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SUPERCONVERGENCE BY M-DECOMPOSITIONS.
PART III: CONSTRUCTION OF THREE-DIMENSIONAL FINITE ELEMENTS ∗
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Abstract. We apply the concept of an M -decomposition in the framework of steady-state diffu-
sion problems to construct local spaces defining superconvergent hybridizable discontinuous Galerkin
methods as well as their companion sandwiching mixed methods in R

3 with tetrahedral, pyramidal,
prismatic, and hexahedral elements.
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1. Introduction

This is the third of a series of paper in which we develop the concept of an M -decomposition as an effective
tool for devising hybridizable discontinuous Galerkin (HDG) methods, and their companion sandwiching mixed
methods, which superconverge on unstructured meshes of shape-regular polyhedral elements. In the first part
of this series, [6], the general theory of M -decompositions was developed in the frame of steady-state diffusion
problems:

cq + ∇u = 0 in Ω,
∇ · q = f in Ω,

u = g on ∂Ω,

where Ω ⊂ R
d is a bounded polygonal (d = 2) or polyhedral (d = 3) domain, c is a uniformly bounded, uniformly

positive definite symmetric matrix-valued function, f ∈ L2(Ω) and g ∈ H1/2(∂Ω). In the second part of this
series, [5], the general theory was applied to the two-dimensional case. Here we apply it to explicitly obtain
new ready-for-implementation local spaces admitting M -decompositions for flat-faced pyramidal, prismatic, and
hexahedral elements.

To better describe our results, let us recall the definition of the HDG (and mixed) methods under con-
sideration; we use the notation used in Part I, [6]. The HDG methods seek an approximation to (u, q, u|Eh

),
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(uh, qh, ûh), in the finite element space Wh × V h ×Mh, of the form

V h := {v ∈ L2(Th) : v|K ∈ V (K), K ∈ Th},
Wh := {w ∈ L2(Th) : w|K ∈W (K), K ∈ Th},
Mh := {μ ∈ L2(Eh) : μ|F ∈M(F ), F ∈ Eh},

which is determined as the only solution of the following weak formulation:

(c qh , v)Th
− (uh , ∇ · v)Th

+ 〈ûh , v · n〉∂Th
= 0,

− (qh , ∇w)Th
+ 〈q̂h · n , w〉∂Th

= (f , w)Th
,

〈q̂h · n, μ〉∂Th\∂Ω = 0,
〈ûh, μ〉∂Ω = 〈g, μ〉∂Ω,

for all (w,v, μ) ∈Wh × V h ×Mh, where

q̂h · n = qh · n + α(uh − ûh) on ∂Th.

In Part I, [6], it was shown that these HDG methods are superconvergent on unstructured meshes if, for all
elements K ∈ Th, the local space V (K) ×W (K) admits an M(∂K)-decomposition, where

M(∂K) := {μ ∈ L2(∂K) : μ|F ∈M(F ) for all faces F of K},

and that the resulting methods are mixed methods, that is, we can take α = 0 since ∇ · V (K) = W (K).
Moreover, the construction of M -decompositions for any space M(∂K) was proven to be possible via solving
Laplace equation with certain Neumann boundary conditions on the elementK. The actual construction of read-
for-implementation spaces admittingM -decompositions on polygonal meshes, without solving Laplace equations,
was carried out in Part II, [5]. Here, we extend this effort to the three-dimensional case.

As in Part II, [5], we summarize the construction as follows. (From now on, if there is no confusion, we
drop the dependence of the local spaces on the element K.) Given a space of traces M on ∂K containing the
constants, we pick any given space Vg ×Wg satisfying the inclusion properties:

(I.1) γVg + γWg ⊂M ,
(I.2) ∇Wg ×∇ · Vg ⊂ Vg ×Wg,

where γVg := {v · n|∂K : v ∈ Vg} and γWg := {w|∂K : w ∈ Wg}. We then construct the three spaces V ×W
admitting M -decompositions described in Tables 1 and 2. The spaces in the top and bottom rows give rise to
(hybridized) mix methods. The two integers in the last column of Table 2 are defined as follows:

IM (Vg ×Wg) := dimM − dim{v · n|∂K : v ∈ Vg,∇ · v = 0}
− dim{w|∂K : w ∈Wg,∇w = 0},

IS(Vg ×Wg) := dimWg − dim∇ · Vg.

Here, we carry out this construction for the main flat-faced polyhedral elements involved in three-dimensional
meshing, namely, tetrahedra, pyramids of quadrilateral base, prisms and hexahedra of quadrilateral faces. We
summarize our results in Tables 3 and 4. In Table 3, we consider tetrahedral elements, pyramidal elements with
a square (or parallelogram) base, prisms with parallel faces, and cubes (or parallelepipeds). Therein, Qk(K)
denotes the space of tensor product polynomials of degree k defined on K, and Pk|k(K) the space of the form
Pk(B)⊗Pk(e) wheneverK is the prism B×e. We denote by Pk(K), respectively, Pk|k(K) and Qk(K), the vector-
valued functions whose components lie in Pk(K), respectively, Pk|k(K) and Qk(K). In Table 4, we consider the
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Table 1. Construction of spaces V ×W admitting M(∂K)-decompositions; we assume that
M(∂K) contains the constants. The given space space Vg ×Wg satisfies the inclusion proper-
ties (I). We assume the scalar space W contains the constants P0(K).

V W

V mix := Vg ⊕ δVfillM ⊕ δVfillW W mix := Wg

V hdg := Vg ⊕ δVfillM W hdg := Wg

V mix := Vg ⊕ δVfillM Wmix := ∇ · Vg

Table 2. The properties of the spaces δV .

δV ∇ · δV γδV dim δV

δVfillM {0} ⊂ M,∩γVgs = {0} IM (Vg × Wg) = dim γδVfillM

δVfillW ⊂ Wg, ∩∇ · Vg = {0} ⊂ M IS(Vg × Wg) = dim∇· δVfillW

Table 3. Some properties of the spaces V × W admitting an M(∂K)-decomposition when K is
a regular polyhedral element: a tetrahedron, a pyramid with a square base, a prism with congruent,
parallel faces, and a cube. If F is a rectangular face of K, then M(F ) := Qk(F ); if not, M(F ) := Pk(F ).
Here k ≥ 1. The symbol ✓ indicates that the spaces are new.

Vg × Wg

IM (Vg × Wg)
IS(Vg × Wg)

V mix × W mix

V hdg × W hdg

V mix × Wmix

Pk × Pk

0
1
2
(k + 1)(k + 2)

RTk[10]
HDGk[8]

BDMk[2, 11]

Pk × Pk
1
2
k (k + 1) + 3

1
2
(k + 1)(k + 2)

✓
✓
✓

Pk|k × Pk|k
k + 2
k + 1

✓
✓
✓

Qk × Qk

6
1

TNT[k][7]

HDGQ
[k][8]

✓

construction for the other elements. Therein, P̃�(K) denotes the homogeneous polynomials of degree � in K. In
these tables, we restrict ourselves to displaying the dimension of the spaces involved in the construction and in
stating if they are new or already known. When the spaces we obtain are actually new but can be considered
a small variation of already-known ones, we do not mark them as new. We remark that the three old spaces
listed in Table 4 are only defined on a regular polyhedron, though.

Let us give an idea of how do we proceed to obtain our results. The construction of the space δVfillW is fairly
easy, especially when compared with that of the space δVfillM. To construct δVfillM, we proceed in two steps.
In the first, since

γ{v ∈ Vg : ∇·v = 0} ⊂ {μ ∈M(∂K) : 〈μ, 1〉∂K = 0},
we have to find a subspace CM ⊂M(∂K) such that

CM ⊕ γ{v ∈ Vg : ∇·v = 0} = {μ ∈M(∂K) : 〈μ, 1〉∂K = 0}.
In the second step, we find a basis of CM , BM , and simply set

δVfillM := span{vμ : μ ∈ BM},
where the function vμ is a suitably chosen, divergence-free function which lifts the trace functions of CM ,
because we have that vμ · n|∂K = μ, into the interior of the element K. These liftings are relatively easy to
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Table 4. Some properties of the spaces V × W admitting an M(∂K)-decomposition when K is
an irregular pyramid (of a quadrilateral base), prism or hexahedron (of quadrilateral faces). Here

M(∂K) = Pk(∂K) and Vg × Wg = Pk(K) × Pk(K). In all cases, VfillW := x P̃k(K). The symbol ✓
indicates that the spaces are new.

IM (Vg × Wg)

k = 0
k = 1
k ≥ 2

V mix × W mix

V hdg × W hdg

V mix × Wmix

1
3
3

✓
✓
✓

number of pairs
of parallel faces
0 1

1 1
3 3
3 k + 2

✓ ✓
✓ ✓
✓ BDM<k>[4]

number of pairs
of parallel faces

0 1 2 3

2 2 2 2
6 6 6 6
9 k + 7 2k + 5 3k + 3

✓ ✓ ✓ ✓
✓ ✓ ✓ HDG[k][8]
✓ ✓ ✓ BDM[k][2]

get as they have a simple, explicit formula in terms of polynomial or rational functions, or are given in terms
of easily computable piecewise-polynomial functions. On the other hand, the difficulty is the characterization
of the space γ{v ∈ Vg : ∇·v = 0}. When it is not possible to get it all at once, we number the faces and
use a sequential, divide-and-conquer strategy to find CM which allows us to focus our attention on the normal
traces of the space {v ∈ Vg : ∇·v = 0} on a single face of the polyhedron at a time. As a consequence, our
construction does depend on the way we number the faces. This is a reflection of the fact that the spaces we
are seeking are not uniquely defined.

Now, let us discuss why is it that we only consider some polyhedral elements. To illustrate the idea, we take
Vg = Pk. The reason is, roughly speaking, that the space

{v ∈ Pk : v · n|∂K = 0, ∇·v = 0},

which we have to know well in order to carry out our construction, is very complicated for an arbitrary poly-
hedron, especially when k is big. Indeed, in two-space dimensions, such space, for the polygon K, can be
characterized as

{(∂yw,−∂xw) : w ∈ Pk+1(K) and w|∂K = 0}.
Thus, a basis can be readily computed since the space of H1-bubbles {w ∈ Pk+1(K) : w|∂K = 0} is very easy to
get. However, in three-space dimensions, such a characterization becomes extremely involved for a polyhedron
K, especially as the number of faces increases. Indeed, the space we seek is now

{∇× v : v ∈ Pk+1(K) and n × (v × n)|∂K = 0} ,

where n is the normal to the boundary of K. The space of H(curl)-bubbles {v ∈ Pk+1(K) : n×(v×n)|∂K = 0}
is very hard to compute. In particular, as we are going to see, it depends on the number of pairs of parallel
faces of the polyhedron, and even on the number of parallel edges. This is why, we restrict ourselves to the
above-mentioned polyhedral elements.

Finally, to highlight the relevance of our approach, let us compare our mixed finite element spaces V mix×Wmix

containing the give space Vg ×Wg := Pk × Pk in Table 3 on the regular pyramid with those of Nigam and
Phillips [12,13]. The first family of high-order accurate, stable mixed finite element spaces on a regular pyramid
was presented in [12]; they were denoted by U(2),k+1 × U(3),k+1. Later in [13], the same authors constructed
a second family of pyramidal finite elements, R(2),k+1 × R(3),k+1, with significantly smaller space dimension.
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The spaces were constructed by mapping certain rational functions from a reference infinite pyramid to the
physical pyramid. They have the following inclusion property to ensure approximability:

Pk × Pk ⊂ R(2),k+1 × R(3),k+1 ⊂ U(2),k+1 × U(3),k+1.

While these two pairs of spaces and ours have the same convergence rates, our spaces have significantly smaller
dimension for k ≥ 1 (the spaces are identical for k = 0), since

dimU(2),k+1 − dimR(2),k+1 =
1
2
k (k + 1)(4k + 7),

dimR(2),k+1 − dim V mix =
1
2
k (k + 1)(k + 2) + k − 2,

dimU(3),k+1 − dimR(3),k+1 =
1
2
k (k + 1)(4k + 5),

dimR(3),k+1 − dimWmix =
1
6
k (k + 1)(k + 2).

We achieve this improvement on the space dimension by directly working with the physical pyramid to augment
Pk×Pk with the minimal number of additional basis functions to ensure a space admitting an M -decomposition
rather than using sophiscated mappings from an infinite pyramid as was done in [12, 13].

The rest of the paper is organized as follows. In Section 2, we describe and discuss our constructions of
M -decompositions. In Section 3, we show how to compute the composite liftings used in Section 2. In Section 4,
we prove the main results in Section 2. We end in Section 5 with some concluding remarks.

2. The main results

In this section, we display and discuss our main results, that is, the construction of the filling spaces δVfillM

and δVfillW satisfying the properties in Table 2. We begin by introducing the notation we are going to use and
then proceed according to the shape of the polyhedral element K.

2.1. Notation

We start by setting the notation we need to state our results. After describe the several elements of our
polyhedra K, we introduce two objects needed for the construction of the space VfillM: extensions of a trace
defined in a single face of K into the whole boundary ∂K, and liftings of those traces into the interior of the
element K.

Geometry

We begin by displaying in Figure 1 the notation we are going to follow to describe the faces of each of the four
polyhedral elements we are going to consider. The faces are taken to be flat and so the points x on the face
Fi lie on the hyperplane λi(x) = 0. The outward unit normal at the face Fi is denoted by ni and is parallel
to ∇λi. When κijk := ni × nj · nk is not equal to zero, we know that there is a unique point vijk defined by
λ�(vijk) = 0, � ∈ {i, j, k}. In general, vijk lies outside the element K, but when it does not, it is nothing but
the vertex shared by the faces Fi, Fj and Fk. We indicate that the face Fi is, respectively, is not, parallel to the
face Fj by writing, Fi ‖ Fj , repectively, Fi �‖ Fj .
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Figure 1. The faces of a tetrahedron (top left), pyramid (top right), prism (bottom left),
hexahedron (bottom right). The face F1 is the face at the bottom of the polyhedral.

Extensions of traces

To be able to obtain the space of traces CM described in the Introduction, we need to define two extensions to
∂K of functions defined on a single face Fi of K. The extensions are the following:

ηi(ζ) =

⎧⎪⎨⎪⎩
ζ on Fi,

−
∫

Fi
ζ∫

Fi+1
1

on Fi+1,

0 on ∂K \ (Fi ∪ Fi+1),

(2.1a)

ηi(ζ1, ζ2) =

{
ζ1 − ζ2

∫
Fi

ζ1∫
Fi

ζ2
on Fi.

0 on ∂K \ Fi.
(2.1b)

Notice for any ζ ∈ Pk(Fi), then μ := ηi(ζ) ∈ Pk(∂K) and
∫

∂K
μ ds = 0. Similarly properties hold for any

ζi ∈ Pk(Fi), i = 1, 2 and μ := ηi(ζ1, ζ2).

Liftings of traces

Finally, we introduce some special functions needed to describe our spaces VfillM. They are devised to lift the
space of traces CM into the interior of K. For some elements, those liftings can be polynomial functions but,
just as in the two-dimensional case [5], it turns out that it is not possible to carry out the construction of the
spaces under consideration by using only polynomials for more general elements K, as we see in the next result.

Theorem 2.1. Let K be a polyhedron which is not a tetrahedron, a prism with parallel congruent triangular
bases, or a parallelepiped. If V × W admits an M -decomposition with M := Pk(∂K) for some k ≥ 0 and
P0 ⊂W , then V must include some non-polynomial elements.

Because of this result, whose proof is detailed in Section 4, we have to rely on functions we construct as
follows. Given a flat-faced polyhedron K, let us triangulate it by using the non-overlapping tetrahedra {Ti}nt

i=1.
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For any given k ≥ 0, we set the space

V
cmp
k,nt(K) :=

{
v ∈ H0(div;K) : v|Ti ∈ Pk(Ti) 1 ≤ i ≤ nt

}
, (2.2)

whereH0(div;K) := {v ∈ H(div;K) : ∇·v = 0}. Since the functions in this space are piecewise polynomials, we
call them composite functions, hence the superscript cmp. As we see in the next result, whose proof is provided
in Section 3, we can use these functions as liftings of (normal) traces on ∂K.

Theorem 2.2. Let K be a flat-faced polyhedron. Then, for any μ ∈ Pk(∂K) with
∫

∂K
μds = 0, there exists a

function vμ in the space V
cmp
k,nt(K) such that

vμ · n|∂K = μ.

It is easy to see that the tetrahedral triangulation of the polyhedral element K is not unique. This non-
uniqueness leads to the non-uniqueness of the composite lifting function vμ. However, as will be clear in the
proof of Theorem 2.2 in Section 3, the lifting function vμ, which serves as the building block of our explicit
construction of M -decompositions, can be uniquely computed for a given tetrahedral triangulation. Moreover,
a good criterion to single out a tetrahedral triangulation in practice is to require the number of tetrahedra nt
to be minimal. This leads to nt = 2 for pyramids, nt = 3 for prisms, and nt = 5 for hexahedra.

We are now ready to begin the presentation of our results.

2.2. Tetrahedra

We begin by considering the simplest polyhedron. The following result is well-known in the literature.

Theorem 2.3. Let K be a tetrahedron. Then, for M := Pk(∂K) and Vg ×Wg := Pk(K) × Pk(K), we have
that

IM (Vg ×Wg) = 0 and IS(Vg ×Wg) = (k + 1)(k + 2)/2.

Moreover, the spaces δVfillM := {0} and δVfillW := x P̃k satisfy the properties in Table 2.

The space V mix×Wmix is nothing but the Raviart–Thomas space RTk of index k, [10], the space V hdg×W hdg

is the space HDGk, [8], and the space V mix ×Wmix is nothing but the space BDMk of index k, [2, 11].

2.3. Pyramids

Here, we consider two cases for which we provide entirely new spaces. In the first, we assume that the base
of the pyramid, F1, is a parallelogram so that the space of traces there can be taken to be Qk(F1). We then
consider pyramids for which F1 is a general quadrilateral and take the space of traces there to be Pk(F1).

2.3.1. Pyramids with a parallelogram as base

For simplicity, we consider K being a unit pyramid, that is, the pyramid whose base (in the xy-plane) is the
unit square (0, 1)2, and whose faces are unit triangles on the xz- and yz-planes. We set

λ1 = z, λ2 = x, λ3 = y, λ4 = 1 − x− z, λ5 = 1 − y − z.

Our construction is contained in the following result.

Theorem 2.4. Let K be the unit pyramid. Then, for

M(∂K) := {μ ∈ L2(∂K) : μ|F1 ∈ Qk(F1), μ|Fi ∈ Pk(Fi) for 2 ≤ i ≤ 5},
and Vg ×Wg = Pk(K) × Pk(K) with k ≥ 1, we have that

IM (Vg ×Wg) = k(k + 1)/2 + 3 and IS(Vg ×Wg) = (k + 1)(k + 2)/2.
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Moreover, the spaces

δVfillM :=∇× span{λα
2λ

β+1
3 λ4λ5 ∇λ2 : 0 ≤ α, β ≤ k − 1, α+ β ≥ k − 1}

⊕ ∇× span{ξλk
3 ∇λ1, ξλ

k−1
2 λ4 ∇λ1, ξλ1 ∇λ4},

δVfillW := x P̃k(K),

satisfy the properties in Table 2. Here ξ ∈ H1(K) can be either the piecewise-linear function defined by
ξ(v145) = 1, ξ|T1 = 0, ξ|T2 ∈ P1(T2), or the rational function ξ = x y/(1 − z). Here K = {Ti}2

i=1, with T1 being
the tetrahedron with vertices v123,v125,v134 and v234 and T2 being the tetrahedron with vertices v125,v134,v145

and v234.

Note that, for any k ≥ 1, most of the functions in the resulting vector space V = Vg ⊕ δVfillM are polynomials
except three rational or composite functions. This has to be contrasted with the spaces obtained in [12, 13] for
which almost all the basis functions are rational functions. Moreover, as discussed in the Introduction, they
have significantly bigger spaces, for the same accuracy, than ours.

2.3.2. Pyramids with a quadrilateral base

Theorem 2.5. Let K be a quadrilateral-based pyramid. Then, for M := Pk(∂K) and Vg ×Wg := Pk(K) ×
Pk(K), we have that

IM (Vg ×Wg) = 1 + 2 min{k, 1} and IS(Vg ×Wg) = (k + 1)(k + 2)/2.

Moreover, the spaces

δVfillM :=
{ ∇× span{ξ∇λ1} if k = 0,

∇× span{ξλk
3 ∇λ1, ξλ

k−1
2 λ4 ∇λ1, ξλ1 ∇λ4} if k ≥ 1,

δVfillW := x P̃k(K),

satisfy the properties in Table 2. Here ξ ∈ H1(K) can be either the piecewise-linear function defined by
ξ(v145) = 1, ξ|T1 = 0, ξ|T2 ∈ P1(T2), or the rational function ξ = λ2λ3/λ0, where λ0 ∈ P̃1(λ2, λ4) ∩ P̃1(λ3, λ5).

Again, we notice that most of the basis functions in the resulting vector space V = Vg ⊕δVfillM are polynomials
except for one rational or composite function for k = 0 and three rational or composite functions for k ≥ 1.
Note also that, since piecewise polynomial functions are amenable to simpler numerical integration, perhaps the
choice of ξ as a piecewise-linear function could be more advantageous.

2.4. Prisms

For prisms, we have three different cases according whether the bases F3 and F5 are congruent and parallel,
non-congruent and parallel, and not parallel. In the case of congruent and parallel faces, the faces F1, F2 and
F4 being parallelograms, we consider the case in which the space of traces is Qk(Fj) or Pk(Fj) for j = 1, 2, 4.

2.4.1. Prisms with congruent, parallel faces

For simplicity, we take K to be the unit prism, that is, the prism whose basis (in the planes z = 0 and z = 1)
are unit triangles, and whose faces on the xz- and yz-planes are unit squares. We set

λ1 = x, λ2 = y, λ3 = z, λ4 = 1 − x− y, λ5 = 1 − z.

Our first result is for the case in which the space of traces on the rectangular faces is a tensor product, that
is, the case in which M(F1) = Qk(F1).
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Theorem 2.6. Let K be the unit prism. Then, for

M(∂K) := {μ ∈ L2(∂K) : μ|Fi ∈ Qk(F1), for i = 1, 2, 4, μ|Fi ∈ Pk(Fi) for i = 3, 5},

and Vg ×Wg = Pk|k(K) × Pk|k(K) with k ≥ 1, we have that

IM (Vg ×Wg) = k + 2 and IS(Vg ×Wg) = k + 1.

Moreover, the spaces

δVfillM := ∇× span{zk+1(x∇ y − y∇ x), ykzλ4 ∇x, xzλ4P̃k−1(x, z)∇ y},
δVfillW := span{zk+1 P̃k(x, y)∇ z},

satisfy the properties in Table 2.

With this result, it is also easy to check that the following more symmetric choice of the filling space

δVfillM := ∇× span{zk+1(x∇ y − y∇ x), zP̃k(x, y)(x∇ y − y∇x)}

ensures an M -decomposition.
There are two other family of spaces (defining mixed methods) on the unit prism admitting M -decompositions

for the trace space M given in Theorem 2.6 available in the literature. The first was introduced in [4] for k ≥ 1

V 1 ×W 1 :=

⎛⎝ Pk|k
Pk|k

Pk−1|k+1

⎞⎠× Pk−1|k,

and the second, which is a RT-like variation of the first, was recently presented in [9] for k ≥ 0,

V 2 ×W 2 :=

⎛⎝ Pk|k
Pk|k

⊕
(
x
y

)
P̃k(x, y) ⊗ Pk(z)

Pk|k ⊕ z Pk(x, y) ⊗ P̃k(z)

⎞⎠× Pk|k.

Since Pk × Pk �⊂ V 1 ×W 1, the approximation properties of V 1 ×W 1 is expected to be worse than that for
the resulting spaces in Theorem 2.6 and that of V 2 ×W 2. On the other hand, the dimension of V 2 is bigger
than that of our space V mix by 3

2 (k2 + k) − 1 for k ≥ 1. These two spaces are exactly the same when k = 0, as
we point out right after stating the next theorem.

Our second result on the unit prism is for the case in which M(∂K) := Pk(∂K).

Theorem 2.7. Let K be the unit prism. Then, for M(∂K) = Pk(∂K) and Vg ×Wg = Pk(K) × Pk(K), we
have that

IM (Vg ×Wg) = k + 1 + min{k, 1} and IS(Vg ×Wg) = (k + 1)(k + 2)/2.

Moreover, the spaces

δVfillM :=

⎧⎪⎨⎪⎩
∇× span{zx∇ y − zy∇x} if k = 0,

∇× span{zk+1(x∇ y − y∇x), ykzλ4 ∇x,

xzλ4P̃k−1(x, y)∇ y} if k ≥ 1,

δVfillW := span{z P̃k ∇ z},

satisfy the properties in Table 2.
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It is interesting to see that, for k ≥ 1, we have exactly the same space δVfillM for the two given spaces in
Theorem 2.6 and 2.7. Again, we can change δVfillM to be the following more symmetric one,

δVfillM := ∇× span{zk+1(x∇ y − y∇x), zP̃k(x, y)(x∇ y − y∇x)}.

We can also change this space to the following

δVfillM = ∇× span{zk+1x∇ y − zk+1y∇x, yk+1z∇x, x2zP̃k−1(x, y)∇ y}

for k ≥ 1 so that the resulting space for the lower mixed method is exactly the same as the original prismatic
BDDF elements introduced in [4] (which is BDM<k> in our notation; see [8]).

Finally, we remark that after a simple calculation, we get

δVfillM ⊕ δVfillW = span {x∇x+ y∇ y, z∇ z} for k = 0.

So the spaces for the upper mixed method for k = 0 is exactly the same as V 2 ×W 2 presented in the previous
subsection which is originally from [9].

2.4.2. Prisms with non-congruent, parallel bases

Now, let us consider a prismatic element K with non-congruent, parallel bases F3 and F5.

Theorem 2.8. Let K be a prism with its face F3 parallel to its face F5. Then, for M := Pk(∂K) and Vg×Wg :=
Pk(K) × Pk(K) with k ≥ 0, we have that

IM (Vg ×Wg) = k + 1 + min{k, 1}, and IS(Vg ×Wg) = (k + 1)(k + 2)/2,

and the spaces

δVfillM:=

{
span{vμ0

4
} if k = 0,

span{vμk
4
} ⊕ ∇× span{λk

2λ3λ4 ∇λ1, λ1λ3λ4P̃k−1(λ1, λ2)∇λ2} if k ≥ 1.

δVfillW:= x P̃k(K),

satisfy the properties in Table 2, where μk
4 := η4(λk

3) is the extension defined in (2.1a), and vμk
4

is the lifting
defined in Theorem 2.2.

Note that this result is very similar to that in Theorem 2.7. There, the function vμk
4

is replaced by a divergence-
free polynomial defined on the unit prism K; such polynomial does not exist when the triangular bases of K
are not congruent to each other.

2.4.3. Prisms with non-parallel bases

Finally, keeping the notation of the previous subsection, we consider a prism with non-parallel bases.

Theorem 2.9. Le K be a prism with its face F3 is not parallel to its face F5, and κ235 �= 0. Then, for
M := Pk(∂K) and Vg ×Wg := Pk(K) × Pk(K) with k ≥ 0, we have that

IM (Vg ×Wg) = 1 + 2 min{k, 1} and IS(Vg ×Wg) = (k + 1)(k + 2)/2..

Moreover, the spaces

δVfillM :=
{

span{vμ0
4
} if k = 0,

span{vμk
4
} ⊕ ∇× span{λk

2ξ∇λ1, λ1λ
k−1
2 ξ∇λ2} if k ≥ 1.

δVfillW := x P̃k(K),
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satisfy the properties in Table 2, where μk
4 := η4(λk

3) is the extension in (2.1a), vμk
4

is the lifting defined in
Theorem 2.2, and ξ ∈ H1(K) is the piecewise-linear function defined by ξ(v125) = 1, ξ|T1∪T2 = 0, ξ|T3 ∈
P1(T3). Here K := {Ti}3

i=1, with T1 being the tetrahedron with vertices v123,v134,v145 and v234, T2 being the
tetrahedron with vertices v123,v145,v234 and v245, and T3 being the tetrahedron with vertices v123,v125,v145

and v245.

Note that if κ235 = 0, we must have κ135 �= 0 since F3 �‖ F5. In this case, we switch faces F1 and F2 so that
for the new face ordering, we do have κ235 �= 0. Note also that for k = 0 and k = 1, we can again choose the
above filling space δVfillW for the previous considered prisms with parallel faces since for k ≤ 1 the M -index
and the space of traces CM are the same in all three cases. So, for k ≤ 1, the filling spaces can be made to be
independent of the geometry of the prism.

2.5. Hexahedra

For hexahedral elements (with quadrilateral faces), the influence of the geometric shape of the element induces
many cases. We have four cases, according to whether the hexahedron has 3, 2,1 or 0 pairs of parallel faces. We
take the space of traces to be Pk(∂K), except in the case in which the hexahedron is a parallelepiped, case in
which we also consider the choice Qk(∂K). It is interesting to note that, for the case of 1 pair of parallel faces,
we must distinguish between the cases in which the parallel faces are parallelograms or not. Moreover, when the
parallel faces are parallelograms, different spaces are obtained according to whether the hexagon was obtained
by cutting a pyramid or not. Finally, when we have 1 or 0 pairs of parallel faces, we also obtain different spaces
according to whether the normals of three faces lie on a single plane or not.

2.5.1. Hexahedra with three pairs of parallel faces

For simplicity, we take K to be the unit cube. We start with the case M(∂K) := Qk(∂K). As we see next,
we find spaces closely related to the HDGQ

[k] and TNT[k] spaces obtained in [7, 8].

Theorem 2.10. Let K be the unit cube. Then, for M := Qk(∂K) and Vg ×Wg := Qk(K)×Qk(K) with k ≥ 1,
we have that

IM (Vg ×Wg) = 6 and IS(Vg ×Wg) = 1.

Moreover, the spaces

δVfillM := ∇× span

⎧⎨⎩ xkyzk+1 ∇x, xk+1z∇ y, xk+1ykz∇ y,
(1 − x)x(1 − z)zk ∇ y, (1 − x)x(1 − y)yk ∇ z,

(1 − x)x(1 − y)ykzk ∇ z

⎫⎬⎭ ,
δVfillW := span{xk+1ykzk ∇x},

satisfy the properties in Table 2.

Here let us compare the spaces V mix×Wmix defining the upper mixed method comparing to the ones obtained
in [7,8]. The discussion below amplifies the non-uniqueness of the filling spaces for obtaining M -decompositions.

Our space V mix ×Wmix defining the upper mixed method can be easily recasted into the following form by
applying the curl operator on δVfillM. We get

V mix ×Wmix := Qk ⊕ span

⎧⎪⎪⎨⎪⎪⎩
xk+1 ∇x, xk+1yk ∇x, zk+1xk ∇ z,
(1 − 2x)yk+1 ∇ y, (1 − 2x)zk+1 ∇ z,

(1 − 2x)yk+1zk ∇ y
xk+1ykzk ∇x

⎫⎪⎪⎬⎪⎪⎭× Qk.

In [7], two family of spaces containing Qk ×Qk and admitting M -decompositions with M(∂K) := Qk(∂K) were
introduced. One defines the HDG method HDGQ

[k] while the other defines the mixed method TNT[k] (TNT is
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the acronym for the TiNiest spaces containing Tensor product spaces). Their dimensions are the same as those
of the spaces V hdg ×W hdg and V mix ×Wmix, respectively, resulting from Theorem 2.10. The space defining
the TNT[k] mixed method is,

V 1 ×W 1 := Qk ⊕ span

⎧⎨⎩ xk+1 ∇x, yk+1 ∇ y, zk+1 ∇ z,
xk+1yk ∇x, yk+1zk ∇ y, zk+1zk ∇ z,

xk+1ykzk ∇ x

⎫⎬⎭× Qk.

Later in [7], another space

V 2 ×W 2 := Qk ⊕ span

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
xk+1 ∇x, yk+1 ∇ y, zk+1 ∇ z,

ykzk(y∇ y + z∇ z),
zkxk(z∇ z + x∇x),
xkyk(x∇ x+ y∇ y),

xkykzk(x∇x+ y∇ y + z∇ z)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
× Qk

was used to define the TNT[k] mixed method. It is clear that the three spaces are very close to each other,
but are not exactly the same. We note that the additional space for V mix depends on a particular order of the
coordinates (x, y, z). It is less symmetric than the defnition of V 1 which is invariant under the permutation
(x, y, z) → (y, z, x) and (x, y, z) → (z, x, y). In turn, the definition of V 1 is less symmetric than that of V 2

which is invariant under any permutation of the coordinates (x, y, z). The reason for the loss of symmetry in
the definition of the space V mix is due to our face-by-face construction; see Section 4 below. On the other hand,
we can take the filling spaces as follows

δVfillM := ∇× span

⎧⎨⎩ x(yk+1 ∇ z − zk+1 ∇ y), y(zk+1 ∇x− xk+1 ∇ z),
z(xk+1 ∇ y − yk+1 ∇x), xykzk(y∇ z − z∇ y),
yzkxk(z∇x− x∇ z), zxkyk(x∇ y − y∇x)

⎫⎬⎭
δVfillM := span{xkykzk(x∇ x+ y∇ y + z∇ z)}

so that the resulting spaces for the upper mixed method is identical to the (most symmetric) TNT[k] spaces
in [7].

Also, note that the space for the RT[k] method in [10], namely,

V ×W :=

⎛⎝ Pk+1,k,k

Pk,k+1,k

Pk,k,k+1

⎞⎠× Qk,

admits an M -decomposition for M := Qk(∂K). However, the dimension of the vector-valued functions is bigger
than our space V mix by 3k2 + 6k − 4 for k ≥ 1.

Now, we consider the case M(∂K) := Pk(∂K). For this case, we obtain spaces strongly related to the spaces
of the BDM[k] (or BDDF[k]) method in [2], see also [1], and the spaces HDG[k] obtained in [8]. We also
compare our spaces to those of the BDFM[k] method in [3].

Theorem 2.11. Let K be the unit cube. Then, for M := Pk(∂K) and Vg ×Wg := Pk(K) × Pk(K), we have
that

IM (Vg ×Wg) = 3k + 2 + min{k, 1} and IS(Vg ×Wg) = (k + 1)(k + 2)/2.
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Moreover, the spaces

δVfillM :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∇× span

{
yz∇x, xz∇ y

}
if k = 0,

∇× span
{
yzP̃k(x, z)∇x, xzP̃k(x, y)∇ y, if k ≥ 1

xy(1 − y)P̃k−1(y, z)∇ z, xzk(1 − z)∇ y
}
,

δVfillW := span{x P̃k ∇x}

satisfy the properties in Table 2.

Note that RT[0] space in [10] is exactly the same as the space V mix for k = 0, since P0 = Q0 and

span
{∇× (yz∇x

)
, ∇× (xz∇ y

)
, x∇ x

}
= span {x∇x, y∇ y, z∇ z} .

Note also that the filling space δVfillM can be changed in two ways to render its definition more symmetric.
The first was presented in [8] and the second in [1]:

δV
[8]
fillM = ∇× span

⎧⎨⎩
xyP̃k(y, z)∇ z,

yzP̃k(z, x)∇ x,

zxP̃k(x, y)∇ y

⎫⎬⎭ ,
δV

[1]
fillM = ∇× span

⎧⎨⎩
xP̃k(y, z)(y∇ z − z∇ y),
yP̃k(z, x)(z∇x− x∇ z),
zP̃k(x, y)(x∇ y − y∇x)

⎫⎬⎭ .
We can also modify the other filling space to be δVfillW := span{x P̃k}. Again, these modifications do not change
the dimension of spaces, but the resulting vector spaces are slightly different than those in Theorem 2.11.

Also, note that the space for the BDFM[k] method in [3], namely,

V ×W :=

⎛⎝ Pk+1\P̃k+1(y, z)
Pk+1\P̃k+1(x, z)
Pk+1\P̃k+1(x, y)

⎞⎠× Pk,

admits an M -decomposition for M := Pk(∂K), and that the dimension of the space of vector-valued functions
is bigger than that of V mix by k2 − 1.

2.5.2. Hexahedra with two pairs of parallel faces

In our next result, we assume that the hexahedron has two pairs of parallel faces. All the spaces obtained
here are new.

Theorem 2.12. Let K be a hexahedron for which F2 �‖ F4, F3 ‖ F5, F1 ‖ F6, and κ234 �= 0. Then, for
M := Pk(∂K) and Vg ×Wg := Pk(K) × Pk(K) with k ≥ 0, we have that

IM (Vg ×Wg) = 2k + 5 − δk,1 − 3 δk,0,

IS(Vg ×Wg) = (k + 1)(k + 2)/2.
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Here δi,j is the Kronecker delta. Moreover, the spaces

δVfillM :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

span{vμ0
4,1
,vμ0

5,1
} if k = 0,

span{vμ1
4,1
,vμ0

5,1
,vμ1

6,1
}

⊕∇× span{λ2λ3λ4 ∇λ1, λ1λ3λ4 ∇λ2, λ1λ2λ4 ∇λ3} if k = 1,
span{vμk

4,1
,vμk−1

5,1
,vμk−1

6,1
}

⊕∇× span{λk
2λ3λ4 ∇λ1, λ1λ

k−1
3 λ4λ5 ∇λ2,

λ1λ3λ4P̃k−1(λ1, λ2)∇λ2,
λ1λ2λ4P̃k−1(λ2, λ3)∇λ3} if k ≥ 2.

δVfillW := x P̃k(K),

satisfy the properties in Table 2, where

μm
4,1 := η4(λm

3 ), μm
5,1 := η5(λm

2 ) and μm
6,1 := η6(λm

3 , λ
m−1
3 )

are the eextensions defined by (2.1a) and (2.1b), and vμ is the lifting defined in Theorem 2.2.

Let us show that it is possible to carry out a reordering of the faces in such a way that we get that F2 �‖ F4,
F3 ‖ F5, F1 ‖ F6, and κ234 �= 0. We proceed as follows. First, we first reorder the faces in such a way that
F2 �‖ F4, F3 ‖ F5, F1 ‖ F6. Now, if κ234 = 0 we must have that κ214 �= 0 since F2 �‖ F4. Then, we switch the faces
F1 and F3, and the faces F5 and F6 to get the desired ordering.

2.5.3. Hexahedra with one pair of parallel faces

In this case, we have to treat differently the case in which the parallel faces are paralleograms or not. All the
spaces are new.

The parallel basis are parallelograms

Here, we consider an hexahedron K for which F2 �‖ F4, F3 �‖ F5, F1 ‖ F6, where F1 and F6 are parallelograms.
It is interesting to see that, according to whether λ5(v234) is equal to zero or not, we get spaces that differ by
one basis function. The condition λ5(v234) = 0 means that the hexahedron in question is obtained buy cutting
a pyramid whose vertex is v234.

Theorem 2.13. Let K be a hexahedron such that F2 �‖ F4, F3 �‖ F5, F1 ‖ F6 where F1 and F6 are parallelograms.
Then, for M := Pk(∂K) and Vg ×Wg := Pk(K) × Pk(K) with k ≥ 0, we have that

IM (Vg ×Wg) = k + 7 − 2 δk,1 − 5 δk,0,

IS(Vg ×Wg) = (k + 1)(k + 2)/2.

Moreover, the space

δVfillM :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

span{vμ0
4,1
,vμ0

5,1
} if k = 0,

span{vμ1
4,1
,vμ1

5,1
,vμ1

5,2
,vμ0

5,1
,vμ1

6,1
,vμ1

6,2
} if k = 1,

span{vμk
4,1
,vμk

5,1
,vμk

5,2
,vμk−1

6,1
,vμk−1

6,2
}

⊕∇× span{λ1λ
k−1
2 λ4λ5 ∇λ3, λ1λ

k−1
2 λ3λ5 ∇λ4,

λ1λ3λ4λ5P̃k−2(λ2, λ3)∇λ2}
⊕
{

span{vμk−1
5,1

} if k ≥ 2 and λ5(v234) �= 0,

span{vμ0
5,1

} if k ≥ 2 and λ5(v234) = 0,

δVfillW := x P̃k(K),
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satisfy the properties in Table 2, where

μm
4,1 := η4(λm

3 ),

μm
5,1 := η5(λm

2 ), μm
5,2 := η5(λm−1

2 λ1),

μm
6,1 := η6(λm

3 , λ
m−1
3 ), μm

6,2 := η6(λm
2 , λ

m−1
2 ).

are the eextensions defined by (2.1a) and (2.1b), and vμ is the lifting defined in Theorem 2.2.

The parallel faces are not parallelograms

Next, we consider the hexahedron with one pair of parallel faces, and the parallel faces are not parallelograms.

Theorem 2.14. Let K be a hexahedron such that F2 �‖ F4, F3 �‖ F5, F1 ‖ F6, where F1 and F6 are not
parallelograms, and κ135 �= 0. Then, for M := Pk(∂K) and Vg ×Wg := Pk(K) × Pk(K) with k ≥ 0, we have
that

IM (Vg ×Wg) = k + 7 − 2 δk,1 − 5 δk,0,

IS(Vg ×Wg) = (k + 1)(k + 2)/2.

Moreover, the spaces

δVfillM :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

span{vμ0
4,1
,vμ0

5,1
} if k = 0,

span{vμ1
5,3
,vμ1

5,4
,vμ0

5,3
,vμ1

6,1
,vμ1

6,2
}

⊕
{

span{vμ1
4,1

} if k = 1 and κ234 �= 0,
span{vμ1

4,2
} if k = 1 and κ234 = 0,

span{vμk
5,3
,vμk

5,4
,vμk−1

5,3
,vμk−1

6,1
,vμk−1

6,3
}

⊕∇× span{λ1λ
k−1
2 λ4λ5 ∇λ3, λ1λ

k−1
2 λ3λ5 ∇λ4,

λ1λ3λ4λ5P̃k−2(λ2, λ3)∇ λ2}
⊕
{

span{vμk
4,1

} if k ≥ 2 and κ234 �= 0,
span{vμk

4,2
} if k ≥ 2quad and κ234 = 0,

,

δVfillW := x P̃k(K),

satisfy the properties in Table 2, where,

μm
4,1 := η4(λm

3 ), μm
4,2 := η4(λm

1 ),

μm
5,1 := η5(λm

2 ), μm
5,3 := η5(λm

1 ), μm
5,4 := η5(λm−1

1 λ2),

μm
6,1 := η6(λm

3 , λ
m−1
3 ), μm

6,2 := η6(λm
2 , λ

m−1
2 ), μm

6,3 := η6(λm−1
3 λ2, λ

m−1
3 )

are the eextensions defined by (2.1a) and (2.1b), and vμ is the lifting defined in Theorem 2.2.

Note that we can indeed reorder the faces in such a way that F2 �‖ F4, F3 �‖ F5, F1 ‖ F6, and κ135 �= 0. To see
this, we proceed was follows. We first reorder the faces such that F2 �‖ F4, F3 �‖ F5, F1 ‖ F6. Now, if κ135 = 0,
we must have that κ124 �= 0 since F1 is not a parallelogram. Then, we switch the faces F2 and F3, and the faces
F4 and F5 to get the desired ordering.

2.5.4. Hexahedra with no parallel faces

Our last case is when the hexahedra has no pair of parallel faces. Let us note that the spaces δVfillM differ
by a single basis function provided κ234 is or is not equal to zero, that is, according to whether the edges
e23 := F2 ∩ F3 and e34 := F3 ∩ F4 are parallel to each other or not. All the spaces are new.
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Theorem 2.15. Let K be a hexahedron such that F2 �‖ F4, F3 �‖ F5, F1 �‖ F6, and κ135 �= 0, κ136 �= 0, κ356 �= 0.
Then, for M := Pk(∂K) and Vg ×Wg := Pk(K) × Pk(K) with k ≥ 0, we have that

IM (Vg ×Wg) = 9 − 3 δk,1 − 7 δk,0,

IS(Vg ×Wg) = (k + 1)(k + 2)/2.

Moreover, the space

δVfillM :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

span{vμ0
4,1
,vμ0

5,1
} if k = 0,

span{vμ1
5,3
,vμ1

5,4
,vμ0

5,3
,vμ1

6,1
,vμ1

6,2
}

⊕
{

span{vμ1
4,1

} if k = 1 and κ234 �= 0,
span{vμ1

4,2
} if k = 1 and κ234 = 0,

span{vμk
5,3
,vμk

5,4
,vμk−1

5,3
,vμk−1

6,1
,vμk−1

6,3
,vμk

6,1
,vμk

6,3
,vμk

6,4
}

⊕
{

span{vμk
4,1

} if k ≥ 2 and κ234 �= 0,
span{vμk

4,2
} if k ≥ 2 and κ234 = 0,

δVfillW := x P̃k(K),

satisfy the properties in Table 2, where

μm
4,1 := η4(λm

3 ), μm
4,2 := η4(λm

1 ),

μm
5,1 := η5(λm

2 ), μm
5,2 := η5(λm−1

2 λ1), μm
5,3 := η5(λm

1 ), μm
5,4 := η5(λm−1

1 λ2),

μm
6,1 := η6(λm

3 , λ
m−1
3 ), μm

6,2 := η6(λm
2 , λ

m−1
2 ),

μm
6,3 := η6(λm−1

3 λ2, λ
m−1
3 ) and μm

6,4 := η6(λm
3 , λ

m−2
3 )

are the eextensions defined by (2.1a) and (2.1b), and vμ is the lifting defined in Theorem 2.2.

Our result is for a reordering of the faces in such a way that κ135 �= 0, κ136 �= 0, κ356 �= 0. Let us argue that
we can always obtain such a reordering. If we have κ135 = 0 for a given face ordering, then κ235 �= 0 and
κ345 �= 0 because F3 �‖ F5. Now, since F2 �‖ F4, the constants κ234 and κ245 can not be both zero. Without loss
of generality, we assume κ234 �= 0. Now, we switch the faces F1 and F2, and the faces F6 and F4 to get the
desired ordering.

As for the prisms, for k = 0 and k = 1, we can choose the above filling space δVfillW for the previously
considered hexahedra with any number of parallel faces. This is true because, for k ≤ 1 the M -index and the
space of traces CM are the same in all cases. So, for k ≤ 1, the filling spaces can be made to be independent of
the geometry of the hexahedron.

This concludes the presentation of our spaces.

3. Properties of the composite liftings

3.1. Proof of the existence of composite liftings, Theorem 2.2

Let us first prove Theorem 2.2 in the case in which K is a tetrahedron. By Theorem 2.3, we have that Pk×Pk

admits an Pk(∂K)-decomposition for a tetrahedral element K. Then, by the kernels’ trace decomposition in
([6], Thm. 2.4), we get

{v · n|∂K : v ∈ Pk, ∇·v = 0} =
{
μ ∈ Pk(∂K) :

∫
∂K

μ ds = 0
}
,

and the result follows.
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Let us now prove the general case. Suppose that the polyhedron K is triangulated by the tetrahedra {Ti}nt
i=1

where we assume that we have numbered the tetrahedra in such a way that T� has three of its faces on the
surface of the polyhedron ∪nt

i=�Ti, for � = 1, . . . , nt − 1. Then, for j = 1, . . . , nt − 1, let Fj be the only face of
Tj interior to Kj = ∪nt

i=jTi, set the value of therein to be μj := − ∫
∂Tj\Fj

μ ds/
∫
Fj

1 ds, and set the value of
μ ∈ Pk(Kj+1) on the face Fj equal to −μj. By construction, and from the fact that

∫
∂K

μ ds = 0, we have that∫
∂Kj

μds = 0, for j = 1, . . . , nt. We can now apply the above result to each tetrahedron Tj, j = 1, . . . , nt. This
completes the proof of Theorem 2.2.

3.2. Computing the lifting for a tetrahedron

Although Theorem 2.2 ensures the existence of a composite lifting for zero-average piecewise polynomial
trace functions, a computable formulation of those lifting functions is highly desirable. It is now clear from the
previous proof that in order to compute a composite lifting on a general polyhedron, we only need to do so for
a tetrahedron. In this subsection, we present one way to do such computation.

To this end, we assume K is a tetrahedron, {λi}4
i=1 its barycentric coordinates, Fi its face lying on λi = 0,

for 1 ≤ i ≤ 4. To simplify the notation, given a finite element space S(D) in a domain D, we set
◦
S(D) := {φ ∈

S(D) :
∫

D
φ = 0} to be its mean zero subspace.

Our goal is to lift any trace function in
◦

Pk(∂K) = {μ ∈ Pk(∂K) :
∫

∂K μ = 0} into the element K by

a divergence-free function in Pk. We achieve this goal by finding a set of basis for
◦

Pk(∂K) consisting of the
normal trace of divergence-free functions in Pk. To do so, we use the following lemma. Its proof is straightforward
and hence omitted.

Lemma 3.1. Let K be a tetrahedron with {λi}4
i=1 its barycentric coordinates. Then, we have

γ(∇λ3 ×∇λ4) = c1 η1(1),
γ(∇λ4 ×∇λ1) = c2 η2(1),
γ(∇λ1 ×∇λ2) = c3 η3(1),

where
c1 = | ∇λ3| | ∇λ4|κ123, c2 = −|∇λ4| | ∇λ1|κ123, c3 = | ∇λ1| | ∇λ2|κ123.

Moreover, {
γ
(
∇×
(
λα+1

i+1 λ
β+1
i+2 ∇λi+3

))}α+β≤k−1

α,β≥0
, and

{
γ
(∇× (λα+1

i+1 λi+3 ∇λi+2

))}k−1

α=0

form a basis for span
{
ηi(ζi) : ζi ∈

◦
Pk(Fi)

}
.

Now, for 1 ≤ i ≤ 4, if we define the space

Vi
k := ∇× (λi+1λi+2Pk−1(λi+1, λi+2)∇ λi+3)

⊕∇×
(
λi+1λi+3P̃k−1(λi+1)∇ λi+2

)
,

we have that the trace operator γ : Vi
k −→ span{ηi(ζi) : ζi ∈

◦
Pk(Fi)}

v �−→ v · n|∂K

is an isomorphism by Lemma 3.1.

Here the subindexes are integers modulo 4.
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Then, we define

Vk := ⊕4
i=1 Vi

k ⊕3
i=1 ∇× (λi+2 ∇λi+3)

= ⊕4
i=1 ∇× (λi+1λi+2Pk−1(λi+1, λi+2)∇λi+3)

⊕4
i=1 ∇×

(
λi+1λi+3P̃k−1(λi+1)∇ λi+2

)
⊕3

i=1 ∇× (λi+2 ∇λi+3) .

Using the fact that

◦
Pk(∂K) = span{η1(1), η2(1), η3(1)} ⊕4

i=1 span
{
ηi(ζi) : ∀ζi ∈

◦
Pk(Fi)

}
,

we have that any trace function in
◦

Pk(∂K) can be uniquely expressed as the normal trace of a function in Vk,

whose actual computation requires solving four linear system of dimension dim
◦

Pk(F ) = (k2 + 3k)/2. When
coding, such computation can be done on a reference tetrahedron first and then Poila-transformed back to the
physical tetrahedron.

Last but not least, let us point out that the actual computation of each composite lifting on the prism
and hexahedron in Theorems 2.8 and 2.9, and Theorems 2.12 and 2.15, respectively, only requires solving one
linear system of dimension (k2 + 3k)/2 as its trace is expected to be non-constant on at most one face of each
tetrahedron resulting from the tetrahedral subdivision of the prism or hexahedron under consideration. On the
other hand, the composite liftings for a pyramid in Theorems 2.5 and 2.4 have closed-form representations and
no linear system needs to be solved.

4. Proof of main results in Section 2

In this section, we first prove the negative result of Theorem 2.1, then prove the main results on the justifica-
tion of the construction of the spaces δVfillM in Theorem 2.3 to Theorem 2.15. The corresponding justification
of the construction of the space δVfillW is quite easy, hence omitted.

4.1. Proof of Theorem 2.1

Here we prove the negative result in Theorem 2.1.
The proof is similar to that for the two-dimensional case in [5]. If an element K is not a tetrahedron, a prism

with parallel congruent triangular bases, or a parallelepiped, we can reorder the faces such that the first four
faces extends to form a tetrahedron, denoted as T . We proceed by contradiction. If there is a polynomial space
V ×W admits a Pk(∂K)-decomposition, we can find a divergence-free polynomial function vμ ∈ V such that
v · n|∂K = μ for a trace function μ ∈ Pk(∂K) with average zero on ∂K, μ|Fi = 0 for 1 ≤ i ≤ 3 and μ|F4 = 1.
Now, since vμ is a divergence-free polynomial function, it is defined on the whole space R

3. By restricting the
function vμ on the tetrahedron T , we have

∫
∂T

vμ · n ds �= 0 =
∫

T
∇·vμ dx, which is a contradiction. This

completes the proof of Theorem 2.1. �

4.2. An algorithm to construct the space δVfillM

Next, we justify the construction of the spaces δVfillM in Section 2. We first recall the algorithm introduced
in Part II, [5]. We then apply the algorithm to treat of the general case in which M(∂K) := Pk(∂K) and
Vg ×Wg := Pk(K) × Pk(K), and then sketch the proof for the other (similar and simpler) special cases.

As pointed out in the Introduction, we proceed as follows. For a given polyhedral elementK, a space of traces
M and the given space Vg ×Wg, we begin by finding a space of traces CM ⊂M such that

CM ⊕ {v · n|∂K : v ∈ Vg,∇·v = 0} =
◦
M(∂K), (4.1)
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where
◦
M(∂K) := {μ ∈M(∂K) :

∫
∂K

μ ds = 0}. Then, if B is a basis of CM , the space δVfillM(K) := span{vμ :
μ ∈ B}, immediately satisfies the properties in Table 2. To find CM , we apply the same algorithm introduced
in Part II, [5]; it allows us to restrict our attention to a single face at a time. To introduce it, we need some
notation.

4.2.1. Notation

For i = 1, . . . , nf + 1, we define Vgs,i to be the divergence-free subspace of Vg with vanishing normal traces
on the first i− 1 faces, that is,

Vgs,i := {v ∈ Vg : ∇ · v = 0, v · n|Fj = 0, 1 ≤ j ≤ i− 1}.

We also use the gradient-free subspace of Wg, Wgcst := {w ∈ Wg : ∇w = 0}. By the inclusion property
P0(K) ⊂Wg, we have that Wgcst = P0(K) is just the space of constants on K.

For i = 1, . . . , nf , we define γi(V ) := {v · n|Fi : v ∈ V } to be the normal trace of V on Fi, and γi(W ) :=
{w|Fi : w ∈ W} to be the trace of W on Fi. Note that γi(Wgcst) = P0(Fi) is just the space of constants on Fi.

We define the M -index for each face as follows.

Definition 4.1 (The M -index for each face). The M -index of the space Vg ×Wg for the ith face Fi is the
number

IM,i(Vg ×Wg) := dimM(Fi) − dim γi(Vgs,i) − δi,nf
dim γnf

(Wgcst),

where δi,nf
is the Kronecker delta.

4.2.2. A possible construction of δVfillM

Now, we have the following result on a construction of δVfillM.

Theorem 4.2. Set δVfillM := ⊕nf

i=1δV
i
fillM where

(α) γ(δV i
fillM) ⊂M ,

(β) ∇ · δV i
fillM = {0},

(γ.1) γj(δV i
fillM) = {0}, for 1 ≤ j ≤ i− 1,

(γ.2) γi(Vgs,i) ∩ γi(δV i
fillM) = {0},

(δ) dim δV i
fillM = dim γi(δV i

fillM) = IM,i(Vg ×Wg).

Then δVfillM satisfies the properties in Table 2, that is,

(a) γδVfillM ⊂M ,
(b) ∇ · δVfillM = {0},
(c) γVgs,1 ∩ γδVfillM = {0},
(d) dim δVfillM = dim γδVfillM = IM (Vg ×Wg).

This result implies that (Vg ⊕ δVfillM) ×Wg admits an M -decompositon (see [6], Prop. 5.1).

4.2.3. The divide-and-conquer algorithm

Based on this result, we have that the following algorithm provides a practical construction of the filling
space δVfillM.
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A practical construction of δVfillM

Input: An ordering of the nf faces of the polyhedron K, {Fi}nf

i=1.
Input: The space of traces M .
Input: A space Vg × Wg satisfying the inclusion properties (I).
Output: The space δVfillM.

For each i = 1, . . . , nf ,
(1) Find the auxiliary spaces Vgs,i.
(2) Find an IM,i(Vg × Wg)-dimensional complement space CM,i on face Fi:

γi(Vgs,i) ⊕ CM,i = M̃(Fi),

where M̃(Fi) := M(Fi) if i < nf , and M̃(Fnf ) := γnf (Wgcst) is the subspace of

M(Fnf ) that is L2(Fnf )-orthogonal to γnf (Wgcst) = P0(Fnf ).

(3) Find an IM,i(Vg × Wg)-dimensional, divergence-free filling space δV i
fillM on K:

(3.1) γj(δV
i
fillM) = {0}, for 1 ≤ j ≤ i − 1,

(3.2) γi(δV
i
fillM) = CM,i,

(3.3) γj(δV
i
fillM) ⊂ M(Fj), for i + 1 ≤ j ≤ ne.

(The space δV i
fillM satisfies properties (α)–(δ) of Theorem 4.2.)

return δVfillM := ⊕nf

i=1δV
i
fillM.

4.3. The general case Vg × Wg × M := Pk(K) × Pk(K) × Pk(∂K)

Now we apply algorithm 4.2.3, and proceed in the following three steps.

(1). Finding the spaces Vgs,i.
We begin with a characterization of the auxiliary spaces Vgs,i which is valid for a general flat-faced polyhedron

K. It is stated in terms of bubble functions associated to the faces of the polyhedron. We define them as follows.
For any given numbering of the faces of a polyhedron K, we set, for i = 1, . . . , nf ,

bi−1 :=
i−1∏
k=1

λk and bi−1,j :=
i−1∏
k=1

nk×nj �=0

λk,

where b0 = 1.
The proof of this result is quite technical and so is provided in the Appendix.

Proposition 4.3. Let K be a polyhedron of nf faces with no pair of faces lying on the same hyperplane. We
number its faces in such a way that n1 · (n2 × n3) �= 0. Then we have that, for Vg := Pk(K),

Vgs,i = ∇× Φi,

where

Φi := {bi−1ξ +
∑

j∈Zi−1

bi−1,jφjnj : bi−1ξ ∈ Pk+1, bi−1,jφj ∈ Pk+1 ∀j ∈ Zi−1},

where Zi−1 := {1 ≤ j ≤ i− 1 : nj × nk �= 0 for k = 1, . . . , j − 1}. Moreover, we have

dimVgs,i = dimΦi − dimPk+3−i(R3) + δ1,i.
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Here we denote Pm(Rd) to be the polynomial of total degree no greater than m in R
d, with the convention that

Pm(Rd) = {0} for a negative integer m, and Pm(R0) = span{1} for m ≥ 0. We have, for m ≥ 0,

dimPm(Rd) =
(

m+ d
m

)
=

(m+ d)!
m! d!

·

With this result, we are now ready to characterize the spaces γi(Vgs,i) and the complement spaces CM,i for
the four polyhedral elements considered in Section 2.

(2). Finding the complement spaces CM,i.
We know that the space CM,i is any subspace of M̃(Fi) such that γi(Vgs,i)⊕CM,i = M̃(Fi); see the definition

of M̃(Fi) in algorithm 4.2.3. Since M(Fi) = Pk(Fi), we need first to characterize γi(V s,i) then to find a choice
of CM,i, which is not necessarily unique. Currently, we do not have a systematic characterization of the bases of
γi(Vgs,i) for a general polyhedron due to the complexity of the space Vgs,i. Let us turn to the simpler (and very
important) cases of polyhedral elements considered in Section 2, namely when K is a tetrahedron (4 vertices,
4 faces), a quadrilateral-based pyramid (5 vertices, 5 faces), a triangle-based prism (6 vertices, 5 faces), and a
quadrilateral-based hexahedron (8 vertices, 6 faces). We further assume each quadrilateral face is convex and
does not degenerate into a triangle.

It turns out that the results for a tetrahedral, pyramidal, or prismatic element would follow immediately from
that for a hexahedral element. For this reason, let us first find the spaces CM,i for a hexahedron.

K is a hexahedron. Let the skeleton of the hexahedron with its faces numbered be given in Figure 1.
Our first result, a direct consequence of Proposition 4.3, gives the dimension of the spaces Vgs,i for different

types of hexahedra.

Lemma 4.4. Le K be a hexahedron with its faces ordered as in Figure 1. Then, we have

dimVgs,1 = 2 dimPk(R3) + dim Pk(R2),

dimVgs,2 = 2 dimPk(R3),

dimVgs,3 = 2 dimPk(R3) − dim Pk(R2),

dimVgs,4 = 2 dimPk−1(R3),

dimVgs,5 =
{

2 dimPk−2(R3) + dimPk−2(R2) if F4 �‖ F2,
dimPk−1(R3) + dimPk−2(R3) if F4 ‖ F2,

dimVgs,6 =

⎧⎪⎪⎨⎪⎪⎩
2 dimPk−3(R3) + 2 dimPk−3(R2) if F4 �‖ F2, F5 �‖ F3,
dimPk−2(R3) + dimPk−3(R3)

+ dimPk−3(R2) if F4 �‖ F2, F5 ‖ F3,
2 dimPk−2(R3) if F4 ‖ F2, F5 ‖ F3,

dimVgs,7 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2 dimPk−4(R3) + 3 dimPk−4(R2) if F4 �‖ F2, F5 �‖ F3, F6 �‖ F1,
dimPk−3(R3) + dimPk−4(R3)

+2 dimPk−4(R2) if F4 �‖ F2, F5 �‖ F3, F6 ‖ F1,
2 dimPk−3(R3) + dim Pk−4(R2) if F4 �‖ F2, F5 ‖ F3, F6 ‖ F1,
2 dimPk−3(R3) + dim Pk−3(R2) if F4 ‖ F2, F5 ‖ F3, F6 ‖ F1.

Proof. The results for i ≤ 3 is easy to verify. Let us prove the results for i ≥ 4. From Proposition 4.3, it is clear
that we only need to count the dimension of Φi to get the dimension of Vgs,i.
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We denote Pk(R3)/{λj} be the polynomial space of degree k that is independent of λj . Then, we have the
following characterization of Φi on the hexahedron,

Φi =
3∑

j=1

njbi−1,jPk+1−#i−1
j

(R3) +
∑

j∈Zi−1
j≥4

njbi−1,jPk+1−#i−1
j

(R3)/{λj},

where #i−1
j is the polynomial degree of bi−1,j. After verifying that the above function are linearly independence,

we get

dimΦi =
3∑

j=1

dimPk+1−#i−1
j

(R3) +
∑

j∈Zi−1
j≥4

dimPk+1−#i−1
j

(R3)/{λj}

=
3∑

j=1

dimPk+1−#i−1
j

(R3) +
∑

j∈Zi−1
j≥4

dimPk+1−#i−1
j

(R2).

The dimension of Vgs,i for i ≥ 4 immediately follows from this result. �

This result indicates that, the dimension γi(Vgs,i) for an hexahedron, and hence that of the space CM,i,
depends on how many parallel faces does the hexahedron have.

As an immediate consequence, we can compute the M -indexes for each face using the fact that dim γiVgs,i =
dim Vgs,i − dimVgs,i+1. The results are collected in the following, whose proof is straightforward and omitted.

Corollary 4.5. Le K be a hexahedron with its faces ordered as in Figure 1. Then, we have

dim γi(Vgs,i) = dimPk(R2) for i ∈ {1, 2, 3},

dim γ4(Vgs,4) =
{

dimPk−1(R2) + dimPk−1(R) if F4 �‖ F2,
dimPk−1(R2) if F4 ‖ F2,

dim γ5(Vgs,5) =

⎧⎪⎨⎪⎩
dimPk−2(R2) + 2 dimPk−2(R) if F4 �‖ F2, F5 �‖ F3,
dimPk−2(R2) + dimPk−2(R) if F4 �‖ F2, F5 ‖ F3,
dimPk−1(R2) if F4 ‖ F2, F5 ‖ F3,

dim γ6(Vgs,6) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dimPk−3(R2) + 3 dimPk−3(R) if F4 �‖ F2, F5 �‖ F3, F6 �‖ F1,
dimPk−3(R2) + 2 dimPk−3(R) if F4 �‖ F2, F5 �‖ F3, F6 ‖ F1,
dimPk−2(R2) + dimPk−3(R) if F4 �‖ F2, F5 ‖ F3, F6 ‖ F1,
dimPk−2(R2) + dimPk−2(R) if F4 ‖ F2, F5 ‖ F3, F6 ‖ F1.
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Moreover, we have

IM,i = dimCM,i = 0, if 1 ≤ i ≤ 3,

IM,4 = dimCM,4 =
{

dim Pk(R0) if F4 �‖ F2,
dim Pk(R) if F4 ‖ F2,

IM,5 = dimCM,5 =

⎧⎨⎩
dimPk(R0) + 2 dim Pk−1(R0) if F4 �‖ F2, F5 �‖ F3,
dimPk(R) + dimPk−1(R0) if F4 �‖ F2, F5 ‖ F3,
dimPk(R) if F4 ‖ F2, F5 ‖ F3,

IM,6 = dimCM,6 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2 dimPk−1(R0)+3 dimPk−2(R0) if F4 �‖ F2,F5 �‖ F3,F6 �‖ F1,
dimPk−1(R) + dimPk−1(R0)
+2 dimPk−2(R0) if F4 �‖ F2,F5 �‖ F3,F6 ‖ F1,
dimPk−1(R) + dimPk−1(R0)
+ dimPk−2(R0) if F4 �‖ F2,F5 ‖ F3,F6 ‖ F1,
dimPk−1(R) + dimPk−1(R0) if F4 ‖ F2,F5 ‖ F3,F6 ‖ F1.

This result shows that CM,i = {0} for i = 1, 2, 3. The corresponding spaces for the fourth, fifth, and sixth faces
are given next.

Lemma 4.6. Let K be a hexahedron with its faces ordered as in Figure 1. Then, for the fourth face, we can
take

CM,4 =

⎧⎨⎩
span{λk

1} if F4 �‖ F2 and κ124 �= 0,
span{λk

3} if F4 �‖ F2 and κ234 �= 0,
span{λα

1λ
k−α
3 }0≤α≤k if F4 ‖ F2.

For the fifth face, we can take

CM,5 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

span{λk
1 , λ

k−1
1 λ2, λ

k−1
1 } if F4 �‖ F2, F5 �‖ F3 and κ135 �= 0,

span{λk
2 , λ

k−1
2 λ1, λ

k−1
2 } if F4 �‖ F2, F5 �‖ F3, κ235 �= 0, κ245 �= 0

and F2 ∩ F3 ∩ F5 �∈ F4

span{λk
2 , λ

k−1
2 λ1, 1} if F4 �‖ F2, F5 �‖ F3, κ235 �= 0, κ245 �= 0

and F2 ∩ F3 ∩ F5 ∈ F4

span{λk−1
2 } ⊕ span{λα

1λ
k−α
2 + pα}0≤α≤k if F4 �‖ F2, F5 ‖ F3

and κ245 �= 0,
span{λα

1 λ
k−α
2 }0≤α≤k if F4 ‖ F2, F5 ‖ F3.

Here pα ∈ Pk−1(F5) is any polynomial on F5 of degree less than k.
And for the sixth face, we can take

CM,6 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

span{λk−2
3 (λ2 − c1), λk−2

3 (λ3 − c2), if F4 �‖ F2, F5 �‖ F3, F6 �‖ F1,
λk−2

3 (λ2
3 − c3), λk−1

3 (λ2 − c4), λk−1
3 (λ3 − c5)} and κ136 �= 0,κ356 �= 0,

span{λk−2
3 (λ2 − c1), λk−2

3 (λ3 − c2)} if F4 �‖ F2, F5 �‖ F3, F6 ‖ F1,
⊕span{λα

3λ
k−α
2 + pα}0≤α≤k and κ356 �= 0.

span{λk−2
2 (λ2 − c6), λk−2

3 (λ3 − c2)} if F4 �‖ F2, F5 �‖ F3, F6 ‖ F1,
⊕span{λα

3λ
k−α
2 + pα}0≤α≤k and κ356 = κ246 = 0.

span{λk−2
3 (λ3 − c2)}

⊕span{λα
3λ

k−α
2 + pα}0≤α≤k if F4 �‖ F2, F5 ‖ F3, F6 ‖ F1.

span{λα
3λ

k−α
2 + pα}0≤α≤k if F4 ‖ F2, F5 ‖ F3, F6 ‖ F1.
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Here pα ∈ Pk−1(F6), and the constants {ci}6
i=1 make sure that the related functions have average zero on F6.

Here we use the convention that we only take the above function when its power index is not negative. For
example, if k = 0, CM,4 = span{1}, CM,5 = span{1}, and CM,6 = {0}.

Proof. In this proof, we set kijk = ∇λi · (∇λj ×∇λk), this constant simply differ with the constant kijk defined
in Section 2 by a scaling factor.

Let us first prove the result for the fourth face. We give a detailed proof for the case in which F2 �‖ F4 and
k124 �= 0, and sketch those of the other two cases.

If F2 �‖ F4 and k124 �= 0, we claim that

γ4

(
∇×
(
λ1λ2P̃k−1(λ1, λ3)∇λ3

))
⊕ γ4

(
∇×
(
λ1λ3P̃k−1(λ1)∇λ2

))
⊕ span{λk

1} = Pk(F4).

This implies that we can take CM,4 = span{λk
1}, since

∇×
(
λ1λ2P̃k−1(λ1, λ3)∇ λ3

)
⊕∇×
(
λ1λ3P̃k−1(λ1)∇ λ2

)
⊂ V s,4.

To prove the claim, we show that the following functions form a set of basis for Pk(F4),{
γ4

(
∇×
(
λα+1

1 λ2λ
β
3 ∇λ3

))}α+β≤k−1

α≥0,β≥0
,
{
γ4

(∇× (λα+1
1 λ3 ∇λ2

))}k−1

α=0
, {λk

1}.

We have
γ4

(
∇×
(
λα+1

1 λ2λ
β
3 ∇λ3

))
= λα

1 λ
β
3 (k234 λ1 + (α + 1)k134 λ2),

and
γ4

(∇× (λα+1
1 λ3 ∇λ2

))
= λα

1 (k324 λ1 + (α+ 1)k124 λ3).

Now, assume that there exist constants {Cαβ}α+β≤k−1
α≥0,β≥0 , {Dα}α≤k−1

α≥0 , and E such that

α+β≤k−1∑
α≥0,β≥0

Cαβ λ
α
1λ

β
3 (k234 λ1 + (α+ 1)k134 λ2)

+
α≤k−1∑

α≥0

Dα λ
α
1 (k324 λ1 + (α+ 1)k124 λ3) + E λk

1 = 0 on F4. (4.2)

We are going to prove that all the constants are zero. Evaluating the expression on the edge e14 := F1 ∩ F4,
we get

β≤k−1∑
β≥0

C0β λ
β
3k134 λ2 +D0 k124 λ3 = 0 on e14,

since λ1|e14 = 0. Now, evaluating the above expression on the node v124 := F1 ∩ F2 ∩ F4, we get D0 = 0, since
λ2|v124 = 0, λ3|v124 �= 0, and k124 �= 0. This implies

β≤k−1∑
β≥0

C0β λ
β
3k134 λ2 = 0 on e14.
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Hence C0β = 0 for 0 ≤ β ≤ k−1 because λ2 and λ3 are linear functions on e14 and k134 �= 0. Then, consequently
dividing equation (4.2) by λ1 and using the same argument, we obtain Dα = 0 and Cαβ = 0 for 0 ≤ β ≤ k−1−α
for all 1 ≤ α ≤ k − 1, and finally, E = 0. This completes the proof of the claim.

Now, if F2 �‖ F4 and k234 �= 0, we can use similar argument to prove

γ4

(
∇×
(
λ2λ3P̃k−1(λ1, λ3)∇λ1

))
⊕ γ4

(
∇×
(
λ1λ3P̃k−1(λ3)∇λ2

))
⊕ span{λk

3} = Pk(F4),

where we need to evaluate the expression on the edge e34 := F3 ∩ F4, and consequently dividing the expression
by λ3. And if F2 ‖ F4, we can easily get

γ4

(
∇×
(
λ1λ2P̃k−1(λ1, λ3)∇λ3

))
⊕ P̃k(λ1, λ3) = Pk(F4),

because λ2 is a constant on F4 and γ4

(
∇×
(
λ1λ2P̃k−1(λ1, λ3)∇λ3

))
⊂ Pk−1(F4). This completes the proof

for the fourth face.
Next, we prove the result for the fifth face. The key part of the proof has already been shown for the fourth

face, so we just sketch the main idea for the first case, namely F2 �‖ F4, F3 �‖ F5, and k135 �= 0. In this case, we
claim that, for k ≥ 1,

γ5

(
∇×
(
λ1λ3λ4P̃k−2(λ1, λ2)∇λ2

))
⊕ γ5

(
∇×
(
λ1λ2λ4P̃k−2(λ1)∇λ3

))
⊕ γ5

(
∇×
(
λ1λ2λ3P̃k−2(λ1)∇λ4

))
⊕ span{λk

1 , λ
k−1
1 λ2, λ

k−1
1 } = Pk(F5).

To prove the claim, we show that the following functions form a set of basis for Pk(F5),{
γ5

(
∇×
(
λα+1

1 λβ
2λ3λ4 ∇λ2

))}α+β≤k−2

α≥0,β≥0
,
{
γ5

(∇× (λα+1
1 λ2λ4 ∇λ3

))}α≤k−2

α≥0
,{

γ5

(∇× (λα+1
1 λ2λ3 ∇λ4

))}α≤k−2

α≥0
, {λk

1 , λ
k−1
1 λ2, λ

k−1
1 }.

Then, to show that, we perform a linear independence check of these functions by first evaluating an expression
similar to (4.2) at certain edges and nodes, and then do a mathematical induction on the index α.

Finally, we sketch the proof for the last face for the first case when F2 �‖ F4, F3 �‖ F5, F1 �‖ F6, and k136 �= 0,
k356 �= 0. In this case, we claim that, for k ≥ 2,

γ6

(
∇×
(
λ2λ3λ4λ5P̃k−3(λ2, λ3)∇λ1

))
⊕ γ6

(
∇×
(
λ1λ3λ4λ5P̃k−3(λ3)∇λ2

))
⊕ γ6

(
∇×
(
λ1λ2λ3λ5P̃k−3(λ3)∇λ4

))
⊕ γ6

(
∇×
(
λ1λ2λ3λ4P̃k−3(λ3)∇λ5

))
⊕ λk−2

3 P2(λ2, λ3) = Pk(F6),

whose proof is similar to that for the fourth face. Using this claim, we easily get

γ6(V s,6) ⊕ CM,6 = {μ ∈ Pk(F6) :
∫

F6

μ ds = 0}.

This completes the proof �
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Now, the choices of CM,i for a tetrahedron, a pyramid, or a prism follow immediately from Lemma 4.6. We
collect the results in the following without giving the proof.

K is a tetrahedron, a pyramid, or a prism.

Corollary 4.7. Le K be a tetrahedron. Then, we have CM,i = {0} for 1 ≤ i ≤ 4.

Corollary 4.8. Le K be a pyramid with its faces ordered as in Figure 1. Then, we have CM,i = {0} for
1 ≤ i ≤ 3, and we can take

CM,4 = span{λk
3},

and

CM,5 = span{λk−1
2 p1, p2}.

Here p1, p2 ∈ P1(F5) satisfy ∫
F5

λk−1
2 p1 = 0 and p1(v234) = 0,∫
F5

p2 = 0 and p2(v234) �= 0,

where we recall v234 := F2 ∩ F3 ∩ F4 is the vertex of the pyramid opposite to the quadrilateral base.

Corollary 4.9. Le K be a prism with its faces ordered as in Figure 1. Then, we have CM,i = {0} for 1 ≤ i ≤ 3,
and we can take

CM,4 = span{λk
3},

and

CM,5 =
{

span{λk−1
2 p1, λ

k−1
2 p2}, if F5 �‖ F3 and κ235 �= 0,

span{λα
1λ

k−α
2 + pα}0≤α≤k, if F5 ‖ F3.

Here p1, p2 ∈ P1(F5) are linear independent satisfying∫
F5

λk−1
2 p1 = 0,

∫
F5

λk−1
2 p2 = 0,

and pα ∈ Pk−1(F5) satisfies ∫
F5

λα
1λ

k−α
2 + pα = 0.

(3). Validation of the spaces δVfillM.
Now, let us prove the choice of δVfillM in Theorem 2.3 for a tetrahedron, Theorem 2.5 for a pyramid,

Theorem 2.7 for a regular prism and Theorems 2.8 and 2.9 for different types of prisms, and Theorem 2.11
for a cube and Theorems 2.12 and 2.15 for different types of hexahedra satisfy the conditions in Table 2. For
simplicity, we say the choice of δVfillM is vaild if it satisfy the conditions in Table 2.

First, if K is a tetrahedron, we have CM,i = {0} for all the faces from Corollary 4.7. So, δVfillM = {0} in
Theorem 2.3 is valid.
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Next, if K is a pyramid and k ≥ 1, it is easy to show that the spaces

δV i
fillM = {0} for i ∈ {1, 2, 3},

δV 4
fillM = ∇× span{ξλk

3 ∇λ1},
δV 5

fillM = ∇× span{ξλk−1
2 λ4 ∇λ1, ξλ1 ∇ λ4}

where ξ is defined in Theorem 2.5, satisfy the conditions in algorithm 4.2.3 with CM,i given in Corollary 4.8.
Indeed, by the definition of ξ, we have ξ|F2∪F3 = 0, ξ|F4 is proportional to λ3|F4 , and ξ|F5 is proportional to
λ2|F5 . This implies γ4(∇×(ξλk

3 ∇λ1)) is proportional to λk
3 |F4 , and γ5(∇×(ξλk−1

2 λ4 ∇λ1)) is proportional to
λk−1

2 (kλ4κ215 + λ2κ415)|F5 and γ5(∇×(ξλ1 ∇λ4)) is proportional to (λ1κ245 + λ2κ145)|F5 . So δVfillM is valid in
Theorem 2.8 for a pyramid for k ≥ 1. The proof for the case k = 0 is simpler and omitted.

Then, if K is a prism, we prove that δVfillM is valid in Theorem 2.9 for a prism without parallel faces when
k ≥ 1. The proof for the case with parallel faces in Theorems 2.7 and 2.8, and the case when k = 0 are simpler
and omitted. We show that the spaces

δV i
fillM = {0} for i ∈ {1, 2, 3},

δV 4
fillM = span{vμk

4
},

δV 5
fillM = ∇× span{ξλk

2 ∇λ1, ξλ1λ
k−1
2 ∇λ2}

where ξ is defined in Theorem 2.9, satisfy the conditions in algorithm 4.2.3 with CM,i given in Corol-
lary 4.9. Indeed, by the definition of ξ, we have ξ|F3∪F4 = 0, ξ|F5 is proportional to λ4|F5 . This implies
γ5(∇×(ξλk

2 ∇λ1)) is proportional to λk−1
2 (kλ4κ215 + λ2κ415)|F5 and γ5(∇×(ξλ1λ

k−1
2 ∇λ2)) is proportional to

λk−1
2 (λ1κ425+λ4κ125)|F5 . Also, by definition, we have γ4(vμk

4
) = μk

4 |F4 = λk
3 |F4 . So δVfillM is valid in Theorem 2.8

for a pyramid for k ≥ 1.

Finally, if K is a hexahedron, we show that δVfillM is valid in Theorem 2.14 for a hexahedron with one
pair of parallel, non-parallelepipedal faces when k ≥ 2. The other cases, namely, three pair of parallel faces
in Theorem 2.11, two pair of parallel faces in Theorem 2.12, one pair of parallel, parallelepipedal faces in
Theorem 2.13, no pair of parallel faces in Theorem 2.15, and the cases when k = 0 or k = 1 are similar and
omitted. To even simplify presentation, we assume that κ234 �= 0. Then, it is easy to check that the spaces

δV i
fillM = {0} for i ∈ {1, 2, 3},

δV 4
fillM = span{vμk

4,1
},

δV 5
fillM = span{vμk

5,3
,vμk

5,1
,vμk−1

5,3
},

δV 6
fillM = span{vμk−1

6,1
,vμk−1

6,3
}

⊕ ∇× span{λ1λ
k−1
2 λ4λ5 ∇λ3,

λ1λ
k−1
2 λ3λ5 ∇λ4, λ1λ3λ4λ5P̃k−2(λ2, λ3)∇ λ2}

satisfy the conditions in algorithm 4.2.3 with CM,i given in Lemma 4.6, and the hexahedron has faces ordered
such that F2 �‖ F4, F3 �‖ F5, F1 ‖ F6, and μ135 �= 0.

This completes the validation of δVfillM on the four polyhedron considered in Section 2 for the given space
Vg ×Wg := Pk(K) × Pk(K) and trace space M := Pk(∂K).
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4.4. Three special cases

Now, we consider other choices of the given spaces for some special elements.
The first special case is a square based pyramid with trace space

M := {μ ∈ L2(∂K) : μ|F1 ∈ Qk(F1), μ|Fi ∈ Pk(Fi) for 2 ≤ i ≤ 5},

and given space Vg ×Wg := Pk(K) × Pk(K). The result is shown in Theorem 2.4. The second special case is
a regular prism with given spaces Vg ×Wg ×M := Pk|k(K) × Pk|k(K) ×Mpq

k (∂K). The result is shown in
Theorem 2.6. And the last special case is a cube with given spaces Vg ×Wg ×M := Qk(K)× Qk(K)×Q(∂K).
The result is shown in Theorem 2.10.

Let us first prove Theorem 2.4 for a square based pyramid.

Proof. The result follows directly from Theorem 2.5, and the fact that

Pk(F1) ⊕ γ1(δV 1
fillM) = Qk(F1),

γi(δV 1
fillM) = {0} for 2 ≤ i ≤ 5,

where

δV 1
fillM := span{λα

2λ
β+1
3 λ4λ5 ∇λ2 : k − 1 − β ≤ α ≤ k − 1, 0 ≤ β ≤ k − 1}. �

Let us now prove Theorem 2.6 for a regular prism.

Proof. We start with proving that the following polynomial sequence is exact on R
3 for k ≥ 1.

R
i−→ H

∇−→ E
∇×−→ V

∇·−→W
o−→ 0,

where

H := Pk+1|k ⊕ P̃k+1(z), E :=

⎛⎝ Pk|k ⊕ P̃k(x, y)y
Pk|k

Pk+1|k

⎞⎠ ,
V := Pk|k, W := ∇·Pk|k = Pk−1|k + Pk,k−1.

We need to show that

Ker∇H = R, Ker∇×E = ∇H, Ker∇·V = ∇×E.

The first and second equalities are straightforward. And for the third one, it is easy to show that ∇×E ⊂ Ker∇·V
and that

dim∇·V + dim∇×E = dimW + dimE − dim∇H

= dimV .

This result implies that any divergence-free function in V = Pk|k is a curl of a function in E, and we will
use this fact in what follows.
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First, we have

V s,1 = ∇×
⎛⎝ Pk|k ⊕ y P̃k(x, y)

Pk|k
Pk+1|k

⎞⎠ ,
V s,2 = ∇×

⎛⎝ Pk|k ⊕ y P̃k(x, y)
xPk−1|k
xPk|k

⎞⎠ ,
V s,3 = ∇×

⎛⎝ yPk−1|k ⊕ y P̃k(x, y)
xPk−1|k
xy Pk−1|k

⎞⎠ ,
V s,4 = ∇×

⎛⎝ yz Pk−1|k−1

xz Pk−1|k−1

xy Pk−1|k

⎞⎠ ,
V s,5 = ∇×

⎛⎝ yzλ4 Pk−2|k−1

xzλ4 Pk−2|k−1

xyλ4 Pk−2|k

⎞⎠⊕∇×(xyz Pk−2,k−1 ∇λ4),

V s,6 = ∇×
⎛⎝ yzλ4λ5 Pk−2|k−2

xzλ4λ5 Pk−2|k−2

xyλ4 Pk−2|k

⎞⎠⊕∇×(xyzλ5 Pk−2,k−2 ∇λ4).

Then, we apply algorithm 4.2.3. It is now routine to check that dim γ1(V s,1) = dim Qk(F1), dim γ2(V s,2) =
dim Qk(F2), dim γ3(V s,3) = dimPk(F3), dim γ4(V s,4) = dimQk(F4) − 1, dim γ5(V s,5) = dim Pk−1(F5) − 1, and
the trace spaces CM,i defined in Corollary 4.9 satisfy the properties in algorithm 4.2.3. So, we need to find
one function related to the fourth face, and k + 1 functions related to the fifth face. And the space δVfillM in
Theorem 2.6 is valid. �

Finally, let us sketch the proof of Theorem 2.10 for a cube.

Proof. as in the proof of Theorem 2.6, we start with an exact sequence.

R
i−→ H

∇−→ E
∇×−→ V

∇·−→W
o−→ 0,

where

H := Pk,k,k ⊕ span{xk+1, yk+1, zk+1}, E :=

⎛⎝ Pk,k,k ⊕ P̃k+1(z)
Pk,k,k ⊕ P̃k+1(x)
Pk,k,k ⊕ P̃k+1(y)

⎞⎠ ,
V := Pk,k,k, W := Pk,k,k\{xkykzk}.

We then use it to explicitly construct the spaces V s,i for 1 ≤ i ≤ 7, and compute the trace space CM,i. In
particular, we have CM,i = {0} for 1 ≤ i ≤ 3, CM,4 = span{xkzk}, CM,5 = span{xk, xkyk}, and CM,6 =
span{∂y(yk(1 − y)), ∂z(zk(1 − z)), ∂y(yk(1 − y))zk}. To end, we lift the trace spaces into the element using
polynomial functions thanks to the face parallelism.

The details of the proof are left out. �

This completes the proofs of the main results on the justification of the construction of the spaces δVfillM in
Theorem 2.3 to Theorem 2.15.
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5. Concluding remarks

We have applied the theory of M -decomposition to systematically construct HDG and their sandwiching
mixed methods on four basic polyhedral elements, namely, tetrahedra, pyramids, prisms, and hexahedra. For
other flat-faced polyhedra, we want to let the computer to automatically find the spaces. How to do so consists
the subject of ongoing research.

Appendix A. Proof of Proposition 4.3

In this appendix, we prove the characterization of divergence-free polynomial functions in Proposition 4.3.
We use the following lemma to prove this result.

Lemma A.1. Let φ be a vector field in Pk(R3), and let F be a hyperplane in R
3 whose normal we denoted by

n. Suppose that the tangential trace of φ on the face F , γt φ|F := (φ − (φ · n)n)|F , lies in Pr(F ). Then the
following two statements are equivalent.

(a) (∇×φ) · n|F = 0.
(b) There exist functions ψ ∈ Pr+1(R3) and η ∈ Pr(R3) such that

φ|F = (∇ψ + η n)|F .

Proof. Let us just prove (a) =⇒ (b); the reverse implication is easy to see. First, we have

0 = (∇×φ) · n|F = (n ×∇) · φ|F = (n ×∇) · (φ − (φ · n)n
)∣∣

F
,

where (n × ∇)· is the surface divergence operator on F . This implies the existence of a surface polynomial
function ψF ∈ Pr+1(F ) such that (

φ − (φ · n)n
)∣∣

F
= (n ×∇×n)ψF ,

where n ×∇×n is the surface curl operator on F . Now, taking ψ ∈ Pr+1(R3) such that ψ|F = ψF , we get(
φ − (φ · n)n

)∣∣
F

=
(
∇ψ − (∇ψ · n)n

)∣∣
F

because ∇ψ = (n ×∇×n)ψ + (∇ψ · n)n. Hence,

φ|F =
(
∇ψ − (∇ψ · n − φ · n)n

)∣∣
F
.

Since η := ∇ψ · n − φ · n ∈ Pk(R3), the result follows. This completes the proof. �

Now, let us prove Proposition 4.3.

Proof. We proceed by induction. If i = 1, we have Φ1 = Pk+1, and the result follows from the exactness of the
following polynomial sequence

R
i−→ Pk+2(R3) ∇−→ Pk+1(R3) ∇×−→ Pk(R3) ∇·−→ Pk−1(R3) o−→ 0.

Now, assume that the result is true for i = m, for some integer 1 ≤ m ≤ nf − 1, we need to show that it also
holds for i = m+ 1. Since it is trivial to check that ∇×Φm+1 ⊂ Vgs,m+1, let us just prove the reverse inclusion.
We proceed by the following four steps.
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Step 1: Notation

Let us introduce the new bubble function b‖m :=
∏

k∈S
‖
m
λk, where

S‖
m := {1 ≤ k ≤ m− 1 : nk × nm = 0},
Sm := {1 ≤ k ≤ m− 1 : nk × nm �= 0}.

The relevance of this function lies in the following simple identities:

bi−1 =
i−1∏
k=1

λk =
∏

k∈Si

λk ·
∏

k∈S
‖
i

λk = bi−1,i b
‖
i , (A.1a)

bi−1,j =
i−1∏
k=1

nk×nj �=0

λk =
∏

nk×nj �=0
k∈Si

λk ·
∏

nk×nj �=0

k∈S
‖
i

λk, =
∏

nk×nj �=0
k∈Si

λk · b‖i , for j ∈ Si. (A.1b)

Step 2: Using the inductive hypothesis

Let v be an element in Vgs,m+1. Since v ∈ Vgs,m, by induction, there exists a function φ ∈ Φm such that
v = ∇×φ, and so, we can write that

φ = bm−1ξ +
∑

j∈Zm−1

bm−1,jφjnj . (A.2)

This implies that, on the face Fm, we have

γt φ = nm ×
⎛⎝bm−1ξ +

∑
j∈Zm−1∩Sm

bm−1,jφjnj

⎞⎠× nm

since nj is parallel to nm for j ∈ S
‖
m. Moreover, by the identities (A.1),

γt φ = nm ×

⎛⎜⎜⎝bm−1,mξ +
∑

j∈Zm−1∩Sm

∏
nk×nj �=0

k∈Sm

λk · φjnj

⎞⎟⎟⎠× nm b‖m,

and, since b‖m is a constant over the face Fm, we conclude that

γt φ|Fm
∈ Pk+1−s(Fm),

where s is the polynomial degree of b‖m. Finally, since ∇× φ · n|Fm = 0, by Lemma A.1, we get that

φ|Fm
= (∇ψ + ηnm)|Fm

(A.3)

for some polynomials ψ ∈ Pk+2−s(K) and η ∈ Pk+1(K).

Step 3: Transforming γtφ|Fm
into zero

Next, we show that we can modify φ ∈ Φm so that we can set γtφ|Fm
= 0. We achieve this goal by exploring

some properties of the function ψ introduced in (A.3). Note that, for j ∈ Sm, the hyperplane containing the
face Fj , still denoted as Fj for simplicity, is not parallel to that containing Fm. Then the intersection of these
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two hyperplanes, ej,m := Fj ∩ Fm, exists. Dotting equation (A.3) with nj × nm, and noting that, by the form
of φ in (A.2), φ|ej,m = 0, we get

0 = ∇ψ · (nj × nm)|ej,m .

This implies that ψ is a constant on the line ej,m since the left hand side of the expression is nothing but the
tangential derivative of ψ along line ej,m. By fixing the value of ψ on one line to be zero, we would then get ψ
is zero on all the lines ej,m where j ∈ Sm. For this to happen, we need at least two of those lines to intersect
each other on the hyperplane Fj . This is guaranteed to be true because we are assuming that n1 ·n2 ×n3 �= 0.

Now, since when a polynomial vanishes on a line, it should vanish on a face contains that line, there exists
constants αj and βj , for j ∈ Sm, such that αjλj +βjλm divides ψ, where αjλj +βjλm = 0 is the general formula
of a face containing the line ej,m. This implies the existence of constants {αj , βj}j∈Sm such that

ψ = ξ
∏

j∈Sm

(αjλj + βjλm) ∈ Pk+2−s

with some polynomial function ξ. Hence, we have

ψ = ξ1λm + ξ2
∏

j∈Sm

λj

for some polynomial functions ξ1 and ξ2 such that ξ1λm ∈ Pk+2−s and ξ2
∏

j∈Sm
λj ∈ Pk+2−s. Now, if we set

ψ̃ := ξ2bm−1 = ξ2
∏

j∈Sm

λj · b‖m,

we have ψ̃ ∈ Pk+2 and, since λm = 0 on Fm and b‖m is a constant therein, there exists a constant α such that

(ψ − α ψ̃)
∣∣∣
Fm

= 0.

Hence
γtφ|Fm

= γt(∇ψ)|Fm
= γt(α∇ ψ̃)

∣∣∣
Fm

.

Now, set φ̃ := φ − α∇ ψ̃, we have φ̃ ∈ Φm, and γtφ̃
∣∣∣
Fm

= 0.

Without loss of generality, we assume that the given choice φ ∈ Φm satisfies γtφ|Fm
= 0.

Step 4: Conclusion

We have γtφ|Fj
= 0 for 1 ≤ j ≤ m by the previous assumption on φ and its formula in (A.2). This implies

that for any j ∈ Sm, we have φ|ej,m
= 0 where ej,m = Fj ∩ Fm.

From now on, we assume that S‖
m = ∅, that is, nj × nm �= 0 for all 1 ≤ j ≤ m − 1. The proof for the case

S
‖
m �= ∅ is similar and omitted.
Fixing j ∈ Zm−1 = Zm−1 ∩ Sm, we have that, for any index k in the set

{k ∈ Sm : nk × nj = 0},

φ|ek,m
= bm−1,jφjnj |ek,m

= 0. This implies that φj = 0 on ek,m for all k in {k ∈ Sm : nk × nj = 0}. Hence,

φj = φ̃jλm + ξj
∏

nk×nj=0
k∈Sm

λk
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for some polynomial functions φ̃j and ξj . Hence,

φ = bm−1

⎛⎝ξ +
∑

j∈Zm−1

ξjnj

⎞⎠+
∑

j∈Zm−1

bm,j φ̃jnj

by the fact that, for all j ∈ Sm,

bm,j = bm−1,jλm,

bm−1 = bm−1,j

∏
nk×nj=0

k∈Sm

λk.

To simplify notation, we denote ξ̃ := ξ +
∑

j∈Zm−1
ξjnj . Then,

φ = bm−1ξ̃ +
∑

j∈Zm−1

bm,j φ̃jnj

= bm−1nm × ξ̃ × nm + bm−1

(
ξ̃ · nm

)
nm +

∑
j∈Zm−1

bm,jφ̃jnj

where the polynomial functions ξ̃ and φj guarantee that each term in the above right hand side belongs to
Pk+1. By the assumption that S‖

m = ∅, we get bm,m = bm−1, hence

bm−1

(
ξ̃ · nm

)
nm +

∑
j∈Zm−1

bm,j φ̃jnj =
∑

j∈Zm

bm,jφ̃jnj

with φ̃m := ξ̃ ·nm. Finally, since γtφ|Fm = 0, we have λm divides nm × ξ̃ ×nm, which implies φ ∈ Φm+1. This
completes the proof of Vgs,m+1 ⊂ ∇×Φm+1.

It remains to compute the dimension of Vgs,i. We have

dimVgs,i = dim∇×Φi = dimΦi − dim Ker∇×Φi.

We also have
Ker∇×Φi = ∇ (bi−1Pk+3−i) .

So,
dim Vgs,i = dimΦi − dimPk+3−i(R3) + δ1,i.

This completes the proof. �
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