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ADAPTIVE FINITE ELEMENT APPROXIMATION
OF STEADY FLOWS OF INCOMPRESSIBLE FLUIDS

WITH IMPLICIT POWER-LAW-LIKE RHEOLOGY

Christian Kreuzer
1

and Endre Süli
2

Abstract. We develop the a posteriori error analysis of finite element approximations to implicit
power-law-like models for viscous incompressible fluids in d space dimensions, d P t2, 3u. The Cauchy
stress and the symmetric part of the velocity gradient in the class of models under consideration
are related by a, possibly multi-valued, maximal monotone r-graph, with 2d

d`1
ă r ă 8. We estab-

lish upper and lower bounds on the finite element residual, as well as the local stability of the error
bound. We then consider an adaptive finite element approximation of the problem, and, under suit-
able assumptions, we show the weak convergence of the adaptive algorithm to a weak solution of the
boundary-value problem. The argument is based on a variety of weak compactness techniques, including
Chacon’s biting lemma and a finite element counterpart of the Acerbi–Fusco Lipschitz truncation of
Sobolev functions, introduced by [L. Diening, C. Kreuzer and E. Süli, SIAM J. Numer. Anal. 51 (2013)
984–1015].
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1. Introduction

Typical physical models of fluid flow rely on the assumption that the Cauchy stress is an explicit function of the
symmetric part of the velocity gradient of the fluid. This constitutive hypothesis then leads to the Navier–Stokes
system and its nonlinear generalizations, such as fluids with shear-rate-dependent viscosity including power-law
fluids with constant or variable power-law index. It is known however that the framework of classical continuum
mechanics, built upon the notions of current and reference configuration and an explicit constitutive equation
for the Cauchy stress, is too narrow for the accurate description of inelastic behavior of solid-like materials or
viscoelastic properties of materials. Our starting point in this paper is therefore a generalization of the classical
framework of continuum mechanics, referred to as implicit constitutive theory, which was proposed recently in
a series of papers by Rajagopal and collaborators; see, for example, [35–37]. The underlying principle of implicit
constitutive theory in the context of viscous flows is the following: instead of demanding that the Cauchy stress
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is an explicit function of the symmetric part of the velocity gradient, one may allow an implicit relationship
between these quantities. This then leads to a general theory, which admits fluid flow models with implicit and
possibly discontinuous power-law-like rheology; see, [32, 33]. Very recently a rigorous mathematical existence
theory was developed for these models by Buĺıček et al. in [14], for r ą 2d

d`2 ; for the range 2d
d`2 ă r ď 3d

d`2

the Acerbi–Fusco Lipschitz truncation [1] was used in order to prove the existence of a weak solution. In [22],
using a variety of weak compactness techniques, we showed that a subsequence of the sequence of finite element
solutions converges weakly to a weak solution of the problem as the finite element discretization parameter h
tends to 0. A key new technical tool in the analysis presented in [22] was a finite element counterpart of the
Acerbi–Fusco Lipschitz truncation of Sobolev functions. However, in the case of velocity approximations that
are not exactly divergence-free the convergence theory developed there was restricted to the range 2d

d`1 ă r ă 8.
The focus of the present paper is on the adaptive finite element approximation of implicitly constituted

power-law-like models for viscous incompressible fluids. As in [22], the implicit constitutive relation between the
stress and the symmetric part of the velocity gradient is approximated by an explicit (smooth) constitutive law.
The resulting steady non-Newtonian flow problem is then discretized by a mixed finite element method. Guided
by an a posteriori error analysis, we propose a numerical method with competing adaptive strategies for the
mesh refinement and the approximation of the implicit constitutive law, and we present a rigorous convergence
proof generalizing the ideas in [34] and [38]. More precisely, we show that a subsequence of the adaptively
generated sequence of discrete approximations converges, in the weak topology of the ambient function space,
to a weak solution of the model when 2d

d`1 ă r ă 8. In contrast with [22], stimulated by ideas from [16] we shall
be able to avoid resorting to the theory of Young measures. We emphasize that even in the case when the weak
solution is unique we have only weak convergence of a subsequence; in this case, however, such a subsequence
can be identified with the aid of the a posteriori bounds derived herein; cf. Remark 5.9.

The paper is structured as follows. In Section 2 we shall formulate the problem under consideration and will
introduce some known mathematical results. In Section 3 we define the finite element approximation of the
problem and present related technical properties and tools, such as the discrete Lipschitz truncation from [22].
Section 4 is concerned with the a posteriori error analysis for both the error in the approximation of the graph
and the finite element approximation. The adaptive algorithm together with our main result are stated in
Section 5; for the sake of clarity of the presentation certain technical parts of the proof are deferred to Section 6.
We conclude the paper by discussing concrete graph approximations for certain problems of practical relevance.
While the emphasis in this paper is on the mathematical analysis of adaptive finite element algorithms for
implicitly constituted fluid flow models, the ideas developed herein may be of more general interest in the
convergence analysis of adaptive finite element methods for other nonlinear problems in continuum mechanics
with possibly nonunique weak solutions.

2. Implicitly constituted power-law-like fluids

In this section we introduce the variational model of steady flow, in a bounded open Lipschitz domain Ω Ă Rd,
d P t2, 3u, with polyhedral boundary BΩ, of an incompressible fluid with an implicit constitutive law given by
a maximal monotone x-dependent r-graph. We then recall the existence result from [14] together with some
known results and mathematical tools from the literature.

2.1. The variational formulation

Before stating the weak formulation of the problem we need to introduce basic notations and recall some
well-known properties of Lebesgue and Sobolev function spaces.

For a measurable subset ω Ă Rd, we denote the classical spaces of Lebesgue and vector-valued Sobolev func-
tions by pLspωq :“ Lspω; Rq, }¨}s;ωq and pW 1,spωqd :“ W 1,spω; Rdq, }¨}1,s;ωq, s P r1, 8s, respectively. Henceforth
ω will be assumed to have Lipschitz continuous boundary. We denote the space of functions in W 1,spωqd with
zero trace by W 1,s

0 pωqd and let W 1,s
0, div pωqd :“ tv P W 1,s

0 pωqd : div v “ 0u. Moreover, we denote the space of
functions in Lspωq with zero integral mean by Ls

0pωq. For s, s1 P p1, 8q with 1
s ` 1

s1 “ 1 we have that Ls1 pΩq
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and Ls1

0 pΩq are the dual spaces of LspΩq and Ls
0pΩq, respectively. We have, for such s and s1, that W 1,s

0 pΩqd is
the closure of DpΩqd :“ C8

0 pωqd and its dual is denoted by W ´1,s1 pΩqd. For ω “ Ω we omit the domain in our
notation for norms; e. g., we write }¨}s instead of }¨}s,Ω.

For r P p1, 8q, we define r1 P p1, 8q by 1
r ` 1

r1 “ 1, and set

r̃ :“

#
1
2

dr
d´r if r ď 3d

d`2

r1 otherwise.
(2.1)

With such r, r1 and r̃, we shall consider the following boundary-value problem.
Problem. For f P Lr1 pΩqd find pu, p, Sq P W 1,r

0 pΩqd ˆ Lr̃
0pΩq ˆ Lr1pΩ; Rdˆd

symq such that

div pu b u ` p1 ´ Sq “ f in D1pΩqd,

div u “ 0 in D1pΩq,
pDupxq, Spxqq P Apxq for almost every x P Ω.

(2.2)

Here, Du :“ 1
2 p∇u`p∇uqTq P Rdˆd

sym :“ tδ P Rdˆd : δ “ δTu signifies the symmetric part of the gradient of u. As
is indicated in our choice of the solution space for the velocity u in the statement of the above boundary-value
problem, we shall suppose a homogenous Dirichlet boundary condition for u. The integrability of the pressure
p is inherited from the convective term and therefore the definition (2.1) of r̃ is a consequence of the embedding
W 1,r

0 pΩq ãÑ L2r̃pΩq. The implicit constitutive law, which relates the shear rate to the shear stress, is given by
an inhomogeneous maximal monotone r-graph A : x ÞÑ Apxq Ă Rdˆd

sym ˆ Rdˆd
sym . In particular, we assume that for

almost every x P Ω the following properties hold:

(A1) p0,0q P Apxq;
(A2) For all pδ1, σ1q, pδ2, σ2q P Apxq,

pσ1 ´ σ2q : pδ1 ´ δ2q ě 0 (Apxq is a monotone graph);

(A3) If pδ, σq P Rdˆd
sym ˆ Rdˆd

sym and

pσ̄ ´ σq : pδ̄ ´ δq ě 0 for all pδ̄, σ̄q P Apxq,

then pδ, σq P Apxq (i.e., Apxq is a maximal monotone graph);
(A4) There exists a nonnegative function m P L1pΩq and a constant c ą 0, such that for all pδ, σq P Apxq we

have

σ : δ ě ´mpxq ` cp|δ|r ` |σ|r
1
q (i.e., Apxq is an r-graph);

(A5) The set-valued mapping A : Ω Ñ Rdˆd
sym ˆ Rdˆd

sym is measurable, i.e., for any closed sets C1, C2 Ă Rdˆd
sym , we

have that �
x P Ω : Apxq X pC1 ˆ C2q ‰ H

(
is a Lebesgue measurable subset of Ω.

The following existence result was originally proved by Buĺıček et al. in [14] assuming additionally that if
δ1 ‰ δ2 and σ1 ‰ σ2, then the inequality in (A2) is strict. In fact, based on a generalization of the fundamental
theorem on Young measures, this condition was required in order to prove that the implicit constitutive law is
satisfied. For the unsteady case, they presented a new technique in [16] avoiding the additional condition. This
technique can also be applied to steady problems (2.2); compare with [15].
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Proposition 2.1. For r ą 2d
d`2 there exists a (not necessarily unique) weak solution to problem (2.2).

Remark 2.2. Two remarks concerning the definition of x-dependent maximal monotone graph A are now in
order:
‚ Let D Ă Rdˆd

sym ˆ Rdˆd
sym be a closed set; then, for a.e. x P Ω we have that the set Apxq X D is closed. To see

this, we assume w.l.o.g. that Apxq X D ‰ H and let tpδk, σkqukPN Ă Apxq X D, such that δk Ñ δ P Rdˆd
sym

and σk Ñ σ P Rdˆd
sym as n Ñ 8. Let pδ̄, σ̄q P Apxq be arbitrary. We then have that

0 ď pσ̄ ´ σkq : pδ̄ ´ δkq Ñ pσ̄ ´ σq : pδ̄ ´ δq

as k Ñ 8. This proves that pδ, σq P Apxq X D thanks to condition (A3) and the closedness of D. Taking
D :“ tσu ˆ Rdˆd

sym , we then deduce that the set

tσ P Rdˆd
sym : pδ, σq P Apxqu

is closed. This is condition (A5)(i) of [14].
‚ According to ([4], Thm. 8.1.4) Property (A5) is equivalent to the fact that the graph of the set-valued

map Apxq belongs to the product σ-algebra LpΩq b BpRdˆd
symq b BpRdˆd

symq. Here LpΩq denotes the Lebesgue
measurable subsets of Ω and BpRdˆd

symq the Borel subsets of Rdˆd
sym . With the same argument it follows that (A5)

is equivalent to the fact that, for any closed C Ă Rdˆd
sym , the sets�

px, σq P Ω ˆ Rdˆd
sym : there exists δ P C, such that pδ, σq P Apxq

(
,�

px, δq P Ω ˆ Rdˆd
sym : there exists σ P C, such that pδ, σq P Apxq

(
are measurable relative to LpΩq b BpRdˆd

symq. These equivalent conditions imply that there exist measurable
functions (so-called selections) S‹, D‹ : Ω ˆ Rdˆd

sym Ñ Rdˆd
sym such that

`
δ, S‹px, δq

˘
,
`
D‹px, σq, σ

˘
P Apxq for

a.e. x P Ω and all δ, σ P Rdˆd
sym ; compare also with ([16], Rem. 1.1).

2.2. Analytical framework

We shall briefly recall some results that are crucial for the existence theory for problem (2.2).
Inf-sup condition. The inf-sup condition has a central role in the analysis of the Stokes problem. It states
that, for s, s1 P p1, 8q with 1

s ` 1
s1 “ 1, there exists an αs ą 0 such that

sup
0‰vPW 1,s

0 pΩqd

ş
Ω q div v dx

}v}1,s

ě αs }q}s1 for all q P Ls1

0 pΩq. (2.3)

This is the consequence of the existence of the Bogovskĭı operator B : Ls
0pΩq Ñ W 1,s

0 pΩqd, with

div Bh “ h and αs }Bh}1,s ď }h}s

for all s P p1, 8q; compare e.g. with [9, 20]. It follows from ([12], Sect. II, Prop. 1.2) that condition (2.3) is
equivalent to the isomorphism

Ls1

0 pΩq –
!
v1 P W ´1,s1

pΩqd : xv1, wy “ 0 for all w P W 1,s
0, div pΩqd

)
. (2.4)

Korn’s inequality. According to (2.2) the maximal monotone graph defined in (A1)–(A5) provides control
only of the symmetric part of the velocity gradient. Korn’s inequality states that this already suffices to control
the norm of a Sobolev function; i.e., for s P p1, 8q, there exists a γs ą 0 such that

γs }v}1,s ď }Dv}s for all v P W 1,s
0 pΩqd; (2.5)

compare e. g. with [20].
We conclude this subsection with Chacon’s biting lemma and a corollary of it that is relevant for our purposes;

compare e.g. with [13] and ([27], Lem. 7.3).
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Lemma 2.3 (Chacon’s biting lemma). Let Ω be a bounded domain in Rd and let tvnunPN be a bounded sequence
in L1pΩq. Then, there exists a nonincreasing sequence of measurable subsets Ej Ă Ω with |Ej | Ñ 0 as j Ñ 8,
such that tvnunPN is precompact in the weak topology of L1pΩzEjq, for each j P N.

In other words, there exists a v P L1pΩq, such that for a subsequence (not relabelled) of tvnunPN, vn á v
weakly in L1pΩzEjq as n Ñ 8 for all j P N. We denote this by writing

vn
bá v in L1pΩq

and call v the biting limit of tvnunPN.

Lemma 2.4. Let tvnunPN Ă L1pΩq be a sequence of nonnegative functions such that vn
bá v for some v P L1pΩq.

Then,

lim
nÑ8

ż
Ω

pvn ´ vq dx “ 0 implies that vn á v weakly in L1pΩq as n Ñ 8.

3. Finite element approximation

This section is concerned with approximating problem (2.2) by the finite element method. To this end, we first
approximate (2.2) by an explicitly constituted problem. We then introduce a general finite element framework
for inf-sup stable Stokes elements. This, together with some representative examples of velocity-pressure pairs
of finite element spaces, is the subject of Section 3.3. The finite element approximation of (2.2) is stated in
Section 3.4.

3.1. Approximation of maximal monotone r-graphs

In general an x-dependent maximal monotone r-graph A satisfying (A1)–(A5) cannot be represented in an
explicit fashion. However, it can be approximated by a regular single-valued monotone tensor field based on a
regularized measurable selection S‹ with the following properties; compare with [14, 16] and Remark 2.2.

Lemma 3.1 ([16], Lem. 2.2). Let S‹ : ΩˆRdˆd
sym Ñ ˆRdˆd

sym be a measurable selection of the x-dependent maximal
monotone r-graph A with the properties (A1)–(A5). Then, for δ, σ P Rdˆd

sym , the following two statements are
equivalent for almost all x P Ω:

‚
`
σ ´ S‹px, Dq

˘
: pδ ´ Dq ě 0 for all D P Rdˆd

sym;
‚ pδ, σq P Apxq.

In [14, 26, 27] the selection S‹ is used to approximate the maximal monotone graph A by a single-valued
monotone mapping Sn : Ω ˆ Rdˆd

sym Ñ Rdˆd
sym based on a mollification technique. In order to allow for different

practical implementations of such an approximation, we shall formulate its required properties and demonstrate
in Section 7 how such graph-approximations can be constructed for some typical problems of practical interest
within the class of problems under consideration.

Assumption 3.2. For n P N, there exists a mapping Sn : Ω ˆ Rdˆd
sym Ñ Rdˆd

sym , such that

‚ Snp¨, δq : Ω Ñ Rdˆd
sym is measurable for all δ P Rdˆd

sym ;
‚ Snpx, ¨q : Rdˆd

sym Ñ Rdˆd
sym is continuous for almost every x P Ω;

‚ Sn is strictly monotone; i.e., for almost every x P Ω we have

pSnpx, δ1q ´ Snpx, δ2qq : pδ1 ´ δ2q ą 0 for all δ1 ‰ δ2 P Rdˆd
sym ;
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‚ There exist constants c̃1, c̃2 ą 0 and nonnegative functions m̃ P L1pΩq, k̃ P Lr1 pΩq such that, uniformly in
n P N, we have

|Snpx, δq| ď c̃1 |δ|r´1 ` k̃pxq and Snpx, δq : δ ě c̃2 |δ|r ´ m̃pxq

for all δ P Rdˆd
sym and almost every x P Ω.

We emphasize that in contrast with [14, 16] we assume that Sn is strictly monotone. Of course we have to
assume additionally that the graph of Sn converges to A is some sense. This will be specified in Assumption 5.6
with the aid of the a posteriori graph approximation indicator formulated in Section 4.1.

Having at hand a mapping Sn : Ω ˆ Rdˆd
sym Ñ Rdˆd

sym as in Assumption 3.2, we aim to approximate the solution
of (2.2) by solving the following explicitly constituted nonlinear boundary-value problem: For f P Lr1pΩqd find
pu, p, Sq P W 1,r

0 pΩqd ˆ Lr̃
0pΩq ˆ Lr1pΩ, Rdˆd

symq such that

div pu b u ` p1 ´ Sq “ f in D1pΩqd,

div u “ 0 in D1pΩq,
Spxq “ Snpx, Dupxqq for almost every x P Ω.

(3.1)

3.2. Domain partition and refinement framework

In this section we provide the framework for adaptive grid refinement. For the sake of simplicity, we restrict
our presentation to conforming simplicial meshes and refinement by bisection. To be more precise, let G0 be
a regular conforming partition of Ω into closed simplexes, the so-called macro mesh. Each simplex in the
partition is referred to as an element. We assume that there exists a refinement routine REFINE with the
following properties.

‚ The refinement routine has two input arguments: a regular conforming partition G and a subset M Ă G of
marked elements. The output is a refined regular conforming triangulation of Ω, where all elements in M
have been bisected at least once. The input grid can be G0 or the output of a previous application of REFINE.

‚ Shape-regularity: We call G1 a refinement of G (briefly G1 ě G), when it can be produced from G by a finite
number of applications of REFINE. The set

G :“ tG : G is a refinement of G0u

is shape-regular, i.e., for any element E P G with G P G, the ratio of its diameter to the diameter of the
largest inscribed ball is bounded uniformly with respect to all partitions G with G P G.

For the proof of existence of such a procedure, we refer to [5,29,40] or the monograph [39] and the references
therein.

For every element E P G, G P G, there exists an invertible affine mapping

F E : E Ñ Ê,

where Ê is the standard reference d-simplex. The neighbourhood of an element E P G, with G P G, is denoted by

NGpEq :“ tE1 P G : E1 X E ‰ Hu.

Let ω Ă Ω and define UGpωq :“
Ť

tE P G | E X ω ‰ Hu. For subsets M Ă G, let

ΩpMq :“
ď

tE | E P Mu Ă Ω and UGpMq :“ UGpΩpMqq Ă Ω,
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i.e., we have Ω “ ΩpGq. Thanks to the shape-regularity of G, we have that #NGpEq ď C and
ˇ̌UGpEq

ˇ̌
“ˇ̌

ΩpNGpEqq
ˇ̌

ď C |E| with a constant C ą 0 independent of G P G. For G P G, we define the mesh-size function

Ω Q x ÞÑ hGpxq :“
ˇ̌UGptxuq

ˇ̌1{d
.

For x P interior pEq, this coincides with the usual definition hGpxq “ |E|1{d “: hE . The mesh-size function is
monotonically decreasing under refinement.

We call the pd ´ 1q-dimensional sub-simplexes of any simplex E P G, whose interiors lie inside Ω, the sides
of G and denote the set of all of them by SpGq. For S P SpGq, we define hS :“ |S|1{pd´1q and observe for x P S
that chS ď hGpxq ď ChS , with constants C, c ą 0 depending solely on the shape-regularity of G.

3.3. Finite element spaces

Denote by Pm the space of polynomials of degree at most m P N. For a given grid G P G and certain subspaces
Q Ď L8pΩq and V Ď W 1,8

0 pΩqd the finite element spaces are given by

VpGq :“
!
V P V : V |E ˝ F ´1

E P P̂V, E P G and V |BΩ “ 0
)

, (3.2a)

QpGq :“
!
Q P Q : Q|E ˝ F ´1

E P P̂Q, E P G
)

, (3.2b)

where P̂V Ă W 1,8pÊqd and P̂Q Ă L8pÊq are finite-dimensional subspaces such that P2
1 Ď P̂V Ď Pd

� and
P0 Ď P̂Q Ď Pj for some � ě j P N. For convenience, we introduce the space of piecewise polynomials of degree
at most m P N over G by

PmpGq :“ tR : Ω̄ Ñ R : R|E P Pm, E P Gu.

Note that QpGq Ă L8pΩq X PjpGq and since VpGq Ă C0pΩ̄qd X P�pGqd it follows that VpGq Ă W 1,8
0 pΩqd.

Additionally, we assume that the finite element spaces are nested, i.e., if G‹ is a refinement of G, then

VpGq Ă VpG‹q and QpGq Ă QpG‹q. (3.3)

Each of the above spaces is supposed to have a finite and locally supported basis; e. g. for the discrete velocity
space this means that for G P G there exists an NG P N such that

VpGq “ spantV G
1 , . . . , V G

NGu

and for each basis function V G
i , i “ 1, . . . , NG , we have that if there exists an E P G with V G

i ı 0 on E, then
suppV G

j Ă UGpEq. We introduce the subspace V0pGq of discretely divergence-free functions by

V0pGq :“
!
V P VpGq :

ż
Ω

Q div V dx “ 0 for all Q P QpGq
)

and we define

Q0pGq :“
!
Q P QpGq :

ż
Ω

Q dx “ 0
)
.

It will be assumed throughout the paper that all pairs of velocity-pressure finite element spaces considered
possess the following properties.

Assumption 3.3 (Projector IG
div ). We assume that for each G P G there exists a linear projection operator

IG
div : W 1,1

0 pΩqd Ñ VpGq such that, for all s P p1, 8q,
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‚ IG
div preserves divergence in QpGq˚; i.e., for v P W 1,s

0 pΩqd we haveż
Ω

Q div v dx “
ż
Ω

Q div IG
div v dx for all Q P QpGq.

‚ IG
div is locally defined; i.e., for any other partition G‹ P G we have

IG‹
div v|UG‹ pEq “ IG

div v|UGpEq (3.4)

for all v P W 1,s
0 pΩqd and all E P G with NGpEq Ă G‹.

‚ IG
div is locally W 1,1-stable; i.e., there exists a c1 ą 0, independent of G, such thatż

E

ˇ̌
IG

div v
ˇ̌
` hG

ˇ̌∇IG
div v

ˇ̌
dx ď c1

ż
UGpEq

|v| ` hG |∇v| dx (3.5)

for all v P W 1,s
0 pΩqd and all E P G.

As in [6, 17, 22], the local W 1,1-stability property (3.5) implies global W 1,s-stability, i.e., for each s P r1, 8s,
there exists a cs ą 0, such that ››IG

div v
››
1,s

ď cs }v}1,s for all v P W 1,s
0 pΩqd. (3.6)

Moreover, since VpGq contains piecewise affine functions, we have the following interpolation error bound. For
each s P r1, 8s there exists a cs ą 0 such thatż

E

ˇ̌
v ´ IG

div v
ˇ̌s ` hs

G
ˇ̌∇v ´ ∇IG

div v
ˇ̌s

dx ď csh
sp1`δq
E |v|sW 1`δ,spUGpEqq (3.7)

for all E P G and v P W 1`δ,spΩqd X W 1,s
0 pΩqd, δ P t0, 1u.

As a consequence, we deduce the following result for weak limits in nested spaces. Before stating the result,
we adopt the following notational convention: we shall write A À B to denote A ď C ¨ B with a constant C ą 0
that is independent of the discretization parameter h.

Proposition 3.4. Let tvkukPN Ă W 1,s
0 pΩqd, s P p1, 8q, be such that vk á 0 weakly in W 1,s

0 pΩqd as k Ñ 8
and let tGkukPN Ă G be a sequence of nested partitions of Ω, i.e., Gk ď Gk`1 for all k P N. Then,

IGk

div vk á 0 weakly in W 1,s
0 pΩqd as k Ñ 8.

Proof. Thanks to the uniform boundedness (3.6) of the sequence of linear operators tIGk

div : W 1,s
0 pΩqd Ñ

VpGkq Ă W 1,s
0 pΩqdukPN, we have that there exists a not relabelled weakly converging subsequence of tIGk

div vkukPN

in W 1,s
0 pΩqd. By the compact embedding W 1,s

0 pΩqd ãÑãÑ LspΩqd the sequence tIGk

div vkukPN converges strongly
in LspΩqd. Thanks to the uniqueness of the strong limit, it suffices to identify the limit of tIGk

div vkukPN in
LspΩqd. To this end, we introduce the sets

G`
k :“

č
jěk

Gj and G̊`
k :“ tE P G`

k : NGk pEq Ă G`
k u,

i.e., NGj pEq “ NGkpEq for all j ě k and E P G̊`
k . For j ě k, we consider the decomposition

I
Gj

div vj “ pIGj

div vjqχΩpG̊`
k q ` pIGj

div vjqχΩpGkzG̊`
k q.
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For the latter term, we have according to (3.7) that›››pvj ´ I
Gj

div vjqχΩpGkzG̊`
k q

›››
s

À
›››hGj χUpGkzG̊`

k q

›››
8

}∇vj}s ď
›››hGk

χUpGkzG̊`
k q

›››
8

}∇vj}s .

Here we have used the monotonicity of the mesh-size under refinement in the last step. It follows from ([34],
Cor. 4.1 and (4.15)) that

›››hGk
χΩpGkzG̊`

k q

›››
L8pΩq

Ñ 0 as k Ñ 8. Thanks to the shape-regularity of G, this readily

implies that

lim
kÑ8

›››hGk
χUpGkzG̊`

k q

›››
L8pΩq

“ 0. (3.8)

By the compact embedding W 1,s
0 pΩqd ãÑãÑ LspΩqd we have that vj Ñ 0 strongly in LspΩqd as j Ñ 8.

Combining these observations, we deduce that for any ε ą 0 there exists a Kε ą 0 such that›››pIGj

div vjqχΩpGkzG̊`
k q

›››
s

ď ε for all j ě k ě Kε. (3.9)

We next investigate the term pIGj

div vjqχΩpG̊`
k q. Thanks to the definition of G̊`

k and (3.4) we have

pIGj

div vjq|ΩpG̊`
k q “ pIGk

div vjq|ΩpG̊`
k q for all j ě k.

Since a linear operator between two normed linear spaces is norm-continuous if and only if it is weakly continuous
(cf. Theorem 6.17 in [3], for example,) we deduce that, for fixed k P N, we have

pIGj

div vjq|ΩpG̊`
k q á 0 weakly in W 1,spΩpG̊`

k qqd as j Ñ 8.

By the compact embedding W 1,s
0 pΩqd ãÑãÑ LspΩqd this implies that

pIGj

div vjqχΩpG̊`
k

q Ñ 0 strongly in LspΩqd as j Ñ 8.

Together with (3.9) we have, for all j ě k ě Kε, that›››IGj

div vj

›››
s

ď
›››pIj

div vjqχΩpGkzG̊`
k q

›››
s

`
›››pIGj

div vjqχΩpG̊`
k q

›››
s

ď ε `
›››pIGj

div vjqχΩpG̊`
k q

›››
s

Ñ ε as j Ñ 8.

Since ε ą 0 was arbitrary, this proves the assertion. �

Next, we shall introduce a quasi-interpolation operator, which will be important for the treatment of the,
generally non-polynomial, stress approximation.

Assumption 3.5. We assume that for each G P G there exists a linear projection operator ΠG : L1pΩ; Rdˆd
symq Ñ

P�´1pG; Rdˆd
symq, such that ΠG is locally L1 stable, i.e., there exists a c ą 0, depending on G0, such that

ż
E

|ΠGS| dx ď c

ż
UGpEq

|S| dx for all S P L1pΩ; Rdˆd
symq.

This implies that

}ΠGS}s ď cs }S}s for all S P LspΩ; Rdˆd
symq, (3.10)

with a constant cs depending on G0 and s; compare also with (3.6).
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Assumption 3.6 (Projector IG
Q). We assume that for each G P G there exists a linear projection operator

IG
Q : L1pΩq Ñ QpGq such that, for all s1 P p1, 8q, IG

Q is locally L1 stable, i.e., there exists a c ą 0, independent
of G, such that ż

E

ˇ̌
IG

Qq
ˇ̌
dx ď c

ż
UGpEq

|q| dx for all q P L1pΩq and all E P G.

We may argue similarly as for IG
div to deduce that

››IG
Qq

››
s

ď cs }q}s and
ż
E

ˇ̌
q ´ IG

Qq
ˇ̌s

dx ď csh
δs
E |q|sW δ,spUGpEqq (3.11)

for all E P G and q P W δ,spΩq, δ P t0, 1u.
As a consequence of (2.3) and Assumption 3.3 (compare also with (3.6)) the following discrete counterpart

of (2.3) holds; see [6].

Proposition 3.7 (Inf-sup stability). For all s, s1 P p1, 8q with 1
s ` 1

s1 “ 1, there exists a βs ą 0, independent
of G P G, such that

sup
0‰V PVpGq

ş
Ω

Q div V dx

}V }1,s

ě βs }Q}s1 for all Q P Q0pGq.

Thanks to the above considerations, there exists a discrete Bogovskĭı operator, which has the following
properties; compare also with ([22], Cor. 9).

Corollary 3.8 (Discrete Bogovskĭı operator). The linear operator BG :“ IG
div ˝ B : div VpGq Ñ VpGq satisfies

div pBGHq “ H and βs

››BGH
››
1,s

ď sup
QPQpGq

ş
Ω

HQ dx

}Q}s1

for all H P div VpGq and s P p1, 8q, with a positive constant βs, independent of G P G.
Moreover, let tGkukPN Ă G be a sequence of nested partitions of Ω, i.e., Gk`1 ě Gk for all k P N, and let

V k P VpGkq be such that V k á 0 weakly in W 1,s
0 pΩqd as k Ñ 8. We then have that

BGk div V k á 0 weakly in W 1,s
0 pΩqd as k Ñ 8.

Proof. The claim follows as in ([21], Cor. 10) after replacing ([21], Prop. 7) in the proof by Proposition 3.4
here. �

Upon integration by parts, it follows that

´
ż
Ω

pv b wq : ∇hdx “
ż
Ω

pv b hq : ∇w ` p div vqpw ¨ hq dx (3.12)

for all v, w, h P DpΩqd. The last term vanishes provided that div v ” 0, i.e., the convection term is skew-
symmetric with respect to the second and the third argument, which implies thatż

Ω

pv b vq : ∇v dx “ 0.

It can be easily seen that this is not generally true for finite element functions V P VpGq, even ifż
Ω

Q div V dx “ 0 for all Q P QpGq, (3.13)
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i.e., if V is discretely divergence-free. As in [41], we wish to ensure that the discrete counterpart of the convection
term inherits this skew-symmetry of the convection term. To this end, we observe from (3.12) that

´
ż
Ω

pv b wq : ∇h dx “
1
2

ż
Ω

pv b hq : ∇w ´ pv b wq : ∇h dx “: Brv, w, hs (3.14)

for all v, w, h P W 1,8
0, div pΩqd. We extend this definition to W 1,8pΩqd in the obvious way and deduce that

Brv, v, vs “ 0 for all v P W 1,8pΩqd. (3.15)

We further investigate this modified convection term for fixed r, r1 P p1, 8q with 1
r ` 1

r1 “ 1; recall the
definition of r̃ from (2.1). We note that r̃ ą 1 is equivalent to the condition r ą 2d

d`2 . In this case we can define
its dual r̃1 P p1, 8q by 1

r̃ ` 1
r̃1 “ 1 and we note that the Sobolev embedding

W 1,rpΩqd ãÑ L2r̃pΩqd (3.16)

holds. This is a crucial property in the continuous problem, which guarantees thatż
Ω

pv b wq : ∇h dx ď c }v}1,r }w}1,r }h}1,r̃1 (3.17)

for all v, w, h P W 1,8pΩqd; see [14]. Because of the extension (3.14) of the convection term to functions that are
not necessarily pointwise divergence-free, we have to adopt the following stronger condition in order to ensure
that the trilinear form Br¨, ¨, ¨s is bounded on W 1,rpΩqd ˆ W 1,rpΩqd ˆ W 1,r̃1

pΩqd. In particular, let r ą 2d
d`1 ,

in order to ensure that there exists an s P p1, 8q such that 1
r ` 1

2r̃ ` 1
s “ 1. In other words, we have for

v, w, h P W 1,8pΩqd thatż
Ω

p div vq pw ¨ hq dx ď } div v}r }w}2r̃ }h}s ď c }v}1,r }w}1,r }h}1,r̃1 ,

with a constant c depending on r, Ω and d. Here we have used the embeddings (3.16) and W 1,r̃1

0 pΩqd ãÑ LspΩqd.
Consequently, together with (3.17) we thus obtain

Brv, w, hs ď c }v}1,r }w}1,r }h}1,r̃1 . (3.18)

In view of (3.14), for v “ pv1, . . . , vdqT P W 1,r
0 pΩqd, the convective term can be reformulated asż

Ω

Brv, vs ¨ w dx “ Brv, v, ws, w P W 1,r̃
0 pΩqd, (3.19)

where Brv, vs P Lr̃pΩqd is defined by pBrv, vsqj “ 1
2

řd
i“1 vi

Bvi

Bxj
` B

Bxi
pvivjq for j “ 1, . . . , d. In particular, for

v “ V P VpGq, we have that BrV , V s P P2�´1pGqd.

Example 3.9. The following velocity-pressure pairs of finite elements satisfy Assumptions 3.3 and 3.6 for
d “ 2, 3 (see, e.g., [6, 24, 25]):

‚ The lowest order Taylor–Hood element;
‚ Spaces of continuous piecewise quadratic elements for the velocity and piecewise constants for the pressure

(see e.g. [12], Sect. VI Ex. 3.6).

We note that the MINI element and the conforming Crouzeix–Raviart Stokes element do not satisfy the nest-
edness hypothesis stated in (3.3).
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Remark 3.10. The boundedness of the trilinear form Br¨, ¨, ¨s stated in (3.18) requires that r ą 2d
d`1 . In [21]

and [22] the set of admissible values of r was the same range, r P p 2d
d`2 , 8q, as in the existence theorem for the

continuous problem in [14]; however, for r P p 2d
d`2 , 2d

d`1 s the finite element space for the velocity was assumed
in [21] and [22] to consist of pointwise divergence-free functions, whose construction is more complicated. For
simplicity, we shall therefore confine ourselves here to the limited range of r ą 2d

d`1 so as to be able to admit
standard discretely divergence-free (cf. (3.13)) finite element velocity spaces.

3.4. The Galerkin approximation

We are now ready to state the discrete problem. Let tVpGq, QpGquGPG be the finite element spaces of
Section 3.3.

For n P N and G P G we call a triple of functions
`
Un

G , Pn
G
˘

P VpGqˆQ0pGq a Galerkin approximation of (3.1)
if it satisfies ż

Ω

Snp¨, DUn
Gq : DV ` BrUn

G , Un
Gs ¨ V ´ Pn

G div V dx “
ż
Ω

f ¨ V dx,ż
Ω

Q div Un
G dx “ 0,

(3.20)

for all V P VpGq and Q P QpGq.
Restricting the test-functions to V0pGq the discrete problem (3.20) reduces to finding Un

G P V0pGq such that

ż
Ω

Snp¨, DUn
Gq : DV dx ` BrUn

G , Un
G , V s “

ż
Ω

f ¨ V dx (3.21)

for all V P V0pGq. Thanks to (3.15), it follows from Assumption 3.2 and Korn’s inequality (2.5) that the
nonlinear operator defined on V0pGq by the left-hand side of (3.21) is coercive and continuous on V0pGq. Since
the dimension of VpGq is finite, Brouwer’s fixed point theorem ensures the existence of a solution to (3.21). The
existence of a solution triple to (3.20) then follows by the discrete inf-sup stability, Proposition 3.7. Of course,
because of the weak assumptions in the definition of the maximal monotone r-graph, (3.20) does not define the
Galerkin approximation pUn

G , Pn
G q uniquely. However, supposing the axiom of choice, for each n P N, G P G, we

may choose an arbitrary one among possibly infinitely many solution triples and thus obtain

�`
Un

G , Pn
G , Snp¨, DUn

Gq
˘(

nPN,GPG
. (3.22)

From (3.20) we see that Un
G is discretely divergence-free and thus, thanks to (3.21) and (3.15), we have that

ż
Ω

Snp¨, DUn
Gq : DUn

G dx “
@
f , Un

G
D

ď }f}´1,r1

››Un
G
››
1,r

.

The coercivity of Sn (Assump. 3.2) and Korn’s inequality (2.5) imply that the sequence tUn
GunPN is bounded in

the norm of W 1,r
0 pΩqd, independently of G P G and n P N. This in turn implies, again by Assumption 3.2, the

uniform boundedness of Snp¨, DUn
Gq in Lr1 pΩ; Rdˆd

symq. In other words, there exists a constant cf ą 0 depending
on the data f , such that

››Un
G
››
1,r

`
››Snp¨, DUn

Gq
››
r1 ď cf , for all G P G and n P N. (3.23)

For the sake of simplicity of the presentation, if there is no risk of confusion, we will denote in what follows
SnpDUn

Gq “ Snp¨, DUn
Gq.
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Remark 3.11. An alternative formulation of (3.21) is as follows: find a triple
`
Un

G , Pn
G , Sn

G
˘

P VpGq ˆ Q0pGq ˆ
P�´1pG; Rdˆd

symq such that

ż
Ω

Sn
G : DV ` BrUn

G , Un
Gs ¨ V ´ Pn

G div V dx “
ż
Ω

f ¨ V dx,ż
Ω

Q div Un
G dx “ 0,ż

Ω

Sn
G : D dx “

ż
Ω

SnpDUn
Gq : D dx,

for all V P VpGq, Q P QpGq, and D P P�´1pG; Rdˆd
symq. Here P�´1pG; Rdˆd

symq denotes the space of all piecewise
polynomials of degree ď � ´ 1 on G with values in Rdˆd

sym . In particular, if we define ΠG : L1pΩ; Rdˆd
symq Ñ

P�´1pG; Rdˆd
symq by

ż
Ω

ΠGS : D dx “
ż
Ω

S : D dx, for all D P P�´1pG; Rdˆd
symq,

then Assumption 3.5 can be easily verified and Sn
G may take the role of ΠGSnpDUn

Gq in the subsequent analysis.

3.5. Discrete Lipschitz truncation

In this section we shall recall a discrete counterpart of Lipschitz truncation, which acts on finite element spaces.
This discrete Lipschitz truncation is a composition of a continuous Lipschitz truncation with a projection onto
the finite element space. The continuous Lipschitz truncation used here is based on results from [10, 11, 19],
which provides finer estimates than the original Lipschitz truncation technique proposed by Acerbi and Fusco
in [1]; for details consider [22].

We summarize the properties of the discrete Lipschitz truncation in the following result. Similar results for
Sobolev functions can be found in [19] and [10].

Proposition 3.12. Let 1 ă s ă 8 and let tEkukPN be a sequence such that for all k P N we have Ek P VpGkq
for some Gk P G. In addition, assume that tEkukPN Ă W 1,s

0 pΩqd converges to zero weakly in W 1,s
0 pΩqd, as

k Ñ 8.
Then, there exists a sequence tλk,juk,jPN Ă R with 22j ď λk,j ď 22j`1´1 and Lipschitz truncated functions

Ek,j “ Ek,λk,j
, k, j P N, with the following properties:

(a) Ek,j P VpGkq;
(b) }Ek,j}1,s ď c }Ek}1,s for 1 ă s ď 8;
(c) }∇Ek,j}8 ď c λk,j;
(d) Ek,j Ñ 0 in L8pΩqd as k Ñ 8;
(e) ∇Ek,j á˚ 0 in L8pΩqdˆd as k Ñ 8;
(f) For all k, j P N we have

››λk,j χtEk‰Ek,ju
››
s

ď c 2´ j
s }∇Ek}s.

The constants c appearing in the inequalities (b), (c) and (f) depend on d, Ω, P̂V and the shape-regularity of
tGkukPN. The constants in (b) and (f) also depend on s.

Proof. The proof is exactly the same as that of ([21], Thm. 17 and Cor. 18 replacing [21], Prop. 7) by
Proposition 3.4. �
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4. Error Analysis

4.1. Graph approximation error

In order to quantify the error committed in the approximation of the graph Apxq, x P Ω, we introduce the
following indicator. For D P LrpΩ; Rdˆd

symq, S P Lr1 pΩ; Rdˆd
symq, we define

EApD, Sq :“
ż
Ω

inf
pδ,σqPApxq

|D ´ δ|r ` |S ´ σ|r
1
dx. (4.1)

The following result shows that this indicator is well-defined.

Proposition 4.1. Let D P LrpΩ; Rdˆd
symq and S P Lr1 pΩ; Rdˆd

symq; then, the mapping

x ÞÑ inf
pδ,σqPApxq

|Dpxq ´ δ|r ` |Spxq ´ σ|r
1

is integrable. Moreover, there exist D̃ P LrpΩ; Rdˆd
symq and S̃ P Lr1pΩ; Rdˆd

symq such that
`
D̃pxq, S̃pxq

˘
P Apxq for

a.e. x P Ω and

EApD, Sq “
ż
Ω

ˇ̌̌
D ´ D̃

ˇ̌̌r
`
ˇ̌̌
S ´ S̃

ˇ̌̌r1

dx.

Proof. The first claim is an immediate consequence of the second one. The second assertion follows from ([4],
Thm. 8.2.11) by observing that the mapping

Ω ˆ Rdˆd
sym ˆ Rdˆd

sym Q
`
x; pδ, σq

˘
ÞÑ |Dpxq ´ δ|r ` |Spxq ´ σ|r

1

is Carathéodory, i.e., x ÞÑ |Dpxq ´ δ|r ` |Spxq ´ σ|r1
is measurable for all δ, σ P Rdˆd

sym and

pδ, σq ÞÑ |Dpxq ´ δ|r ` |Spxq ´ σ|r
1

is continuous for a.e. x P Ω. �

4.2. A posteriori finite element error estimates

In this section we shall prove bounds on the residual

RpUn
G , Pn

G , SnpDUn
Gqq “ pRpdepUn

G , Pn
G , SnpDUn

Gqq,RicpUn
Gqq P W ´1,r̃pΩqd ˆ Lr

0pΩq

of (3.1). In particular, for pv, q, T q P W 1,r
0 pΩqd ˆ Lr̃

0pΩq ˆ Lr1 pΩ; Rdˆd
symq we have

xRpv, q, T q, pw, oqy :“
@Rpdepv, q, T q, w

D
`
@Ricpvq, o

D
:“

ż
Ω

T : Dw ` Brv, vs ¨ w ´ q div w ´ f ¨ w dx ´
ż
Ω

odiv v dx, (4.2)

where pw, oq P W 1,r̃1

0 pΩqd ˆ Lr1
pΩq{R. Although for the sake of simplicity we restrict ourselves here to residual-

based estimates, we note that in principle other a posteriori techniques, such as hierarchical estimates, flux-
equilibration or estimates based on local problems, can be used as well; compare with [34, 38]. For n P N and
G P G let

`
Un

G , Pn
G
˘

P VpGq ˆ Q0pGq be the Galerkin approximation defined in (3.20). We begin with some
preliminary observations.

The first part of the residual in (4.2), Rpdepv, q, T q P W ´1,r̃pΩqd, provides information about how well the
functions v, q, T satisfy the first equation in (3.1). For the second part, we have Ricpvq P pLr

0pΩqq˚. We note
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that the space pLr
0pΩqq˚ is isometrically isomorphic to Lr1 pΩq{R, which is, in turn, isomorphic to Lr1

0 pΩq since
r P p1, 8q. The term

@Ricpvq, o
D

provides information about the compressibility of v.
We emphasize that Rpv, q, T q “ 0 if and only if Rpdepv, q, T q “ 0 and Ricpvq “ 0, but that a vanishing

residual itself does not guarantee that
`
Dvpxq, T pxq

˘
P Apxq for almost every x P Ω. For this, additionally

EApDv, T q “ 0 is needed.
For the rest of the paper let t and t̃ be such that

2d

d ` 1
ă t ă r and t̃ :“

1
2

dt

d ´ t
, if r ď

3d

d ` 2
, (4.3a)

t “ r and t̃ “ t1 “ r̃ “ r1, otherwise. (4.3b)

Note that (4.3a) implies that if r ď 3d
d`2 , then t ă r and t̃ ă r̃.

Lemma 4.2. The triple pu, p, Sq P W 1,r
0 pΩqd ˆ Lr̃

0pΩq ˆ Lr1 pΩ; Rdˆd
symq is a solution of (2.2) if and only if

Rpu, p, Sq “ 0 in W ´1,t̃pΩqd ˆ Lt
0pΩq and EApu, Sq “ 0.

Proof. Thanks to the fact, that W 1,t̃1

0 pΩqdˆLt1 pΩq{R is dense in W 1,r̃1

0 pΩqdˆLr1pΩq{R we have that Rpu, p, Sq “
0 in W ´1,t̃pΩqd ˆ Lt

0pΩq is equivalent to Rpu, p, Sq “ 0 in W ´1,r̃pΩqd ˆ Lr
0pΩq. This is, in turn, equivalent to

the fact that the triple pu, p, Sq satisfies the system of partial differential equations (2.2).
On the other hand we have that pDupxq, Spxqq P Apxq for almost every x P Ω if and only if EApDu, Sq “ 0,

and that completes the proof. �

Note that Lemma 4.2 does not provide a quantitative relation between the error and the residual. Even for
simple r-Laplacian type problems, such a relation requires complicated techniques and problem-adapted error
notions (e.g. a suitable quasi-norm); cf. [7, 18, 31]. However, because of the possible nonuniqueness of solutions
to (2.2), such a relation cannot be guaranteed in our situation. We shall therefore restrict the a posteriori
analysis to bounding the residual of the problem instead of bounding the error.

Recalling the quasi-interpolation ΠG from Assumption 3.5 as well as the representation of the discrete con-
vective term in (3.19), we define the local indicators on E P G as follows:

Epde
G

`
Un

G , Pn
G , Sn

`
DUn

G
˘
; E

˘
:“

››hG
`
´ div ΠGSn

`
DUn

G
˘

` BrUn
G , Un

Gs ` ∇Pn
G ´ f

˘››t̃
t̃,E

`
›››h1{t̃

G
““
ΠGSn

`
DUn

G
˘

´ Pn
G id

‰‰›››t̃
t̃,BE

`
››Sn

`
DUn

G
˘

´ ΠGSn
`
DUn

G
˘››t̃

t̃,E
,

(4.4a)

E ic
G
`
Un

G ; E
˘

:“
›› div Un

G
››t
t,E

, (4.4b)

and

EG
`
Un

G , Pn
G , Sn

`
DUn

G
˘
; E

˘
:“ Epde

G
`
Un

G , Pn
G , Sn

`
DUn

G
˘
; E

˘
` E ic

G
`
Un

G ; E
˘
. (4.4c)

Here, for S P SpGq, rr¨ss |S denotes the normal jump across S and rr¨ss |BΩ :“ 0. Moreover, we define the error
bounds to be the sums of the local indicators, i.e., for M Ă G, we have

Epde
G

`
Un

G , Pn
G , SnpDUn

Gq;M˘
:“

ÿ
EPM

Epde
G

`
Un

G , Pn
G , SnpDUn

Gq; E
˘
,

E ic
G
`
Un

G ;M˘
:“

››div Un
G
››t
t;ΩpMq

and

EG
`
Un

G , Pn
G , SnpDUn

Gq
˘

:“ Epde
G

`
Un

G , Pn
G , SnpDUn

Gq
˘

` E ic
G
`
Un

G
˘

:“ Epde
G

`
Un

G , Pn
G , SnpDUn

Gq;G˘ ` E ic
G
`
Un

G ;G˘.
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Theorem 4.3 (Upper bound on the residual). Let n P N and G P G, and denote by
`
Un, Pn

G
˘

P VpGq ˆ Q0pGq
a Galerkin approximation of (3.20). We then have the following bounds:

››Rpde
`
Un

G , Pn
G , SnpDUn

Gq
˘››

W ´1,t̃pΩq ď C1 Epde
G

`
Un

G , Pn
G , SnpDUn

Gq
˘1{t̃

, (4.5a)

sup
oPLt1 pΩq{R

B
Ric

`
Un

G
˘
,

o

infcPR }o ´ c}t1

F
“ E ic

G
`
Un

G
˘1{t

. (4.5b)

The constant C1 ą 0 depends only on the shape-regularity of G, t̃, and on the dimension d.

Proof. The assertions are proved using standard techniques; compare e.g. with [2, 42]. For the reader’s conve-
nience we sketch the arguments. For arbitrary pv, qq P W 1,t̃1

0 pΩqd ˆ Lt1
pΩq{R with }v}1,t̃1 “ }p}t1 “ 1 we deduce

from (3.20) that

@Rpde
`
Un

G , Pn
G , SnpDUn

Gq
˘
, v

D
“
ż
Ω

ΠGSnpDUn
Gq : Dpv ´IG

div vq `BrUn
G , Un

Gs ¨ pv ´IG
div vq ´f ¨ pv ´IG

div vq dx

´
ż
Ω

Pn
G div pv ´ IG

div vq dx `
ż
Ω

pSnpDUn
Gq ´ ΠGSnpDUn

Gqq : Dpv ´ IG
div vq dx.

Thanks to (3.19), local integration by parts and using Hölder’s inequality, we obtain

@Rpde
`
Un

G , Pn
G , SnpDUn

Gq
˘
, v

D
ď

ÿ
EPG

!››´ div ΠGSnpDUn
Gq ` BrUn

G , Un
Gs ` ∇Pn

G ´ f
››
t̃,E

››v ´ IG
div v

››
t̃1,E

`
1
2

››““ΠGSnpDUn
Gq ´ Pn

G id
‰‰››

t̃,BE

››v ´ IG
div v

››
t̃1,BE

`
››SnpDUn

Gq ´ ΠGSnpDUn
Gq
››
t̃,E

}Dv}t̃1,E

)

ď C

˜ÿ
EPG

! ››hG
`

´ div ΠGSnpDUn
Gq ` BrUn

G , Un
Gs ` ∇Pn

G ´ f
˘››t̃

t̃,E

`
›››h1{t̃

G
““
ΠGSnpDUn

Gq ´ Pn
G id

‰‰›››t̃
t̃,BE

`
››SnpDUn

Gq ´ ΠGSnpDUn
Gq
››t̃
t̃,E

)̧ 1{t̃

}v}1,t̃1 .

Here, in the last inequality, we used the stability of IG
div (see (3.5)), a scaled trace theorem, and the interpolation

estimate for IG
div in (3.7), as well as the finite overlapping of patches and a scaled trace theorem.

To prove the bound (4.5b), we first deduce from
ş
Ω

1 div Un
G dx “ 0 and Hölder’s inequality that for all c P R,

we have ż
Ω

odiv Un
G dx “

ż
Ω

po ´ cq div Un
G dx ď

›› div Un
G
››
t

}o ´ c}t1 .

Taking the infimum over all c P R and then the supremum over all o P Lr1
pΩq proves ‘ď’ in (4.5b). In order to

prove ‘ě’, we observe that

E ic
G
`
Un

G
˘

“
ż
Ω

div Un
G | div Un

G |t´2 div Un
G dx ď sup

oPLt1 pΩq{R

B
Ric

`
Un

G
˘
,

o

infcPR }o ´ c}t1

F››| div Un
G |t´2 div Un

G
››
t1 .
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Together with the definition of E ic
G
`
Un

G
˘

and noting that

››| div Un
G |t´2 div Un

G
››
t1 “

››div Un
G
››t´1

t
“ E ic

G
`
Un

G
˘1´ 1

t “ E ic
G
`
Un

G
˘ 1

t1 ,

this yields (4.5b). �

Corollary 4.4. Under the conditions of Theorem 4.3, we have

@Rpde
`
Un

G , Pn
G , SnpDUn

Gq
˘
, v

D
ď C1

ÿ
EPG

Epde
G

`
Un

G , Pn
G , SnpDUn

Gq; E
˘1{t̃ }∇v}t̃1,UGpEq

and @Ric
`
Un

G
˘
, q

D
ď

ÿ
EPG

E ic
G
`
Un

G ; E
˘1{t }q}t1,UGpEq

for all v P W 1,t̃1

0 pΩqd and q P Lt1pΩq.

Theorem 4.5 (Lower bound on the residual). Under the conditions of Theorem 4.3, we have

c2 Epde
G

`
Un

G , Pn
G , SnpDUn

Gq
˘1{t̃ ď

››Rpde
`
Un

G , Pn
G , SnpDUn

Gq
˘››

W ´1,t̃pΩq ` oscG
`
Un

G , SnpDUn
Gq
˘1{t̃

. (4.6)

The constant c2 ą 0 depends solely on the shape-regularity of G, t̃, and on the dimension d. The oscillation
term is defined by

oscG
`
Un

G , SnpDUn
Gq
˘

:“
ÿ
EPG

osc
`
Un

G , SnpDUn
Gq, E

˘
:“

ÿ
EPG

min
fEPPd

2�´1

››hG
`
f ´ fE

˘››t̃
t̃,E

`
››SnpDUn

Gq ´ ΠGSnpDUn
Gq
››t̃
t̃,E

.

Proof. Let E P G and let S P SpGq, i.e., there exist E1, E2 P G, E1 ‰ E2, such that S “ E1 XE2. Let fE P Pd
2�´1

be arbitrary; for convenience we use the notation

RE :“ ´ div ΠGSnpDUn
Gq ` BrUn

G , Un
Gs ` ∇Pn

G ´ fE P Pd
2�´1,

and

JS :“
““
ΠGSnpDUn

Gq ´ Pn
G id

‰‰
|S P Pdˆd

m , where m “ maxt� ´ 1, ju.

It is well-known that there exist local bubble functions bE , bS P W 1,8
0 pΩq, such that

0 ď bE , bS ď 1, suppbE “ E and suppbS “ ωS :“ E1 Y E2. (4.7a)

Moreover, we have that there exist ρE P Pd
2�´1 and ρS P Pdˆd

m , with }ρE}t̃1,E “ 1 “ }ρS}t̃1,S , such that

}RE}t̃,E ď C

ż
E

REbEρE dx, }∇pbEρEq}t̃1,E ď C
››h´1

G ρE

››
t̃1,E

,

}JS}t̃,S ď C

ż
S

JSbSρS dx, }∇pbSρSq}t̃1,ωS
ď C

›››h´1{t̃1

G ρS

›››
t̃1,S

,

and }bSρS}t̃1,ωS
ď C

›››h1{t̃1

G ρS

›››
t̃1,S

;

(4.7b)
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compare, for example, with ([43], Chap. 3.6). Here the constants only depend on r, the polynomial degree of RE ,
respectively JS , on the shape-regularity of G, and on the dimension d. Hence, for the element residual, we deduce
that

}RE}t̃,E ď C
!@RpdepUn

G , Pn
G , SnpDUn

Gqq, bEρE

D
`
@
ΠGSnpDUn

Gq ´ SnpDUn
Gq, DpbEρEq

D
` }f ´ fE}t̃,E

)
,

where we have used Hölder’s inequality and that 0 ď bE ď 1. Together with a triangle inequality and (4.7b),
this implies that››hG

`
´ div ΠGSnpDUn

Gq ` BrUn
G , Un

Gs ` ∇Pn
G ´ f

˘››
t̃,E

ď C
!@RpdepUn

G , Pn
G , SnpDUn

Gqq, hGbEρE

D
`
››ΠGSnpDUn

Gq´SnpDUn
Gq
››
t̃,E

`}hGpf ´fEq}t̃,E

)
.

(4.8)

For the jump residual, we deduce from (4.7a) and integration by parts, that

}JS}t̃,S ď C

ż
S

““
ΠGSnpDUn

Gq ´ Pn
G id

‰‰
bSρS ds

“ C
! @RpdepUn

G , Pn
G , SnpDUn

Gqq, bSρS

D
`

ÿ
i“1,2

ż
Ei

`
div ΠGSnpDUn

Gq ´ BrUn
G , Un

Gs ´ ∇Pn
G ` f

˘
bSρS dx

)
.

Therefore, we obtain, with (4.7b), Hölder’s inequality and (4.8), that›››h1{t̃
G

““
SnpDUn

Gq ´ Pn
G id

‰‰›››
t̃,S

ď C
!A

RpdepUn
G , Pn

G , SnpDUn
Gqq, h

1{t̃
S bSρS

E
`

ÿ
i“1,2

” @RpdepUn
G , Pn

G , SnpDUn
Gqq, hGbEiρEi

D
`
››ΠGSnpDUn

Gq ´ SnpDUn
Gq
››
t̃,Ei

`
››hGpf ´ fEi

q
››
t̃,Ei

ı)
. (4.9)

We define the constants αE :“
››hG

`
´ div ΠGSnpDUn

Gq ` BrUn
G , Un

Gs ` ∇Pn
G ´ f

˘››t̃´1

t̃,E
, E P G, and βS :“›››h1{t̃

G
““
ΠGSnpDUn

Gq ´ Pn
G id

‰‰›››t̃´1

t̃,S
, S P SpGq. Then, combining (4.8) and (4.9) and summing over all E P G,

S P SpGq, yields

Epde
G

`
Un

G , Pn
G , SnpDUn

Gq
˘

“
ÿ
EPG

αE

››hG
`

´ div ΠGSnpDUn
Gq ` BrUn

G , Un
Gs ` ∇Pn

G ´ f
˘››

t̃,E

`
ÿ

sPSpGq
βS

›››h1{t̃
G

““
SnpDUn

Gq ´ Pn
G id

‰‰›››
t̃,S

ď C

#C
RpdepUn

G , Pn
G , SnpDUn

Gqq,
ÿ
EPG

˜
αE `

ÿ
SĂBEXΩ

βS

¸
hGbEρE

G

`

C
RpdepUn

G , Pn
G , SnpDUn

Gqq,
ÿ

SPSpGq
βSh

1{t̃
S bSρS

G

`
ÿ
EPG

˜
αE `

ÿ
SĂBEXΩ

βS

¸
osc

`
Un

G , SnpDUn
Gq, E

˘1{t̃
+

.

Here we have used in the last step that fE P Pd
2�´1, with E P G, are arbitrary.
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Thanks to the fact that the suppbE , E P G, are mutually disjoint up to a null-set, together with (4.7b), we
have that

››› ÿ
EPG

˜
αE `

ÿ
SĂBEXΩ

βS

¸
∇phGbEρEq

›››t̃1

t̃1
“

ÿ
E

˜
αE `

ÿ
SĂBEXΩ

βS

¸t̃1 ż
E

ˇ̌
hG∇pbEρEq

ˇ̌t̃1

dx

ď C

¨
˝ÿ

E

αt̃1

E `
ÿ

SPSpGq
β t̃1

S

˛
‚ď C Epde

G
`
Un

G , Pn
G , SnpDUn

Gq
˘1{t̃1

,

where we have used that each element E has at most pd ` 1q sides S P SpGq with S Ă BE. The constants C
depend only on the shape-regularity of G. Analogously, we deduce from the fact that only finitely many of the
suppbS , S P SpGq, overlap, that

›››∇
¨
˝ ÿ

SPSpGq
βSh

1{t̃
G bSρS

˛
‚›››t̃1

t̃1
ď C

ÿ
SPSpGq

β t̃1
ż
ωS

ˇ̌
h

1{t̃
G ∇bSρS

ˇ̌t̃1

ď C
ÿ

SPSpGq
β t̃1

ď CEpde
G

`
Un

G , Pn
G , SnpDUn

Gq
˘1{t̃1

.

Combining Hölder’s inequality with similar arguments yields for the last term

ÿ
EPG

˜
αE `

ÿ
SĂBEXΩ

βS

¸
osc

`
Un

G , SnpDUn
Gq; E

˘1{t̃ ď C

¨
˝ÿ

EPG
αt̃1

E `
ÿ

SPSpGq
β t̃1

S

˛
‚

1{t̃1

oscpUn
G , SnpDUn

Gqq1{t̃

ď C Epde
G

`
Un

G , Pn
G , SnpDUn

Gq
˘1{t̃1

oscpUn
G , SnpDUn

Gqq1{t̃.

Altogether, we have thus proved that

Epde
G

`
Un

G , Pn
G , SnpDUn

Gq
˘

ď C
! ››RpdepUn

G , Pn
G , SnpDUn

Gqq
››
W ´1,t̃1 pΩq E

pde
G

`
Un

G , Pn
G , SnpDUn

Gq
˘1{t̃1

` oscpUn
G , SnpDUn

Gqq Epde
G

`
Un

G , Pn
G , SnpDUn

Gq
˘1{t̃1)

.

This is the desired bound. �

The following result states the local stability of the error bound and is referred to as local lower bound in the
context of linear elliptic problems.

Corollary 4.6 (Local stability). Suppose the conditions of Theorem 4.3 and let M Ă G; then, there exists a
constant C, depending solely on the shape-regularity of G, t̃, d and Ω, such that

Epde
G

`
Un

G , Pn
G , SnpDUn

Gq;M˘1{t̃ ď C
´››RpdepUn

G , Pn
G , SnpDUn

Gqq
››
W ´1,t̃pUGpMqq ` oscpUn

G , SnpDUn
Gq;Mq1{t̃

¯
ď C

´››Un
G
››
1,t;UGpMq `

››Un
G
››2
1,t;UGpMq `

››Pn
G
››
t̃;UGpMq ` }f}t̃,UGpMq

`
›››k̃›››

r,UGpMq

˙
.

Proof. The first bound follows as in the proof of Theorem 4.5. In order to prove the second bound, let v P
W 1,t̃1

0 pUGpMqqd. We then have with Hölder’s inequality and (3.18), with t and t̃ instead of r and r̃, that

@RpdepUn
G , Pn

G , SnpDUn
Gqq, v

D
“

ż
Ω

ΠGSnpDUn
Gq : Dv ` BrUn

G , Un
Gs ¨ v ´ Pn

G div v ´ f ¨ v dx

ď C
´ ››ΠGSnpDUn

Gq
››
t̃;UGpMq `

››Un
G
››2
1,t;UGpMq `

››Pn
G
››
t̃;UGpMq ` }f}t̃;UGpMq

¯
ˆ }v}1,t̃1;UGpMq .
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Note that in the case of (4.3a), we have

t̃ “
1
2

dt

d ´ t
ă

1
2

dt

d ´ r
“ r̃

t

r
ď r1 t

r
“

t

r ´ 1
“: s1.

Hence, Hölder’s inequality, the stability of ΠG (Assump. 3.5) and Assumption 3.2 yield

››ΠGSnpDUn
Gq
››
t̃;UGpMq ď

ˇ̌UGpMq
ˇ̌ s1´t̃

s1 t̃
››ΠGSnpDUn

Gq
››
s1;UGpMq ď |Ω|

s1´t̃
s1 t̃

››ΠGSnpDUn
Gq
››
s1;UGpMq

ď C

ˆ››DUn
G
››
t;UGpMq `

›››k̃›››
r1;UGpMq

˙
.

The oscillation term can be bounded above similarly, and the assertions follows. �

Remark 4.7. Corollary 4.6 states the stability properties of the estimator, which are required in order to
apply the convergence theory in [34, 38]; compare with ([38], Eq. (2.10b)), for example. The stability of the
estimator is also of importance for the efficiency of the estimator. If Corollary 4.6 fails to hold, it may happen
that the a posteriori error estimator is unbounded even though the sequence of discrete solutions is convergent;
in particular, div SnpDUn

Gq need not belong to Lr1
pEq when 1 ă r ă 2. This problem already appears in the a

posteriori analysis of quadratic finite element approximations of the r-Laplacian, or the r-Stokes problem (cf. [8])
for 1 ă r ă 2. In order to avoid this, we use ΠGSnpDUn

Gq instead of SnpDUn
Gq in the element residual (4.4a).

This is compensated by the term
››SnpDUn

Gq ´ ΠGSnpDUn
Gq
››t̃
t̃

in the a posteriori bounds (4.5a) and (4.6);
cf. the Appendix in [30] for further details.

5. Convergent adaptive finite elements

This section is concerned with the proof of convergence of an adaptive finite element algorithm for the implicit
constitutive model under consideration.

5.1. The adaptive finite element method (AFEM)

In this section, we shall introduce an adaptive finite element method for (2.2).

Algorithm 5.1 (AFEM).

Let k “ 0, n0 “ 1, and let G0 be a given partition of Ω.

1: loop

2: let Sk “ Snk .
3: pUk, Pk, Skp¨, DUkqq “ SOLVEpnk,Gkq
4: compute

�EGk

`
Uk, Pk, Skp¨, DUkq; E

˘(
EPGk

, and EApDUk, Skp¨, DUkqq
5: if EGk

`
Uk, Pk, Skp¨, DUkq

˘
ě EApDUk, Skp¨, DUkqq then

6: Mk “ MARK
`�EGk

`
Uk, Pk, Skp¨, DUkq; E

˘(
EPGk

,Gk

˘
7: Gk`1 “ REFINE

`Gk,Mk

˘
% mesh-refinement

8: nk`1 “ nk

9: else
10: nk`1 “ nk ` 1 % graph-refinement
11: end if
12: k “ k ` 1
13: end loop
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The details of the subroutines used in the process are listed below:
The routine SOLVE. We assume that for arbitrary n P N, G P G, the routine SOLVEpn,Gq “
pUn

G , Pn, Snp¨, DUn
Gqq computes an exact solution pUn

G , Pnq P VpGq ˆ QpGq of (3.20).
The routine MARK. For a fixed function g : R`

0 Ñ R`
0 , which is continuous at 0 with gp0q “ 0, we assume that

the set M “ MARK
`�EG`Un

G , Pn
G , SnpDUn

Gq; E
˘(

EPG ,G˘ satisfies

max
�EG`Un

G , Pn
G , Snp¨, DUn

Gq; E
˘

: E P GzM(
ď g

`
max

�EG`Un
G , Pn

G , Snp¨, DUn
Gq; E

˘
: E P M(˘

. (5.1)

Hence the marking criterion guarantees that all indicators in G are controlled by the maximal indicator in M.
Note that this criterion covers most commonly used marking strategies with gpsq “ s; cf. [34, 38].

For the definition of the routine REFINE see Section 3.2.
For the sake of simplicity of the presentation, in the following, we will suppress the dependence on x in our

notation and write SkpDUkq “ Skp¨, DUkq if there is no risk of confusion.

5.2. Convergence of the AFEM

Let tGkukPN Ă G be the sequence of meshes produced by AFEM. For s P p1, 8s, we define

Vs
8 :“

ď
kě0

VpGkq
}¨}1,s

Ă W 1,s
0 pΩqd and Qs

8 :“
ď
kě0

QpGkq
}¨}s

Ă Ls
0pΩq. (5.2)

Lemma 5.2. Let
�`

Uk, Pk, SkpDUkq
˘(

kPN
Ă W r

0 pΩqd ˆ Lr̃
0pΩq ˆ Lr1 pΩ; Rdˆd

symq be the sequence produced by
AFEM; then, at least for a not relabelled subsequence, we have

Uk á u8 weakly in W 1,r
0 pΩqd,

Pk á p8 weakly in Lr̃
0pΩq,

SkpDUkq á S8 weakly in Lr1
pΩ; Rdˆd

symq,

for some pu8, p8, S8q P Vr
8 ˆ Qr̃

8 ˆ Lr1

0 pΩq. Moreover, we have that

RpUk, Pk, SkpDUkqq á˚ Rpu8, p8, S8q weakly* in W ´1,r̃pΩqd

and

xRpu8, p8, S8q, pv, qqy “ 0 for all q P Qr1

8, v P Vr̃1

8.

Proof. The proof is postponed to Section 6.1. �

Corollary 5.3. Let
�`

Uk, Pk, SkpDUkq
˘(

kPN
Ă W r

0 pΩqdˆLr̃
0pΩqˆLr1

pΩ; Rdˆd
symq be a not relabelled subsequence

with weak limit pu8, p8, S8q P Vr
8 ˆ Qr̃

8 ˆ Lr1 pΩ; Rdˆd
symq as in Lemma 5.2. Then,

EGk
pUk, Pk, SkpDUkqq Ñ 0, as k Ñ 8;

implies that

Rpu8, p8, S8q “ 0 P W ´1,r̃pΩqd.

Proof. The upper bound, Theorem 4.3, together with EGk
pUk, Pk, SkpDUkqq Ñ 0 as k Ñ 8, implies that

RpUk, Pk, SkpDUkqq Ñ 0 strongly in W ´1,t̃pΩqd.

Thus the assertion follows from Lemma 5.2 and the uniqueness of the limit. �
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Lemma 5.4. Let
�`

Uk, Pk, SkpDUkq
˘(

kPN
Ă W r

0 pΩqd ˆ Lr̃
0pΩq ˆ Lr1 pΩ; Rdˆd

symq be a not relabelled subsequence
with weak limit pu8, p8, S8q P Vr

8 ˆ Qr̃
8 ˆ LrpΩ; Rdˆd

symq as in Lemma 5.2. Assume that

EApDUk, SkpDUkqq Ñ 0 as k Ñ 8;

then,

pDu8pxq, S8pxqq P Apxq for almost every x P Ω.

Proof. The proof of this lemma is postponed to Section 6.2 below. �

Lemma 5.5. Assume that the sequence tnkukPN satisfies nk Ñ N ă 8 as k Ñ 8. We then have that

EGk

`
Uk, Pk, SkpDUkqq Ñ 0 as k Ñ 8.

Proof. The proof of this lemma is postponed to Section 6.3 below. �

We further assume that the graph approximation is uniform with respect to the graph approximation indi-
cator.

Assumption 5.6. For every ε ą 0, there exists an N “ Npεq P N, such that

EApDv, Snp¨, Dvqq ă ε for all v P W 1,r
0 pΩqd and n ą N.

We note that this and Assumption 3.2 are the only strong assumptions among the ones we have made; Assump-
tion 5.6 is, however, only used in the proof of the next theorem, and is not required for any of the preceding
results.

Theorem 5.7. Suppose that Assumption 5.6 holds and let tpUk, Pk, SkpDUkqqu be the sequence of function
triples produced by the AFEM. We then have that

EApDUk, SkpDUkqq Ñ 0 as k Ñ 8

and, for a not relabelled subsequence, we have that

EGk
pUk, Pk, SkpDUkqq Ñ 0 as k Ñ 8.

Proof. We argue by contradiction. First assume that there exists an ε ą 0 such that, for some subsequence, we
have that

EApDUk�
, Sk�

pDUk�
qq ą ε for all � P N.

Consequently, by Assumption 5.6, we have that nk�
“ N , for some �0, N P N, and all � ě �0. Moreover, thanks

to Lemma 5.2, there exists a not relabelled subsequence
�`

Uk�
, Pk�

, Sk�
pDUk�

q
˘(

�PN
that converges weakly in

W r
0 pΩqd ˆ Lr̃

0pΩq ˆ Lr1 pΩ; Rdˆd
symq. Combining these facts, we deduce with Lemma 5.5 that

EGk�
pU k�

, Pk�
, Sk�

pDUk�
qq Ñ 0.

In particular, there exists an � ą �0, such that EGk�
pUk�

, Pk�
, Sk�

pDUk�
qq ă ε. Therefore, by line 10 of AFEM

we have that nk�`1 “ N ` 1, a contradiction. Consequently, we have (for the full sequence) that

EApDUk, SkpDUkqq Ñ 0 as k Ñ 8.

This proves the first claim.
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Assume now that there exists an ε ą 0 such that we have that

EGk
pU k, Pk, SkpDUkqq ą ε for all k P N. (5.3)

By the above considerations, there exists a k0 P N such that EApDUk, SkpDUkqq ă ε for all k ě k0. Therefore,
according to line 5 of AFEM, we have that nk “ nk0 for all k ě k0. Consequently, Lemma 5.5 contradicts (5.3).

Combining the two cases proves the assertion. �

Corollary 5.8. Let tpUk, Pk, SkpDUkqqu be the sequence of function triples produced by the AFEM. Then,
there exists a not relabelled subsequence with weak limit pu8, p8, S8q P W 1,r

0 pΩqd ˆ Lr̃
0pΩq ˆ Lr1pΩ; Rdˆd

symq such
that

EApDUk, SkpDUkqq Ñ 0 and EGk
pUk, Pk, SkpDUkqq Ñ 0,

as k Ñ 8 and pu8, p8, S8q solves (2.2).

Proof. The claim follows from Theorem 5.7, Lemma 5.4, Corollary 5.3, and Lemma 4.2. �

Remark 5.9. We emphasize that even in the case when the exact solution of (2.2) is unique, we do not have
that the statement of Corollary 5.8 is true for the full sequence. This is due to the fact that the finite element
error estimator is not necessarily decreasing with respect to the refinement of the graph approximation. However,
when the exact solution is unique, it is easy to select a converging subsequence with the help of the estimators;
one can choose, for example, a subsequence, such that EGk

pU k�
, Pk�

, Sk�
pDUk�

qq is monotonic decreasing in �.

6. The Proofs of the Auxiliary Results

6.1. Proof of Lemma 5.2

We recall (3.23) and observe that the spaces W 1,r
0 pΩqd and Lr1pΩ; Rdˆd

symq, r P p1, 8q, are reflexive. Therefore,
there exist u8 P Vr

8 and S8 P Lr1 pΩ; Rdˆd
symq such that for a not relabelled subsequence we have

Uk á u8 weakly in W 1,r
0 pΩqd (6.1)

and

SkpDUkq á S8 weakly in Lr1
pΩ; Rdˆd

symq, (6.2)

as k Ñ 8. The function u8 is discretely divergence-free with respect to Qr1

8, i.e.,ż
Ω

q div u8 dx “ lim
kÑ8

ż
Ω

pIGk

Q qq div Uk dx “ 0 for all q P Qr1

8.

This follows from (3.11) as in the proof of ([22], Lem. 19), replacing ([22], (3.5)) with the density of the union
of the discrete pressure spaces in Qr1

8.
Moreover, using compact embeddings of Sobolev spaces, we have that

Uk Ñ u8 strongly in LspΩqd for all

#
s P

´
1, rd

d´r

¯
, if r ă d,

s P p1, 8q, otherwise.
(6.3)

This implies, for arbitrary v P W 1,8
0 pΩqd, that

BrUk, Uk, vs Ñ Bru8, u8, vs,
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or equivalently,

BrUk, Uks Ñ Bru8, u8s weakly in W ´1,1pΩqd

as k Ñ 8; compare also with ([22], Lem. 19).
We now prove convergence of the pressure. Thanks to (3.18), we have

ż
Ω

Pk div V dx “
ż
Ω

SkpDUkq : DV ` BrUk, Uks ¨ V ´ f ¨ V dx

ď }SkpDUkq}r1 }DV }r ` c }Uk}2
1,r }V }1,r̃1 ` }f}´1,r1 }V }1,r

for all V P VpGkq. By (3.23) and the discrete inf-sup condition stated in Proposition 3.7, it follows that the
sequence tPkukPN is bounded in the reflexive Banach space Lr̃

0pΩq. Hence, there exists a p8 P Qr̃
8 Ă Lr̃

0pΩq such
that, for a (not relabelled) subsequence,

Pk á p8 weakly in Lr̃
0pΩq.

On the other hand we deduce for an arbitrary v P V8
8 Ă W 1,8

0 pΩqd that

ż
Ω

p8 div v dx Ð
ż
Ω

Pk div v dx “
ż
Ω

Pk div IGk

div v dx

“
ż
Ω

SkpDUkq : DIGk

div v ´ f ¨ IGk

div v ` BrUk, Uks ¨ IGk

div v dx

Ñ
ż
Ω

S8 : Dv dx ` Bru8, u8s ¨ v ´ f ¨ v dx

as k Ñ 8, where we have used (6.2), the properties of IGk

div together with the density of the union of the discrete
velocity spaces in V8

8 and the boundedness of the sequence tPkukPN in Lr̃
0pΩq. The assertion for all v P Vr̃1

8 then
follows from the density of V8

8 in Vr̃1

8. l

6.2. Proof of Lemma 5.4

According to Proposition 4.1, for k P N there exist D̃k P LrpΩ; Rdˆd
symq and S̃k Ă Lr1pΩ; Rdˆd

symq, such that
pD̃kpxq, S̃kpxqq P Apxq for a.e. x P Ω and

›››DUk ´ D̃k

›››r
r

`
›››SkpDUkq ´ S̃k

›››r1

r1
“ EApDUk, SkpDUkqq Ñ 0 as k Ñ 8. (6.4)

Thanks to (3.23), the sequences tD̃kukPN and tS̃kukPN are bounded in LrpΩ; Rdˆd
symq and Lr1 pΩ; Rdˆd

symq respec-
tively. Since both spaces are reflexive, together with the uniqueness of the limit, we obtain that

D̃k á Du8 weakly in LrpΩ; Rdˆd
symq, (6.5a)

S̃k á S8 weakly in Lr1
pΩ; Rdˆd

symq (6.5b)

as k Ñ 8.
Let S‹ : Ω ˆ Rdˆd

sym Ñ Rdˆd
sym be a measurable selection with pδ, S‹px, δqq P Apxq for a.e. x P Ω and thus

pDu8pxq, S‹px, Du8pxqqq P Apxq for a.e. x P Ω; compare with Remark 2.2. Consequently, for every bounded
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sequence tφkukPN P L8pΩq of nonnegative functions, we have (recall (A3)) that

0 ď lim sup
kÑ8

ż
Ω

ˇ̌̌
S̃k ´ S‹pDu8q

˘
: pD̃k ´ Du8q

ˇ̌̌
φk dx

“ lim sup
kÑ8

ż
Ω

`
S̃k ´ S‹pDu8q

˘
: pD̃k ´ Du8q φk dx

“ lim sup
kÑ8

ż
Ω

pSkpDUkq ´ S‹pDu8qq : pDUk ´ Du8qlooooooooooooooooooooooooooomooooooooooooooooooooooooooon
“:akpxq

φk dx, (6.6)

where we have used (6.4) in the last step. We assume for the moment that ak Ñ 0 in measure and therefore

ak Ñ 0 a.e. in Ω (6.7)

for at least a subsequence of ak. Since ak is bounded in L1pΩq, we obtain with the biting lemma (Lem. 2.3)
and Vitali’s theorem, that there exists a nonincreasing sequence of measurable subsets Ej Ă Ω with |Ej | Ñ 0
as j Ñ 8, such that for all j P N, we have

ak Ñ 0 strongly in L1pΩzEjq as k Ñ 8.

This, together with (6.6) and (6.5), implies for all nonnegative φ P L8pΩzEjq Ă L8pΩq (extend φ by zero
on Ej) and each fixed j P N, that

lim
kÑ8

ż
ΩzEj

S̃k : D̃kφdx “
ż
ΩzEj

S8 : Du8φdx.

Consequently, since the graph is monotone and pD̃kpxq, S̃kpxqq P Apxq for a.e. x P Ω, we observe for arbitrary
δ P Rdˆd

sym and all nonnegative φ P L8pΩzEjq, that

0 ď lim
kÑ8

ż
ΩzEj

`
S̃k ´ S‹p¨, δq

˘
: pD̃k ´ δqφdx “

ż
ΩzEj

`
S8 ´ S‹p¨, δq

˘
: pDu8 ´ δqφdx.

Since φ was arbitrary, we have that`
S8 ´ S‹p¨, δq

˘
: pDu8 ´ δq ě 0 for all δ P Rdˆd

sym and a.e. x P ΩzEj .

According to Lemma 3.1, this implies that

pDu8pxq, S8pxqq P Apxq for almost every x P ΩzEj .

The assertion then follows from |Ej | Ñ 0 as j Ñ 8.
It remains to verify that ak Ñ 0 in measure as k Ñ 8. We divide the proof into four steps.

Step 1: First, we introduce some preliminary facts concerning discrete Lipschitz truncations. For convenience
we use the notation

Ek :“ IGk

div pUk ´ u8q “ Uk ´ IGk

div u8 P VpGkq

and let tEk,juk,jPN be the sequence of Lipschitz-truncated finite element functions according to Proposition 3.12.
Recall from Lemma 5.2 that Ek á 0 weakly in W 1,r

0 pΩqd, i.e., we are exactly in the situation of Proposition 3.12.
Although Ek P V0pGkq, i.e., Ek is discretely divergence-free, this does not necessarily imply that Ek,j P V0pGkq
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and thus we need to modify Ek,j in order to be able to use it as a test function in (3.21). With the discrete
Bogovskĭı operator Bk :“ BGk from Corollary 3.8, we define

Ψk,j :“ Bkp div Ek,jq P VpGkq. (6.8a)

The ‘corrected’ function

Φk,j :“ Ek,j ´ Ψk,j P V0pGkq (6.8b)

is then discretely divergence-free. We need to control the correction in a norm. To this end we recall from
Section 3.3 that QpGkq “ spantQk

1 , . . . , Q
k
Nk

u for a certain locally supported basis. Then, thanks to properties
of the discrete Bogovskĭı operator and Corollary 3.8, we have that

βr }Ψk,j}1,r ď sup
QPQpGkq

ş
Ω

Q div Ek,j dx

}Q}r1
“ sup

QPQpGkq

ş
Ω

Q div Ek,j ´ div Ek dx

}Q}r1

“ sup
Q“

řNk
i“1 ρiQk

i

˜ ÿ
suppQk

i ĂtEk,j “Eku

ş
Ω ρiQ

k
i div pEk,j ´ Ekq dx

}Q}r1

`
ÿ

suppQk
i XtEk,j‰Eku‰H

ş
Ω ρiQ

k
i div pEk,j ´ Ekq dx

}Q}r1

¸

“ sup
Q“

řNk
i“1 ρiQn

i

˜ ÿ
suppQk

i XtEk,j‰Eku‰H

ş
Ω ρiQ

k
i div pEk,j ´ Ekq dx

}Q}r1

¸

“ sup
Q“

řNk
i“1 ρiQk

i

˜ ÿ
suppQk

i XtEk,j ‰Eku‰H

ş
Ω ρiQ

k
i div Ek,j dx

}Q}r1

¸

ď
››››div Ek,jχΩk

tEk,j ‰Eku

››››
r

sup
Q“

řNk
i“1 ρiQk

i

›››řsuppQk
i XtEk,j‰Eku‰H ρiQ

k
i

›››
r1

}Q}r1

ď c

›››› div Ek,j χΩk
tEk,j ‰Eku

››››
r

ď c

››››∇Ek,j χΩk
tEk,j ‰Eku

››››
r

,

where χΩk
tEk,j ‰Eku

is the characteristic function of the set

Ωk
tEk,j‰Eku :“

ď!
Ωk

E | E P Gk such that E Ă tEk,j ‰ Eku
)

.

Note that in the penultimate step of the above estimate we have used norm equivalence on the reference space
P̂Q from (3.2b). In particular, we see by means of standard scaling arguments that for Q “

řNk

i“1 ρiQ
k
i the norms

Q ÞÑ
´ Nkÿ

i“1

|ρi|r
1 ››Qk

i

››r1

r1

¯1{r1

and Q ÞÑ }Q}r1

are equivalent with constants depending on the shape-regularity of Gn and P̂Q only. This directly implies the
desired estimate.

Observe that
ˇ̌
Ωk

E

ˇ̌
ď c |E| for all E P Gk, k P N, with a shape-dependent constant c ą 0; hence,

ˇ̌̌
Ωk

tEk,j‰Eku

ˇ̌̌
ď

c |tEk,j ‰ Eku|, and it follows from Proposition 3.12f that

βr }Ψk,j}1,r ď c

››››λk,jχΩk
tEk,j ‰Eku

››››
r

ď c 2´j{r }∇Ek}r . (6.9)
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Moreover, we have from Proposition 3.12 and the continuity properties of Bn (see Cor. 3.8) that

Φk,j , Ψk,j á 0 weakly in W 1,s
0 pΩqd for all s P r1, 8q, (6.10a)

Φk,j , Ψk,j Ñ 0 strongly in LspΩqd for all s P r1, 8q, (6.10b)

as k Ñ 8.

Step 2: We shall prove (recall the last line of (6.6) for the definition of ak) that

lim sup
nÑ8

ż
tEk“Ek,ju

|ak| dx ď c 2´j{r,

with a constant c ą 0 independent of j. To see this we first observe that |ak| “ ak `2a´
k with the usual notation

a´
k pxq “ maxt´akpxq, 0u, x P Ω. Therefore, we have that

lim sup
kÑ8

ż
tEn“En,ju

|ak| dx ď lim sup
kÑ8

ż
tEn“En,ju

ak dx ` 2 lim sup
kÑ8

ż
tEn“En,ju

a´
k dx. (6.11)

By choosing φk :“ χsupppa´
k q P L8pΩq in (6.6), we observe that the latter term is zero. In order to bound the

first term, we recall (6.8) and observe thatż
tEk“Ek,ju

ak dx “
ż

tEk“Ek,ju
pSk ´ S‹p¨, Du8qq : pDIGk

div u8 ´ Du8q dx

`
ż
Ω

Sk : DΦk,j dx `
ż
Ω

Sk : DΨk,j dx ´
ż
Ω

S‹p¨, Du8q : DEk,j dx

`
ż

tEk‰Ek,ju

`
S‹p¨, Du8q ´ Sk

˘
: DEk,j dx

“ Ik,j ` IIk,j ` IIIk,j ` IVk,j ` Vk,j .

Thanks to (5.2) and (3.23) we have that

|Ik,j | ď
ż

tEk“Ek,ju
|Skp¨, DUkq ´ S‹p¨, Du8q|

ˇ̌̌
DIGk

div u8 ´ Du8

ˇ̌̌
dx

ď }Skp¨, DUkq ´ S‹p¨, Du8q}r1

›››DIGk

div u8 ´ Du8

›››
r

Ñ 0

as k Ñ 8. In order to estimate IIk,j we recall that Φk,j P V0pGkq is discretely divergence-free, and we can
therefore use it as a test function in (3.21) to deduce that

IIk,j “ ´BrUk, Uk, Φk,js `
ż
Ω

f ¨ Φk,j dx Ñ 0 as k Ñ 8.

Indeed, the second term vanishes thanks to (6.10a). The first term vanishes thanks to (6.3) and the weak
convergence (6.10a) of Φk,j . The term IIIk,j can be bounded by means of (6.9); in particular,

lim sup
kÑ8

|IIIk,j | ď lim sup
kÑ8

}Sp¨, DUkq}r1 }DΨk,j}r ď c 2´j{r,

where we have used (3.23). Proposition 3.12 implies that

lim
kÑ8

IVk,j “ 0.
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Finally, by (3.23) and Proposition 3.12, we have that

lim sup
kÑ8

|Vk,j | ď lim sup
kÑ8

`
}S‹p¨, Du8q}r1 ` }Skp¨, DUkq}r1

˘ ››DEk,jχtEk‰Ek,ju
››
r

ď c 2´j{r.

In view of (6.11), this completes Step 2.

Step 3: We prove, for any ϑ P p0, 1q, that

lim
kÑ8

ż
Ω

|ak|ϑ dx “ 0, (6.12)

which then implies the assertion ak Ñ 0 in measure as k Ñ 8.
Using Hölder’s inequality, we easily obtain thatż

Ω

|ak|ϑ dx “
ż

tEk“Ek,ju
|ak|ϑ dx `

ż
tEk‰Ek,ju

|ak|ϑ dx

ď |Ω|1´ϑ

˜ż
tEk“Ek,j u

|ak| dx

¸ϑ

`
ˆż

Ω

|ak| dx

˙ϑ

|tEk ‰ Ek,ju|1´ϑ .

Thanks to (3.23), we have that p
ş
Ω

|ak| dxqϑ is bounded uniformly in k and by Proposition 3.12 we have that

|tEk ‰ Ek,ju| ď c
}Ek}r

1,r

λr
k,j

ď
c

22jr
,

where we have used that tEkukPN is bounded in W 1,r
0 pΩqd according to (3.23) and Assumption 3.3. Consequently,

from Step 2 we deduce that

lim sup
kÑ8

ż
Ω

|ak|ϑ dx ď c |Ω|1´ϑ 2´jϑ{r `
c

22jrp1´ϑq ¨

The left-hand side is independent of j and we can thus pass to the limit j Ñ 8. This proves (6.12). l

6.3. Proof of Lemma 5.5

Since nk Ñ N as k Ñ 8, we may, w.l.o.g., assume that nk “ N for all k P N.

Step 1: We shall first prove that, in this case, we have that the (sub)sequences in Lemma 5.2 do actually
converge strongly, i.e.,

Uk Ñ u8 in W 1,t
0 pΩqd,

Pk Ñ p8 in Lt̃
0pΩq,

SkpDUkq “ SN pDUkq Ñ S8 “ SN pDu8q in Lt̃pΩ; Rdˆd
symq.

(6.13)

To this end, we investigate

ak :“
`
SN pDUkq ´ SN pDu8q

˘
: DpUk ´ u8q ě 0

(compare with Assump. 3.2) distinguishing two cases: r ď 3d
d`2 and r ą 3d

d`2 .
If r ď 3d

d`2 , then we can deduce, as in the proof of Lemma 5.4 in Section 6.2, that

0 ď
ż
Ω

|ak|ϑ dx “
ż
Ω

´`
SN pDUkq ´ SN pDu8q

˘
: DpUk ´ u8q

¯ϑ

dx Ñ 0, (6.14)
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where we have used that a´
k “ 0 almost everywhere in Ω. Thus, recalling that SN is strictly monotone, we

obtain that

DUk Ñ Du8 and SN pDUkq Ñ SN pDu8q a.e. in Ω, (6.15)

at least for a subsequence of k Ñ 8. Since 1 ď t ă r and 1 ď t̃ ă r1 (compare with (4.3a)), we obtain with
Lemma 5.2 and Vitali’s theorem that

Uk Ñ u8 in W 1,t
0 pΩq, and SN pDUkq Ñ SN pDu8q “ S8 in Lt̃pΩ; Rdˆd

symq.

Indeed, using Hölder’s inequality, we obtain with (3.23) that

}DUk ´ Du8}t,ω ď |ω|
r´t
rt }DUk ´ Du8}r,ω

for all measurable ω Ă Ω; i.e., t| DUk ´ Du8|tukPN is uniformly integrable and the claim follows from Vitali’s
theorem and (6.15). The convergence of the stress sequence follows analogously and the claim SN pDu8q “ S8
is a consequence of the uniqueness of the limit.

If r ą 3d
d`2 , then t “ r and t̃ “ r̃ “ r1; compare with (4.3b). We deduce from Lemma 5.2 and (3.20) that

0 ď lim sup
kÑ8

ż
Ω

`
SN pDUkq ´ SN pDu8q

˘
: DpUk ´ u8q dx

“ lim sup
kÑ8

ż
Ω

SN pDUkq : DUk ´ S8 : Du8 dx

“ lim sup
kÑ8

ż
Ω

f ¨ Uk ´ S8 : Du8 dx “
ż
Ω

f ¨ u8 ´ S8 : Du8 dx “ 0.

As before, thanks to the strict monotonicity of SN , we have that

Uk Ñ u8 and SN pDUkq Ñ SN pDu8q a.e. in Ω (6.16)

at least for a subsequence of k Ñ 8. Moreover,

lim
kÑ8

ż
Ω

SN pDUkq : DUk dx “
ż
Ω

SN pDu8q : Du8 dx,

and thanks to (3.23), we have that SN pDUkq : DUk is bounded in L1pΩq, hence SNpDUkq : DUk
bá

SN pDu8q : Du8; compare with Lemma 2.3. Recalling Assumption 3.2 we have 0 ď m̃ ` SN pDUkq : DUk

almost everywhere in Ω. Combining these properties, it follows from Lemma 2.4 that m̃ ` SN pDUkq : DUk á
m̃ ` SN pDu8q : Du8 in L1pΩq and thus SN pDUkq : DUk á SN pDu8q : Du8 in L1pΩq. Consequently, by
the Dunford–Pettis theorem, tSN pDUkq : DUkukPN is uniformly integrable. Thanks to the coercivity of SN ,
we have that t| DUk|rukPN and t|SN pDUkq|r

1
ukPN are uniformly integrable and hence we deduce from (6.16),

with Vitali’s theorem, that

Uk Ñ u8 in W 1,r
0 pΩqd and SN pDUkq Ñ S8 in Lr1

pΩ; Rdˆd
symq.

It remains to prove the strong convergence of the pressure (sub)sequence tPkukPN in Lt̃
0pΩq. Thanks to (2.3),

for k P N there exists a vk P W 1,t̃1

0 pΩqd with }vk}r̃ “ 1, such that

αr̃ }p8 ´ Pk}t̃ ď
ż
Ω

pp8 ´ Pkq div vk dx.
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Since tvkukPN is bounded in W 1,t̃1

0 pΩqd, there exists a not relabelled weakly converging subsequence with weak
limit v P W 1,t̃1

0 pΩqd. Therefore, we deduce using the properties of IGk

div (see Assump. 3.3) that

αr̃ }p8 ´ Pk}t̃ ď
ż
Ω

pp8 ´ Pkq div vk dx “
ż
Ω

pp8 ´ Pkq div IGk

div vk dx `
ż
Ω

p8 div pvk ´ IGk

div vkq dx.

The second term vanishes thanks to Proposition 3.4. For the first term, we have, thanks to Lemma 5.2 and (3.20),
thatż

Ω

pp8 ´ Pkq div IGk

div vk dx “
ż
Ω

`
S8 ´ SN pDUkq

˘
: IGk

div vk `
`
Bru8, u8s ´ BrUk, Uks

˘
¨ IGk

div vk dx Ñ 0,

as k Ñ 8. Here we have used in the last step the strong convergence of tSN pDUkqukPN and tUkukPN in
Lt̃pΩ; Rdˆd

symq respectively W 1,t
0 pΩqd, as well as that the latter result implies that BrUk, Uks Ñ Bru8, u8s

strongly in Lt̃1pΩqd. This completes the proof of (6.13).

Step 2: As a consequence of (6.13) we shall prove that

R`
Uk, Pk, SN pDUkq

˘
Ñ R`

u8, p8, SN pDu8q
˘

strongly in W ´1,t̃pΩqd. (6.17)

To this end we observe, for v P W 1,t̃1

0 pΩqd, thatA
Rpde

`
Uk, Pk, SN pDUkq

˘
´ Rpde

`
u8, p8, S8

˘
, v

E
“

ż
Ω

`
SN pDUkq ´ S8

˘
: Dv `

`
BrUk, Uks ´ Bru8, u8s

˘
¨ v dx

`
ż
Ω

pPk ´ p8q div v dx

ď
! ›››SN pDUkq ´ S8

›››
t̃

` }BrUk, Uks ´ Bru8, u8s}t̃ ` }Pk ´ p8}t̃

)
}v}1,t̃1 .

Hence, thanks to (2.1), (6.13), and the fact, that BrUk, Uks Ñ Bru8, u8s strongly in Lt̃1 pΩq (see Step 1), this
proves the assertion for Rpde. The assertion for Ric is an immediate consequence of (6.13).

Step 3: We use the techniques of [38] to prove that

R`
u8, p8, SN pDu8q

˘
“ 0. (6.18)

To this end, we first need to recall some results from [38].
For each x P Ω, the mesh-size hGk

pxq is monotonically decreasing and bounded from below by zero; hence,
there exists an h8 P L8pΩq, such that

lim
kÑ8

hGk
“ h8 in L8pΩq; (6.19)

compare e.g. with ([38], Lem. 3.2). We next split the domain Ω according to

G`
k :“

č
iěk

Gi “ tE P Gk : E P Gi for all i ě ku and G0
k :“ GkzG`

k ,

i.e., setting Ω`
k :“ ΩpG`

k q and Ω0
k :“ ΩpG0

kq, we have Ω̄ “ Ω`
k Y Ω0

k. It is proved in ([38], Cor. 3.3) (compare
also (3.8)) that, in the limit, the mesh-size function hG vanishes on Ω0

k, i.e.,

lim
kÑ8

›››hGk
χΩ0

k

›››
8

“ 0 “ lim
kÑ8

››hGk
χΩ‹

k

››
8 . (6.20)
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Here Ω‹
k :“ UGpΩ0

kq and we have used the local quasi-uniformity of meshes for the latter limit. Since G`
i Ă

G`
k Ă Gk for any k ě i, we have

Ω0
i “ ΩpG0

i q “ ΩpGkzG`
i q.

Now, fix v P W 2,t̃1 pΩqd X W 1,t̃1

0 pΩqd and q P W 1,t1 pΩq, with }v}2,t̃1 “ 1 “ }q}1,t1 . We shall prove that

A
R`

Uk, Pk, SN pDUkq
˘
, pv, qq

E
“

A
Rpde

`
Uk, Pk, SN pDUkq

˘
, v ´ Ik

div v
E

`
@RicpUkq, q ´ Ik

Qq
D

vanishes as k Ñ 8. Here we use the abbreviations Ik
div :“ IGk

div and Ik
Q :“ IGk

Q . Then, (6.18) follows from (6.17)

and the density of W 2,t̃pΩqd X W 1,t̃
0 pΩqd in W 1,t̃

0 pΩqd and of W 1,t1 pΩq in Lt1 pΩq. We shall estimate the two
terms on the right-hand side separately. For the first one, we have with Corollary 4.4 thatA

Rpde
`
Uk, Pk, SN pDUkq

˘
, v ´ Ik

div v
E

À
ÿ

EPGk

Epde
Gk

`
Uk, Pk, SN pDUkq; E

˘1{t̃ ››∇v ´ ∇Ik
div v

››
t̃1,UGk pEq

À
ÿ

EPGkzG`
i

Epde
Gk

`
Uk, Pk, SN pDUkq; E

˘1{t̃ ››∇v ´ ∇Ik
div v

››
t̃1,UGk pEq

`
ÿ

EPG`
i

Epde
Gk

`
Uk, Pk, SN pDUkq; E

˘1{t̃ ››∇v ´ ∇Ik
div v

››
t̃1,UGk pEq

À Epde
Gk

`
Uk, Pk, SN pDUkq;GkzG`

i

˘1{t̃ ››∇v ´ ∇Ik
div v

››
t̃1,Ω‹

i

` Epde
Gk

`
Uk, Pk, SN pDUkq;G`

i

˘1{t̃ ››∇v ´ ∇Ik
div v

››
t̃1,UGpG`

i q ,

where we have used Hölder’s inequality and the finite overlapping of the UGk pEq, E P Gk. In view of Lemma 5.2
and Corollary 4.6 we obtain that

Epde
Gk

`
Uk, Pk, SN pDUkq;GkzG`

i

˘
ď Epde

Gk

`
Uk, Pk, SN pDUkq

˘
À 1.

Recalling (3.7), we thus obtain from the monotonicity of the mesh-size function thatA
Rpde

`
Uk, Pk, SNpDUkq

˘
, v ´ Ik

div v
E

À
››hGiχΩ‹

i

››
8 ` Epde

Gk

`
Uk, Pk, SN pDUkq;G`

i

˘1{t̃
.

A similar argument shows that

@RicpUkq, q ´ Ik
Qq

D
À }hGi}8,Ω‹

i
` E ic

Gk

`
Uk;G`

i

˘1{t1

.

Thanks to (6.20), for ε ą 0 there exists an i P N such thatA
R`

Uk, Pk, SN pDUkq
˘
, pv, qq

E
À ε ` EGk

`
Uk, Pk, SN pDUkq;G`

i

˘
,

and it therefore remains to prove that

EGk

`
Uk, Pk, SN pDUkq;G`

i

˘
Ñ 0 as k Ñ 8 (6.21)

in order to deduce (6.18). To this end, let

Ek :“ EGk

`
Uk, Pk, SN pDUkq; Ekq :“ max

!
EGk

`
Uk, Pk, SN pDUkq; E

˘
: E P Mk

)
.
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Then, by the stability estimate, Corollary 4.6, and (4.4b) we have that

Ek À }Uk}t̃
1,t;UGpEkq ` }Uk}2t̃

1,t;UGpEkq ` }Pk}t̃
t̃;UGpEkq ` }f}t̃

t̃,UGpEkq `
›››k̃›››t̃

r,UGpEkq
` } div Uk}t

t;UGpEkq

À }Uk ´ u8}t̃
1,t;UGpEkq ` }Uk ´ u8}2t̃

1,t;UGpEkq ` }Pk ´ p8}t̃
t̃;UGpEkq ` } div Uk}t

t;UGpEkq

` }u8}t̃
1,t;UGpEkq ` }u8}2t̃

1,t;UGpEkq ` }p8}t̃
t̃;UGpEkq ` }f}t̃

t̃,UGpEkq `
›››k̃›››t̃

t,UGpEkq
.

The first line of this bound vanishes thanks to (6.13). Since Ek P Ω0
k, we have that |Ek|1{d À }hGk

}8;Ω0
k

and
the remaining terms therefore vanish thanks to (6.20) and the observation that Ek P Ω0

k. Therefore, we deduce
with (5.1) that

EGk

`
Uk, Pk, SN pDUkq;G`

i

˘
ď #G`

i max
!
EGk

`
Uk, Pk, SN pDUkq; E

˘
: E P G`

i

)
ď #G`

i gpEkq Ñ 0

as k Ñ 8, where we have used the continuity of g at zero and that G`
i Ă G`

k Ă GkzMk. Combining these
observations proves (6.18).

Step 4: In this step, we shall prove that

EGk

`
Uk, Pk, SN pDUkqq Ñ 0 as k Ñ 8.

To this end, we observe from (6.21) that it suffices to prove that

EGk

`
Uk, Pk, SN pDUkq;GkzG`

i q Ñ 0 as k Ñ 8

for some fixed i ě 0. In view of Corollary 4.6, (6.17) and (6.18), it thus suffices to show that

oscpU k, SN pDUkq;GkzG`
i q Ñ 0 as k Ñ 8.

This is a consequence of the properties of the oscillation, (6.20), (6.13), and Assumption 3.5, noting that›››SN pDUkq ´ ΠGk
SN pDUkq

›››
t̃;Ω0

i

ď
›››ΠGk

S8 ´ ΠGk
SN pDUkq

›››
t̃;Ω0

i

` }ΠGk
S8 ´ S8}t̃;Ω0

i
`
›››S8 ´ SN pDUkq

›››
t̃;Ω0

i

.

Observing that this readily implies that the estimator vanishes on the whole sequence completes the proof. [\

7. Graph approximation

In this section we shall discuss the approximation of certain typical maximal monotone graphs satisfying
Assumption 5.6. Admittedly, for particular problems the approximations suggested here might not always rep-
resent the best possible choices, and in the context of discrete nonlinear solvers, such as Newton’s method,
properties of the smoothness of the approximation may become important as well. We believe however that the
following examples provide a reasonable guideline for constructing graph approximations with properties that
are required in applications.

7.1. Discontinuous stresses

Typical examples of discontinuous dependence of the stress on the shear rate are Bingham or Herschel–
Bulkley fluids. In this case, the fluid behaves like a rigid body when the shear stress is below a certain critical
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Figure 1. Bingham fluid (left) and schematic approximation of a more complex law (right).

value and like a Navier–Stokes fluid, respectively power-law fluid, otherwise; compare with Figure 1. To be more
precise, for some yield stress σ ě 0, we have

|S| ď σ ô D “ 0,

|S| ą σ ô S “ σ
D

|D|
` 2νp|D|2qD, (7.1)

where ν ą 0 denotes the viscosity ν ą 0; see [23]. A selection of the corresponding maximal monotone graph is
given, for example, by

S‹pDq :“ S‹p|D|q
D

|D|
, with S‹pDq :“

#
0, if D “ 0
σ ` 2νpDqD, otherwise.

(7.2a)

For the sake of simplicity of presentation, we restrict ourselves in the following to ν ą 0 being a constant.
However, we emphasize, that the approximation techniques presented below can be generalized to more complex
relations such as, for example,

S‹pDq “

#
S‹

1pDq, if D ă δ

S‹
2pDq, otherwise,

S‹
i pDq “ cipκ2

i ` D2q
qi´2

2 D, (7.2b)

for D ě 0. Here δ ě 0 and c1, c2, κ1, κ2 ě 0, q1 ą 1, q2 “ r, such that S1pδq ď S2pδq.
We denote the maximal monotone graph containing tpD, S‹pDqq : t ě 0u by a and observe that pδ, σq P A

if and only if p|δ|, |σ|q P a. Therefore, the approximation of the monotone graph reduces to approximating
the univariate function S‹ by some smooth Sn : R`

0 Ñ R`
0 . The explicit smooth approximation of S‹ is then

obtained by setting

SnpDq :“ Snp|D|q
D

|D|
for all D P Rdˆd

sym . (7.3)

A simple approximation. A simple approach to approximating S‹ in (7.2a) is to use the following smooth
explicit law (cf. [28]):

Sτ pDq :“
ˆ

2ν `
σ

Dτ

˙
D, where Dτ :“

a
D2 ` τ2.
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First assume that σ ě Sτ pDq; then, p0, Sτ pDqq P a according to (7.1). If D ď τ , then

|Sτ pDq ´ Sτ pDq|2 ` |D ´ 0|2 “ |D|2 ď τ2.

Otherwise, we have

σ ě
ˆ

2ν `
σ

Dτ

˙
D ô στ2 ě 2νD Dτ pD ` Dτ q ě 4νD3,

and hence

|Sτ pDq ´ Sτ pDq|2 ` |D ´ 0|2 “ |D|2 ď
´ σ

4ν

¯1{3
τ2{3.

Assume now that 0 ď σ ă Sτ pDq; then, D ď τ implies

2νD ` σ
D

Dτ
“ Sτ pDq ą σ ô

2ν

σ
D ą

τ2

Dτ pD ` Dτ q
ě

1
4

¨

In other words this case can occur only for ‘large’ τ ě σ
8ν . If D ě τ then we have similarly

στ2 ă 2νD Dτ pD ` Dτ q ď 8νD3 ô D ą τ2{3
´ σ

8ν

¯1{3
.

Therefore, we obtain

|S‹pDq ´ Sτ pDq| “ σ
Dτ ´ D

Dτ
“

στ2

Dτ pD ` Dτ q
ď

στ2

D2
ă 4ν2{3σ1{3τ2{3.

Combining the above cases shows the validity of Assumption 5.6 with τ “ 1
n , for example. The verification of

Assumption 3.2 is left to the reader.

Approximation by mollification. We can extend S‹ to an odd function on the whole real axis by setting

S‹pDq :“ ´S‹p´Dq for D ă 0.

Then, for n P N, we define an approximation of S‹ by

Snptq :“
ż 8

´8
S‹psq ηnps ´ tq ds,

with ηnptq “ nηpntq; here η P C0pRq is a nonnegative even function with support p´1, 1q such that
ş
R

ηpsq ds “ 1.
Consequently, the function Sn P CpRq is odd and thus Snp0q “ 0.

For D P R`
0 we have, by the monotonicity of S‹ and the definition of the function Sn, that there exists a D‹

with 0 ď D‹ P pD ´ 1
n , D ` 1

n q, such that pD‹, SnpDqq P a. Therefore, we have

|SnpDq ´ SnpDq|r
1

` |D ´ D‹|r ď 0 `
1
nr

,

and consequently

EApδ, Snpδqq ď
1
nr

Ñ 0 as n Ñ 8

for all δ P Rdˆd
sym . This shows that Assumption 5.6 holds. Moreover, φn satisfies Assumption 3.2; compare e.g.

with [14, 26, 27].
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Figure 2. Graph with plateau (left) and plateau and jump (right).

7.2. Monotone graph with plateaus

Similarly to (7.2), we consider a maximal monotone graph with selection S‹pDq “ S‹p|D|q D
|D| , but now

assume that S‹ : R`
0 Ñ R`

0 is continuous with

S‹pDq “

$’&
’%

S‹
1pDq, if D ă δ1

σ “ const., if δ1 ď D ă δ2

S‹
2pDq, else,

with

S‹
i pDq “ cipκ2

i ` D2q
qi´2

2 D, i “ 1, 2.

Here c1, c2, κ1, κ2 ě 0, q1 ą 1, q2 “ r, such that S‹
1pδ‹

1q “ S‹
2 “ S‹

2pδ‹
2q; compare with Figure 2(left). In this case,

we are basically in the same situation as in Section 7.1 with interchanged roles of S and D. Therefore, using
the approximation techniques of Section 7.1, we can construct an approximation of the monotone graph where
the shear rate depends explicitly on the shear stress. However, in a practical numerical method this relation
typically has to be inverted, which may cause additional computational difficulties.

Another approach is to use an approximation of the form

S̃npDq :“

$’&
’%

S1pDq if S1pDq ă σ ´ 1
n

S2pDq if S1pDq ą σ ` 1
n

Sn
σ pDq otherwise,

where Sn
σ is the linear interpolant between σ ´ 1

n and σ ` 1
n with corresponding values for D.

Combined with an approximation strategy as in Section 7.1, this procedure can also be applied to cases where
jumps and plateaus are both present; compare with Figure 2(right).

Remark 7.1. The arguments of Sections 7.1 and 7.2 can be obviously extended to finitely many jumps/plateaus
and even to cases with countably many jumps/plateaus.
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[21] L. Diening, C. Kreuzer and E. Süli, Finite element approximation of steady flows of incompressible fluids with implicit power-
law-like rheology. Prpeprint arXiv:1204.2145v3 (2012).
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