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Abstract. In this paper, we consider the extension of the finite element exterior calculus from elliptic
problems, in which the Hodge Laplacian is an appropriate model problem, to parabolic problems, for
which we take the Hodge heat equation as our model problem. The numerical method we study is a
Galerkin method based on a mixed variational formulation and using as subspaces the same spaces of
finite element differential forms that are used for elliptic problems. We analyze both the semidiscrete
and a fully-discrete numerical scheme.
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1. Introduction

In this paper we consider the numerical solution of the Hodge heat equation, the parabolic equation associated
to the Hodge Laplacian on differential k-forms. The initial-boundary value problem we study is

ut + (dδ + δd)u = f in Ω × (0, T ], (1.1)
tr(�u) = 0, tr(�du) = 0 on ∂Ω × (0, T ], (1.2)

u( · , 0) = u0 in Ω. (1.3)

Here the domain Ω ⊂ Rn has a piecewise smooth, Lipschitz boundary, the unknown u is a time dependent
differential k-form on Ω, ut denotes its partial derivative with respect to time, and d, δ, �, and tr denote the
exterior derivative, coderivative, Hodge star, and trace operators, respectively.

The numerical methods we consider are mixed finite element methods, which introduce the variable
σ = δu, a differential (k − 1)-form. The mixed method is based on the mixed weak formulation: find
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(σ, u) : [0, T ] → HΛk−1 × HΛk, satisfying the equations

〈σ, τ〉 − 〈dτ, u〉 = 0, τ ∈ HΛk−1, t ∈ (0, T ], (1.4)

〈ut, v〉 + 〈dσ, v〉 + 〈du, dv〉 = 〈f, v〉, v ∈ HΛk, t ∈ (0, T ], (1.5)

together with the initial condition (1.3). Here angular brackets are used to denote the L2 inner product of
differential forms. The notations are explained more fully in the following section. The well-posedness of this
mixed problem is established in a precise sense in Theorem 4.4.

In this paper, we restrict ourselves to studying the model problem (1.1)–(1.3), with the corresponding weak
formulation (1.4)–(1.5). However, both the numerical method and its analysis can be extended in various ways.
In particular, essential boundary conditions and variable coefficients, which we now discuss briefly, are both
easily handled. For a fuller discussion of these in the elliptic case (see [3], Sect. 6.2).

The boundary conditions (1.2) are natural in this mixed formulation and so do not appear explicitly in the
weak formulation. Essential boundary conditions

tr u = 0, tr δu = 0, (1.6)

are treated simply by replacing the spaces HΛk−1 and HΛk by their trace-free subspaces H̊Λk−1 and H̊Λk in
the weak formulation.

Variable coefficients may be included in the problem by replacing the inner products in the three Hilbert
spaces L2Λk−1, L2Λk, and L2Λk+1 by equivalent weighted inner products, but otherwise retaining the same
structure. The new inner product on L2Λk may be written in terms of the ordinary L2 inner product as
〈θ · , · 〉L2Λk−1 where the coefficient θ = θ(x) is a symmetric and uniformly positive definite operator on Altk Rn.
Similarly, we may introduce coefficients α and γ for the inner products on (k − 1)- and (k + 1)-forms. Thus the
weak form of the problem with variable coefficients becomes

〈ασ, τ〉 − 〈θdτ, u〉 = 0, τ ∈ HΛk−1, t ∈ (0, T ],

〈θut, v〉 + 〈θdσ, v〉 + 〈γdu, dv〉 = 〈f, v〉, v ∈ HΛk, t ∈ (0, T ].

The strong equation in this case is

θut + θd[α−1δ(θu)] + δ(γdu) = f, (1.7)

which reduces to (1.1) if the coefficients are all chosen to be the identity at every point.
Now we interpret the model problem (1.1)–(1.3) in specific cases. In the simplest case of 0-forms (k = 0), the

differential equation (1.1) is simply the heat equation, ut − Δu = f , and the natural boundary condition (1.2)
is the Neumann boundary condition, ∂u/∂n = 0. The essential boundary condition, (1.6), is, of course the
Dirichlet condition. Moreover, in this case the space HΛk−1 vanishes, and the weak formulation (1.4)–(1.5) is
the usual (unmixed) one: u : [0, T ] → H1(Ω) satisfies

〈ut, v〉 + 〈gradu, gradv〉 = 〈f, v〉, v ∈ H1(Ω), t ∈ (0, T ].

In this case, the numerical methods and convergence results obtained in this paper reduce to ones long
known [11,22].

In the case of n-forms, the differential equation is again the heat equation, although the natural boundary
condition is now the Dirichlet condition and the essential boundary condition (1.6) is the Neumann condition.
For n-forms, the weak formulation seeks σ ∈ H(div), u ∈ L2 such that

〈σ, τ〉 − 〈div τ, u〉 = 0, τ ∈ H(div), 〈ut, v〉 − 〈div σ, v〉 = 〈f, v〉, v ∈ L2, t ∈ (0, T ].

This mixed method for the heat equation was studied in a fundamental paper by Johnson and Thomée [17].
See also the treatment in ([21], Chap. 17) and the analysis in [4], which shows that the conditions required
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of the mixed finite element spaces are more stringent than the classical Brezzi conditions needed for elliptic
problems [6]. Extension to quasilinear parabolic equations has been carried out by Garcia [12,13] and by Chou
and Li [9], max norm estimates were studied by Scholz [19], and superconvergence by Squeff [20] and others [8],
directions which are not pursued here. Recently, Holst et al. [14] have studied this mixed method for the
heat equation in n-dimensions using a finite element exterior calculus framework (in their work they consider
hyperbolic problems as well), and Holst and Tiee have extended the results of that work and of the present
paper to the case where the domain is a Riemannian hypersurface [16].

For k = 1 or 2 in n = 3 dimensions, the differential equation (1.1) is the vectorial heat equation,

ut + curl curlu − graddiv u = f.

The weak formulations (1.4)–(1.5) for k = 1 and 2 correspond to two different mixed formulations of this
equation, the former using the scalar field σ = −div u as the second unknown, the latter using the vector field
σ = curl u. For k = 1, the boundary conditions (1.2), which are natural in the mixed formulation, become
u × n = 0, curlu × n = 0, while for k = 2 these natural boundary conditions are u × n = 0, div u = 0. For
essential boundary conditions, these are reversed.

As an example application of these equations, we consider the eddy current approximation of Maxwell’s
equations. See, e.g., [1] for more information. The eddy current approximation on a conducting domain Ω ⊂ R3

may be viewed as the limit of the full Maxwell’s equations in the case of small electric permitivity ([1], Chap. 2.2).
Written in terms of the electric field E : Ω × [0, T ] → R3 and the magnetic induction B : Ω × [0, T ] → R3, this
gives the equations

curl(μ−1B) = j + ηE, Bt + curlE = 0, on Ω × [0, T ], (1.8)

where μ is the magnetic permeability, η is the conductivity, and j is the applied current density. The permeability
and conductivity can be positive scalars or positive definite matrices, and they might vary in space. We assume
that the applied current density is divergence-free, so the first equation implies that div(ηE) = 0. The eddy
current problem consists of these differential equations, together with the initial condition E = E0 at t = 0 and
suitable boundary conditions, such as the electric boundary conditions E × n = 0.

Differentiating the first equation of (1.8) in time and combining with the second equation gives the eddy
current equation in terms of the electric field alone:

ηEt + curlμ−1 curlE = −jt.

Since div(ηE) = 0, we have

ηEt − η grad[ρ div(ηE)] + curl μ−1 curlE = −jt,

for any convenient choice of coefficient tensor ρ. If we take the coefficients μ, η, and ρ all to be unity, this is
precisely the Hodge heat equation for 1-forms. In the general case, it recovers the variable coefficient Hodge
heat equation (1.7) with α = ρ−1, θ = η, and γ = μ−1.

Besides the eddy current model, the vectorial heat equation arises in other applications, often as part of more
complicated equations. Examples are the Ginzburg–Landau equations for superconductivity [15], and some
formulations of incompressible fluid [23].

To discretize (1.4), (1.5), we utilize the two main families of finite element differential forms, the PrΛ
k and

P−
r Λk spaces. Between them they include lots of the best known families of finite elements on simplicial meshes

([3], Sect. 5). We give both semidiscrete and fully discrete schemes, and the corresponding convergence analysis.
Convergence rates under different norms are shown in our final results (see Thms. 5.4 and 6.3 below). These
achieve the optimal rates allowed by the finite element spaces provided some regularity assumptions are satisfied.
These results also reveal the relation between convergence rates under different norms and the regularity of the
exact solution.
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The numerical discretization and analysis of the Hodge heat equation presented here has much in common
with the numerical analysis of mixed methods for the scalar heat equation developed in [17] (which can be
viewed as the special case of n-forms). In particular, the analysis relies on estimates for an appropriate elliptic
projection. However, there are significant differences between the case k = n and the general case. One is
that the spatial discretization is no longer of the saddle point type considered by Brezzi [6] and so the needed
stability properties for the elliptic projection must be gotten from the finite element exterior calculus instead
of the Brezzi theory. Particularly significant is the role of harmonic forms, which do not arise in the case of
n-forms. It is interesting that, unlike in the elliptic case, harmonic forms do not enter the weak formulation of
the Galerkin method for the parabolic problem. However they must be accounted for in the definition of the
elliptic projection and the subsequent analysis. This accounts for some technical complications below.

The outline of the remainder of the paper is as follows. In Section 2, we review basic notations from finite
element exterior calculus, including the two main families of finite element differential forms, the P−

r Λk and PrΛ
k

families, and some of their properties. In Section 3, we apply the elliptic theory to define an elliptic projection
that will be crucial to the error analysis of the time-dependent problem, and to obtain error estimates for it. In
Section 4, we turn to the Hodge heat equation at the continuous level and establish well-posedness of the mixed
formulation. We then give a convergence analysis for the semidiscrete and fully discrete schemes in Sections 5
and 6, respectively. Finally, we present some numerical examples confirming the results.

2. Preliminaries

We briefly review here some basic notions of finite element exterior calculus for the Hodge Laplacian. Details
can be found in ([2], Sect. 2) and ([3], Sects. 3 and 4) and in numerous references given there.

For Ω a domain in Rn and k an integer, let L2Λk = L2Λk(Ω) denote the Hilbert space of differential k-forms
on Ω with coefficients in L2. This is the space of L2 functions on Ω with values in Altk Rn, a finite dimensional
Hilbert space of dimension

(
n
k

)
(understood to be 0 if k < 0 or k > n). We may similarly define Lebesgue

spaces LpΛk and Sobolev spaces Wm
p Λk and HmΛk = Wm

2 Λk. The Hodge star operator � is an isometry of
Altk Rn and Altn−k Rn, and so induces an isometry of L2Λk onto L2Λn−k. The inner product in L2Λk may be
written 〈u, v〉 =

∫
Ω u∧�v, with the corresponding norm denoted ‖u‖. We view the exterior derivative d = dk as a

unbounded operator from L2Λk to L2Λk+1. Its domain, which we denote HΛk(Ω), consists of forms u ∈ L2Λk for
which the distributional exterior derivative du belongs to L2Λk+1. Assuming, as we shall, that Ω has Lipschitz
boundary, the trace operator tr = tr∂Ω maps HΛk(Ω) boundedly into an appropriate Sobolev space on ∂Ω
(namely H−1/2Λk(∂Ω)). The coderivative δ is defined as ± � d� : H∗Λk → H∗Λk−1, where H∗Λk := �HΛn−k

and the sign is − if n is even and (−1)k if n is odd. The adjoint d∗ = d∗k of dk−1 is the unbounded operator
L2Λk → L2Λk−1 given by restricting δ to the domain of d∗,

D(d∗) = H̊∗Λk := { u ∈ H∗Λk | tr �u = 0 }.

We denote by Zk and Z∗
k the null spaces of dk and d∗k, respectively. Their orthogonal complements in L2Λk

are B∗
k and Bk, the ranges of d∗k+1 and dk−1, respectively. The orthogonal complement of Bk inside Zk is the

space of harmonic forms

Hk = Zk ∩ Z∗
k = {ω ∈ HΛk(Ω) ∩ H̊∗Λk(Ω) | dω = 0, d∗ω = 0 }.

The dimension of Hk is equal to the kth Betti number of Ω, so Hk = 0 for k 
= 0 if Ω is contractible. The Hodge
decomposition of L2Λk and of HΛk follow immediately:

L2Λk = Bk ⊕ Hk ⊕ B∗
k, (2.1)

HΛk = Bk ⊕ Hk ⊕ Zk⊥, (2.2)

where Zk⊥ = HΛk ∩ B∗
k denotes the orthogonal complement of Zk in HΛk. Let PB : L2Λk → Bk denote the

L2-projection, and similarly for other spaces.
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The Hodge Laplacian is the unbounded operator L = dd∗ + d∗d : D(L) ⊂ L2Λk → L2Λk with the domain

D(L) = { v ∈ HΛk ∩ H̊∗Λk | d∗v ∈ HΛk−1, dv ∈ H̊∗Λk+1 }.

The null space of L consists precisely of the harmonic forms Hk.
For any f ∈ L2Λk, there exists a unique solution u = Kf ∈ D(L) satisfying

Lu = f (mod H), u ⊥ Hk,

(see [3], Thm. 3.1). The solution u satisfies the Hodge Laplacian boundary value problem

(dδ + δd)u = f − PHf in Ω, tr �u = 0, tr �du = 0 on ∂Ω,

together with side condition u ⊥ Hk required for uniqueness. The solution operator K is a compact operator
L2Λk → HΛk ∩ H̊∗Λk and a fortiori, is compact as an operator from L2Λk to itself.

Now we consider the mixed finite element discretization of the Hodge Laplacian boundary value problem,
following [3]. This is based on the mixed weak formulation, which seeks σ ∈ HΛk−1, u ∈ HΛk, and p ∈ Hk such
that

〈σ, τ〉 − 〈dτ, u〉 = 0, τ ∈ HΛk−1,

〈dσ, v〉 + 〈du, dv〉 + 〈p, v〉 = 〈f, v〉, v ∈ HΛk,

〈u, q〉 = 0, q ∈ Hk.

It admits a unique solution given by u = Kf , σ = d∗u, p = PHf . We discretize the mixed formulation using
Galerkin’s method. For this, let Λk−1

h and Λk
h be finite dimensional subspaces of HΛk−1 and HΛk, respectively,

satisfying dΛk−1
h ⊂ Λk

h. We define the space of discrete harmonic forms Hk
h as the orthogonal complement of

Bk
h := dΛk−1

h inside Zk
h := Z ∩ Λk

h. This immediately gives the discrete Hodge decomposition

Λk
h = Bk

h ⊕ Hk
h ⊕ Zk⊥

h ,

where Zk⊥
h is the orthogonal complement of Zk

h inside Λk
h.

The Galerkin method seeks σh ∈ Λk−1
h , uh ∈ Λk

h, ph ∈ Hk
h such that

〈σh, τ〉 − 〈dτ, uh〉 = 0, τ ∈ Λk−1
h ,

〈dσh, v〉 + 〈duh, dv〉 + 〈ph, v〉 = 〈f, v〉, v ∈ Λk
h,

〈uh, q〉 = 0, q ∈ Hk
h.

(2.3)

For the analysis of this discretization, we require the existence of a third space Λk+1
h ⊂ HΛk+1 which contains

dΛk
h, so that Λk−1

h
d−→ Λk

h
d−→ Λk+1

h is a subcomplex of the segment HΛk−1 d−→ HΛk d−→ HΛk+1 of the de Rham
complex. Further we require that there exists a bounded cochain projection, i.e., bounded linear projection maps
πj

h : HΛj → Λj
h, j = k − 1, k, k + 1, such that the diagram

HΛk−1 d−−−−→ HΛk d−−−−→ HΛk+1

πk−1
h

⏐⏐� πk
h

⏐⏐� πk+1
h

⏐⏐�
Λk−1

h
d−−−−→ Λk

h
d−−−−→ Λk+1

h

(2.4)

commutes. A key result of the finite element exterior calculus is that, under these assumptions, the Galerkin
equations (2.3) admit a unique solution and provide a stable discretization.
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Another important aspect of the finite element exterior calculus is the construction of finite element spaces
Λk

h which satisfy these hypotheses, i.e., which combine to form de Rham subcomplexes with bounded cochain
projections. Let there be given a shape regular family of meshes Th with mesh size h tending to 0. For each
r ≥ 1, we define two finite element subspaces of HΛk, denoted PrΛ

k(Th) and P−
r Λk(Th). For k = 0, these

two spaces coincide and equal the degree r Lagrange finite element subspace of H1(Ω). For k = n, P−
r Λn(Th)

coincides with Pr−1Λ
n(Th), which may be viewed as the space of all piecewise polynomials of degree at most

r − 1, without inter-element continuity constraints. However, for 0 < k < n,

Pr−1Λ
k(Th) � P−

r Λk(Th) � PrΛ
k(Th).

For stable mixed finite elements for the Hodge Laplacian, we have four possibilities (which reduce to just one
for k = 0 and to two for k = 1 or n):

Λk−1
h =

⎧⎪⎨
⎪⎩

PrΛ
k−1(Th)

or

P−
r Λk−1(Th)

⎫⎪⎬
⎪⎭ , Λk

h =

⎧⎪⎨
⎪⎩

P−
r Λk(Th)

or

Pr−1Λ
k(Th) (if r > 1)

⎫⎪⎬
⎪⎭ . (2.5)

Concerning the auxiliary space Λk+1
h in (2.4), if Λk

h = P−
r Λk(Th), we take Λk+1

h = P−
r Λk+1(Th), while if

Λk
h = Pr−1Λ

k(Th), we take Λk+1
h = P−

r−1Λ
k+1(Th).

For this choice of spaces, it is known ([2], Sect. 5.4, [3], Sect. 5.5, [10]) that there exist cochain projections as
in (2.4) for which πj

h : L2Λj → Λj
h is bounded in L2Λj uniformly with respect to h. In particular, this implies

that there is a constant C independent of h such that

‖u − πj
hu‖ ≤ C inf

v∈Λj
h

‖u − v‖, u ∈ L2Λj. (2.6)

Moreover, we have the approximation estimates

‖u − πj
hu‖ ≤ Chs‖u‖s, 0 ≤ s ≤

{
r, Λj

h = P−
r Λj(Th),

r + 1, Λj
h = PrΛ

j(Th).
(2.7)

Note that we use ‖u‖s as a notation for the Sobolev norm ‖u‖HsΛj .

3. Elliptic projection of the exact solution

As usual, we shall obtain error estimates for the finite element approximation to the evolution equation by
comparing it to an appropriate elliptic projection of the exact solution into the finite element space. In this
section we define the elliptic projection and establish error estimates for it.

Given any u ∈ D(L), the elliptic projection of u is defined as (σ̂h, ûh, p̂h) ∈ Λk−1
h × Λk

h × Hk
h, such that

〈σ̂h, τ〉 − 〈dτ, ûh〉 = 0, τ ∈ Λk−1
h , (3.1)

〈dσ̂h, v〉 + 〈dûh, dv〉 + 〈p̂h, v〉 = 〈Lu, v〉, v ∈ Λk
h, (3.2)

〈ûh, q〉 = 〈u, q〉, q ∈ Hk
h. (3.3)

By Theorem 3.8 of [3] there exists a unique solution to (3.1)–(3.3). Now we follow the approach of [3] to derive
error estimates. To this end, we introduce some notation. First, let PHh

: L2Λk → Hk
h denote the L2-projection.

From (3.3), PHh
ûh = PHh

u. Moreover, from ([3], Sect. 3.4),

p̂h = PHh
(Lu) = PHh

(dσ),

where σ = d∗u, the last equality holding because d∗du ∈ B∗
k ⊥ Zk, but Hk

h ⊂ Zk
h ⊂ Zk.
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The following norms often appear in the analysis, and we follow ([3], Sect. 3.5) and define β = βk
h, μ = μk

h,
and η = ηk

h by

β = ‖(I − πh)K‖L(L2Λk,L2Λk), μ = ‖(I − πh)PHk‖L(L2Λk,L2Λk),

η = max
j=0,1

max[‖(I − πh)dK‖L(L2Λk−j ,L2Λk−j+1), ‖(I − πh)d∗K‖L(L2Λk+j ,L2Λk+j−1)].

These take into account the approximation properties of the finite element spaces, and the regularity of the
solution operator K. From (2.6) and the compactness of K : L2Λk → HΛk∩H̊∗Λk, we conclude that η, β, μ → 0
as h → 0. Assuming H2 regularity for the Hodge Laplacian (by which we mean both that ‖Kf‖2 ≤ C‖f‖0 for
all f ∈ L2Λk and that Hk ⊂ H2Λk), then we have

η = O(h), β, μ = O(hmin(2,r+1)) (3.4)

for any of the choices of spaces in (2.5) where r denotes the largest degree of complete polynomials in the
space Λk

h. Note that β = O(h2) except in the case Λk
h = P−

1 Λk.
Finally, we denote the best approximation error in the L2 norm by

E(w) = inf
v∈Λk

h

‖w − v‖, w ∈ L2Λk, k = 0, . . . , n.

We are now ready to give the error estimates for the elliptic projection.

Theorem 3.1. Let u ∈ D(L) and let (σ̂h, ûh) be defined by (3.1)–(3.3). Then we have

‖d(σ − σ̂h)‖ ≤ CE(dσ), (3.5)

‖σ − σ̂h‖ ≤ C(E(σ) + ηE(dσ)), (3.6)
‖p̂h‖ ≤ CμE(dσ), (3.7)

‖d(u − ûh)‖ ≤ C(E(du) + ηE(dσ)), (3.8)
‖u − ûh‖ ≤ C(E(u) + E(PHu) + η[E(du) + E(σ)] + (η2 + β)E(dσ) + μE(PBu)). (3.9)

Proof. This is essentially proven in [3], except that there it is assumed that u ⊥ H and ûh ⊥ Hh. To account
for this difference, let ũ = u− PHu and ũh = ûh − PHh

ûh. Then (3.1) and (3.2) continue to hold with u and uh

replaced by ũ and ũh, respectively, and, in place of (3.3), we have

〈ũh, q〉 = 0, q ∈ Hk
h.

Application of Theorem 3.11 of [3] (with f = Lu and p = 0) then gives the (3.5)–(3.8), and, instead of (3.9),
we get

‖ũ − ũh‖ ≤ C(E(ũ) + η[E(du) + E(σ)] + (η2 + β)E(dσ) + μE(PBu))
≤ C(E(u) + E(PHu) + η[E(du) + E(σ)] + (η2 + β)E(dσ) + μE(PBu)).

Thus ‖ũ − ũh‖ is bounded by the right-hand side of (3.9), and, to complete the proof, it suffices bound PHu −
PHh

ûh by same quantity. Now

PHu − PHh
ûh = PHu − PHh

u = (I − PHh
)PHu − PHh

(u − PHu),

For the first term on the right-hand side, we use ([3], Thm. 3.5) and (2.6) to get

‖(I − PHh
)PHu‖ ≤ ‖(I − πh)PHu‖ ≤ CE(PHu).
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To estimate the second term, we use the Hodge decomposition (2.2) to write u − PHu = ub + u⊥ with ub ∈
Bk, u⊥ ∈ Zk⊥. Since Hk

h ⊂ Zk, PHh
u⊥ = 0, and since πhub ∈ Bk

h, PHh
πhub = 0. Hence PHh

(u − PHu) =
PHh

(I − πh)ub. We normalize this quantity by setting

q = PHh
(u − PHu)/‖PHh

(u − PHu)‖ ∈ Hk
h.

Then PHq ∈ H, and, by ([3], Thm. 3.5), ‖q − PHq‖ ≤ ‖(I − πh)PHq‖ ≤ μ. Therefore,

‖PHh
(u − PHu)‖ = (PHh

(u − PHu), q) = (PHh
(I − πh)ub, q) = ((I − πh)ub, q).

Now (I − πh)ub ∈ Bk, and so is orthogonal to H. Thus

((I − πh)ub, q) = ((I − πh)ub, q − PHq) ≤ ‖(I − πh)ub‖‖q − PHq‖ ≤ CμE(PBu),

by (2.6). Combining these results, we get

‖PHu − PHh
ûh‖ ≤ C[E(PHu) + μE(PBu)],

completing the proof of the theorem. �

Assuming sufficient regularity of u and σ = d∗u, we can combine the estimates of the theorem with the
approximation results of (2.7) to obtain rates of convergence for the elliptic projection. The precise powers of h
and Sobolev norms that arise depend on the particular choice of spaces in (2.5). For example, if we take Λk−1

h =
PrΛ

k−1(Th), then we can show the optimal estimate ‖σ − σh‖ ≤ Chr+1‖σ‖r+1, but, if Λk−1
h = P−

r Λk−1(Th),
then clearly we can only have ‖σ − σh‖ = O(hr). Rather than give a complicated statement of the results,
covering all the possible cases, in the following theorem and below we restrict to a particular choice of spaces
from among the possibilities in (2.5). Moreover, we assume r > 1, since the case r = 1 is slightly different.
However, very similar results can be obtained for any of the choices of spaces permitted in (2.5), including for
r = 1, in the same way. Finally, we introduce the space

H̄r = { u ∈ HrΛk |PHu ∈ HrΛk, PBu ∈ Hr−2Λk },

with the associated norm
‖u‖H̄r = ‖u‖r + ‖PHu‖r + ‖PBu‖r−2,

since it will arise frequently below.

Theorem 3.2. Assume H2 regularity for the Hodge Laplacian, so (3.4) holds and suppose that we use the finite
element spaces Λk−1

h = P−
r Λk−1(Th) and Λk

h = P−
r Λk(Th) (so that the auxilliary space is Λk+1

h = P−
r Λk+1(Th)),

for some r > 1. Then we have the following convergence rates for the elliptic projection:

‖d(σ − σ̂h)‖ ≤ Chr‖dσ‖r,

‖σ − σ̂h‖ ≤ Chr‖σ‖r,

‖p̂h‖ ≤ Chr‖dσ‖r−2,

‖d(u − ûh)‖ ≤ Chr(‖du‖r + ‖dσ‖r−1),

‖u − ûh‖ ≤ Chr‖u‖H̄r .

Remark 3.3. If we set r in the statement of Theorem 3.2 to be equal to 1, then, in view of (3.4), we have
β, μ = O(h). Employing Theorem 3.1, we find that the first, second, and fourth bound asserted by the theorem
still hold, while the third and fifth bound are replaced by

‖p̂h‖ ≤ Ch2‖dσ‖1, ‖u − ûh‖ ≤ Ch(‖u‖1 + ‖PHu‖1 + ‖dσ‖ + ‖PBu‖).
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4. Well-posedness of the parabolic problem

We now turn to the Hodge heat equation. In this section we demonstrate well-posedness of the initial-
boundary value problem (1.4), (1.5). The key tool is the Hille–Yosida–Phillips theory as presented, for example,
in [5] and [7].

We begin by showing that the Hodge Laplacian is maximal monotone (equivalently, in the terminology of [7],
that its negative is m-dissipative). This is the key hypotheses needed to apply the Hille–Yosida–Phillips theory
to the problem (1.1)–(1.3).

Theorem 4.1. The Hodge Laplacian L is maximal monotone. That is, it satisfies

〈Lv, v〉 ≥ 0, ∀v ∈ D(L),

and, for any f ∈ L2Λk, there exists u ∈ D(L) such that u + Lu = f .

Proof. For any v ∈ D(L), 〈Lv, v〉 = 〈dv, dv〉 + 〈d∗v, d∗v〉, so the monotonicity inequality is obvious. Now, for
any f ∈ L2Λk, the Riesz representation theorem furnishes a unique u ∈ HΛk ∩ H̊∗Λk such that

〈du, dv〉 + 〈d∗u, d∗v〉 + 〈u, v〉 = 〈f, v〉, v ∈ HΛk ∩ H̊∗Λk. (4.1)

We shall show that this u belongs to D(L), from which it follows immediately that u + Lu = f .
To show that u ∈ D(L), we must show that du ∈ H̊∗Λk+1 and d∗u ∈ HΛk−1. From (4.1), f −u is orthogonal

to Hk, so, using the Hodge decomposition of L2Λk, we may write f − u = df1 + d∗f2 with f1 ∈ HΛk−1 ∩ B∗
k−1

and f2 ∈ H̊∗Λk+1 ∩ Bk+1. Then

〈f − u, v〉 = 〈df1 + d∗f2, v〉 = 〈f1, d
∗v〉 + 〈f2, dv〉, v ∈ HΛk ∩ H̊∗Λk.

Combining with (4.1), we get

〈du − f2, dv〉 + 〈d∗u − f1, d
∗v〉 = 0, v ∈ HΛk ∩ H̊∗Λk. (4.2)

Now du, f2 ∈ Bk+1, so there exists v ∈ Zk⊥ = HΛk ∩ B∗
k such that dv = du − f2. Choosing this v in (4.2), we

find du = f2 ∈ H̊∗Λk+1, as desired. Similarly d∗u = f1 ∈ HΛk−1. �

Since L is maximal monotone and self-adjoint, we obtain the following existence theorem. This is proved
in [7] in Theorems 3.1.1 and 3.2.1 for f = 0 and u0 ∈ L2Λk, and in Proposition 4.1.6 for general f and u0 in
D(L). Combining the two results by superposition, gives the theorem.

Theorem 4.2. Suppose that u0 ∈ L2Λk and f ∈ C([0, T ]; L2Λk) are given and that either f ∈ L1((0, T ); D(L))
or f ∈ W 1

1 ((0, T ); L2Λk). Then there exists a unique u ∈ C([0, T ]; L2Λk) ∩ C((0, T ]; D(L)) ∩ C1((0, T ]; L2Λk),
such that

ut + Lu = f on Ω × (0, T ], u(0) = u0.

If further, u0 ∈ D(L), then u ∈ C([0, T ]; D(L)) ∩ C1([0, T ]; L2Λk).

We denote by S(t) : L2Λk → L2Λk the solution operator for the homogeneous problem (f ≡ 0), so u(t) =
S(t)u0 solves ut +Lu = 0, u(0) = u0. Then S(t) is a contraction in L2Λk for all t ∈ [0, T ], i.e., ‖S(t)‖ ≤ 1, and
S(t) commutes with L on D(L) (Thm. 3.1.1 of [7]).

We can measure the regularity of the solution (for general f) by using the iterated domains defined by
D(Ll) = { u ∈ D(Ll−1) | Ll−1u ∈ D(L) }, l ≥ 2. The next theorem shows that if f is more regular, then the
solution is also more regular.

Theorem 4.3. Suppose that in addition to the hypotheses of Theorem 4.2, we have that f belongs to
C((0, T ]; D(L)) ∩ L1((0, T ); D(L2)). Then

u ∈ C1((0, T ]; D(L)). (4.3)
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Proof. If f = 0, then ([5], Thm. 7.7) implies that

u ∈ Ck((0, T ]; D(Ll)),

for all k, l ≥ 0. Therefore, it is sufficient to treat the case u0 = 0, which we do using Duhamel’s principle. By
Proposition 4.1.6 of [7], the solution is given by

u(t) =
∫ t

0

S(t − s)f(s)ds

in this case, and, assuming that f satisfies the hypotheses of Theorem 4.2,

u ∈ C([0, T ]; D(L)) ∩ C1([0, T ]; L2Λk).

Now f ∈ L1((0, T ); D(L2)), so

L2u(t) =
∫ t

0

S(t − s)L2f(s) ds,

by the commutativity of S(t − s) and L. Since S(t − s) is a contraction in L2Λk, this implies that u ∈
C([0, T ]; D(L2)) and so Lu ∈ C([0, T ]; D(L)). Since we also assume that f ∈ C((0, T ]; D(L)), (4.3) follows
immediately from the equation ut = f − Lu. �

Next we show that the solution u guaranteed by Theorem 4.2, together with σ = d∗u, is a solution of the
mixed problem (1.4), (1.5). Since u ∈ C((0, T ]; D(L)), σ = d∗u ∈ C((0, T ]; HΛk−1) and (1.4) holds. Clearly

〈ut, v〉 + 〈Lu, v〉 = 〈f, v〉, v ∈ L2Λk, t ∈ (0, T ].

Since u ∈ C((0, T ]; D(L)), we have

〈Lu, v〉 = 〈dd∗u, v〉 + 〈d∗du, v〉 = 〈dσ, v〉 + 〈du, dv〉, v ∈ HΛk, t ∈ (0, T ].

Combining the last two equations gives (1.5).
We are now ready to state the main result for this section.

Theorem 4.4. Suppose that u0 ∈ L2Λk and f ∈ C([0, T ]; L2Λk) are given and that either f ∈ L1((0, T ); D(L))
or f ∈ W 1

1 ((0, T ); L2Λk). Then there exist unique

σ ∈ C((0, T ]; HΛk−1), u ∈ C([0, T ]; L2Λk) ∩ C((0, T ]; D(L)) ∩ C1((0, T ]; L2Λk),

satisfying the mixed problem (1.4), (1.5) and the initial condition u(0) = u0. If, moreover, the hypotheses of
Theorem 4.3 are satisfied, then (4.3) holds.

Proof. We have already established existence. For uniqueness, we assume f = 0 and take τ = σ in (1.4) and
v = u in (1.5), to obtain

1
2

d
dt

‖u‖2 = −‖σ‖2 − ‖du‖2 ≤ 0.

Therefore ‖u‖2 is decreasing in time, so if u(0) = 0, then u ≡ 0. Finally, (1.4) then implies that σ ≡ 0. �
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5. The semidiscrete finite element method

The semidiscrete finite element method for the Hodge heat equation is Galerkin’s method applied to the
mixed variational formulation (1.4), (1.5). That is, we choose finite element spaces Λk−1

h and Λk
h as in (2.5) for

some value of r ≥ 1, and seek (σh, uh) ∈ C([0, T ]; Λk−1
h ) × C1([0, T ]; Λk

h), such that uh(0) = u0
h, a given initial

value in Λk
h, and

〈σh, τ〉 − 〈dτ, uh〉 = 0, τ ∈ Λk−1
h , t ∈ (0, T ], (5.1)

〈uh,t, v〉 + 〈dσh, v〉 + 〈duh, dv〉 = 〈f, v〉, v ∈ Λk
h, t ∈ (0, T ]. (5.2)

In this section we shall establish convergence estimates for this scheme.
We may interpret the semidiscrete solution in terms of two operators, d∗h : Λk

h → Λk−1
h and Lh : Λk

h → Λk
h,

which are discrete analogues of d∗ and L, respectively. For v ∈ Λk
h, d∗hv ∈ Λk−1

h is defined by the equation

〈d∗hv, τ〉 = 〈v, dτ〉, τ ∈ Λk−1
h ,

and the discrete Hodge Laplacian Lh : Λk
h → Λk

h is given by Lh = d∗hd + dd∗h. The following characterization is
then a direct consequence of the definitions.

Lemma 5.1. The pair (σh, uh) ∈ C([0, T ]; Λk−1
h ) × C1([0, T ]; Λk

h) solves (5.1) and (5.2) if and only if uh(t) ∈
C1([0, T ]; Λk

h) solves
uh,t + Lhuh = Phf, 0 ≤ t ≤ T, (5.3)

where Ph is L2 projection of f onto Λk
h, and σh = d∗huh.

From the theory of ordinary differential equations, there exists a unique solution uh ∈ C1([0, T ]; Λk
h) solving the

ODE (5.3) and taking a given initial value. Letting σh = d∗huh, we obtain a unique solution to the semidiscrete
finite element scheme (5.1), (5.2).

Remark 5.2. The formulation (5.3) is useful for theoretical purposes, but is typically not implemented directly,
rather only implicitly via the mixed method. This is because the operator d∗h is not local. Even if the finite
element function v is supported in just a few elements, d∗hv will generally have global support.

Next, we turn to the convergence analysis. In Proposition 5.3 we shall give error estimates for the difference
between the semidiscrete finite element solution and the elliptic projection of the exact solution of the evolution
equations. Combining these estimates with the estimates from Section 3 for the elliptic projection gives error
estimates for the semidiscrete finite element method, which we present in Theorem 5.4.

Assume the conditions of Theorem 4.3 hold, so the exact solution

u ∈ C([0, T ]; L2Λk) ∩ C1((0, T ]; D(L)).

For each t > 0, we can then define the elliptic projection of u(t) and of ut(t); see (3.1)–(3.3). Writing
(σ̂h(t), ûh(t), p̂h(t)) for the former, it is easy to see that its time-derivative, (σ̂h,t, ûh,t, p̂h,t), is the elliptic pro-
jection of ut. From Theorems 3.1 and 3.2 we obtain error estimates, such as

‖ut − ûh,t‖ ≤ C(E(ut) + E(PHut) + η[E(dut) + E(σt)] + (η2 + β)E(dσt) + μE(PBut)) ≤ Chr‖ut‖H̄r , (5.4)

with the last inequality holding for the choice of spaces made in Theorem 3.2 (and similar results holding for
the other allowable choices of spaces). Now, from (3.1),

〈σ̂h, τ〉 − 〈dτ, ûh〉 = 0, τ ∈ Λk−1
h , t ∈ (0, T ], (5.5)

and, substituting Lu = −ut + f into (3.2),

〈ûh,t, v〉 + 〈dσ̂h, v〉 + 〈dûh, dv〉 = 〈ûh,t − ut, v〉 + 〈f, v〉 − 〈p̂h, v〉. (5.6)
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Define
Σh = σ̂h − σh, Uh = ûh − uh,

the difference between the elliptic projection and the finite element solution. Subtracting (5.1) and (5.2)
from (5.5) and (5.6), respectively, gives

〈Σh, τ〉 − 〈dτ, Uh〉 = 0, τ ∈ Λk−1
h , 0 < t ≤ T, (5.7)

〈Uh,t, v〉 + 〈dΣh, v〉 + 〈dUh, dv〉 = 〈ûh,t − ut − p̂h, v〉, v ∈ Λk
h, 0 < t ≤ T. (5.8)

We shall now use these equations to derive bounds on Σh and Uh in terms of ûh,t − ut and p̂h, for which we
derived bounds in Section 3. In the remainder of the paper, we adopt the notation ‖ · ‖L∞(L2) for the norm in
L∞(0, T ; L2Λk(Ω)) and similarly for other norms.

Proposition 5.3. Assume u0 ∈ D(L). Then

‖Uh‖L∞(L2) + ‖Σh‖L2(L2) + ‖dUh‖L2(L2) ≤ C(‖Uh(0)‖ + ‖ûh,t − ut − p̂h‖L1(L2)),

‖Σh‖L∞(L2) + ‖dΣh‖L2(L2) ≤ C(‖d∗hUh(0)‖ + ‖ûh,t − ut − p̂h‖L2(L2)).

Proof. By Theorem 4.2, u ∈ C([0, T ]; D(L)) ∩ C1([0, T ]; L2Λk). For each t ∈ (0, T ], take τ = Σh(t) ∈ Λk−1
h

in (5.7) and v = Uh(t) ∈ Λk
h in (5.8), and add to obtain

1
2

d
dt

‖Uh‖2 + ‖Σh‖2 + ‖dUh‖2 = 〈ûh,t − ut − p̂h, Uh〉, (5.9)

which implies
d
dt

‖Uh‖2 ≤ 2‖ûh,t − ut − p̂h‖‖Uh‖.

Taking t∗ ∈ [0, T ] such that ‖Uh‖L∞(L2) = ‖Uh(t∗)‖, and integrating this inequality from 0 to t∗ gives

‖Uh(t∗)‖2 ≤ ‖Uh(0)‖2 + 2‖ûh,t − ut − p̂h‖L1(L2)‖Uh‖L∞(L2),

whence
‖Uh‖L∞(L2) ≤ ‖Uh(0)‖ + 2‖ûh,t − ut − p̂h‖L1(L2), (5.10)

which gives the desired bound on Uh. To get the bound on Σh and dUh, integrate (5.9) over t ∈ [0, T ]. This
gives

‖Σh‖2
L2(L2) + ‖dUh‖2

L2(L2) ≤
1
2
‖Uh(0)‖2 + ‖Uh‖L∞(L2)‖ûh,t − ut − p̂h‖L1(L2),

and so, by (5.10),
‖Σh‖L2(L2) + ‖dUh‖L2(L2) ≤ C(‖Uh(0)‖ + ‖ûh,t − ut − p̂h‖L1(L2)),

which completes the proof of the first inequality.
To prove the second inequality, we differentiate (5.7) in time and take τ = Σh ∈ Λk−1

h , and then add to (5.8)
with v = dΣh ∈ Λk

h (here we use the subcomplex property dΛk−1
h ⊂ Λk

h). This gives

1
2

d
dt

‖Σh‖2 + ‖dΣh‖2 = 〈ûh,t − ut − p̂h, dΣh〉.

By integrating in time, first over [0, t∗] with t∗ ∈ [0, T ] chosen so that ‖Σh‖L∞(L2) = ‖Σh(t∗)‖, and then over
all of [0, T ], we deduce that

‖Σh‖L∞(L2) + ‖dΣh‖L2(L2) ≤ C(‖Σh(0)‖ + ‖ûh,t − ut − p̂h‖L2(L2)).

Finally, we note from (5.1) and (3.1) that Σh = d∗hUh, and so complete the proof. �
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Now suppose, for simplicity, that we choose the initial data u0
h to equal the elliptic projection of u0. Then

Uh(0) = 0 and the right-hand sides of the inequalities in Proposition 5.3 simplify. Bounding them using Theo-
rem 3.2 and (5.4) we get, for the choice of spaces indicated in the theorem,

‖Uh‖L∞(L2) + ‖Σh‖L2(L2) + ‖dUh‖L2(L2) ≤ Chr(‖ut‖L1(H̄r) + ‖dd∗u‖L1(Hr−2)),
‖Σh‖L∞(L2) + ‖dΣh‖L2(L2) ≤ Chr(‖ut‖L2(H̄r) + ‖dd∗u‖L2(Hr−2)).

Combining these estimates with the estimates in Theorem 3.2 for the elliptic projection, we obtain the main
result of the section.

Theorem 5.4. Suppose that, in addition to the hypotheses of Theorem 3.2 and 4.3, u0 ∈ D(L). Let (σ, u) be
the solution of (1.4), (1.5) satisfying (1.3), and (σh, uh) the solution of (5.1), (5.2) with the spaces selected as
in Theorem 3.2 and uh(0) chosen to be equal to the elliptic projection of u0. Then, we have the following error
estimates for the semidiscrete finite element method:

‖σ − σh‖L2(L2) ≤ Chr(‖ut‖L1(H̄r) + ‖d∗u‖L2(Hr)),
‖σ − σh‖L∞(L2) ≤ Chr(‖ut‖L2(H̄r) + ‖d∗u‖L∞(Hr)),

‖d(σ − σh)‖L2(L2) ≤ Chr(‖ut‖L2(H̄r) + ‖dd∗u‖L2(Hr)),
‖u − uh‖L∞(L2) ≤ Chr(‖u‖L∞(H̄r) + ‖ut‖L1(H̄r)),

‖d(u − uh)‖L2(L2) ≤ Chr(‖ut‖L1(H̄r) + ‖du‖L2(Hr) + ‖dd∗u‖L2(Hr−1)).

6. The fully discrete finite element method

If we combine the semidiscrete finite element method with a standard time-stepping scheme to solve the
resulting system of ordinary differential equations, we obtain a fully discrete finite element method for the
Hodge heat equations (1.4) and (1.5). For simplicity, we use backward Euler’s method with constant time step
Δt = T/M . We may choose any of the pairs of finite element spaces indicated in (2.5) for any value of r ≥ 1,
but, as above, for simplicity we restrict ourselves to the choice Λk−1

h = P−
r Λk−1(Th) and Λk

h = P−
r Λk(Th) with

r > 1, the results for the other cases being simple variants. The fully discrete method seeks σn
h ∈ Λk−1

h , un
h ∈ Λk

h,
satisfying the equations

〈σn
h , τ〉 − 〈dτ, un

h〉 = 0, τ ∈ Λk−1
h , (6.1)〈

un
h − un−1

h

Δt
, v

〉
+ 〈dσn

h , v〉 + 〈dun
h, dv〉 = 〈f(tn), v〉, v ∈ Λk

h. (6.2)

for 1 ≤ n ≤ M . It is easy to see that this linear system for un
h, σn

h is invertible at each time step. We initialize
by choosing u0

h ∈ Λk
h. We also define σ0

h ∈ Λk−1 so that (6.1) holds for n = 0.
Next, we turn to the convergence analysis. We first obtain error estimates for the difference between the fully

discrete finite element solution and the elliptic projection of the exact solution of the evolution equations. These
are stated in (6.10) and (6.11). Combining these estimates with the estimates from Section 3 for the elliptic
projection, we obtain the error estimates for the fully discrete finite element method presented in Theorem 6.3.

The analysis is similar to that for the semidiscrete finite element method, but with some extra complications
arising from the time discretization. Let (σ̂n

h , ûn
h, p̂n

h) be the elliptic projection of un = u(tn).
Now, from (3.1)

〈σ̂n
h , τ〉 − 〈dτ, ûn

h〉 = 0, τ ∈ Λk−1
h , 0 ≤ n ≤ M, (6.3)
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and, from (3.2) and the equation ut + Lu = f ,

〈
ûn

h − ûn−1
h

Δt
, v

〉
+ 〈dσ̂n

h , v〉 + 〈dûn
h, dv〉 =

〈
ûn

h − ûn−1
h

Δt
− un

t , v

〉
+ 〈fn, v〉 − 〈p̂n

h, v〉

=
〈

(ûn
h − un) − (ûn−1

h − un−1)
Δt

, v

〉
+
〈

un − un−1

Δt
− un

t , v

〉
+ 〈fn, v〉 − 〈p̂n

h, v〉,

v ∈ Λk
h, 1 ≤ n ≤ M. (6.4)

Set
Σn

h = σ̂n
h − σn

h , Un
h = ûn

h − un
h,

the difference between the elliptic projection and the finite element solution at each time step. Subtracting (6.1)
and (6.2) from (6.3) and (6.4), respectively, gives

〈Σn
h , τ〉 − 〈dτ, Un

h 〉 = 0, τ ∈ Λk−1
h , 0 ≤ n ≤ M, (6.5)

and 〈
Un

h − Un−1
h

Δt
, v

〉
+ 〈dΣn

h , v〉 + 〈dUn
h , dv〉

=
〈

(ûn
h − un) − (ûn−1

h − un−1)
Δt

, v

〉
+
〈

un − un−1

Δt
− un

t , v

〉
− 〈p̂n

h, v〉

= 〈zn, v〉, v ∈ Λk
h, 1 ≤ n ≤ M,

(6.6)

where zn ∈ L2Λk is defined by the last equation. We easily see that

‖zn‖ ≤ 1
Δt

∫ tn

tn−1
‖(ûh,t − ut)(s)‖ds +

Δt

2
‖utt‖L∞(L2) + ‖p̂n

h‖.

By Theorem 3.2, the last term on the right hand side is bounded by Chr‖dd∗u‖L∞(Hr−2), and, by (5.4), the
first term on the right hand side by

Chr

Δt
‖ut‖L1([tn−1,tn],H̄r).

Thus we have proved:

Proposition 6.1.

‖zn‖ ≤ Δt

2
‖utt‖L∞(L2) + Chr

(
‖dd∗u‖L∞(Hr−2) +

1
Δt

‖ut‖L1([tn−1,tn],H̄r)

)
.

We shall now use equations (6.5) and (6.6) to derive bounds on Σh and Uh in terms of z. Toward this end
we adopt the notation

‖f‖l∞(X) = max
1≤n≤M

‖fn‖X , ‖f‖l2(X) =

(
Δt

M∑
n=1

‖fn‖2
X

)1/2

, ‖f‖l1(X) = Δt

M∑
n=1

‖fn‖X .

Proposition 6.2. Assume u0 ∈ D(L). Then

‖Uh‖l∞(L2) + ‖Σh‖l2(L2) + ‖dUh‖l2(L2) ≤ C(‖Uh(0)‖ + ‖z‖l1(L2)),
‖Σh‖l∞(L2) + ‖dΣh‖l2(L2) ≤ C(‖d∗hUh(0)‖ + ‖z‖l2(L2)).



FINITE ELEMENT EXTERIOR CALCULUS FOR PARABOLIC PROBLEMS 31

Proof. Take τ = Σn
h ∈ Λk−1

h in (6.5), v = Un
h ∈ Λk

h in (6.6), and add to obtain

Δt(‖Σn
h‖2 + ‖dUn

h ‖2) + ‖Un
h ‖2 = (Un−1

h + Δtzn, Un
h ), (6.7)

which implies
‖Un

h ‖ ≤ ‖Un−1
h ‖ + Δt‖zn‖.

By iteration,

‖Uh‖l∞(L2) ≤ ‖U0
h‖ + Δt

M∑
n=1

‖zn‖, (6.8)

which is the desired bound on Uh. To get the bound on Σh and dUh, we derive from (6.7) that

1
2
‖Un

h ‖2 − 1
2
‖Un−1

h ‖2 + Δt(‖Σn
h‖2 + ‖dUn

h ‖2) ≤ (Δtzn, Un
h ) ≤ Δt‖zn‖‖Uh‖l∞(L2).

Summing then gives

1
2
‖UM

h ‖2 − 1
2
‖U0

h‖2 + ‖Σh‖2
l2(L2) + ‖dUh‖2

l2(L2) ≤ ‖Uh‖l∞(L2)‖‖z‖l1(L2),

and so, by (6.8),

‖Σh‖2
l2(L2) + ‖dUh‖2

l2(L2) ≤ ‖U0
h‖2 +

3
2
‖z‖2

l1(L2),

which completes the proof of the first inequality.
To prove the second inequality, we take τ = Σn

h ∈ Λk−1
h in (6.5) at both time level n − 1 and level n. This

gives
(Σn−1

h , Σn
h ) = (dΣn

h , Un−1
h ), (Σn

h , Σn
h ) = (dΣn

h , Un
h ), 1 ≤ n ≤ M. (6.9)

Next take v = dΣn
h ∈ Λk

h in (6.6) and substitute (6.9) to get

(Σn
h − Σn−1

h , Σn
h ) + Δt‖dΣn

h‖2 = Δt(zn, dΣn
h ), 1 ≤ n ≤ M,

whence
‖Σn

h‖2 − ‖Σn−1
h ‖2 + Δt‖dΣn

h‖2 ≤ Δt‖zn‖2.

Again we get a telescoping sum, so

‖Σh‖2
l∞(L2) + ‖dΣh‖2

l2(L2) ≤ C
(
‖Σ0

h‖2 + ‖z‖2
l2(L2)

)
.

This implies the second inequality and so completes the proof of the proposition. �

As in Section 5, we choose the initial data u0
h to equal the elliptic projection of u0 for simplicity. Then

Uh(0) = 0 and the right-hand sides of the inequalities in Proposition 6.2 simplify. Bounding them via Proposi-
tion 6.1 we get for the first

‖Uh‖l∞(L2) + ‖Σh‖l2(L2) + ‖dUh‖l2(L2) ≤ CΔt‖utt‖L∞(L2) + Chr(‖dd∗u‖L∞(Hr−2) + ‖ut‖L1(H̄r)). (6.10)

For the second, we bound the L1([tn−1, tn]) norm in Proposition 6.1 by Δt times the L∞ norm, and substitute
the resulting bound for z in the second estimate of Proposition 6.2, obtaining

‖Σh‖l∞(L2) + ‖dΣh‖l2(L2) ≤ CΔt‖utt‖L∞(L2) + Chr(‖dd∗u‖L∞(Hr−2) + ‖ut‖L∞(H̄r)). (6.11)

Combining (6.10), (6.11) with the estimates in Theorem 3.2 for the elliptic projection, we obtain the main
result of the section.
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Theorem 6.3. Under the same assumptions as Theorem 5.4, Let (σ, u) be the solution of (1.4), (1.5) satisfy-
ing (1.3), and (σn

h , un
h) the solution of (6.1), (6.2) with u0

h equal to the elliptic projection of u0. Then, we have
the following error estimates for the fully discrete finite element method:

‖σ − σh‖l2(L2) ≤ CΔt‖utt‖L∞(L2) + Chr(‖ut‖L1(H̄r) + ‖d∗u‖L∞(Hr)),
‖σ − σh‖l∞(L2) ≤ CΔt‖utt‖L∞(L2) + Chr(‖ut‖L∞(H̄r) + ‖d∗u‖L∞(Hr)),

‖d(σ − σh)‖l2(L2) ≤ CΔt‖utt‖L∞(L2) + Chr(‖ut‖L∞(H̄r) + ‖dd∗u‖L∞(Hr)),
‖u − uh‖l∞(L2) ≤ CΔt‖utt‖L∞(L2) + Chr(‖u‖L∞(H̄r) + ‖ut‖L1(H̄r))),

‖d(u − uh)‖l2(L2) ≤ CΔt‖utt‖L∞(L2) + Chr(‖ut‖L1(H̄r) + ‖du‖L∞(Hr) + ‖dd∗u‖L∞(Hr−1)).

The error estimates are analogous to those of Theorem 5.4 for the semidiscrete solution, with each containing
an additional O(Δt) term coming from the time discretization. For each quantity, the error is of order O(Δt+hr).

7. Numerical examples

In this section we present results obtained by implementing the numerical methods described above using
the FEniCS finite element software library [18].

First we compute a two-dimensional example for the 1-form Hodge heat equation. Using vector proxies, we
may write the parabolic equations (1.1)–(1.3) as

ut + (curl rot−∇div)u = f in Ω × [0, T ],
u · n = rotu = 0 on ∂Ω × [0, T ], u( · , 0) = u0 in Ω,

where

rotu =
∂u2

∂x1
− ∂u1

∂x2
, curlu =

(
∂u

∂x2
,− ∂u

∂x1

)
·

We choose Ω to be a square annulus [0, 1]× [0, 1]\[0.25, 0.75]× [0.25, 0.75] and take the exact solution as

u =
(

100x(x − 1)(x − 0.25)(x − 0.75)t
100y(y − 1)(y − 0.25)(y − 0.75)t

)
.

Note that this function is not orthogonal to 1-harmonic forms on Ω. We use the finite element spaces PrΛ
0(Th)

(Lagrange elements of degree r) for σ = − div u and P−
r Λ1(Th) (Raviart–Thomas elements) for u, starting with

an initial unstructured mesh, and then refining it uniformly. We take Δt = 0.0001 and compute the error at
time T = 0.01 (after 100 time steps). Tables 1 and 2 show the results for r = 1 and 2 respectively. The rates of
convergence are just as predicted by the theory.

For the second example, we let Ω be the unit cube [0, 1] × [0, 1] × [0, 1] in R3, and again solve the 1-form
Hodge heat equation. Using vector proxies, the initial–boundary value problem becomes

ut + (curl curl−∇div)u = f in Ω × [0, T ]
u · n = 0, curlu × n = 0 on ∂Ω × [0, T ], u( · , 0) = u0 in Ω.

Table 1. Computation with P1Λ
0 × P−

1 Λ1 in two dimensions.

Mesh size ‖σ − σh‖ Rate ‖∇(σ − σh)‖ Rate ‖u − uh‖ Rate

h 0.0008490 1.99 0.1026276 1.01 0.0010586 0.96
h/2 0.0002132 1.99 0.0512846 1.00 0.0005341 0.99
h/4 0.0000534 2.00 0.0256528 1.00 0.0002678 1.00
h/8 0.0000133 2.00 0.0128295 1.00 0.0001340 1.00
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Table 2. Computation with P2Λ
0 × P−

2 Λ1 in two dimensions.

Mesh size ‖σ − σh‖ Rate ‖∇(σ − σh)‖ Rate ‖u − uh‖ Rate

h 0.0000093 3.03 0.0016510 2.03 0.0000705 1.97
h/2 0.0000012 3.00 0.0004119 2.00 0.0000178 1.99
h/4 0.0000001 3.00 0.0001031 2.00 0.0000045 1.99
h/8 0.0000000 3.04 0.0000258 2.00 0.0000011 2.00

Table 3. Computation with P1Λ
0 × P−

1 Λ1 in three dimensions.

Mesh size ‖σ − σh‖ Rate ‖∇(σ − σh)‖ Rate ‖u − uh‖ Rate

h 0.0023326 2.06 0.0260155 1.02 0.0026024 1.00
h/2 0.0005735 2.02 0.0134836 0.95 0.0013499 0.95
h/4 0.0001429 2.01 0.0068169 0.98 0.0006879 0.97

We take the exact solution to be

u =

⎛
⎝sin(πx1)t

sin(πx2)t
sin(πx3)t

⎞
⎠.

Table 3 shows the errors and rates of convergence for linear elements on a sequence of uniform meshes, again
at time T = 0.01 after 100 time steps. Once again, the rates of convergence are just as predicted by the theory.
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