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SUPERCONVERGENCE BY M-DECOMPOSITIONS. PART II: CONSTRUCTION
OF TWO-DIMENSIONAL FINITE ELEMENTS ∗
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Abstract. We apply the concept of an M -decomposition introduced in Part I to systematically con-
struct local spaces defining superconvergent hybridizable discontinuous Galerkin methods, and their
companion sandwiching mixed methods. This is done in the framework of steady-state diffusion prob-
lems for the h- and p-versions of the methods for general polygonal meshes in two-space dimensions.
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1. Introduction

This is the second of a series of papers in which we develop the concept of an M -decomposition as an effective
tool for devising hybridizable discontinuous Galerkin (HDG) methods, and their companion sandwiching mixed
methods, which superconverge on unstructured meshes of shape-regular polyhedral elements. In the first part
of this series, [20], the general theory of M -decompositions was developed in the frame of steady-state diffusion
problems:

cq + ∇u = 0 in Ω,
∇ · q = f in Ω,

u = g on ∂Ω,

where Ω ⊂ R2 is a bounded polygonal domain, c is a uniformly bounded, uniformly positive definite symmetric
matrix-valued function, f ∈ L2(Ω) and g ∈ H1/2(∂Ω). Here we apply it systematically to explicitly construct
ready-for-implementation local spaces admitting M -decompositions for a variety of finite elements defined on
general polygonal elements in two-space dimensions. The corresponding construction in three-space dimensions,
which is fundamentally different than the two-dimensional case due to the difference in the characterization of
divergence-free polynomials in R2 and R3, is carried out in Part III, [14], of this series.

To better describe our results, let us recall the definition of the HDG (and mixed) methods under consid-
eration; we use the notation used in Part I, [20]. The HDG methods seek an approximation to (u, q, u|Eh

),

Keywords and phrases. Hybridizable discontinuous Galerkin methods, superconvergence, polygonal meshes.

∗ The first author was partially supported by the National Science Foundation (Grant DMS-1115331).

1 School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA.
cockburn@math.umn.edu; fuxxx165@math.umn.edu

Article published by EDP Sciences c© EDP Sciences, SMAI 2016

http://dx.doi.org/10.1051/m2an/2016016
http://www.esaim-m2an.org
http://www.edpsciences.org


166 B. COCKBURN AND G. FU

Table 1. Construction of spaces V × W admitting an M -decomposition, where the space of
traces M(∂K) includes the constants. The given space Vg × Wg satisfies the inclusion proper-
ties (I). We assume that W ⊃ P0).

V W

V mix := Vg ⊕ δVfillM ⊕ δVfillW W mix := Wg

V hdg := Vg ⊕ δVfillM W hdg := Wg

V mix := Vg ⊕ δVfillM Wmix := ∇ · Vg

(uh, qh, ûh), in the finite element space Wh × V h × Mh, of the form

V h := {v ∈ L2(Th) : v|K ∈ V (K), K ∈ Th},
Wh := {w ∈ L2(Th) : w|K ∈ W (K), K ∈ Th},
Mh := {μ ∈ L2(Eh) : μ|F ∈ M(F ), F ∈ Eh},

which is determined as the only solution of the following weak formulation:

(c qh , v)Th
− (uh , ∇ · v)Th

+ 〈ûh , v · n〉∂Th
= 0, (1.1a)

− (qh , ∇w)Th
+ 〈q̂h · n , w〉∂Th

= (f , w)Th
, (1.1b)

〈q̂h · n, μ〉∂Th\∂Ω = 0, (1.1c)
〈ûh, μ〉∂Ω = 〈g, μ〉∂Ω, (1.1d)

for all (w, v, μ) ∈ Wh × V h × Mh, where

q̂h · n = qh · n + α(uh − ûh) on ∂Th.

In Part I, [20], it was shown that these methods are superconvergent on unstructured meshes if, for all elements
K ∈ Th, the local space V (K) × W (K) admits an M(∂K)-decomposition, where

M(∂K) := {μ ∈ L2(∂K) : μ|e ∈ M(e) for all edges e of K}.
Moreover, it was also shown how to construct M -decompositions for any given space M(∂K).

We can summarize the construction as follows. (From now on, if there is no confusion, we drop the dependence
of the local spaces on the element K.) Given the trace space M that contains constants on ∂K, we pick any
given space Vg × Wg satisfying the inclusion properties:

(I.1) γVg + γWg ⊂ M ,
(I.2) ∇Wg ×∇ · Vg ⊂ Vg × Wg,

where γVg := {v · n|∂K : v ∈ Vg} and γWg := {w|∂K : w ∈ Wg}. We then construct the three spaces V × W
described in Tables 1 and 2; each of them admits an M -decomposition. In Table 1, the space V hdg × W hdg is
associated to an HDG method (note that we have ∇·V hdg� W hdg), while the upper sandwiching space V mix ×
Wmix and the lower space V mix × Wmix are associated to mixed methods (note that we have ∇ · V mix= Wmix

and ∇ · V mix= Wmix). In Table 2, the space Vgs := {v ∈ Vg : ∇ · v = 0} (s stands for solenoidal) is the
divergence-free subspace of Vg.

Let us recall that the two integers in the last column of Table 2 are the M- and the S-indexes. They are
defined as follows:

IM (Vg × Wg) :=dimM − dim{v · n|∂K : v ∈ Vg,∇ · v = 0} − dim{w|∂K : w ∈ Wg,∇w = 0},
IS(Vg × Wg) :=dimWg − dim∇ · Vg.
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Table 2. The properties of the spaces δV . Here Vgs := {v ∈ Vg : ∇ · v = 0}.

δV ∇ · δV γδV dim δV

δVfillM {0} ⊂ M,∩γVgs = {0} IM (Vg × Wg) (=dim γδV )
δVfillW ⊂ Wg, ∩∇ · Vg = {0} ⊂ M IS(Vg × Wg) (=dim∇ · δV )

Table 3. The indexes for M := Pk(∂K) for different elements K.

Vg × Wg := Qk × Qk (k ≥ 1)

Element IM (Vg × Wg) IS(Vg × Wg)
Rectangle 2 1

Vg × Wg := Pk × Pk (k ≥ 0)

Element IM (Vg × Wg) IS(Vg × Wg)

Triangle 0
(k≥0)

k + 1

Quadrilateral 1
(k=0)

2
(k≥1)

k + 1

Pentagon 2
(k=0)

4
(k=1)

5
(k≥2)

k + 1

Hexagon 3
(k=0)

6
(k=1)

8
(k=2)

9
(k≥3)

k + 1

Polygon (ne − 3)(θ + 1) − 1
2
θ(θ − 1) k + 1

of ne edges θ := min{k, ne − 3}

Once we find spaces V × W admitting M -decompositions, we need to check the conditions

(J.1) P0(K) ⊂ ∇ · V ,
(J.2) P1(K) ⊂ W ,

to guarantee that the spaces actually define a superconvergent method. Here by superconvergence, we mean
that there exists a projection of the scalar function u onto the finite element space Wh, denoted as Π u, such
that the projection error Π u−uh convergences to zero faster than the error u−uh. It is then possible to define
a scalar postprocessing u∗

h converging to u as fast as Πu − uh.
Although the construction just sketched is independent of the space dimension, in this paper, we restrict

ourselves to the two-dimensional case. We mainly focus on the construction of the spaces δVfillM and δVfillW

on a general polygonal element K in two dimensions, which are ready for implementation, for the trace space

M := Pk(∂K) = {μ ∈ L2(∂K) : μ|e ∈ Pk(e) for all edges e of K},
and the given space Vg ×Wg := Pk(K)×Pk(K). Here Pk(D) denotes the space of polynomials of degree at most
k defined on a domain D. When the element K is a unit square, we also consider the tensor-product given space
Vg ×Wg := Qk(K)×Qk(K). As mentioned above, the construction of the corresponding spaces on polyhedral
elements is carried out in Part III, [14]. The reason we need to do this elsewhere is that the construction of the
space δVfillM, which is the most difficult part of the construction, relies on a characterization of the divergence-
free space {v ∈ Vg : ∇·v = 0} and that of the space of its normal traces. Such characterizations are significantly
more involved in the three-dimensional case.

A glance at Table 2 is enough to make us realize that the spaces δVfillM and δVfillW are not unique on a given
polygonal element K for given spaces Vg ×Wg and M ; see also ([20], Props. 5.1 and 5.3). On the other hand, the
dimensions of the spaces δVfillM and δVfillW, that is, IM (Vg × Wg) and IS(Vg × Wg), respectively, are actually
unique, as we see in Table 3. Indeed, recall that IM (Vg × Wg) is the smallest dimension of a space δVfillM such



168 B. COCKBURN AND G. FU

that V × W := Vg ⊕ δVfillM × Wg admits an M -decomposition, see remark after ([20], Prop. 5.1), and that
IS(Vg ×Wg) is the smallest dimension of a space δVfillW such that V ×W := Vg ⊕δVfillM⊕δVfillW×Wg admits
an M -decomposition with ∇ · V = W , see remark after ([20], Prop. 5.3). Moreover, from Table 3 for the case
Vg × Wg := Pk × Pk, we notice that the S-index, IS(Vg × Wg), only depends on the polynomial degree k, not
on the geometry of the element. In contrast, the M -index, IM (Vg × Wg), does depend on both the polynomial
degree k and on the number of edges, ne, of the polygonal element. In particular, k 	→ IM (Vg × Wg) is an
increasing function on k for k ≤ ne − 3, and is equal to 1

2ne(ne − 3) for any k ≥ ne − 3.
Let us briefly discuss how do we actually carry out the construction of the spaces V × W admitting

M -decompositions. The main idea is to find a basis for a complement in the space of (non-constant) traces
in M(∂K) of the normal traces of Vg. Once this basis is found, the space δVfillM is obtained as the span of a
lifting of each of the traces into the element K. To find a basis of the above-mentioned complement, we proceed
by induction on the edges of the polygonal element K. This allows us to consider spaces of traces defined on a
single edge at a time and results in a systematic way to dealing with any polygonal element. The price we must
pay is that the resulting space δVfillM will depend on the numbering of the edges of the elements. However, as
shown in [20], this does not affect the superconvergence properties of the associated method. Moreover, when
symmetries are needed, it is not difficult to modify our results to get the symmetry-satisfying spaces.

Note that the HDG methods we obtain by our construction are strongly related to mixed methods, as
the sandwiching methods displayed the first and last rows of Table 1 are associated to (hybridized versions
of) mixed methods. Because of this, we can consider that our approach is the first systematic, constructive
way of obtaining mixed methods for polynomial elements of arbitrary shape. Indeed, although the theory of
mixed methods has been well-explored since the seminal paper of Raviart and Thomas back in 1977 [31], most
mixed methods for diffusion problems in two dimensions are available for meshes made of triangular or square
elements only, see [6]. In fact, to the knowledge of the authors, the only element for which high-order mixed
elements were defined is a convex quadrilateral, see [2]; the spaces provided by our construction are smaller
and provide similar convergence properties. Mixed methods of lowest order (k = 0) on polygonal/polyhedral
meshes have been proposed in [26,27], where the authors use composite piecewise linear functions to define the
H(div)-conforming space; see also in [32] where a different lowest order composite mixed method on general
hexahedral meshes was introduced. High-order mixed methods on polygonal meshes has been considered in ([33],
Sect. 7). However, this method is actually a reformulation of a standard mixed method on a matching simplicial
submesh of the original polygonal mesh, see ([33], Thm. 7.2). It is unclear whether this kind of reformulation
would be more efficient to implement than the original mixed method on the matching simplicial submesh.

Let us now briefly contrast our mixed methods with the mixed virtual element methods on two-dimensional
polygonal meshes in [9]; for the three-dimensional case, see [5]. The spaces used by these methods, on each
element, use solutions to certain PDEs as basis functions. As for the original conforming virtual element meth-
ods, [4], since the basis functions themselves are not computable, a set of degrees of freedom that can be used
to exactly compute volume integrals related to the polynomial parts of the basis functions has to be identified.
Then some integrals must be replaced by a suitably chosen “stabilization” term so that the method keeps its
original high-order accuracy. In contrast, our high-order H(div)-conforming spaces are obtained by adding to Vg

a small number of explictly computable basis functions. Indeed, as pointed out above, for Vg ×Wg := Pk ×Pk,
the dimension of δVfillM is at most 1

2 ne (ne − 3) and that of δVfillW is k + 1.
Let us now compare of our methods against other HDG methods that achieve superconvergence without using

M -decompositions. Currently, there are two ways of devising superconvergent HDG methods without relying
on M -decompositions. One uses a new stabilization operator suggested back in 2010 in ([28], Rem. 1.2.4) by
Lehrenfeld–Schöberl projection. A complete error analysis of these superconvergent HDG methods (defined on
general polygonal of polyhedral elements) was performed by Oikawa recently in [30]. Another way consists in
defining a sophisticated numerical trace for the approximate flux. This definition is the distinctive feature of
the so-called hybrid high-order (HHO) methods introduced in [22, 23] which superconverge also for polygonal
or polyhedral elements of arbitrary shape. It can be easily incorporated into the family of HDG methods since
HHO methods can be rewritten as HDG methods, as shown in [21]; see [13] for the different ways of rewriting
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HDG methods. One advantage of these these methods over the spaces we provide is that they do display smaller
local spaces. On the other hand, for the same space M(∂K), both these methods and ours have a global matrix
equation of identical size and sparsity structure. Thus, it is reasonable to expect that, if the computation of the
local problems is done in parallel, the main computational effort of all of these methods should be essentially the
same. Our numerical results in Section 5 shows that, on a polygonal mesh, all these methods produce similar
results in terms of numerical error and computational cost.

Let us end by pointing out that, by using our results for the sandwiching mixed methods, we can locally
compute an H(div)-conforming flux postprocessing, see ([20], Sect. 6.3), for the HDG approximation. This
also applies to the other methods like the HDG with the LS stabilization function or the HHO methods. This
postprocessing can be thought of as a generalization of the postprocessing obtained back in 2003 by Bastian
and Rivière [3] (see the variations proposed, for simplicial meshes, in 2005 [16], in 2007 [24] and in 2010 in [18]).
As was argued therein, see also ([1], Sect. 2.2), H(div)-conforming fluxes obtained by postprocessing an DG-like
approximate flux are preferable to the original DG-like approximation, even if both approximations are of the
same accuracy, when used on other convection-diffusion problems in which these fluxes drive the convection.

The rest of the paper is organized as follows. In Section 2, we describe and discuss our constructions of
M -decompositions. In Section 3, we provide the proofs of all the results of Section 2. In Section 4, we extend
our results to elements with hanging nodes (which may be useful in h-adaptivity), and to the variable-degree
case in which

M(∂K) := {μ ∈ L2(∂K) : μ|e ∈ Pke(e) for all edges e of K},
and ke ≥ 0 can vary from edge to edge (which may be useful in p-adaptivity). Then, in Section 5, we provide
numerical results to compare with some other HDG methods, and illustrate the superconvergence properties of
the new (uniform-degree) HDG methods and their sandwiching mixed methods on polygonal meshes. We end
in Section 6 with some concluding remarks.

2. The main results

This section contains our main results, that is, the spaces δVfillM and δVfillW satisfying the properties in
Table 2. We consider the two above-mentioned choices of the initial guess spaces Vg ×Wg and general polygonal
elements. Here, we use the following notation:

curl p := (−py, px).

2.1. The case Vg × Wg := Qk × Qk, k ≥ 1

In this case, we obtain mostly already known methods which we can see under a different light.

Theorem 2.1. Let K be the unit square with edges parallel to the axes. Then, for M = Pk(∂K) and Vg ×Wg =
Qk(K) × Qk(K), where k ≥ 1, we have that

IM (Vg × Wg) = 2 and IS(Vg × Wg) = 1.

Moreover, the space

δVfillM := curl span{xk+1y, x yk+1},
δVfillW := span{(xk+1yk, xkyk+1)}.

satisfy the properties in Table 2.

The proof of this result is quite simple, hence omitted.
In addition to properties in Table 2, the spaces in Theorem 2.1 consists of polynomials that are invariant

under the coordinate permutation (x, y) −→ (y, x), hence they are easy to implement and preserve the symmetry
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Table 4. A construction for K a square, M = Pk(∂K) and Vg × Wg = Qk × Qk, k ≥ 1.

V (K) W (K) Method

Qk ⊕ curl span{xk+1y, x yk+1} ⊕ span{(xk+1yk, xkyk+1)} Qk TNT[k] [15,19]

Qk ⊕ curl span{xk+1y, x yk+1} Qk HDGQ
[k][19]

Qk ⊕ curl span{xk+1y, x yk+1} Qk \ {xk yk} new

of the square element K. The local spaces V ×W resulting from this result (see Tab. 1) are displayed in Table 4,
where we abuse the notation and write Qk \ {xk yk} instead of ∇ · Qk = Pk−1,k + Pk,k−1. These three spaces
satisfy the conditions (J) in the introduction for superconvergence. As a consequence, the approximations qh, uh

converge with the optimal order of k + 1 and the postprocessing u∗
h with order k + 2. This is also the case for

the well-known Raviart−Thomas space

V := Pk+1,k × Pk,k+1 and W := Qk,

even though its approximate flux space strictly contains the corresponding space of TNT[k], whose dimension
is bigger by 2k − 1. Here Pm,n := Pm(x) ⊗ Pn(y) is the tensor product space of variable degree.

2.2. The case Vg × Wg := Pk × Pk, k ≥ 0

For this case, we present two different approaches depending on what type of function is used to construct the
spaces we seek. In the first approach, we use polynomials. Unfortunately, this approach only works for triangles
and parallelograms. This prompts the second approach, which is based on special lifting functions from the
boundary of the element into its interior.

a. First approach: Polynomial functions

Triangles

Let us begin by considering triangular elements. We recover a very well-known result.

Theorem 2.2. Let K be a triangle. Then, for M := Pk(∂K) and Vg × Wg = Pk(K) × Pk(K), we have that

IM (Vg × Wg) = 0 and IS(Vg × Wg) = k + 1.

Moreover, the spaces

δVfillM := {0},
δVfillW := x P̃k,

satisfy the properties in Table 2.

The proof of this result is very simple, hence omitted.
The local spaces V ×W resulting from this result are displayed in Table 5. The first two spaces are well-defined

for k ≥ 0 while the last for k ≥ 1. The first two spaces satisfy the conditions (J) for superconvergence when
k ≥ 1, and the last when k ≥ 2. For these cases, the postprocessing u∗

h converges with order k + 2 for these
three choices of local spaces.
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Table 5. A construction for K a triangle, M = Pk(∂K) and Vg × Wg = Pk × Pk.

V (K) W (K) Method

k ≥ 0 Pk ⊕ x P̃k Pk RTk [31]
k ≥ 0 Pk Pk HDGk[19]
k ≥ 1 Pk Pk−1 BDMk [7]

Table 6. The case M = Pk(∂K), Vg × Wg = Pk × Pk, and K is the unit square.

V (K) W (K) Method

k ≥ 0 Pk ⊕ curl span{xk+1y, x yk+1} ⊕ x P̃k(K) Pk (new)
k ≥ 0 Pk ⊕ curl span{xk+1y, x yk+1} Pk (new)
k ≥ 1 Pk ⊕ curl span{xk+1y, x yk+1} Pk−1 BDM[k] [7]

Parallelograms

Here we consider the case in which the element is a parallelogram. We only need to take the element K to be
the unit square as the general case is readily obtained by a linear transformation.

Theorem 2.3. Let K be the unit square. Then, for M := Pk(∂K) and Vg × Wg = Pk(K) × Pk(K), we have
that

IM (Vg × Wg) =
{

1 if k = 0,
2 if k ≥ 1. and IS(Vg × Wg) = k + 1.

Moreover, the space

δVfillM := curl span{xk+1y, xyk+1},
δVfillW := x P̃k(K),

satisfy the properties in Table 2.

Again, the proof of this result is very simple, hence omitted. Note that for k = 0, δVfillM = span{(−y, x)} has
dimension 1.

The local spaces V × W resulting form this result are displayed in Table 6. Note that the local space
V hdg × W hdg is strictly included in the space called HDGP

[k] in [19], namely,

Pk ⊕ curl (x y P̃k) × Pk.

This space admits an M -decomposition and its dimension is bigger than that of the space V hdg × W hdg by
k − 1. Also, note that the space BDFM[k] [8], namely,

V × W :=
(
Pk+1 \ {yk+1} × Pk+1 \ {xk+1})× Pk,

admits an M -decomposition and that its dimension is bigger than that of the corresponding space in the first
row of Table 6 by k−1. These five spaces satisfy the conditions (J) for superconvergence when k ≥ 1, except for
the space BDM[k] which satisfies them when k ≥ 2. In these circumstances, the approximations qh, uh converge
with the optimal order of k + 1 and the postprocessing u∗

h with order k + 2.
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Polygonal elements

Unfortunately, it turns out that it is not possible to carry out the construction of the spaces under consideration
by using only polynomials for more general elements K, as we see in the next result, whose proof will be given
in Section 3.

Theorem 2.4. Let K be a polygon which is not a triangle or parallelogram. If V ×W admits an M -decompositon
with M := Pk(∂K) for some k ≥ 0, and P0 ⊂ W , then V can not be solely polynomials.

This result immediately shows that it is not possible to construct δVfillM satisfying the properties in Table 2 by
solely using polynomials for a polygon that is not a triangle or a parallelogram. This impossibility prompts the
need to take a different approach.

b. Second approach: Non-polynomial liftings

To state our result, we need to introduce some notation. Let {vi}ne
i=1 be the set of vertices of the polygonal

element K which we take to be counter-clockwise ordered. Let {ei}ne
i=1 be the set of edges of K where the edge

ei connects the vertices vi and vi+1. Here the subindexes are integers module ne, for example, vne+1 = v1. An
illustration for a quadrilateral element K is presented in Figure 1. We also define, for 1 ≤ i ≤ ne, λi to be the
linear function that vanishes on edge ei and equals to 1 at the node vi+1.

Now, we introduce functions which we are going to use as tools for lifting traces on ∂K inside the element K.
To each vertex vi, i = 1, . . . , ne, we associate a function ξi ∈ H1(K) satisfying the following conditions:

(L.1) ξi|ej
∈ P1(ej), j = 1, . . . , ne,

(L.2) ξi(vj) = δi,j , j = 1, . . . , ne,

where δi,j is the Kronecker delta. Note that conditions (L.2) and (L.3) together ensure that the trace of ξi on
the edges is only non-zero at ei−1 and ei, where they are linear. Next, we give examples of these functions.

(1) Polynomial liftings. For a triangle, the polynomial lifting ξp
i := λi+1 satisfies the conditions (L). For a

parallelogram, the polynomials ξp
i := λi+1λi+2 satisfy the conditions (L). However, for general quadrilaterals,

and for arbitrary polygonals, there are no such polynomial liftings.
(2) Composite liftings. Here, we present the first non-polynomial lifting with a composite function. Given a

polygonal element K, we subdivde it into a set of triangles K = ∪nt
i=1Ti with nt being the total number

of triangles. We denote the collection of vertices of these triangles by {vi}nv
i=1 where nv is the number of

total vertices of the subdivision {Ti}nt
i=1 and {vi}ne

i=1 is the collection of vertices of the polygon K. Then,
we take ξc

i to be the piecewise linear function such that ξc
i |Ti ∈ P1(Ti) for i = 1, . . . , nt, and ξc

i (vj) = δi,j

for j = 1, . . . , nv. It is trivial to verify that ξc
i satisfy the conditions (L).

If the element K is a convex polygon with ne edges, we can subdivide it into ne−2 triangles with Ti having
vertices v1,vi, and vi+1 for 2 ≤ i ≤ ne − 1. Then, the number of vertices of the subdivision {Ti}nt

i=1 is ne.

Figure 1. A quadrilateral element K.
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If the element K is a start-shaped (not necessarily convex) polygon with respect to an interior node denoted
as vne+1, we can subdivde it into ne triangles with Ti having vertices vi,vi+1, and vne+1 for 1 ≤ i ≤ ne−1,
and Tne having vertices vne,v1, and vne+1. Then, the number of vertices of the subdivision {Ti}nt

i=1 is
ne + 1. In our numerical examples in Section 5, we use the second choice of the subdivision with the node
vne+1 being the center of the polygon K. Numerical integration on K of these lifting functions can be easily
performed by using standard quadrature rules for polynomials on each of the triangles Ti.

(3) Generalized barycentric coordinates liftings. A set of generalized barycentric coordinates (GBC) see [25,29,34]
for the element K also satisfy conditions (L). In addition, they need to satisfy the partion of unity property∑ne

i=1 ξi = 1, and the linear precision property
∑ne

i=1 vi ξi(x) = x. Although we do not require these two
additional constrains, we can use any set of GBC to define our liftings.

We are now ready to state our construction. The proof of this result is quite complicated, and is postponed to
Section 3.

Theorem 2.5. Let K be a polygonal of ne edges such that no edges lie on the same line. Then, for M := Pk(∂K)
and Vg × Wg = Pk(K) × Pk(K), we have that

IM (Vg × Wg) = (ne − 3)(θ + 1) − 1
2
θ(θ − 1), and IS(Vg × Wg) = k + 1,

here θ := min{k, ne− 3}. Moreover, the spaces

δVfillM := ⊕ne
i=1curlΨi,

δVfillW := x P̃k,

satisfy the properties in Table 2. Here

Ψi =

⎧⎪⎨⎪⎩
{0} if i = 1, 2,

span{ξi+1λ
b
i+1; max{k + 3 − i, 0} ≤ b ≤ k} if 3 ≤ i ≤ ne − 1,

span{ξi+1λ
b
i+1; max{k + 4 − i, 1} ≤ b ≤ k} if i = ne.

Here, the functions {ξi}ne
i=1 are liftings functions that satisfy conditions (L).

The local spaces V ×W resulting from this result are displayed in Table 7. The first two spaces are well-defined
for k ≥ 0, while the last for k ≥ 1. The first two spaces satisfy the conditions (J) for superconvergence when
k ≥ 1, and the last when k ≥ 2. For these cases, the postprocessing u∗

h converges with order k + 2 for these
three choices of local spaces.

Table 7. A construction for K a polygon without hanging nodes, M = Pk(∂K) and Vg×Wg =
Pk × Pk.

V (K) W (K)

(k ≥ 0) Pk ⊕ne
i = 1 curl Ψi ⊕ x P̃k Pk

(k ≥ 0) Pk ⊕ne
i = 1 curl Ψi Pk

(k ≥ 1) Pk ⊕ne
i = 1 curl Ψi Pk−1

As we pointed out in the Introduction, the space δVfillM in Theorem 2.5, defined on a general polygonal
element K, depends on a particular edge numbering (and the choice of lifting functions). So, we do get a
different space with a different edge numbering and/or a different choice of lifting functions. The dependence
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on edge numbering is a direct consequence of our edge-by-edge construction of δVfillM as shown in Section 3
which is the only one applicable to an arbitrary polygonal element, Moreover, the superconvergence properties
of the associated methods are not compromised at all. However, if the polygon K is a regular convex polygon
(isogonal and isotoxal), we might be more interested in finding a space δVfillM which does not depend on the
edge numbering. We do not concern ourselves with this problem open since it requires case-by-case study of the
regular polygon K. However, we our edge-by-edge construction in Section 3 can be used as a starting point to
achieve this goal.

Note that even for an element K with hanging nodes, or more generally, when its two edges lie the same
line, we can still use the space provided in Theorem 2.5 to define HDG methods even though the spaces do
not admit M -decompositions. We expect the superconvergence properties of the resulting method not to be
affected for the same reasons that a similar result holds for superconvergent HDG methods on triangular mesh
with hanging nodes [11, 12].

When K is a triangle, this construction provides the same spaces than that obtained in Theorem 2.2; when K
is a square, it provide the same spaces (with a polynomial lifting function) than those obtained in Theorem 2.3.

Before ending this section, let us compare our space V mix×Wmix in the case when K is a convex quadrilateral
with the space proposed in [2], which defines the first (rigorously proven) high-order mixed methods on a convex
quadrilateral mesh. Such a space is first defined on a unit square K̂ with

V (K̂) := Pk+2,k(K̂) × Pk,k+2(K̂), W (K̂) := ∇̂ · V (K̂),

and then constructed on a general convex quadrilateral K using pullback of the bilinear mapping from the
reference element K̂ to the physical element K. The resulting space has the property that it contains Pk(K)×
Pk(K). Our space does have this property without the need of the pullback mapping as we work directly on
the physical element K. The resulting mixed method shares the same convergence rates as that in [2]. However,
our space has significantly smaller dimension than that in [2] since

dim Pk+2,k(K̂) × Pk,k+2(K̂) − dimV mix =
{

2 if k = 0,
k2 + 4k + 1 if k ≥ 1,

dim ∇̂ · V (K̂) − dim Wmix =
1
2
(k2 + 5k + 4).

3. Proofs of Theorems 2.4 and 2.5

In this section, we first prove the negative result of Theorem 2.4, then prove the main result of Theorem 2.5
by carrying out a systematic construction of the spaces δVfillM for M = Pk(∂K).

3.1. Proof of Theorem 2.4

We prove Theorem 2.4 by contradiction. Suppose that V is a space of polynomials, P0 ⊂ W , and V × W
admits an M -decompositon with M = Pk(∂K). By the kernels’ trace decomposition in ([20], Thm. 2.8), we
have

Pk(∂K) = {v · n|∂K : v ∈ V ,∇ · v = 0} ⊕ {w|∂K : w ∈ W,∇w = 0},
where the direct sum is L2(∂K)-orthogonal. We have {w|∂K : w ∈ W,∇w = 0} = γ(P0(K)). So for any
μ ∈ P0(∂K) ⊂ M(∂K) that is a non-zero constant on two edges of K and zero on the other edges, and satisfies
〈μ, 1〉∂K =

∫
∂K μ ds = 0, there exists a divergence-free function in V with normal trace μ. Now, if the element

K has two edges that lie on the same line, we can take such μ ∈ P0(∂K) to be non-zero on these two edges
(with opposite sign) and 〈μ, 1〉∂K = 0. But there is no vector polynomial function such that its normal trace on
a line is piecewise constant. This implies that K does not have two edges lie on the same line. Since, in addition,
K is not a triangle nor a parallelogram, there exists three edges of K such that their extensions form a triangle.
We denote such edges ea, eb, and ec, with their extended triangle to be T . Let ed to be another edge of K.
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We take μ ∈ P0(∂K) to be non-zero on ea and ed, zero else where, and 〈μ, 1〉∂K = 0, suppose that v ∈ V (K)
is a divergence-free polynomial function such that v · n|∂K = μ. We have the restriction of the polynomial v
(defined on the whole space R2) on the extended triangle T is still a divergence-free polynomial whose trace
is a non-zero constant on (the extension of) edge ea, and zero on (the extension of) edges eb and ec. But
0 =

∫
T ∇ · v dx =

∫
∂T v · n ds �= 0. This leads to a contradiction. This completes the proof of Theorem 2.4. ��

3.2. Proof of Theorem 2.5

We omit the proofs related to the S-index and the space δVfillW for their simplicity, and focus on the proofs
for the M -index and the space δVfillM.

Here, we begin by developing an algorithm that, given a counter-clockwise ordering of the ne edges of K,
{ei}ne

i=1, and an initial space Vg ×Wg satisfying the inclusion properties (I) with P0(K) ⊂ Wg, provides a space
δVfillM satisfying the properties in Table 2. We then apply it to prove the results.

3.2.1. An algorithm to construct the space δVfillM

We use the notation introduced in the previous section. For i = 1, . . . , ne + 1, we define Vgs,i to be the
divergence-free subspace of Vg with vanishing normal traces on the first i − 1 edges. In other words,

Vgs,i := {v ∈ Vg : ∇ · v = 0, v · n|ej
= 0, 1 ≤ j ≤ i − 1}, for 1 ≤ i ≤ ne + 1.

The gradient-free subspace of Wg, Wgcst := {w ∈ Wg : ∇w = 0}, also plays an important role in the theory of M -
decompositions; see the kernels’ trace decomposition in ([20], Thm. 2.8). By the inclusion property P0(K) ⊂ Wg,
we have that Wgcst = P0(K) is just the space of constants on K. Nevertheless, we prefer to use the special name
since in other settings such space might be different.

For i = 1, . . . , ne, we define γi(V ) := {v · n|ei
: v ∈ V } to be the normal trace of V on ei, and γi(W ) :=

{w|ei
: w ∈ W} to be the trace of W on ei. Note that γi(Wgcst) = P0(ei) is the space of constants on ei.

Now, we define the M -index for each edge.

Definition 3.1 (The M -index for each edge). The M -index of the space Vg × Wg for the ith edge ei is the
number

IM,i(Vg × Wg) := dimM(ei) − dim γi(Vgs,i) − δi,ne dim γne(Wgcst),

where δi,ne is the Kronecker delta.

Since Vg × Wg satisfies the inclusion properties (I), we have

γi(Vgs,i) ⊂ M(ei) for all 1 ≤ i ≤ ne − 1,

γne(Vgs,ne) + γne(Wgcst) ⊂ M(ene).

Actually, the sum in the last inclusion is an (L2(ene)-orthogonal) direct sum: given any (v, w) ∈ Vgs,ne ×Wgcst,
we have

〈γnev, γnew〉ene
= 〈v · n, w〉ene

= 〈v · n, w〉∂K = (v,∇w)K + (∇ · v, w)K = 0.

Using these facts, we immediately get that IM,i(Vg × Wg) is a natural number for any 1 ≤ i ≤ ne.
We are now ready to state our result.

Theorem 3.2. Set δVfillM := ⊕ne
i=1δV

i
fillM where

(α) γ(δV i
fillM) ⊂ M ,

(β) ∇ · δV i
fillM = {0},

(γ.1) γj(δV i
fillM) = {0}, for 1 ≤ j ≤ i − 1,

(γ.2) γi(Vgs,i) ∩ γi(δV i
fillM) = {0},

(δ) dim δV i
fillM = dim γi(δV i

fillM) = IM,i(Vg × Wg).
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Then δVfillM satisfies the properties in Table 2, that is,

(a) γδVfillM ⊂ M ,
(b) ∇ · δVfillM = {0},
(c) γVgs,1 ∩ γδVfillM = {0},
(d) dim δVfillM = dim γδVfillM = IM (Vg × Wg).

This result implies that Vg ⊕ δVfillM × Wg admits an M -decompositon, see ([20], Prop. 5.1).

Proof. Properties (a), (b) and (c) follow directly form properties (α), (β) and (γ), respectively. It remains to
prove property (d). But, we have

dim δVfillM =
ne∑
i=1

dim δV i
fillM =

ne∑
i=1

IM,i(Vg × Wg) =
ne∑
i=1

dim γiδV
i
fillM = dim γδVfillM,

and, by the definition of IM,i(Vg × Wg), we get

dim δVfillM = dim M −
ne∑
i=1

dim γi(Vgs,i) − dim γne(Wgcst)

= dim M −
ne∑
i=1

(dimVgs,i − dim Vgs,i+1) − dim γne(Wgcst)

= dim M − (dimVgs,1 − dimVgs,ne+1) − dim γne(Wgcst).

Finally, by the definition of the spaces Vgs,1 and Vgs,ne+1, we get

dim δVfillM = dimM − (dim{v ∈ Vg : ∇ · v = 0}
− dim{v ∈ Vg : ∇ · v = 0, v · n|∂K = 0}) − dim γne(Wgcst).

= dimM − dim{v · n|∂K : v ∈ Vg, ∇ · v = 0}
− dim{w|∂K : w ∈ Wg,∇w = 0}

= IM (Vg × Wg).

This completes the proof. �

Based on this result, we have that the following algorithm provides a practical construction of the filling
space δVfillM.

3.2.2. Application of Algorithm PC

Now, we apply Algorithm PC to the setting in Theorem 2.5, that is, K is a star-shaped polygon K of ne
edges without edges lie on the same line, M = Pk(∂K) and Vg × Wg = Pk × Pk. We proceed to find the space
δVfillM in three steps.

1. Finding the spaces Vgs,i. The spaces Vgs,i are characterized in the following result.

Proposition 3.3. We have that
Vgs,i = curl Φi,

where Φi := {bi−1φi : φi ∈ Pk+2−i(K)}. Here b0 = 1, and bi := Πi
j=1λj.
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Algorithm PC. A practical construction of δVfillM.
Input: A counter-clockwise ordering of the ne edges of the polygon K, {ei}ne

i=1.
Input: The space of traces M .
Input: A space Vg × Wg satisfying the inclusion properties (I).
Output: The space δVfillM.

For each i = 1, . . . , ne,
(1) Find the auxiliary spaces Vgs,i.
(2) Find an IM,i(Vg × Wg)-dimensional complement space CM,i on edge ei:

γi(Vgs,i) ⊕ CM,i = M̃(ei),

here M̃(ei) = M(ei) if i < ne, and M̃(ene) = γne(Wgcst)
⊥ is the subspace of

M(ene) that is L2(ene)-orthogonal to γne(Wgcst) = P0(ene).
(3) Find an IM,i(Vg × Wg)-dimensional, divergence-free filling space δV i

fillM on K:

(3.1) γj(δV
i
fillM) = {0}, for 1 ≤ j ≤ i − 1,

(3.2) γi(δV
i
fillM) = CM,i,

(3.3) γj(δV
i
fillM) ⊂ M(ej), for i + 1 ≤ j ≤ ne.

(The space δV i
fillM satisfies properties (α)–(δ) of Thm. 3.2.)

return δVfillM := ⊕ne
i=1δV

i
fillM.

Proof. Since Vg = Pk, it is easy to show

curl Φi ⊂ Vgs,i ⊂ curl Pk+1.

Since Φ1 = Pk+1, the reverse inclusion, Vgs,i ⊂ curl Φi, is true for i = 1.
Now, let us prove the reverse inclusions for i ≥ 2. We use the following simple fact:

γi(curlφ) = 0 ⇐⇒ γi φ ∈ P0(ei) for any φ ∈ H1(K) and any edge ei of K.

Let v = curl φ ∈ Vgs,i with φ ∈ Pk+1. We have γj(curl φ) = 0 for 1 ≤ j ≤ i − 1. Hence, γj φ ∈ P0(ej) for
1 ≤ j ≤ i− 1. Since φ is defined up to a constant, we can assume φ(v1) = 0. This immediately implies γj φ = 0
for 1 ≤ j ≤ i − 1, hence φ = bi−1φ̃ for some φ̃ ∈ Pk+2−i(K). This completes the proof. �

2. Finding the complement spaces CM,i. We know that the space CM,i is any subspace of M̃(ei) such that
γi(Vgs,i) ⊕ CM,i = M̃(ei); see the definition of M̃(ei) in Algorithm PC. Since M(ei) = Pk(ei), we need first
to characterize γi(Vgs,i) then to find a choice of CM,i, which is not necessarily unique. The characterization of
γi(Vgs,i) is contained in the following corollary of the previous proposition.

Corollary 3.4. We have, for 1 ≤ i ≤ ne,

γi(Vgs,i) = span{γi(curl bi−1λ
a
i+1)}k+2−i

a=δ1,i
,

dim γi(Vgs,i) = dimPk+2−i(ei) − δ1,i,

IM,i(Vg × Wg) = min (k + 1, i − 2) + δ1,i − δne,i.

Here, we use the convention that dim Pm = 0 for any negative integer m.



178 B. COCKBURN AND G. FU

Proof. The first identity follows from the definition of the auxiliary space Vgs,i, and the third follows from
the second identity and the definition of the M -index on edge ei, IM,i(Vg × Wg). Let us prove the second. By
construction,

dim γi(Vgs,i) = dimVgs,i − dimVgs,i+1

= dimVgs,i − dimVgs,i+1

= (dim Pk+2−i(K) − δ1,i) − (dim Pk+1−i(K) − δ1,i+1)
= dimPk+2−i(ei) − δ1,i,

since dim Vgs,i = dimPk+2−i(K) − δ1,i. This completes the proof. �

Now, we give a particular choice of the trace space CM,i in the following result.

Theorem 3.5. The following IM,i(Vg ×Wg)-dimensional spaces CM,i of functions defined on the edge ei satisfy
γi(Vgs,i) ⊕ CM,i = M̃(ei) where

CM,i =
{ {0} if i ≤ 2,

span{γi(curl λi−1λ
b
i+1) : max{k + 3 − i, 0} + δne,i ≤ b ≤ k} if i ≥ 3.

Proof. It is easy to check that dim CM,i = IM,i(Vg ×Wg) and CM,i ⊂ M̃(ei). We are left to show that γi(Vgs,i)∩
CM,i = {0}. We prove this result for the case that 3 ≤ i ≤ ne − 1 and k ≥ i − 3. The other cases are similar
and simpler.

To show γi(Vgs,i) ∩ CM,i = {0}, we only need to prove the linear independence of the following two sets

{γi(curl bi−1λ
a
i+1)}k+2−i

a=0 and {γi(curlλi−1λ
b
i+1)}k

b=k+3−i,

here the left is a set of bases for γi(Vgs,i) and the right is a set of bases for CM,i. Let us assume that there exist
constants {Ca}k+2−i

a=0 and {Db}k
b=k+3−i such that

γi

(
k+2−i∑
a=0

Ca curl bi−1λ
a
i+1 +

k∑
b=k+3−i

Db curlλi−1λ
b
i+1

)
= 0.

That is, (
k+2−i∑
a=0

Ca bi−1λ
a
i+1 +

k∑
b=k+3−i

Db λi−1λ
b
i+1

) ∣∣∣
ei

∈ P0(ei).

Hence,

λi−1

(
k+2−i∑
a=0

Ca bi−2λ
a
i+1 +

k∑
b=k+3−i

Db λb
i+1

) ∣∣∣
ei

∈ P0(ei).

This implies (
k+2−i∑
a=0

Ca bi−2λ
a
i+1 +

k∑
b=k+3−i

Db λb
i+1

)∣∣∣
ei

= 0.

Now, evaluating the expression at the node vi+1 = ei∩ei+1, we get C0 = 0 since bi−2(vi+1) �= 0 and λi+1(vi+1) =
0. Then, dividing the expression by λi+1 and evaluating the resulting expression again at vi+1 = ei ∩ ei+1, we
get C1 = 0. Similarly, we get Ca = 0 for a = 2, . . . , k + 2− i, and Db = 0 for b = k + 3− i, . . . , k. This completes
the proof. �
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3. Finding the filling spaces δV i
fillM. Now, it is easy to show that the divergence-free space δV i

fillM := curlΨi

satisfies the trace properties (3.1-3.3) in Algorithm PC and has dimension IM,i(Vg × Wg), where Ψi is defined
in Theorem 2.5. Indeed, using conditions (L) of ξi+1, the equality (3.1) is true since γj(ξi+1) = 0 for j ≤ i − 1,
the equality (3.2) is true since γi(ξi+1) = γi(λi−1)

λi−1(vi+1)
, and the equality (3.3) is true since γj(ξi+1) ∈ P1(ej) for

j ≥ i + 1. Hence, δVfillM of Theorem 2.5 satisfies properties in Table 2.

The computation of the dimension of δVfillM. We end this subsection by computing the dimension of
δVfillM. We have

dim δVfillM =
ne∑
i=1

dim δV i
fillM

=
ne∑
i=1

IM,i(Vg × Wg) =
ne∑
i=1

(min{k + 1, i − 2} + δ1,i − δne,i)

=
ne∑
i=3

(min{k, i − 3} + 1 − δne,i) =
ne−3∑
j=0

(min{k, j} + 1) − 1

=
ne−3∑
j=1

min{k, j} + (ne − 3).

If we set θ := min{k, ne− 3}, we can write

dim δVfillM =
θ∑

j=1

min{k, j} +
ne−3∑

j=θ+1

min{k, j} + (ne − 3)

=
θ∑

j=1

j +
ne−3∑

j=θ+1

θ + (ne − 3)

=
1
2
θ(θ + 1) + θ (ne − 3 − θ) + (ne − 3)

= (θ + 1) (ne − 3) − 1
2
θ(θ − 1).

This completes the proof of Theorem 2.5. �

4. Extensions

In this section, we present some extensions of our constructions in Section 2. First, we take a closer look at
the case with quadrilateral elements. Then, we consider the case of the space M for which the polynomials have
different degrees in different edges.

4.1. Convex quadrilaterals without hanging nodes

For k ≥ 1, Theorem 2.5 gives the following two-dimensional filling space:

δVfillM = curl span{ξ4λ
k
4 , ξ1λ

k
1}.

In order to be able to use only one lifting function and save computational effort, we can slightly modify this
space to be

δVfillM = curl span{ξ4λ
k
4 , ξ4λ

k
3}.
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Figure 2. A quadrilateral collapsed into a triangle with a hanging node.

Thus, instead of using two lifting functions ξ4 and ξ1, we only use one, ξ4. Moreover, we can subdivde the
quadrilateral into two triangles and define the composite lifting function ξ4 based on this subdivision to save
computational cost in numerical integration.

4.2. Triangles with one hanging node

When a quadrilateral collapses into a triangle with a hanging node, see Figure 2, the results in Corollary 3.4
do not apply anymore, and the spaces provided in Theorem 2.5 do not admit M -decompositions. Let us obtain
an M -decomposition for this case with Vg × Wg = Pk × Pk and M = Pk(∂K).

To do that, let the element nodes ordered as in Fig 2. Using Proposition 3.3, we can easily get that IM,i = 0
for i = 1, 2, 4, thatIM,3 = k + 1, and that the (k + 1)-dimensional filling space can be taken as

δVfillM = curl span{ξ4λ
b
4; 0 ≤ b ≤ k}.

Here ξ4 can be chosen as a composite lifting.
Note that instead of two (one for the k = 0 case) additional basis functions, we have k + 1. When k = 0, this

filling space has dimension one and is the same as the one provided by Theorem 2.5. When k = 1, this filling
space has the same dimension as the one in Theorem 2.5, namely, two, but has different basis functions.

4.3. Variable-degree trace space M(∂K)

Now, we consider the local space

M(∂K) := {μ ∈ L2(∂K) : μ|e ∈ Pke(e), for all edges e of K},
where ke ≥ 0 can vary from edge to edge. Note that this choice of M(∂K) comes naturally in the context of
p-adaptivity.

Next we show that the construction of an M -decomposition is just a simple modification of that of the uniform
degree case. For the sake of simplicity, let us take K to be a triangle; the construction for a general polygon is
similar. We take as initial guess the space Vg ×Wg = Pk(K)×Pk(K) where k := min{ke : for all edges e of K}.
This space admits an M -decomposition with M(∂K) = Pk(∂K). Then, the M -indexes for the variable trace
space for each edge are IM,i = kei

− k for i = 1, 2, 3. Since the complement spaces CM,i can be chosen as

CM,i = span {γi(λi−1λ
b
i+1) : k + 1 ≤ b ≤ kei

},
the filling space can be taken as

δVfillM := ⊕3
i=1 curl span{λi−1λ

b
i+1; k + 1 ≤ b ≤ kei

}.
Note that its dimension is

∑3
i=1(kei

− k).
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5. Numerical results

In this section, we present numerical results for the model problem

−Δu = f in Ω,

u = g on ∂Ω,

where Ω is a unit square, and the exact solution is u(x, y) = sin(2πx) sin(2πy).
We present numerical results for four HDG methods along with two hybridized mixed methods fitting the

formulation (1.1) whose corresponding spaces and stabilization operator, and the expected convergence rates
are listed in Table 8. The first method is denoted by LDG-H [17]. We denote the second method as LS since it
is originally from Lehrenfeld’s diploma thesis [28] (with a primal formulation) under the direction of Schöberl.
The third method is denoted as HHO since the key idea stems from the Hybrid-High Order(HHO) methods [22].
Here the linear operator r∂K is defined as follows: r∂K(uh−ûh) := PM

(
pk+1

h (uh, ûh)
)−ûh, where pk+1

h (uh, ûh) ∈
Pk+1(K) satisfies

(pk+1
h (uh, ûh), w)K = (uh, w)K ∀w ∈ Pk(K),

(∇pk+1
h (uh, ûh),∇z)K = −(uh, Δz)K + 〈ûh,∇z · n〉∂K ∀z ∈ {w ∈ Pk+1(K) : w ⊥ Pk(K)}.

This is a slight variation of the original HHO flux introduced in [22], see also [21], there the method is devised
for the primal formulation, but can be identified as a mixed formulation with the approximate flux space V
taken to be the gradients ∇Pk+1(K) and the approximate flux satisfies qh = −∇pk+1

h (uh, ûh). We denote the
fourth method as HDG-M since it is the HDG method that use spaces admitting M -decompositions. Here we
use the composite lifting functions for star-shaped polygons in Section 2 to define the lifting functions in δVfillM.
The fifth and sixth methods are the two (hybridized) mixed methods that sandwich HDG-M; we denote them as
L-MIX (lower mixed method) and U-MIX (upper mixed method) respectively. We refer to ([20], Thm. 6.3) for
a close relation among the last three methods, HDG-M, L-MIX, and U-MIX. Note that on a triangular mesh,
HDG-M is nothing but LDG-H since δVfillM = 0, L-MIX is nothing but the (hybridized) BDM method [7], and
U-MIX is nothing but the (hybridized) RT method [31].

For all the methods, the postprocessing u∗
h ∈ Pk+1(K) is chosen to be the function that satisfy

(u∗
h, w)K = (uh, w)K ∀w ∈ P0(K),

(∇u∗
h,∇z)K = −(qh,∇z)K ∀z ∈ Pk+1(K).

Since the choice of the trace space M(F ) is the same for all the methods, their global linear system (for ûh)
have exactly the same size and sparsity pattern on the same mesh; we observe similar condition numbers

Table 8. The local spaces V (K)×W (K) and stabilization operator α with M(∂K) = Pk(∂K)
for the four HDG methods and their expected convergence rates in L2(Ω)-error of the approx-
imate flux qh and postprocessed scalar u∗

h.

V W α(uh − ûh) ‖q − qh‖Ω ‖u − u∗
h‖Ω

LDG-H[17] Pk Pk uh − ûh k + 1/2 k + 1

LS[28,30] Pk Pk+1
1
h
(PMuh − ûh) k + 1 k + 2

HHO[21,22] Pk Pk r∗∂K
1
h

r∂K(uh − ûh) k + 1 k + 2

HDG-M Pk ⊕ δVfillM Pk uh − ûh k + 1 k + 2

L-MIX Pk ⊕ δVfillM Pk−1 0 k + 1

{
k + 1 if k = 1

k + 2 if k ≥ 2

U-MIX Pk ⊕ δVfillM ⊕ δVfillW Pk 0 k + 1 k + 2
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Figure 3. Three types of initial meshes. Left: a triangular mesh. Middle: a square mesh. Right:
a polygonal mesh.

for all the methods. Hence, solving the global linear system for all the methods, which is the bottleneck of the
computation, is expected to take similar time.

While all of these six methods are well-defined on a polygonal meshes, the LDG-H method can be shown
to provide suboptimal convergence rate of k + 1/2 for the L2-error in the flux variable qh, and suboptimal
convergence rate of k + 1 for the L2-error in the postprocessed scalar variable u∗

h, while the other five methods
provide optimal convergence rate of k + 1 for qh and k + 2 for u∗

h (when k = 1, L-MIX only provide suboptimal
convergence rate of k + 1 for u∗

h). See [10] for an analysis of the LDG-H method, [30] for an analysis of the
LS method and [22] HHO (where the space for the flux is replaced by a much smaller space), and [20] for an
analysis of the last three methods.

For all the methods, we solve the problem on triangular, square, and polygonal meshes with the coarsest
meshes depicted in Figure 3. Here numerical integration on a polygon K is done by first subdiving the polygon
into a set of triangles, and sum up the integral on each triangle using standard quadrature rules for polynomials
on triangles. Since we use composite lifting functions on the subdivision of the polygon in the definition of
δVfillM, the restriction on each subtriangle of these functions are polynomials. Hence the functions in δVfillM are
easy to implement. If the element K is a triangle or a parallelogram, we use the standard mapping technique to
compute the integrals. The history of convergence for the L2-error in the flux variable qh and the postprocessed
scalar variable u∗

h is given in Table 9 to 11 for these three types of meshes.
Table 9 presents the history of convergence for the six methods on triangular meshes for k = 1 and k = 2.

We observe expected convergence rates. When k = 1, we have second-order convergence rate in qh for all the
methods, and third-order convergence rate in u∗

h for all the methods except L-MIX, for which the convergence
rate is second order. When k = 2, we have third-order convergence rate in qh and fourth-order convergence rate
in u∗

h for all the methods. The errors in qh for LDG-H(=HDG-M), LS, and HHO are about the same, those for
L-MIX are slightly bigger and those for U-MIX slightly smaller. The errors in u∗

h for LDG-H(=HDG-M), LS,
HHO, and U-MIX are about the same, and those for L-MIX are significantly bigger (even for k = 2) for the
same convergence rates.

Table 10 presents the history of convergence for the six methods on square meshes for k = 1 and k = 2. We
observe slightly better convergence rates than predicted by the theory for LDG-H, and expected convergence
rates for the other five methods. When k = 1, we have about 1.7 convergence rate in qh for LDG-H and second-
order convergence rate for the other five methods, and about 2.7 convergence rate in u∗

h for LDG-H, second-order
convergence rate for L-MIX, and third-order convergence for the other four methods. When k = 2, we have
about 2.7 convergence rate in qh for LDG-H and third-order convergence rate for the other five methods, and
about 3.8 convergence rate in u∗

h for LDG-H and fourth-order convergence for the other five the methods. The
method LDG-H produces the biggest errors in qh. For the other five methods, the errors in qh for HDG-M,
LS, and HHO are about the same, those for L-MIX are slightly bigger, and those for U-MIX slightly smaller.
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Table 9. History of convergence on triangular meshes.

Mesh ‖q − qh‖Th
‖u − u∗

h‖Th
‖q − qh‖Th

‖u − u∗
h‖Th

‖q − qh‖Th
‖u − u∗

h‖Th

k n error order error order error order error order error order error order

LDG-H LS HHO

10 1.26E-1 – 1.53E-3 – 1.17E-1 – 1.26E-3 – 1.16E-1 – 1.30E-3 –

20 3.18E-2 1.99 1.84E-4 3.06 2.96E-2 1.98 1.58E-4 3.00 2.92E-2 1.99 1.59E-4 3.04

1 40 7.95E-3 2.00 2.25E-5 3.03 7.43E-3 2.00 1.97E-5 3.00 7.31E-3 2.00 1.98E-5 3.01

80 1.99E-3 2.00 2.78E-6 3.02 1.86E-3 2.00 2.46E-6 3.00 1.83E-3 2.00 2.46E-6 3.00

10 1.12E-2 – 1.07E-4 – 1.05E-2 – 9.47E-5 – 1.02E-2 – 9.59E-5 –

20 1.41E-3 2.99 6.65E-5 4.00 1.32E-3 2.98 6.02E-6 3.98 1.29E-3 2.99 6.04E-6 3.99

2 40 1.76E-4 3.00 4.15E-7 4.00 1.66E-4 3.00 3.78E-7 3.99 1.61E-4 3.00 3.78E-7 4.00

80 2.20E-5 3.00 2.59E-8 4.00 2.08E-5 3.00 2.36E-8 4.00 2.02E-5 3.00 2.37E-8 4.00

HDG-M = LDG-H L-MIX = BDM U-MIX = RT

10 1.26E-1 – 1.53E-3 – 2.47E-1 – 2.30E-2 – 7.18E-2 – 1.30E-3 –

20 3.18E-2 1.99 1.84E-4 3.06 6.32E-2 1.96 5.91E-3 1.96 1.80E-2 2.00 1.60E-4 3.03

1 40 7.95E-3 2.00 2.25E-5 3.03 1.59E-2 1.99 1.49E-3 1.99 4.51E-3 2.00 1.98E-5 3.01

80 1.99E-3 2.00 2.78E-6 3.02 3.98E-3 2.00 3.73E-4 2.00 1.13E-3 2.00 2.47E-6 3.00

10 1.12E-2 – 1.07E-4 – 1.53E-2 – 4.26E-4 – 5.01E-3 – 9.59E-5 –

20 1.41E-3 2.99 6.65E-5 4.00 1.94E-3 2.98 2.74E-5 3.96 6.28E-4 2.99 6.04E-6 3.99

2 40 1.76E-4 3.00 4.15E-7 4.00 2.44E-4 2.99 1.73E-6 3.99 7.87E-5 3.00 3.78E-7 4.00

80 2.20E-5 3.00 2.59E-8 4.00 3.05E-5 3.00 1.08E-7 4.00 9.84E-6 3.00 2.37E-8 4.00

Table 10. History of convergence on square meshes.

Mesh ‖q − qh‖Th
‖u − u∗

h‖Th
‖q − qh‖Th

‖u − u∗
h‖Th

‖q − qh‖Th
‖u − u∗

h‖Th

k n error order error order error order error order error order error order

LDG-H LS HHO

10 3.56E-1 – 8.32E-3 – 1.83E-1 – 2.81E-3 – 1.85E-1 – 2.65E-3 –

20 1.26E-1 1.50 1.63E-3 2.36 4.42E-2 2.05 2.98E-4 3.24 4.42E-2 2.06 2.88E-4 3.21

1 40 4.21E-2 1.58 2.83E-4 2.52 1.09E-2 2.02 3.41E-5 3.13 1.09E-3 2.02 3.37E-5 3.09

80 1.29E-2 1.71 4.41E-5 2.68 2.71E-3 2.01 4.15E-6 3.04 2.71E-3 2.01 4.13E-6 3.03

10 3.62E-2 – 2.63E-4 – 1.84E-2 – 1.86E-4 – 1.86E-2 – 1.88E-4 –

20 6.42E-3 2.50 2.02E-5 3.71 2.23E-3 3.04 1.16E-5 4.00 2.23E-3 3.05 1.17E-5 4.01

2 40 1.06E-3 2.60 1.53E-6 3.72 2.75E-4 3.02 7.25E-7 4.00 2.75E-4 3.02 7.26E-7 4.01

80 1.60E-4 2.73 1.11E-7 3.79 3.42E-5 3.01 4.53E-8 4.00 3.42E-5 3.01 4.53E-8 4.00

HDG-M L-MIX U-MIX

10 1.75E-1 – 2.59E-3 – 3.67E-1 – 3.09E-2 – 7.52E-2 – 2.19E-3 –

20 4.33E-2 2.01 3.10E-4 3.06 9.49E-2 1.95 8.09E-3 1.93 1.79E-2 2.07 2.66E-4 3.04

1 40 1.08E-2 2.00 3.79E-5 3.03 2.39E-2 1.99 2.05E-3 1.98 4.44E-3 2.01 3.29E-5 3.01

80 2.70E-3 2.00 4.69E-6 3.02 6.00E-3 2.00 5.13E-4 2.00 1.11E-3 2.00 4.11E-6 3.00

10 2.32E-2 – 2.08E-4 – 3.19E-2 – 7.60E-4 – 1.44E-2 – 1.95E-4 –

20 2.99E-3 2.95 1.29E-5 4.02 4.20E-3 2.92 4.96E-5 3.94 1.86E-3 2.95 1.22E-5 4.00

2 40 3.77E-4 2.99 7.98E-7 4.01 5.32E-4 2.98 3.13E-6 3.98 2.34E-4 2.99 7.60E-7 4.00

80 4.73E-5 3.00 4.97E-8 4.00 6.67E-5 3.00 1.96E-7 4.00 2.93E-5 3.00 4.75E-8 4.00
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Table 11. History of convergence on polygonal meshes.

Mesh ‖q − qh‖Th
‖u − u∗

h‖Th
‖q − qh‖Th

‖u − u∗
h‖Th

‖q − qh‖Th
‖u − u∗

h‖Th

k n error order error order error order error order error order error order

LDG-H LS HHO

10 1.55E-1 – 5.22E-3 – 1.16E-1 – 1.49E-3 – 1.16E-1 – 1.51E-3 –

20 3.97E-2 1.96 1.03E-3 2.34 2.93E-2 1.98 1.87E-4 3.00 2.93E-2 1.98 1.88E-4 3.01

1 40 1.06E-2 1.91 1.90E-4 2.43 7.51E-3 1.96 2.43E-5 2.95 7.51E-3 1.96 2.43E-5 2.95

80 2.85E-3 1.89 3.47E-5 2.46 1.91E-3 1.98 3.12E-6 2.96 1.91E-3 1.98 3.12E-6 2.96

10 1.23E-2 – 1.68E-4 – 9.62E-3 – 1.03E-4 – 9.60E-3 – 1.03E-4 –

20 1.46E-3 3.08 1.00E-5 4.07 1.17E-3 3.04 6.15E-6 4.06 1.17E-3 3.04 6.15E-6 4.06

2 40 1.87E-4 2.97 8.02E-7 3.64 1.52E-4 2.95 4.00E-7 3.94 1.51E-4 2.95 4.00E-7 3.94

80 2.44E-5 2.94 7.47E-8 3.42 1.95E-5 2.96 2.60E-8 3.95 1.95E-5 2.96 2.60E-8 3.94

HDG-M L-MIX U-MIX

10 1.11E-1 – 1.68E-3 – 2.53E-1 – 2.31E-2 – 7.10E-2 – 1.54E-3 –

20 2.80E-2 1.98 2.08E-4 3.02 6.54E-2 1.95 6.28E-3 1.88 1.72E-2 2.05 1.93E-4 3.00

1 40 7.28E-3 1.94 2.70E-5 2.95 1.72E-2 1.93 1.65E-3 1.93 4.46E-3 1.94 2.51E-5 2.94

80 1.87E-3 1.96 3.46E-6 2.96 4.41E-3 1.96 4.22E-4 1.96 1.16E-3 1.94 3.25E-6 2.95

10 9.25E-3 – 1.04E-4 – 1.40E-2 – 3.50E-4 – 7.28E-3 – 1.06E-4 –

20 1.14E-3 3.01 6.17E-6 4.08 1.81E-3 2.95 2.26E-5 3.95 8.19E-4 3.15 6.21E-6 4.10

2 40 1.50E-4 2.93 4.07E-7 3.92 2.33E-4 2.96 1.55E-6 3.87 1.05E-4 2.96 4.12E-7 3.91

80 1.96E-5 2.93 2.66E-8 3.93 3.02E-5 2.95 1.03E-7 3.92 1.39E-5 2.93 2.70E-8 3.93

On the other hand, the errors in u∗
h for HDG-M, LS, HHO, and U-MIX are about the same, those for LDG-H

slightly bigger, and those for L-MIX even bigger than those for LDG-H.
Table 11 presents the history of convergence for the six methods on polygonal meshes for k = 1 and k = 2.

Again, we observe slightly better convergence rates than predicted by the theory for LDG-H, and expected
convergence rates for the other five methods. When k = 1, we have about second-order convergence rate in qh

for all the methods, and about 2.5 convergence rate in u∗
h for LDG-H, second-order convergence rate for L-MIX,

and third-order convergence for the other four methods. When k = 2, we have about third-order convergence
rate in qh for all the methods, and about 3.4 convergence rate in u∗

h for LDG-H and fourth-order convergence
for the other five the methods. This time, L-MIX produces the biggest errors in qh. For the other five methods,
the errors in qh for HDG-M, LS, and HHO are about the same, those for LDG-H are slightly bigger, and those
for U-MIX slightly smaller. On the other hand, the errors in u∗

h for HDG-M, LS, HHO, and U-MIX are about
the same, those for LDG-H slightly bigger, and those for L-MIX are even bigger than those of LDG-H. However,
when we refine the mesh once more, the the errors in u∗

h for L-MIX with k = 2 are smaller than those for
LDG-H.

6. Concluding remarks

We have applied the theory of M -decomposition to systematically construct HDG and their sandwiching
mixed methods on polygonal meshes. We have also numerically compared our superconvergent HDG and their
sandwiching mixed methods with other superconvergent LS-like and HHO-like HDG methods and have verified,
in a very simple model problem, that the expected orders of convergence are achieved and that all these methods
produce similar errors with similar computational effort for solving the global problem. The corresponding
construction in three-space dimensions is carried out in Part III, [14], of this series. A more thorough numerical
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comparison between the several methods considered here, as well as the automatic computation of the spaces
δVfillM and δVfillW are the subject of ongoing work.
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