity estimate. Then, we analyze fractional-step pressure-projection methods
using BDF1. The stabilization of velocities and pressures can be treated either implicitly or explicitly.
Numerical results illustrate the main theoretical findings.
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1. Introduction

The computation of Navier–Stokes flows at high Reynolds number is an important challenge in scientific
computation. Many space discretization methods rely crucially on the presence of non-negligible viscous dissi-
pation and therefore lack robustness when the mesh Reynolds number |β|h

μ (β is the flow velocity, h the mesh
size, and μ the viscosity parameter) is much larger than one. In this regime, the standard Galerkin formulation
is known to be unstable even in the linear case, and these instabilities tend to be amplified by nonlinearities.
To counter such instabilities, one may resort to stabilization techniques, such as SUPG [23], discontinuous
Galerkin [13, 22], or H1-conforming finite elements with symmetric stabilization in various flavors [1, 6, 9, 17].
The effect of stabilization is on the one hand to improve the convergence to smooth solutions. On the other
hand, for rough solutions, stabilization limits the propagation of perturbations generated in the vicinity of sharp
gradients; stabilization also turns out to promote the Gibbs phenomenon when approximating rough solutions
to conservation laws, and this effect can be tempered by some nonlinear weighting mechanism [14].
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In this paper, we are interested in combining stabilized finite elements for space discretization with time
discretization schemes for fluid flow problems in the high Reynolds number regime. The importance of stabi-
lization in the high Reynolds number regime for fractional-step methods was illustrated numerically in [19] for
Navier–Stokes flows, showing that the pressure-projection method can fail to converge in the high Reynolds
number regime unless some stabilization is applied. Our goal here is to provide some theoretical background
analyzing this fact. For simplicity, we focus on the linearized version of the Navier–Stokes equations known as
the Oseen equations, and we prove that stabilized finite element methods also improve the convergence rate to
smooth solutions when using a fractional-step pressure-projection scheme for time discretization. Let Ω be a
bounded polyhedron in R

d, d ∈ {2, 3}, with boundary ∂Ω and outward pointing normal ν, and let tF be a finite
positive time. We consider the Oseen equations posed in the space-time cylinder Q := Ω × (0, tF),

∂tu + β·∇u − μΔu + ∇p = f, (1.1a)
∇·u = 0, (1.1b)

where the unknowns are the velocity field u and the pressure p, while the data are the advection velocity β,
the viscosity μ, and the body force f . We assume that the velocity field β is Lipschitz (with Lipschitz constant
denoted by Lβ) and divergence-free, that μ is a positive real number, and that f ∈ L2(0, tF; L2(Ω)d). The Oseen
equations are supplemented with a homogeneous Dirichlet boundary condition on the velocity and an initial
condition on the velocity of the form u|t=0 = u0, with u0 ∈ H1

0 (Ω)d and ∇·u0 = 0.

The quasi-optimal approximation of smooth solutions to the stationary Oseen equations using finite elements
with symmetric stabilization in various flavors has been investigated in [2]. In the unstationary case, the literature
on projection methods for the Navier–Stokes equations is very rich, starting with the pioneering work by
Chorin and Temam, Yosida and more recent work (see, e.g., [10, 20, 26] and references therein). Nevertheless,
a complete analysis including space discretization using stabilized finite elements is, to our knowledge, not yet
available, even in the linearized case of the unstationary Oseen equations. In the present work, we provide such
an analysis. We focus on stabilization using the continuous interior penalty finite element method analyzed
in [7] for the stationary Oseen equations. The stabilization concerns the advective derivative and the pressure-
velocity coupling, whereas a least-squares penalty on the velocity divergence is also considered. Moreover, the
homogeneous Dirichlet boundary condition on the velocity is enforced weakly using the classical boundary
penalty method of Nitsche [25]. It is straightforward to extend the present results to other methods using
symmetric stabilization such as interior penalty discontinuous Galerkin methods [11, 12, 15], or the orthogonal
subscales method [9]. Nonsymmetric stabilized methods like SUPG on the other hand do not fit the proposed
analysis framework and remain a topic for future work.

This paper is organized as follows. In Section 2, we present the discrete setting. In Section 3, we analyze
monolithic time discretizations, including both first- and second-order Backward Differentiation (BDF) schemes.
The main result is Theorem 3.1. While the velocity estimate follows using standard arguments based on [4],
the pressure estimate, inspired by the recent asymptotic analysis of [8], is, to our knowledge, new. The idea is
to bound the time-average of the pressure error, so as to achieve the same type of robustness with respect to
the Reynolds number as for the velocity estimate. Note that stabilization plays a role in achieving this result.
In Section 4, we analyze the fractional-step time discretization using pressure-projection, focusing on the first-
order BDF scheme. The main result is Theorem 4.7 providing (quasi-optimal in space and optimal in time) error
estimates that are independent of the viscosity (but not of high-order Sobolev norms of the exact solution).
Moreover, Corollary 4.2 shows that it is possible to treat velocity and/or pressure stabilization either implicitly
or explicitly in time, up to some modifications of the CFL condition on the time step. From the point of view of
computation, it can be advantageous to treat the stabilization explicitly. In particular, this eliminates the need
for the construction of a system matrix with a nonstandard stencil. Finally, in Section 5, we present numerical
results illustrating the theoretical analysis.
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2. The discrete setting

Let L := L2(Ω) and L∗ := {q ∈ L;
∫

Ω
q = 0}. For a subset S ⊂ Ω, we denote by (·, ·)L,S and ‖·‖L,S

respectively the standard inner product and norm of L2(S), with the convention that the index S is omitted if
S = Ω.

2.1. Space semi-discrete Oseen equations

Let {Th}h>0 be a family of affine, simplicial meshes of Ω. We assume that the meshes are kept fixed in time
and, for simplicity, the family {Th}h>0 is supposed to be quasi-uniform. Mesh faces are collected in the set Fh

which is split into the set of interior faces, F int
h , and of boundary faces, Fext

h . For a smooth enough function v
that is possibly double-valued at F ∈ F int

h with F = ∂T−∩∂T +, we define its jump at F as [[v]] := v|T− − v|T+ ,
and we fix the unit normal vector to F , denoted by νF , as pointing from T− to T +. The arbitrariness in the
sign of [[v]] is irrelevant in what follows.

We consider continuous finite elements with equal-order to discretize in space the velocity and the pressure.
Let k ≥ 1 be an integer and set

Mh := {mh ∈ C0(Ω); ∀T ∈ Th, mh|T ∈ Pk(T )}, (2.1)

with Pk(T ) spanned by the restriction to T of polynomials of total degree ≤ k. Set

Vh := [Mh]d, Ph = Mh ∩ L∗, (2.2)

and observe that the boundary condition on the velocity is to be enforced weakly. We also need the extended
space

Ṽh := Vh + ∇Ph. (2.3)

To express the divergence-free constraint at the discrete level, we consider the discrete operator Bh : Vh → Ph

such that for all (vh, qh) ∈ Vh × Ph,

(Bhvh, qh)L := −(∇·vh, qh)L + (ν·vh, qh)L,∂Ω, (2.4)

and its transpose BT
h : Ph → Vh. As motivated in [18], we also consider the extension of Bh to Ṽh, namely

Ch : Ṽh → Ph such that for all (ṽh, qh) ∈ Ṽh × Ph,

(Chṽh, qh)L := (ṽh,∇qh)L. (2.5)

Integration by parts yields Bh = Chih where ih is the canonical injection of Vh into Ṽh. Moreover, the transpose
CT

h : Ph → Ṽh is the restriction of the gradient operator to Ph, and we infer that BT
h = iTh CT

h where iTh coincides
with the (restriction to Ṽh of the) L-orthogonal projection onto Vh, henceforth denoted by πh. To alleviate the
notation in what follows, we omit the operator ih. We extend the domains of Bh, Ch, and their transposes
to smooth functions by setting (Bhv, qh)L := −(∇·v, qh)L + (ν·v, qh)L,∂Ω and (Chv, qh)L := (v,∇qh)L for all
qh ∈ Ph and all v ∈ [H1(Ω)]d, and CT

h q = ∇q for all q ∈ H1(Ω), while BT
h q = iTh∇q.

To discretize the convection-diffusion operator in (1.1a), we consider the continuous interior penalty finite
element method analyzed in [7] for the stationary Oseen equations. We introduce the discrete operator Ah :
Vh → Vh such that, for all (vh, wh) ∈ Vh × Vh,

(Ahvh, wh)L := (β·∇vh, wh)L +
∑

F∈Fext
h

((β·νF )�vh, wh)L,F

+ (μ∇vh,∇wh)L − (μ(ν·∇vh), wh)L,∂Ω − (vh, μ(ν·∇wh))L,∂Ω

+
∑

F∈Fext
h

γ1h
−1
F (μvh, wh)L,F , (2.6)
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where for a real number x, x� = 1
2 (|x|−x) denotes its negative part (x⊕ = 1

2 (|x|+x) denotes its positive part),
and where γ1 is a user-dependent positive parameter related to the boundary penalty method. Furthermore, we
consider the stabilization operators Su

h : Vh → Vh and Sp
h : Ph → Ph such that for all (vh, wh) ∈ Vh × Vh and

(qh, rh) ∈ Ph × Ph,

(Su
hvh, wh)L :=

∑
F∈F int

h

γ2ξF βν,F h2
F ([[νF ·∇vh]], [[νF ·∇wh]])L,F

+
∑

K∈Th

γ̃3 max
F∈∂K

(ξF βF hF )(∇·vh,∇·wh)K

+
∑

F∈Fext
h

γ3βF (νF ·vh, νF ·wh)L,F , (2.7a)

(Sp
hqh, rh)L :=

∑
F∈F int

h

γ4ξF β−1
F h2

F ([[∇qh]], [[∇rh]])L,F , (2.7b)

with local velocities βν,F := ‖β·νF ‖L∞(F ) and βF := ‖β‖[L∞(F )]d , user-dependent positive parameters γ2, γ̃3,
γ3 and γ4, and cut-off function ξF = min(1, ReF ) with local face Reynolds number ReF := hF βF

μ (note that
in (2.7b), ξF β−1

F is bounded by μ−1hF if β vanishes on F ). The aim of the stabilization operators is to stabilize
the advection operator (sum with γ2), achieve additional control on the incompressibility condition (sums with γ̃3

and γ3), and ensure inf-sup stability for the pressure-velocity coupling (sum with γ4). The domain of the discrete
operators Ah, Su

h , and Sp
h can be extended to smooth functions by setting Ahv = πh(β·∇v −μΔv), Su

hv = 0 for
all v ∈ [H2(Ω) ∩ H1

0 (Ω)]d with ∇·v = 0, and Sp
hq = 0 for all q ∈ H2(Ω).

The space semi-discrete Oseen equations take the following form: Find uh ∈ C1([0, tF]; Vh) and ph ∈
C0([0, tF]; Ph) such that, for all t ∈ (0, tF),

∂tuh + Ahuh + Su
huh + BT

h ph = fh (in Vh), (2.8a)
−Bhuh + Sp

hph = 0 (in Ph), (2.8b)

where fh := πhf . This problem was analyzed in [4].

2.2. Analysis tools

We consider the following norm on Vh + [H2(Ω)]d:

‖v‖μ,β := μ
1
2 (‖∇v‖L + h− 1

2 ‖v‖L,∂Ω + h
1
2 ‖ν·∇v‖L,∂Ω) + ‖ |β·ν| 12 v‖L,∂Ω, (2.9)

together with the following semi-norms on Vh + [H2(Ω)]d and Ph + H2(Ω), respectively,

|v|Su := (Su
hv, v)

1
2
L , |q|Sp := (Sp

hq, q)
1
2
L . (2.10)

It is well-known that for γ1 large enough, using integration by parts and discrete trace inequalities, one can
show that ‖∇vh‖2

L − 2(ν·∇vh, vh)L,∂Ω +
∑

F∈Fext
h

γ1h
−1
F ‖vh‖2

L,F � ‖∇vh‖2
L + h−1‖vh‖2

L,∂Ω for all vh ∈ Vh, so
that the following holds:

(Ahvh, vh)L � ‖vh‖2
μ,β , ∀vh ∈ Vh. (2.11)

The above assumption on γ1 is implicitly made in what follows. Here and in what follows, we abbreviate A � B
the inequality A ≤ cB for positive real numbers A and B, where the value of c can change at each occurrence
while being independent of the mesh size and the physical parameters β, μ and tF (c can depend on the
polynomial degree k and the stabilization constants γi, i = 1, . . . , 4).
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Lemma 2.1 (Boundedness on orthogonal subscales). Let v ∈ Vh + [H2(Ω)]d and let q ∈ Mh + H2(Ω). Assume
that (v, wh)L = 0 for all wh ∈ Vh and that (q, rh)L = 0 for all rh ∈ Mh (functions satisfying such properties are
called orthogonal subscales). Let c(β, h) := maxF∈F int

h
(ξ−1

F βF ) and č(β, h) := maxF∈Fh
(ξF β−1

F ). Then, for all
qh ∈ Ph and all vh ∈ Vh, the following holds:

(Chv, qh)L � c(β, h)
1
2 h− 1

2 ‖v‖L|qh|Sp , (2.12a)

(BT
h q, vh)L � č(β, h)

1
2 (h− 1

2 ‖q‖L + ‖q‖L,∂Ω)(|vh|Su + ‖vh‖μ,β), (2.12b)

(Ahv, vh)L � c(β, h)
1
2 h− 1

2 ‖v‖L|vh|Su + Lβ‖v‖L‖vh‖L + ‖v‖μ,β‖vh‖μ,β . (2.12c)

Proof.
We only sketch the proof and refer to [7] for further insight. The bound (2.12a) results from

(Chv, qh)L = (v,∇qh)L = inf
yh∈Vh

(v,∇qh − yh)L ≤ ‖v‖L inf
yh∈Vh

‖∇qh − yh‖L.

Taking for yh a quasi-interpolate of ∇qh in Vh based on averaging and proceeding as in [7], we infer that
infyh∈Vh

‖∇qh − yh‖L � c(β, h)
1
2 h− 1

2 |qh|Sp . To prove (2.12b), we first observe that

(BT
h q, vh)L = (q,∇·vh)L + (q, ν·vh)L,∂Ω.

The first term in the right-hand side, say T1, can be bounded using either the stabilization or the viscous term as

|T1| � h− 1
2 ‖q‖L

(
max

F∈F int
h

min(ξ−1
F β−1

F , hF μ−1)
) 1

2 (|vh|Su + ‖vh‖μ,β).

Then, observing that min(ξ−1
F β−1

F , hF μ−1) = min(β−1
F , hF μ−1) = ξF β−1

F and proceeding similarly for the bound-
ary term, we obtain (2.12b). Finally, for (2.12c), denoting by β̄ the element-wise average of the velocity field β,
we infer that

(Ahv, wh)L � inf
yh∈Vh

{
− (v, β̄·∇wh − yh)L

}
+ (v, (β̄ − β)·∇wh)L + ‖v‖μ,β‖wh‖μ,β,

using Cauchy–Schwarz inequalities on the diffusive part and the boundary terms. For the convective terms, we
conclude as above for the first term in the right-hand side (note that βν,F ≤ βF ), the Lipschitz property of β,
and inverse inequalities. �

For the proof of the following approximation results, we refer to [7]. For simplicity, we assume that the
functions to approximate are smooth enough. We also use πh to denote the L-orthogonal projection onto Mh

as well as that onto Vh.

Lemma 2.2 (Approximation). Let k ≥ 1 be the polynomial degree. Assume that v ∈ [Hk+1(Ω)]d and q ∈
Hk+1(Ω). Set βΩ := ‖β‖[L∞(Ω)]d . Then, the following holds:

‖v − πhv‖L � hk+1|v|[Hk+1(Ω)]d , (2.13a)

‖q − πhq‖L + h
1
2 ‖q − πhq‖L,∂Ω � hk+1|q|Hk+1(Ω), (2.13b)

‖v − πhv‖μ,β � c(β, h)
1
2 hk+ 1

2 |v|[Hk+1(Ω)]d , (2.13c)

|v − πhv|Su � č(β, h)
1
2 βΩhk+ 1

2 |v|[Hk+1(Ω)]d , (2.13d)

|q − πhq|Sp � č(β, h)
1
2 hk+ 1

2 |q|Hk+1(Ω). (2.13e)
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3. Monolithic time discretization

Let τ be the time step, taken to be constant for simplicity and such that Nτ = tF. We define the Courant
number as

Co :=
βΩτ

h
· (3.1)

In what follows, for 0 ≤ n ≤ N , a superscript n indicates the values of a function at the discrete time nτ , e.g.,
un = u(tn) and pn = p(tn). We assume at least that un ∈ [H2(Ω)]d and pn ∈ H2(Ω) for all n ≥ 1.

In this section, we consider a BDF1 (l = 1) or BDF2 (l = 2) monolithic time discretization of the space
semi-discrete problem (2.8a)–(2.8b). The fully discrete scheme takes the following form: For all n ≥ l − 1, find
un+1

h ∈ Vh and pn+1
h ∈ Ph such that

∂l
τun+1

h + Ahun+1
h + Su

hun+1
h + BT

h pn+1
h = fn+1

h (in Vh), (3.2a)

−Bhun+1
h + Sp

hpn+1
h = 0 (in Ph), (3.2b)

where fh := πhf , ∂1
τun+1

h = 1
τ (un+1

h − un
h), and ∂2

τun+1
h = 1

2τ (un+1
h − 4un

h + 3un−1
h ).

We now derive error estimates for the velocity and the pressure. Define the velocity error en := un − un
h and

the pressure error ηn := pn − pn
h. It is readily seen that the equations governing the velocity and pressure errors

read as follows:

πh∂l
τen+1 + Ahen+1 + Su

hen+1 + BT
h ηn+1 = πhΨn+1

l (in Vh), (3.3a)
−Bhen+1 + Sp

hηn+1 = 0 (in Ph), (3.3b)

where Ψn
l := ∂l

τun − (∂tu)n for all n ≥ 1.
In what follows, we consider the discrete L2-in-time (at the time nodes) norm of a space-time function z

that we denote ‖z‖2
�2(0,tF;Z) := τ

∑N
n=1 ‖z(tn)‖2

Z where Z is some space of functions in space. We define the

time-averaged pressure error η̄N := N−1
∑N

n=l η
n. To avoid technicalities with the initialization of the scheme,

we neglect the error for n ≤ l− 1. The discrete initial data u0
h can be chosen to be any L-stable approximation,

and the approximation u1
h necessary to initialize BDF2 can be computed using one step of BDF1. Observe that

it is not necessary to use the discretely divergence-free Stokes projection to initialize the scheme as suggested
in [5], since we only use the energy stability and we only estimate the time-averaged L2(Ω)-error on the pressure,
which is a weaker measure than the L2(0, tF; L2(Ω))-norm considered in [5].

To simplify the pressure estimate, we assume that max(μ, βF hF ) ≤ 1 for all F ∈ Fh, so that c(β, h)h ≤ 1,
that βΩ ≤ 1, and that tF ≥ 1.

Theorem 3.1 (Error estimates). Assume that u(tn) ∈ [Hk+1(Ω)]d and p(tn) ∈ Hk+1(Ω) for all n ≥ l, and
∂l+1

t u ∈ L2(Q), recalling that Q is the space-time cylinder Ω × (0, tF). Then, the following estimates hold:

‖eN‖L +

⎛⎝∑
n≥l

τ
(
‖en‖2

μ,β + |en|2Su + |ηn|2Sp

)⎞⎠
1
2

�
(
c(β, h)

1
2 + č(β, h)

1
2 βΩ + t

1
2
FLβh

1
2

)
hk+ 1

2 ‖u‖�2(0,tF;Hk+1(Ω))

+ č(β, h)
1
2 hk+ 1

2 ‖p‖�2(0,tF;Hk+1(Ω)) + t
1
2
Fτ l‖∂l+1

t u‖L,Q, (3.4a)

‖η̄N‖L � hk+1‖p̄N‖Hk+1(Ω)

+ t
− 1

2
F

(
c(β, h)

1
2 + č(β, h)

1
2 βΩ + t

1
2
FLβh

1
2

)
hk+ 1

2 ‖u‖�2(0,tF;Hk+1(Ω))

+ t
− 1

2
F č(β, h)

1
2 hk+ 1

2 ‖p‖�2(0,tF;Hk+1(Ω)) + t
− 1

2
F τ l‖∂l+1

t u‖L,Q. (3.4b)
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Proof.
The estimate (3.4a) can be derived using the arguments of [4], the boundedness estimates from Lemma 2.1,
the approximation results from Lemma 2.2, and the standard truncation error estimates for the discrete time
derivative. We detail here only the proof of (3.4b). Let v̄p ∈ [H1

0 (Ω)]d be such that

∇·v̄p = η̄N , ‖v̄p‖[H1(Ω)]d � ‖η̄N‖L.

Then, using yn
h = πhpn − pn

h, and letting ȳN
h and p̄N be the discrete time averages of the functions yn

h and pn,
we infer that

‖η̄N‖2
L = (η̄N ,∇·v̄p)L = (η̄N ,∇·(v̄p − πhv̄p))L + (η̄N ,∇·πhv̄p)L

= (p̄N − πhp̄N ,∇·(v̄p − πhv̄p))L + (ȳN
h ,∇·(v̄p − πhv̄p))L + (η̄N ,∇·πhv̄p)L

= −(∇(p̄N − πhp̄N ), v̄p − πhv̄p)L − (ȳN
h , Ch(v̄p − πhv̄p))L + (η̄N ,∇·πhv̄p)L.

Let us denote T1,2,3 the three terms in the right-hand side. We first observe that

|T1| � hk+1|p̄N |Hk+1(Ω)‖η̄N‖L.

The second term is bounded using (2.12a) leading to

|T2| � c(β, h)
1
2 h− 1

2 ‖v̄p − πhv̄p‖L|ȳN
h |Sp � |ȳN

h |Sp‖η̄N‖L,

where we have used that c(β, h)h ≤ 1 to simplify the estimate. Moreover, using the triangle inequality and a
discrete Cauchy–Schwarz inequality in time leads to

|ȳN
h |Sp ≤ t

− 1
2

F

⎛⎝∑
n≥l

τ |yn
h |2Sp

⎞⎠
1
2

.

For the third term, we use T3 = −(BT
h η̄N , πhv̄p)L and we sum (3.3a) over n to infer that

T3 =
1
N

∑
n≥l

(∂l
τen + Ahen + Su

hen + Ψn
l , πhv̄p)L.

Since πhv̄p does not depend on time, owing to the classical telescoping properties of BDF methods, we infer
that 1

N

∑
n≥l(∂

l
τen, πhv̄p)L � t−1

F (‖eN‖L + ‖eN−1‖L)‖η̄N‖L (the second term is needed only for l = 2); note

also that t−1
F ≤ t

− 1
2

F owing to the simplifying assumption tF ≥ 1. We observe that (using again that βF hF ≤ 1)

(Ahen, πhv̄p)L � (‖en‖μ,β + ‖en‖L)‖η̄N‖L,

(Su
hen, πhv̄p)L ≤ |en|Su |πhv̄p|Su � |en|Su max

F∈Fh

(β
1
2
F h

1
2
F )‖v̄p‖[H1(Ω)]d � |en|Su‖η̄N‖L.

Using a discrete Cauchy–Schwarz inequality in time, we infer that

1
N

∑
n≥l

(Ahen + Su
hen, πhv̄p)L � t

− 1
2

F

⎛⎝∑
n≥l

τ(‖en‖2
μ,β + ‖en‖2

L + |en|2Su)

⎞⎠
1
2

‖η̄N‖L.

Moreover, using the classical properties of the time truncation error in BDF methods, we infer that (Ψn
l , πhv̄p)L �

τ l‖∂l+1
t u‖L,Qn‖η̄N‖L, with Qn := Ω × [tn, tn+1]. The pressure estimate now follows from the velocity

estimate. �
Remark 3.2 (High Reynolds number). Observe that in the high Reynolds number regime and for smooth u
and p, we recover the classical velocity estimate of order hk+ 1

2 + τ l, while the estimate on the time-average
pressure is of the same order.
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4. Fractional-step time discretization using pressure projection

Given u0
h ∈ Vh, ũ0

h ∈ Ṽh, and p0
h ∈ Ph, the BDF1 projection method consists in solving for all n ≥ 0,

(1) an advection-diffusion problem yielding un+1
h ∈ Vh,

1
τ

(un+1
h − πhũn

h) + Ahun+1
h + Su

h (u∗
h) = fn+1

h − BT
h pn

h (in Vh), (4.1)

with the choice u∗
h = un+1

h for implicit velocity stabilization or u∗
h = πhũn

h or u∗
h = un

h for explicit velocity
stabilization.

(2) A Poisson problem with homogeneous Neumann boundary conditions yielding pn+1
h ∈ Ph and ũn+1

h ∈ Ṽh,

1
τ
(ũn+1

h − un+1
h ) + CT

h (pn+1
h − pn

h) +
1
τ
S̃p

hp∗h = 0 (in Ṽh), (4.2a)

Chũn+1
h = 0 (in Mh), (4.2b)

with p∗h = pn+1
h (implicit pressure stabilization) or p∗h = pn

h (explicit pressure stabilization) and where
S̃p

h : Mh → Ṽh is such that for all (qh, ṽh) ∈ Ph × Ṽh,

(S̃p
hqh, ṽh)L :=

∑
F∈F int

h

γ4ξF ‖β‖−1
L∞(F )dh2

F ([[∇qh]], [[ṽh]])L,F . (4.3)

Since CT
h is the restriction of the gradient operator to Ph, we obtain for all (qh, rh) ∈ Ph×Ph, (S̃p

hqh, CT
h rh)L =

(Sp
hqh, rh)L, so that

ChS̃p
h = Sp

h. (4.4)

Moreover, since Vh is H1-conforming, for all qh ∈ Mh, S̃p
hqh is L-orthogonal to Vh, that is, for all (qh, vh) ∈

Ph × Vh, (S̃p
hqh, vh)L = 0, so that

πhS̃p
h = 0. (4.5)

Finally, using a discrete trace inequality, we infer that there are C2, C3 such that for all qh ∈ Ph,

‖S̃p
hqh‖L ≤ C2γ

1
2
4 č(β, h)

1
2 h

1
2 |qh|Sp . (4.6)

Applying the projector πh to (4.2a) at step n, using πhCT
h = BT

h and (4.5), and combining with (4.1) yields
for n ≥ 1,

1
τ
(un+1

h − un
h) + Ahun+1

h + Su
h(u∗

h) = fn+1
h − BT

h (2pn
h − pn−1

h ) (in Vh). (4.7)

Moreover, applying the operator Ch to (4.2a) and using (4.2b) and (4.4) yields

ChCT
h (pn+1

h − pn
h) =

1
τ

(
Bhun+1

h − Sp
hp∗h
)

(in Ph), (4.8)

since un+1
h ∈ Vh and Ch is an extension of Bh. Using equation (4.8) and (4.2a) we can derive an explicit

expression for ũn+1
h . For p∗ = pn, we get

ũn+1
h = un+1

h − CT
h (ChCT

h )−1(Bhun+1
h − Sp

hpn
h) − S̃p

hpn
h,

and for p∗ = pn+1,

ũn+1
h = un+1

h − τ(CT
h + S̃p

h)(τChCT
h + Sp

h)−1(Bhun+1
h − Sp

hpn
h) − S̃p

hpn
h.
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4.1. Stability

In this section we prove a discrete stability result for the projection scheme (4.2). We first prove a generic
result without specifying u∗ and p∗ and then we detail the different explicit or implicit treatments of the
stabilization terms.

Lemma 4.1 (Stability). The following holds:

1
2
‖πhũn+1

h ‖2
L − 1

2
‖πhũn

h‖2
L +

1
2
‖un+1

h − πhũn
h‖2

L + τ(Ahun+1
h , un+1

h )L + τ |un+1
h |2Su

+
1
2
τ2‖∇pn+1

h ‖2
L − 1

2
τ2‖∇pn

h‖2
L +

1
2
τ2‖(I − πh)∇(pn+1

h − pn
h)‖2

L + τ |pn+1
h |2Sp

= τ(fn+1
h , un+1

h )L + τ(Su
h (un+1

h − u∗
h), un+1

h )L + τ(Sp
h(pn+1

h − p∗h), pn+1
h )L. (4.9)

Proof.
Step 1. Testing (4.1) with τun+1

h yields

1
2
‖un+1

h ‖2
L − 1

2
‖πhũn

h‖2
L +

1
2
‖un+1

h − πhũn
h‖2

L + τ(Ahun+1
h , un+1

h )L + τ |un+1
h |2Su =

τ(fn+1
h , un+1

h )L + τ(Su
h (un+1

h − u∗
h), un+1

h )L − τ(BT
h pn

h, un+1
h )L. (4.10)

Step 2. Applying πh to (4.2a) yields

πhũn+1
h − un+1

h + τBT
h (pn+1

h − pn
h) = 0. (4.11)

Applying Bh to this equation, we infer that

Bhπhũn+1
h − Bhun+1

h + τBhBT
h (pn+1

h − pn
h) = 0. (4.12)

Applying Ch to (4.2a) and using (4.2b) yields

Bhun+1
h = τChCT

h (pn+1
h − pn

h) + Sp
hp∗h, (4.13)

and adding (4.13) to (4.12) leads to

Bhπhũn+1
h = τ(ChCT

h − BhBT
h )(pn+1

h − pn
h) + Sp

hp∗h. (4.14)

Testing (4.13) with τpn
h and recalling that CT

h is the restriction of the gradient operator to Ph, we infer that

τ(BT
h pn

h, un+1
h )L =

1
2
τ2‖∇pn+1

h ‖2
L − 1

2
τ2‖∇pn

h‖2
L − 1

2
τ2‖∇(pn+1

h − pn
h)‖2

L + τ(Sp
hp∗h, pn

h)L. (4.15)

Step 3. Testing (4.11) with πhũn+1
h and using (4.14), we infer that

1
2
‖πhũn+1

h ‖2
L−

1
2
‖un+1

h ‖2
L+

1
2
τ2‖πh∇(pn+1

h −pn
h)‖2

L = −τ2‖(I−πh)∇(pn+1
h −pn

h)‖2
L−τ(Sp

hp∗h, pn+1
h −pn

h)L, (4.16)

since ‖πhũn+1
h − un+1

h ‖2
L = τ2‖πh∇(pn+1

h − pn
h)‖2

L.
Step 4. Combining (4.10) with (4.15)–(4.16) and re-arranging terms yields (4.9). �



496 E. BURMAN ET AL.

4.2. Implicit or explicit of stabilization

We now apply Lemma 4.1 to the various choices for the arguments of the stabilization operators to show that
different options are possible leading to slightly different CFL conditions. To formulate these CFL conditions,
we observe using discrete trace and inverse inequalities, that for all vh ∈ Vh,

|vh|Su ≤ C4γ
1
2
1 č(β, h)

1
2 β

1
2
Ωh− 1

2 ‖vh‖L. (4.17)

Corollary 4.2. Take in Lemma 4.1 u∗ = un+1
h or u∗ = πhũn

h, or u∗ = un
h for the special case of piecewise

linears (i.e., k = 1). For the pressure stabilization, take p∗ = pn+1
h or p∗ = pn

h. Then, the following holds:

‖πhũN
h ‖2

L + τ

N−1∑
n=0

(
‖un+1

h ‖2
μ,β + |un+1

h |2Su

)
+ τ2‖∇pN

h ‖2
L + τ

N−1∑
n=0

|pn+1
h |2Sp

�
N−1∑
n=0

tFτ‖fn+1
h ‖2

L + ‖πhũ0
h‖2

L + τ2‖∇p0
h‖2

L, (4.18)

provided the following standard hyperbolic CFL condition holds for the explicit treatment of the velocity:

Co < 1
4 (C2

4γ1č(β, h))−1, (4.19)

and provided the following additional condition holds for the explicit treatment of the pressure:

C2
2γ4č(β, h)h ≤ τ, (4.20)

with C2 defined by (4.6).

Proof.
In the implicit case where u∗ = un+1

h and p∗ = pn+1
h , there is only one term in the right-hand side of (4.9) since

the stabilization terms vanish. We obtain that
N−1∑
n=0

τ(fn+1
h , un+1

h )L =
N−1∑
n=0

τ(fn+1
h , ũn+1

h )L + τ2
N−1∑
n=0

(fn+1
h ,∇(pn+1

h − pn
h))L

≤ 5
2
tF

N−1∑
n=0

τ‖fn+1
h ‖2

L +
1
2
t−1
F

N−1∑
n=0

τ‖πhũn+1
h ‖2

L +
1
2
t−1
F

N−1∑
n=0

τ3‖∇pn+1
h ‖2

L +
1
4
t−1
F τ3‖∇p0

h‖2
L,

and (4.18) is an immediate consequence of the discrete Gronwall’s lemma, observing that τ/tF ≤ 1 so that
the term 1

2 (τ/tF)(‖πhũN
h ‖2 + τ2‖∇pN

h ‖2
L) in the righ-hand side can be absorbed in the left-hand side. Taking

u∗
h = πhũn

h, the second term on the right-hand side of (4.9) is absorbed by the third term in the left-hand side
owing to (4.19) since

τ(Su
h (un+1

h − πhũn
h), un+1

h )L ≤ C2
4γ1č(β, h)Co‖un+1

h − πhũn
h‖2

L +
1
4
τ |un+1

h |2Su .

Taking u∗
h = un

h is feasible for piecewise linears. To see this recall that by equation (4.11), un
h = πhũn

h −
τπh∇(pn+1

h − pn
h). For k = 1, the following holds:

(Su
h (un+1

h − un
h), un+1

h )L = (Su
h(un+1

h − πhũn
h), un+1

h )L + (Su
hτ(I − πh)∇(pn+1

h − pn
h), un+1

h )L,

since Su
h(∇(pn+1

h − pn
h)) vanishes because ∇(pn+1

h − pn
h) is piece-wise constant. The first contribution on the

right-hand side is absorbed by the third term in the left-hand side of (4.9) using (4.19) as before. For the second
term, we deduce from (4.17) that

τ(Su
hτ(I − πh)∇(pn+1

h − pn
h), un+1

h )L ≤ τ
1
4
|un+1

h |2Su + C2
4γ1č(β, h)Co‖τ(I − πh)∇(pn+1

h − pn
h)‖2

L.
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The first term can be absorbed by the contribution from the velocity stabilization in the left-hand side, and the
second one can be absorbed by the second to last term in the left-hand side of (4.9) still using (4.19). Finally,
taking p∗h = pn

h, we observe that

τ(Sp
h(pn+1

h − pn
h), pn+1

h )L = τ((I − πh)∇(pn+1
h − pn

h), S̃p
hpn+1

h )L

≤ τ2‖(I − πh)∇(pn+1
h − pn

h)‖2
L + C2

2γ4č(β, h)h|pn+1
h |2Sp ,

and the last term can be absorbed in the left-hand side using (4.20). �

Remark 4.3 (Reverse CFL). For high-Reynolds flows, condition (4.20) yields a reverse hyperbolic CFL con-
dition; it can be made compatible with other bounds on the Courant number by choosing γ4 small enough. In
the low-Reynolds regime, this condition becomes milder, of the form h2 � μτ .

Remark 4.4 (Stabilized Darcy). Since we use equal-order interpolation, the projection step, which is equivalent
to a Darcy problem, has inf-sup constant that tends to zero as h → 0 unless stabilization is applied. Corollary 4.2
shows that applying the stabilization operator with the pressure from the previous time step is enough to restore
uniform inf-sup stability.

Remark 4.5 (Control on uN
h ). It also follows from (4.18) that control of πhũN

h is sufficient to control uN
h , which

justifies the analysis in the variable πhũN
h . Indeed, let us first note that since (4.18) holds for all N , we infer

that

max
n∈{0,...,N}

‖πhũn
h‖2

L + max
n∈{0,...,N}

τ2‖∇pn
h‖2

L �
N−1∑
n=0

τ‖fn+1
h ‖2

L +
1
2
‖πhũ0

h‖2
L +

1
2
τ2‖∇p0

h‖2
L.

Owing to (4.11) we infer that

‖uN
h ‖2

L � ‖πhũN
h ‖2

L + τ2‖∇pN
h ‖2

L + τ2‖∇pN−1
h ‖2

L � max
n∈{0,...,N}

‖πhũn
h‖2

L + max
n∈{0,...,N}

τ2‖∇pn
h‖2

L,

which leads to the desired stability bound on ‖uN
h ‖2

L and later to the same error estimates for ‖uN
h ‖2

L as for
‖πhũN

h ‖2
L. Hence, it suffices to consider the variable πhũN

h , keeping in mind that all the estimates carry over
without modification to uN

h .

4.3. Error analysis

The error analysis follows in a relatively straightforward fashion, using the stability result (4.18), followed
by consistency (Galerkin orthogonality) and the boundedness result from Lemma 2.1. The order in time is a
consequence of the truncation error of the BDF1 scheme and the first-order splitting error of the incremen-
tal pressure-projection method. We first introduce a suitable error equation, with approximation errors and
truncation errors as data. Then we apply the stability result from the previous section to this error equation,
repeating some steps for enhanced clarity. The error estimates are then obtained using consistency followed by
boundedness; convergence rates finally result from the approximation properties of finite elements.

To derive the error equation, we set

en
h := un

h − πhun, en
π := un − πhun, (4.21)

ηn
h := pn

h − πhpn, ηn
π := pn − πhpn, (4.22)

together with ẽn
h := ũn

h − πhun and ẽn
π := en

π. We introduce the truncation errors

Ψn
1 := ∂tu

n − 1
τ
(un+1 − un), Ψn

2 := pn+1 − pn. (4.23)
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Finally, we set
ζn
h := ηn

h − πhΨn
2 , (4.24)

so that ζn
h = pn

h − πhpn+1. Owing to Remark 4.5 we infer that

‖ẽn
h‖L � ‖en

h‖L + τ‖∇ηn
h‖L + τ‖∇ηn−1

h ‖L + τ‖∇πhΨn−1
2 ‖L. (4.25)

We also recall the following standard truncation error estimates

N∑
n=1

τ(‖Ψn
1 ‖2

L + ‖∇Ψn
2 ‖2

L) � τ2(‖∂2
t u‖2

�2(0,tF;L) + ‖∂t∇p‖2
�2(0,tF;L)). (4.26)

Lemma 4.6 (Error equations). The velocity error equation takes the form

1
τ

(en+1
h − πhẽn

h) + Ahen+1
h + Su

h(e∗h) + BT
h ζn

h = BT
h ηn+1

π + πhΨn
1 + Ahen+1

π + Su
he∗π, (4.27)

with e∗h = en+1
h and e∗π = en+1

π for implicit velocity stabilization, while e∗h = πhẽn
h or e∗h = en

h and e∗π = en
π for

explicit velocity stabilization. Moreover, the pressure error equation takes the form

1
τ

(ẽn+1
h − en+1

h ) + CT
h (ηn+1

h − ζn
h ) +

1
τ

S̃p
hη∗

h =
1
τ

S̃p
hη∗

π, (4.28a)

Chẽn+1
h = Chen+1

π , (4.28b)

where η∗
h = ηn+1

h and η∗
π = ηn+1

π for implicit pressure stabilization and η∗
h = ηn

h and η∗
π = ηn

π for explicit pressure
stabilization.

Proof.
Use the fact that πh∂tu

n+1 + Ahun+1 + BT
h pn+1 = fn+1

h to prove (4.27). Moreover, (4.28a) is di-
rectly verified by adding and subtracting πhun+1 and πhpn+1. Finally, use the fact that Chun+1 = 0 to
prove (4.28b). �

Theorem 4.7 (Error estimate). Assume that (u, p) ∈ [Hk+1(Ω)]d+1 for the solution of (1.1). Let un
h and pn

h be
the solutions of (4.1)-(4.2b), n = 1, . . . , N , with mesh-parameters satisfying the assumptions of Corollary 4.2 if
an explicit treatment of stabilization is employed. Then the following holds with en := un

h−u(tn), ηn := pn
h−p(tn)

and η̄N := N−1
∑N

n=1 ηn:

‖eN‖L + τ‖∇ηN‖L +

(
N∑

n=1

τ(‖en‖2
μ,β + |en|2Su + |η|2Sp)

) 1
2

�
(
c(β, h)

1
2 + č(β, h)

1
2 βΩ + t

1
2
FLβh

1
2

)
hk+ 1

2 ‖u‖�2(0,tF ;Hk+1(Ω))

+ č(β, h)
1
2 hk+ 1

2 ‖p‖�2(0,tF ;Hk+1(Ω)) + t
1
2
F τ(‖∂2

t u‖L,Q + ‖∂t∇p‖L,Q), (4.29a)

‖η̄N‖L � hk+1‖p̄N‖Hk+1(Ω)

+ t
− 1

2
F

(
c(β, h)

1
2 + č(β, h)

1
2 βΩ + t

1
2
FLβh

1
2

)
hk+ 1

2 ‖u‖�2(0,tF ;Hk+1(Ω))

+ t
− 1

2
F č(β, h)

1
2 hk+ 1

2 ‖p‖�2(0,tF ;Hk+1(Ω)) + τ(‖∂2
t u‖L,Q + ‖∂t∇p‖L,Q). (4.29b)
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Proof.
After a standard decomposition of the error in an approximation part en

π, ηn
π and a discrete part en

h, ηn
h and

recalling equation (4.25), we observe that it is enough to bound for all N the discrete error

‖πhẽN
h ‖2

L + τ2‖∇ηN
h ‖2

L + τ
N∑

n=1

(‖en+1
h ‖2

μ,β + |en+1
h |2Su + τ |ηn+1

h |2Sp). (4.30)

Step 1. Multiplying (4.27) by τen+1
h yields

1
2
‖en+1

h ‖2
L − 1

2
‖πhẽn

h‖2
L +

1
2
‖en+1

h − πhẽn
h‖2

L + τ(Ahen+1
h , en+1

h )2L + τ |en+1
h |2Su =

− τ(BT
h ζn

h , en+1
h )L + T1 + . . . + T5, (4.31)

with

T1 = τ(BT
h ηn+1

π , en+1
h )L,

T2 = τ(Ψn
1 , en+1

h )L,

T3 = τ(Su
h (en+1

h − e∗h), en+1
h )L,

T4 = τ(Ahen+1
π , en+1

h )L,

T5 = τ(Su
he∗π, en+1

h )L.

T1 is handled using equation (2.12b), exploiting the stabilization on the divergence and on the normal component
at the boundary, followed by Young’s inequality, absorbing the term τ |en+1

h |2Su in the left-hand side. T2 is handled
by Gronwall’s inequality; T3 is handled as in Section 4.2, depending on the choice of velocity stabilization; T4

is controlled using (2.12c), leading to the term τ(‖en+1
h ‖2

μ,β + |en+1
h |2Su) that we absorb in the left-hand side

and a term of the form Lβ‖en+1
h ‖2

L that is treated using Gronwall’s inequality. Finally T5 is controlled using a
Cauchy–Schwarz inequality and Young’s inequality and absorbing the term τ |en+1

h |2Su in the left-hand side.

Step 2. Applying πh to (4.28a) yields

(πhẽn+1
h − en+1

h ) + τBT
h (ηn+1

h − ζn
h ) = 0. (4.32)

Applying Bh to this equation leads to

Bhπhẽn+1
h − Bhen+1

h + τBhBT
h (ηn+1

h − ζn
h ) = 0. (4.33)

Applying Ch to (4.28a) and using (4.28b), we infer that

Chen+1
π − Bhen+1

h + τChCT
h (ηn+1

h − ζn
h ) + Sp

h(η∗
h − η∗

π) = 0. (4.34)

Subtracting (4.34) and (4.33),

Bhπhẽn+1
h = τ(ChCT

h − BhBT
h )(ηn+1

h − ζn
h ) + Chen+1

π + Sp
h(η∗

h − η∗
π). (4.35)

Testing (4.34) with ζn
h yields

1
2
τ2‖∇ηn+1

h ‖2
L − 1

2
τ2‖∇ζn

h‖2
L − 1

2
τ2‖∇(ηn+1

h − ζn
h )‖2

L + τ(Sp
h(η∗

h − η∗
π), ζn

h )L

= τ(BT
h ζn

h , en+1
h )L − τ(Chen+1

π , ζn
h )L.

Step 3. Testing (4.32) with πhẽn+1
h yields

1
2
‖πhẽn+1

h ‖2
L − 1

2
‖en+1

h ‖2
L +

1
2
‖πhẽn+1

h − en+1
h ‖2

L = −τ(BT
h (ηn+1

h − ζn
h ), πhẽn+1

h )L,

and using
‖πhẽn+1

h − en+1
h ‖2

L = τ2‖πh∇(ηn+1
h − ζn

h )‖2
L (4.36)
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together with (4.35) for the right-hand side, we arrive at

1
2
‖πhẽn+1

h ‖2
L − 1

2
‖en+1

h ‖2
L +

1
2
τ2‖πh∇(ηn+1

h − ζn
h )‖2

L = −τ2‖(I − πh)∇(ηn+1
h − ζn

h )‖2
L

− τ(Chen+1
π , ηn+1

h − ζn
h )L − τ(Sp

h(η∗
h − η∗

π), ηn+1
h − ζn

h )L.

Step 4. Final combination. We infer that

1
2
‖πhẽn+1

h ‖2
L − 1

2
‖πhẽn

h‖2
L +

1
2
‖en+1

h − πhẽn
h‖2

L + τ‖en+1
h ‖2

A + τ |en+1
h |2Su

+
1
2
τ2‖∇ηn+1

h ‖2
L − 1

2
τ2‖∇ζn

h‖2
L +

1
2
τ2‖(I − πh)∇(ηn+1

h − ζn
h )‖2

L + τ |ηn+1
h |2Sp

= T1 + . . . + T8,

with

T6 = −τ(Chen+1
π , ηn+1

h )L,

T7 = τ(Sp
hηn+1

h , η∗
π)L,

T8 = τ(Sp
hηn+1

h , ηn+1
h − η∗

h)L.

The lack of a telescoping form for 1
2 τ2‖∇ηn+1

h ‖2
L − 1

2τ2‖∇ζn
h‖2

L is not a problem since by a triangle inequality,
we infer that

‖∇ζn
h‖2

L ≤ (1 + τ)‖∇ηn
h‖2

L + (1 + τ−1)‖∇πhΨn
2 ‖2

L, (4.37)

the first term is handled by Gronwall’s inequality and the second yields an O(τ)-error. The term T6 is bounded
using (2.12a) and the term T7 by the Cauchy–Schwarz inequality. The pressure stabilization contributions are
then absorbed in the left-hand side. The term T8 is treated as detailed in Section 4.2.

Collecting the above bounds, we obtain the inequality

‖πhẽn+1
h ‖2

L − ‖πhẽn
h‖2

L + τ2‖∇ηn+1
h ‖2

L − τ2‖∇ηn
h‖2

L + τ‖en+1
h ‖2

μ,β + τ |en+1
h |2Su + τ |ηn+1

h |2Sp

� τ č(β, h)(h−1‖ηn+1
π ‖2

L + ‖ηn+1
π ‖2

L,∂Ω)

+ τ(c(β, hF )h−1 + L2
βtF )‖en+1

π ‖2
L + τ‖en+1

π ‖2
μ,β

+ τ(|e∗π |2Su + |η∗
π |2Sp) + τtF (‖Ψn

1 ‖2
L + ‖∇Ψn

2 ‖2
L)

+ τt−1
F (‖en+1

h ‖2
L + τ2‖∇ηn+1

h ‖2
L).

We add and subtract πhẽn+1
h in ‖en+1

h ‖2
L in the last term in the right-hand side, and we use a triangle inequal-

ity, (4.36), and (4.37). We obtain the inequality

τt−1
F (‖en+1

h ‖2
L + τ2‖∇ηn+1

h ‖2
L)

≤ 2τt−1
F (‖πhẽn+1

h ‖2
L + ‖πhẽn+1

h − en+1
h ‖2

L + τ2‖∇ηn+1
h ‖2

L)
≤ 2τt−1

F (‖πhẽn+1
h ‖2

L + 5(1 + τ)τ2‖∇ηn+1
h ‖2

L + 2(1 + τ−1)τ2‖∇πhΨn
2 ‖2

L).

Now assume that τ is sufficiently small so that the ‖πhẽN
h ‖2

L + τ2‖∇ηN
h ‖2

L contribution of the right hand side
can be absorbed in the left hand side. Then the velocity error estimate follows after summing over n, applying
Gronwall’s Lemma and bounding the approximation errors using Lemma 2.2.

To prove the estimate on the time-averaged L2-error on the pressure, we observe that the following error
representation holds for all 1 ≤ n ≤ N − 1:

πhen+1 − πhen + τAhen+1 + τSu
h (u∗

h) = πh(u(tn+1) − u(tn) − τ∂tu(tn+1)) − τBT
h ηn+1

+ τBT
h (ηn+1 − 2ηn + ηn−1) + τBT

h (p(tn+1) − 2p(tn) + p(tn−1)).
(4.38)
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Following the arguments of Theorem 3.1, we let v̄p ∈ [H1
0 (Ω)]d be such that

∇ · v̄p = η̄N , ‖v̄p‖H1(Ω) � ‖η̄n‖L.

Then using yn
h = πhpn − pn

h we infer that

‖η̄N‖2
L = (∇(p̄n − π̄hpn), v̄p − πhv̄p)L + (ȳn

h , Ch(v̄p − πhv̄p))L

+ t−1
F τ

N−1∑
n=1

[
(∂1

τen+1 + Ahen+1 + Su
hu∗

h, πhv̄p)L + (∂tu(tn) − τ−1(u(tn) − u(tn−1), πhv̄p)L

− (BT
h (ηn+1 − 2ηn + ηn−1), πhv̄p)L + (BT

h (p(tn+1) − 2p(tn) + p(tn−1), πhv̄p)L

]
.

The only terms that differ from the monolithic case are those in the last line. We observe that telescoping the
sum and using Poincaré’s inequality leads to

τ

N−1∑
n=1

(BT
h (ηn+1 − 2ηn + ηn−1), πhv̄p)L = τ(BT

h (ηN + ηN−1 − η1 + η0), πhv̄p)L

� τ(‖∇ηN‖L + ‖∇ηN−1‖L)‖πhv̄p‖H1(Ω)

+ τ(πhp(t1) − p(t1) − πhp(t0) + p(t0),∇ · πhv̄p)L

− τ(πhp(t1) − p(t1) − πhp(t0) + p(t0), ν · (πhv̄p − v̄p))L,∂Ω

� τ(‖∇ηN‖L + ‖∇ηN−1‖L + h‖∇p(t1)‖L + h‖∇p0‖L)‖v̄p‖H1(Ω),

where τ(‖∇ηN‖L + ‖∇ηN−1‖L) is bounded in the first part of the proof. We use that ‖∇p(t1)‖L + ‖∇p0‖L �
‖∂t∇p‖L,Q to conclude. �

Remark 4.8. In the high Reynolds number regime, the satisfaction of the divergence-free condition relies on
the stabilization term (2.7a). Expliciting only the dependence of the upper bound on h and τ in the error bound
for |en|Su , we may write the asymptotics of ∇·un+1

h as

(
N∑

n=1

‖h 1
2∇·un

h‖2
L

) 1
2

� (hk+ 1
2 + τ).

It follows that the choice τ ∼ hk+ 1
2 gives a uniform hk convergence rate on the divergence of un

h.

5. Numerical results

We illustrate the theoretical results on three test cases at different Reynolds numbers using piece-wise affine
approximations (k = 1) for both velocity and pressure. In all cases we consider the Navier–Stokes equations in
two space dimensions with unit density. The convective term is handled using extrapolation, taking the form
(u∗ · ∇)un+1

h with u∗ = un
h or u∗ = 2un

h − un−1
h . No fixed point iterations are performed. We have considered

the following test cases:

• academic 2D solution at Re = 105;
• flow around a cylinder at Re = 102;
• Kelvin–Helmholtz instability at Re = 104.
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Figure 1. Convergence plot for the fractional-step method applied to the problem defined
by the exact solution (5.1). (a) Explicit velocity stabilization; (b) implicit velocity stabiliza-
tion. Dotted (resp., dashed) lines correspond to the fractional-step method using BDF2 (resp.,
BDF1). Solid lines mark first- and second-order slopes. Circle markers indicate L2-norm errors
on the velocity and square markers L2-norm errors on the pressure. In (c) all the curves are
collected in one graph for comparison. Here, the dash-dot curve indicates the BDF1 scheme,
and dash-dot-dot curve indicates the BDF2 scheme, both with explicit treatment of the velocity
stabilization.

The stabilization parameters involved in (2.6)-(2.7) have been set to γ1 = 20, γ2 = γ3 = γ4 = 10−2 and
γ̃3 = 0. Numerical tests not reported here indicate that taking γ̃3 > 0 has little influence on the results
reported below. These tests also indicate that the tuning of the discretization parameters when the pressure
stabilization is treated explicitly so that the method is both stable and accurate in all regimes are too delicate to
be of practical use. Therefore, we do not report results with an explicit treatment of the pressure stabilization.
Instead, an example showing the effect of explicit treatment of the velocity stabilization on the accuracy is
presented. Although the theoretical results for the fractional-step method presented above are valid only for
first-order BDF1 time scheme, we present numerical examples also for the BDF2 time scheme. Observe that the
stability result from Lemma 4.1 remains valid in this case, but the order of the scheme is not improved due to
the first-order splitting error.

5.1. Academic 2D solution at Re = 105

This academic test case was used in [19] to show the effect of stabilization on the accuracy of a projection-
based fractional-step solver for the Navier–Stokes equations. Let Ω be the unit square and set⎧⎨⎩ uex = u(x, y)g(t), pex = −1

4
(
cos(2x) + cos(2y)

)
g2(t),

u(x, y) =
(
− cos(x) sin(y), sin(x) cos(y)

)T
, g(t) = sin(2t).

(5.1)

It is straightforward to verify that this is the exact solution of the Navier–Stokes equations driven by the
body forces f = u(x, y)(g′(t) + 2g(t)/Re). Dirichlet boundary conditions are imposed on the velocities on ∂Ω
according to (5.1). We have performed computations using the fractional-step method and BDF1 time stepping
or BDF2 time stepping combined with either explicit or implicit treatment of the velocity stabilization in
each case. In the implicit case we have set τ = h ∈ {0.1/2i}3

i=0, whereas in the explicit case we have set
τ = Coβ−1

Ω h with Co fixed (approximately) to the largest time step for which the scheme was stable, namely,
(τ, h) ∈ {(2.5×10−2/2i, 0.2/2i)}3

i=0. The results are reported in Figure 1. Observe that the points on the graphs
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correspond to the same meshes in the two cases. The values on the x-axis correspond to time step sizes and those
on the y-axis to the L2-errors on the velocity (circles) and the pressure (squares). The curves corresponding to
BDF1 time discretization are dashed and the curves corresponding to BDF2 time discretization are dotted. It
follows from the graphics that in the case of BDF1, the reduced time step imposed by the explicit treatment
of the stabilization also improves accuracy. The curves have the same slope in the explicit and implicit case,
but the errors are approximately a factor three smaller and the time step differs by a factor of four. This shows
that for the lowest-order time discretization, the explicit method is expected to be substantially cheaper than
the fully implicit one if a specific accuracy has to be obtained. The situation is less clear for the second-order
scheme where also the time step is taken four times smaller in the explicit case, but the resulting reduction in
error is only a factor of two.

5.2. Flow around a cylinder at Re = 102

Here we consider the classical benchmark proposed in [27] and we refer to that work for details on the
configuration. The problem consists in the computation of the flow around a cylinder at Reynolds 102, and
the benchmark quantities that we consider are the drag CD and the lift CL on the cylinder. We compare the
fractional-step projection scheme using implicit treatment of the velocity stabilization with the fully implicit
monolithic scheme using either BDF1 or BDF2 for the time discretization. We have used three unstructured
computational meshes with 28 86, 11 055 and 44 540 vertices. Note that smaller time steps have been considered
for the BDF1 schemes. The results are reported in Tables 1 and 2. As expected, the BDF2 scheme delivers
comparable accuracy with larger time steps. We can also observe that the BDF1 projection scheme provides
practically the same results as the BDF1 monolithic scheme for sufficiently small time steps.

Table 1. Computed drag and lift using the BDF2 monolithic solver.

BDF2 monolithic
NDOF τ CD CL

3 × 2886 10−2 3.34 1.12
3 × 11 055 5 × 10−3 3.27 1.05
3 × 44 540 2.5 × 10−3 3.24 1.03

lower ref. 3.22 0.99
upper ref. 3.24 1.01

Table 2. Comparison of the computed drag and lift using the BDF1 monolithic and fractional-
step solvers.

BDF1 monolithic BDF1 fractional-step
NDOF τ CDmax CLmax CDmax CLmax

3 × 2886 5 × 10−3 3.27 1.04 3.28 1.13
3 × 11 055 2.5 × 10−3 3.25 1.07 3.26 1.09
3 × 44 540 1.25·10−3 3.24 1.05 3.24 1.06

lower ref. 3.22 0.99 3.22 0.99
upper ref. 3.24 1.01 3.24 1.01

5.3. Navier–Stokes mixing layer at Re = 104

Finally we propose a qualitative study of a Kelvin–Helmholtz shear layer. This test was proposed in [24] as a
model problem for 2D turbulence and was shown to have the characteristic cubic decay of the power spectrum.
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Figure 2. Computational configuration for the Kelvin–Helmholtz shear layer instability.

The problem has a smooth solution, but the Sobolev norm of the exact solution is large. In particular, the velocity
gradient is large in the shear layer and the problem is known to be very sensitive to perturbations of initial data
and numerical viscosity. For other numerical experiments on this test case see [3,16,21]. A schematic illustration
of the problem setup is presented in Figure 2. The computational domain Ω is the unit square, u∞ = 1, βΩ = 1

28 ,
and the viscosity is set to ν = 3.571×10−6. The objective is to explore whether the use of the second-order time
discretization remains stable while delivering the expected improved accuracy and to study how the splitting
affects the approximation accuracy. As reference solutions we use computations from a monolithic solver with
continuous interior penalty stabilization taken from [3]. The time step is τ = 1.5625× 10−3 (as in [3]).

Figure 3 shows a comparison between the solutions obtained using the fractional-step method combined with
either BDF1 (a) or BDF2 (b) on a mesh with 80×80 elements using piecewise affine approximation. We present
a series of snapshots at the non-dimensional times t = 80, 120, 140. In Figure 3c we report the reference solution
obtained using BDF2 time discretization and a monolithic solver using the same space discretization and at the
same time levels. On this coarse scale, the two fractional-step solutions appear to be of similar quality. The two
vortices are merging in the first snapshot at t = 80. The solution obtained using the monolithic solver on the
other hand has not yet entered the transition phase in the first snapshot. A possible explanation of this is that
the fractional-step method is more dissipative on coarse meshes, since it is known that excessive dissipation
tends to speed up the transition sequence.

In Figure 4 we then consider the same sequence of snapshots on the finest mesh with 320× 320 elements. In
Figures 4a and 4b we present the snapshots of the fractional-step method using BDF1 and BDF2 respectively.
Figures 4c and 4d report snapshots of solutions obtained using the monolithic solver on a 320 × 320 mesh
and piecewise affine approximation (c) and on a 160 × 160 mesh and piecewise quadratic approximation (d).
In this case, the improved detail of the fractional-step method using BDF2 compared to the one using BDF1
can be clearly seen. On this resolution the fractional-step solutions using BDF2 has similar qualitative behaviour
as those obtained using the monolithic scheme with BDF2.
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(a) Fractional-step BDF1, k = 1, 80 × 80 mesh

(b) Fractional-step BDF2, k = 1, 80 × 80 mesh

(c) Monolithic BDF2, , k = 1, 80 × 80 mesh

Figure 3. Comparison of fractional-step BDF1 (a), BDF2 (b), and monolithic BDF2 time
scheme (c); time levels, from left to right, t = 80, 120, 140; computational mesh: 80 × 80;
piecewise affine approximation.
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(a) Fractional-step BDF1, k = 1, 320 × 320 mesh

(b) Fractional-step BDF2, k = 1, 320 × 320 mesh

(c) Monolithic BDF2, k = 1, 320 × 320 mesh

(d) Monolithic BDF2, k = 2, 160 × 160 mesh

Figure 4. Comparison of fractional-step BDF1 (a), BDF2 (b); time levels, from left to right,
t = 80, 120, 140; computational mesh: 320 × 320; piecewise affine approximation. Monolithic
computations: BDF2; 320×320; piecewise affine approximation (c); BDF2; 160×160; piecewise
quadratic approximation (d).
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