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ADAPTIVE FINITE ELEMENT APPROXIMATION
OF STEADY FLOWS OF INCOMPRESSIBLE FLUIDS
WITH IMPLICIT POWER-LAW-LIKE RHEOLOGY

CHRISTIAN KREUZER! AND ENDRE SULI?

Abstract. We develop the a posteriori error analysis of finite element approximations to implicit
power-law-like models for viscous incompressible fluids in d space dimensions, d € {2, 3}. The Cauchy
stress and the symmetric part of the velocity gradient in the class of models under consideration
are related by a, possibly multi-valued, maximal monotone r-graph, with f—fl < r < 0. We estab-
lish upper and lower bounds on the finite element residual, as well as the local stability of the error
bound. We then consider an adaptive finite element approximation of the problem, and, under suit-
able assumptions, we show the weak convergence of the adaptive algorithm to a weak solution of the
boundary-value problem. The argument is based on a variety of weak compactness techniques, including
Chacon’s biting lemma and a finite element counterpart of the Acerbi—Fusco Lipschitz truncation of
Sobolev functions, introduced by [L. Diening, C. Kreuzer and E. Siili, STAM J. Numer. Anal. 51 (2013)
984-1015].
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1. INTRODUCTION

Typical physical models of fluid flow rely on the assumption that the Cauchy stress is an explicit function of the
symmetric part of the velocity gradient of the fluid. This constitutive hypothesis then leads to the Navier—Stokes
system and its nonlinear generalizations, such as fluids with shear-rate-dependent viscosity including power-law
fluids with constant or variable power-law index. It is known however that the framework of classical continuum
mechanics, built upon the notions of current and reference configuration and an explicit constitutive equation
for the Cauchy stress, is too narrow for the accurate description of inelastic behavior of solid-like materials or
viscoelastic properties of materials. Our starting point in this paper is therefore a generalization of the classical
framework of continuum mechanics, referred to as implicit constitutive theory, which was proposed recently in
a series of papers by Rajagopal and collaborators; see, for example, [35-37]. The underlying principle of implicit
constitutive theory in the context of viscous flows is the following: instead of demanding that the Cauchy stress
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is an explicit function of the symmetric part of the velocity gradient, one may allow an implicit relationship
between these quantities. This then leads to a general theory, which admits fluid flow models with implicit and
possibly discontinuous power-law-like rheology; see, [32,33]. Very recently a rigorous mathematical existence
theory was developed for these models by Bulicek et al. in [14], for r > d2—f2; for the range d2—f2 <r< d3_+d2
the Acerbi-Fusco Lipschitz truncation [1] was used in order to prove the existence of a weak solution. In [22],
using a variety of weak compactness techniques, we showed that a subsequence of the sequence of finite element
solutions converges weakly to a weak solution of the problem as the finite element discretization parameter h
tends to 0. A key new technical tool in the analysis presented in [22] was a finite element counterpart of the
Acerbi-Fusco Lipschitz truncation of Sobolev functions. However, in the case of velocity approximations that
are not exactly divergence-free the convergence theory developed there was restricted to the range dz—fl <7 < oo.

The focus of the present paper is on the adaptive finite element approximation of implicitly constituted
power-law-like models for viscous incompressible fluids. As in [22], the implicit constitutive relation between the
stress and the symmetric part of the velocity gradient is approximated by an explicit (smooth) constitutive law.
The resulting steady non-Newtonian flow problem is then discretized by a mixed finite element method. Guided
by an a posteriori error analysis, we propose a numerical method with competing adaptive strategies for the
mesh refinement and the approximation of the implicit constitutive law, and we present a rigorous convergence
proof generalizing the ideas in [34] and [38]. More precisely, we show that a subsequence of the adaptively
generated sequence of discrete approximations converges, in the weak topology of the ambient function space,
to a weak solution of the model when dQ—fI < r < 0. In contrast with [22], stimulated by ideas from [16] we shall
be able to avoid resorting to the theory of Young measures. We emphasize that even in the case when the weak
solution is unique we have only weak convergence of a subsequence; in this case, however, such a subsequence
can be identified with the aid of the a posteriori bounds derived herein; c¢f. Remark 5.9.

The paper is structured as follows. In Section 2 we shall formulate the problem under consideration and will
introduce some known mathematical results. In Section 3 we define the finite element approximation of the
problem and present related technical properties and tools, such as the discrete Lipschitz truncation from [22].
Section 4 is concerned with the a posteriori error analysis for both the error in the approximation of the graph
and the finite element approximation. The adaptive algorithm together with our main result are stated in
Section 5; for the sake of clarity of the presentation certain technical parts of the proof are deferred to Section 6.
We conclude the paper by discussing concrete graph approximations for certain problems of practical relevance.
While the emphasis in this paper is on the mathematical analysis of adaptive finite element algorithms for
implicitly constituted fluid flow models, the ideas developed herein may be of more general interest in the
convergence analysis of adaptive finite element methods for other nonlinear problems in continuum mechanics

with possibly nonunique weak solutions.

2. IMPLICITLY CONSTITUTED POWER-LAW-LIKE FLUIDS

In this section we introduce the variational model of steady flow, in a bounded open Lipschitz domain 2 ¢ R¢,
d € {2,3}, with polyhedral boundary 0f2, of an incompressible fluid with an implicit constitutive law given by
a maximal monotone z-dependent r-graph. We then recall the existence result from [14] together with some
known results and mathematical tools from the literature.

2.1. The variational formulation

Before stating the weak formulation of the problem we need to introduce basic notations and recall some
well-known properties of Lebesgue and Sobolev function spaces.

For a measurable subset w — R?, we denote the classical spaces of Lebesgue and vector-valued Sobolev func-
tions by (L*(w) := L*(w;R),|[,,,) and (W3 (W) := Whs(w; RY), || ), s € [1, 0], respectively. Henceforth
w will be assumed to have Lipschitz continuous boundary. We denote the space of functions in W (w)? with

zero trace by Wy *(w)? and let W&’jiv ()% := {v e W) *(w)?: dive = 0}. Moreover, we denote the space of

1,550

functions in L*(w) with zero integral mean by L§(w). For s, s’ € (1,00) with 2 + 2 = 1 we have that L5 (02)
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and Lg (£2) are the dual spaces of L*(£2) and L§(£2), respectively. We have, for such s and s, that W, *(£2)¢ is
the closure of D(2)% := C(w)? and its dual is denoted by W15 (£2)4. For w = 2 we omit the domain in our
notation for norms; e.g., we write |||, instead of || o

For r € (1,0), we define 7’ € (1,0) by 1 + L =1, and set

L_dr ; 3d
s aay T <gn (2.1)
! otherwise.
With such r, v’ and 7, we shall consider the following boundary-value problem.
Problem. For f € L' ()% find (u,p, S) € W, (2)% x Lj(£2) x LT/(Q;ngfr‘f) such that
diviu@u+pl—-8)=f in D'(2)4,

dive =0 in D'(£2), (2.2)

(Du(x),S(x)) € A(z) for almost every x € £2.

Here, Du := 1(Vu+(Vu)T) € Rg;lg = {8 e R4 : § = §T} signifies the symmetric part of the gradient of u. As
is indicated in our choice of the solution space for the velocity w in the statement of the above boundary-value
problem, we shall suppose a homogenous Dirichlet boundary condition for w. The integrability of the pressure
p is inherited from the convective term and therefore the definition (2.1) of 7 is a consequence of the embedding
W' (£2) < L2"(£2). The implicit constitutive law, which relates the shear rate to the shear stress, is given by
an inhomogeneous maximal monotone r-graph A : z + A(z) < R4 x R2%4 In particular, we assume that for

Sym sym *
almost every x € {2 the following properties hold:

(Al) (0,0) € A(x);
(AQ) For all (61,0’1), ((52,0’2) € .A(.T),

(01 —02): (61 —032) =0 (A(x) is a monotone graph);

(A3) If (§,0) € R4 x RIX and

Sym Sym
(6—0):(6—08)=0 forall (§,5)c Az),

then (d,0) € A(x) (i.e., A(z) is a maximal monotone graph);
(A4) There exists a nonnegative function m € L'(£2) and a constant ¢ > 0, such that for all (§,0) € A(x) we
have

o:6>-—m(x)+c(8]" + o) (i.e., A(zx) is an r-graph);

Rdxd

sym?

(A5) The set-valued mapping A : 2 — R4 x R4*d is measurable, i.e., for any closed sets Cy,Ca <

Sym sym we
have that

{reR: Ax) n(C1 xC2) # T}
is a Lebesgue measurable subset of 2.

The following existence result was originally proved by Bulicek et al. in [14] assuming additionally that if
d1 # 02 and o1 # 02, then the inequality in (A2) is strict. In fact, based on a generalization of the fundamental
theorem on Young measures, this condition was required in order to prove that the implicit constitutive law is
satisfied. For the unsteady case, they presented a new technique in [16] avoiding the additional condition. This
technique can also be applied to steady problems (2.2); compare with [15].
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Proposition 2.1. Forr > d2—+d2 there exists a (not necessarily unique) weak solution to problem (2.2).

Remark 2.2. Two remarks concerning the definition of z-dependent maximal monotone graph A are now in
order:
e Let D ngxn‘f x ngxn‘f be a closed set; then, for a.e. z € £2 we have that the set A(z) n D is closed. To see

this, we assume w.lo.g. that A(z) n D # & and let {(8x,0%)}ren © A(z) N D, such that §, — & € RE:S
and oy — o € R¥*? asn — o. Let (§,5) € A(z) be arbitrary. We then have that

0< (G —0):(8—08) — (56 —0): (8—0)

as k — oo. This proves that (d,0) € A(xz) n D thanks to condition (A3) and the closedness of D. Taking
D = {o} x R4 we then deduce that the set

{oc e R (5,0) e A(x)}

sym
is closed. This is condition (A5)(i) of [14].
e According to ([4], Thm. 8.1.4) Property (A5) is equivalent to the fact that the graph of the set-valued
map A(zx) belongs to the product o-algebra £(2) ® B(RY4) @ B(RY*4). Here £(12) denotes the Lebesgue

sym sym

measurable subsets of {2 and %(ngxn‘f) the Borel subsets of ngxn‘f. With the same argument it follows that (A5)
is equivalent to the fact that, for any closed C ¢ ngxrg, the sets

{(z,0) € 2 x Rg;rg : there exists 8 € C, such that (§,0) € A(z)},

{(#,6) € 2 x Rg;n‘f : there exists o € C, such that (8,0) € A(z)}

are measurable relative to £(£2) ® ‘B(ngxn‘f). These equivalent conditions imply that there exist measurable

functions (so-called selections) S*, D* : 2 x R4 — RZ*d such that (8, 5*(z,d)), (D*(z,0),0) € A(z) for

Sym Sym
a.e. x € 2 and all §, 0 € REXL compare also with ([16], Rem. 1.1).

2.2. Analytical framework

We shall briefly recall some results that are crucial for the existence theory for problem (2.2).
Inf-sup condition. The inf-sup condition has a central role in the analysis of the Stokes problem. It states
that, for s,s" € (1,00) with £ + 1 =1, there exists an a; > 0 such that
sup > s g, for all ¢ € LY (£2). (2.3)
0£vEWL® (2)4 ]

This is the consequence of the existence of the Bogovskii operator B : L§(£2) — Wy* ()4, with
div®Bh =h and as |Bh||; , <[],

for all s € (1,00); compare e.g. with [9,20]. It follows from ([12], Sect. II, Prop. 1.2) that condition (2.3) is
equivalent to the isomorphism

L (2)

12

{v’ e W (@)% (W, w) = 0 for all w e WS, (Q)d} . (2.4)

Korn’s inequality. According to (2.2) the maximal monotone graph defined in (A1)—(A5) provides control
only of the symmetric part of the velocity gradient. Korn’s inequality states that this already suffices to control
the norm of a Sobolev function; i.e., for s € (1, 0), there exists a 75 > 0 such that

Ylloly , < [Dof,  forall v e Wy (2)% (2.5)

compare e. g. with [20].
We conclude this subsection with Chacon’s biting lemma and a corollary of it that is relevant for our purposes;
compare e.g. with [13] and ([27], Lem. 7.3).
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Lemma 2.3 (Chacon’s biting lemma). Let 2 be a bounded domain in R? and let {v,, }nen be a bounded sequence
in LY (£2). Then, there exists a nonincreasing sequence of measurable subsets E; < £ with |Ej| — 0 as j — o,
such that {vy}nen is precompact in the weak topology of L'({\Ej;), for each j € N.

In other words, there exists a v € LY(£2), such that for a subsequence (not relabelled) of {vn}nen, vn — v
weakly in L'($2\E;) as n — o« for all j € N. We denote this by writing

vn 20 in LY(£2)
and call v the biting limit of {vy, }nen.

Lemma 2.4. Let {v,}nen © LY(£2) be a sequence of nonnegative functions such that v, Y v for some v e LY(0).
Then,

lim J (v, —v)dx =0 implies that v, —v weakly in L*(2) asn — 0.
o

n—oo

3. FINITE ELEMENT APPROXIMATION

This section is concerned with approximating problem (2.2) by the finite element method. To this end, we first
approximate (2.2) by an explicitly constituted problem. We then introduce a general finite element framework
for inf-sup stable Stokes elements. This, together with some representative examples of velocity-pressure pairs
of finite element spaces, is the subject of Section 3.3. The finite element approximation of (2.2) is stated in
Section 3.4.

3.1. Approximation of maximal monotone r-graphs

In general an z-dependent maximal monotone r-graph A satisfying (A1)—(A5) cannot be represented in an
explicit fashion. However, it can be approximated by a regular single-valued monotone tensor field based on a
regularized measurable selection S* with the following properties; compare with [14,16] and Remark 2.2.
Lemma 3.1 ([16], Lem. 2.2). Let S™: (Zfo;n‘f — fo;n‘f be a measurable selection of the x-dependent maximal
monotone r-graph A with the properties (A1)-(Ab5). Then, for §,0 € Rfyﬁ,ﬂf, the following two statements are
equivalent for almost all x € §2:

o (0-8(z,D)):(6-D)=>0  forall DeRyL:
° (670') € A(l’)

In [14, 26, 27] the selection S* is used to approximate the maximal monotone graph A by a single-valued
monotone mapping S™ : 2 x ngxn‘f — ngxn‘f based on a mollification technique. In order to allow for different
practical implementations of such an approximation, we shall formulate its required properties and demonstrate
in Section 7 how such graph-approximations can be constructed for some typical problems of practical interest

within the class of problems under consideration.

Assumption 3.2. For n € N, there exists a mapping 8™ : 2 x R4 — R4X4 gsuch that

Sym Sym
e S§"(-,8): 2 — R4 is measurable for all § € R%x;
J ° Sym sym ?

o S"(x,): ]ngxn‘f — ]ngxn‘f is continuous for almost every x € £2;

e S" is strictly monotone; i.e., for almost every = € {2 we have

(S"(m,él) — Sn($,62)) : (61 — 62) >0 forall &; #9d5¢ Rg;rr?a
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e There exist constants ¢, & > 0 and nonnegative functions m € L'(£2), k € L™ (£2) such that, uniformly in
n € N, we have

1S™(2,8)| <& 6] + k(z) and S"(x,6):8 =& |6 — m(z)

for all § € ngxn‘f and almost every x € (2.
We emphasize that in contrast with [14, 16] we assume that S™ is strictly monotone. Of course we have to
assume additionally that the graph of 8™ converges to A is some sense. This will be specified in Assumption 5.6
with the aid of the a posteriori graph approximation indicator formulated in Section 4.1.

Having at hand a mapping S™ : 2 x ]ngxn‘f — Rg}f‘n‘f as in Assumption 3.2, we aim to approximate the solution
of (2.2) by solving the following explicitly constituted nonlinear boundary-value problem: For f € LTI(Q)d find
(u,p, 8) € Wy ()4 x Li(£2) x L (£2,R%4) such that

Sym
diviu®@u+pl —8) = f in D'(2)%,
divu =0 in D'(£2), (3.1)

S(x) = 8" (xz,Du(x)) for almost every x € 2.

3.2. Domain partition and refinement framework

In this section we provide the framework for adaptive grid refinement. For the sake of simplicity, we restrict
our presentation to conforming simplicial meshes and refinement by bisection. To be more precise, let Gy be
a regular conforming partition of {2 into closed simplexes, the so-called macro mesh. Each simplex in the
partition is referred to as an element. We assume that there exists a refinement routine REFINE with the
following properties.

e The refinement routine has two input arguments: a regular conforming partition G and a subset M < G of
marked elements. The output is a refined regular conforming triangulation of {2, where all elements in M
have been bisected at least once. The input grid can be Gy or the output of a previous application of REFINE.

o Shape-regularity: We call G’ a refinement of G (briefly G’ > G), when it can be produced from G by a finite
number of applications of REFINE. The set

G :={G: G is a refinement of Gy}

is shape-regular, i.e., for any element ' € G with G € G, the ratio of its diameter to the diameter of the
largest inscribed ball is bounded uniformly with respect to all partitions G with G € G.

For the proof of existence of such a procedure, we refer to [5,29,40] or the monograph [39] and the references
therein.
For every element F € G, G € G, there exists an invertible affine mapping
Fp:E—E,
where E is the standard reference d-simplex. The neighbourhood of an element E € G, with G € G, is denoted by
NY(E):={E'€G: E'nE + &)}.
Let w = £2 and define U9 (w) := | J{E € G | E nw # &}. For subsets M < G, let

QM) = {E|EeM}c 2 and UI(M):=UI(RM)) c 2,
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i.e., we have {2 = (2(G). Thanks to the shape-regularity of G, we have that #N9(E) < C and [U9(E)| =
|R(NY9(E))| < C|E| with a constant C > 0 independent of G € G. For G € G, we define the mesh-size function

2530 hg(w) == U9 ({a})] "

For x € interior (E), this coincides with the usual definition hg(z) = |E\1/d =:hg. The mesh-size function is
monotonically decreasing under refinement.

We call the (d — 1)-dimensional sub-simplexes of any simplex E € G, whose interiors lie inside {2, the sides
of G and denote the set of all of them by S(G). For S € S(G), we define hg := |S|"/(¢=1) and observe for z € S
that chg < hg(z) < Chg, with constants C, ¢ > 0 depending solely on the shape-regularity of G.

3.3. Finite element spaces

Denote by P, the space of polynomials of degree at most m € N. For a given grid G € G and certain subspaces
Q < L®(2) and V < W *(£2)? the finite element spaces are given by

V(G) := {V €V : VlpoFgleby, EcGand Vs = o}, (3.2a)
Q)= {QeQ: QlroFy' ebq Eeg}, (3.2b)

where Py ¢ WH*(E)? and Pg ¢ L®(E) are finite-dimensional subspaces such that P? < Py < P¢ and
Py < Pg < PP, for some ¢ > j € N. For convenience, we introduce the space of piecewise polynomials of degree
at most m € N over G by

Pn(G) :={R:2—>R:R|gpeP,, Ec€g}.

Note that Q(G) = L®(£2) n P,(G) and since V(G) = Co(2)? n Pr(G)? it follows that V(G) < Wol’oo(Q)d.
Additionally, we assume that the finite element spaces are nested, i.e., if G, is a refinement of G, then

V(@) e V(@) and  Q(9) = Q(Gy). (3-3)

Each of the above spaces is supposed to have a finite and locally supported basis; e. g. for the discrete velocity
space this means that for G € G there exists an Ng € N such that

V(G) = span{V%, e ngvg}

and for each basis function VY, i = 1,..., Ng, we have that if there exists an ' € G with Vig # 0 on FE, then

7

supijg- c UY9(F). We introduce the subspace Vo (G) of discretely divergence-free functions by

Vo(G) = {V e V(G): J QdivVde =0 for all Q @(g)}

9]

and we define
Qo(9) = {Q € Q(G) : j Qdz = o}.
7]

It will be assumed throughout the paper that all pairs of velocity-pressure finite element spaces considered
possess the following properties.

Assumption 3.3 (Projector jgdiv). We assume that for each G € G there exists a linear projection operator
39, Wy (2)% — V(G) such that, for all s € (1, 0),
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d

o 3Y;, preserves divergence in Q(G)*; i.e., for v e Wy (£2)% we have

J Qdivvdr = J Qdivj%ivvdx for all @ € Q(9).
Q Q

° J%iv is locally defined; i.e., for any other partition G, € G we have
3% Vlus- () = T, vlus () (34)
for all v e W, *(2)? and all E € G with N9(E) < G,.
° Jgdiv is locally Wl:l-stable; i.e., there exists a ¢; > 0, independent of G, such that
J |3%ivv‘ + hg ‘VJ%NU‘ dr < clj |v| + hg |[Vv| dz (3.5)
E ud(E)
for all ve W, *(2)? and all E € G.

As in [6,17,22], the local W'l -stability property (3.5) implies global W'*-stability, i.e., for each s € [1, 0],
there exists a ¢; > 0, such that

Hj%iv””m < cs vl for all v € Wy*(£2)%. (3.6)

Moreover, since V(G) contains piecewise affine functions, we have the following interpolation error bound. For
each s € [1, 0] there exists a ¢ > 0 such that

L o =3, o] + 1§ | Vo = VI, " do < cohi T ol o ) (3.7)

for all E € G and v e W'Hs(2)? A W, *(2)%, § € {0,1}.

As a consequence, we deduce the following result for weak limits in nested spaces. Before stating the result,
we adopt the following notational convention: we shall write A < B to denote A < C'- B with a constant C' > 0
that is independent of the discretization parameter h.

Proposition 3.4. Let {v).}ren © Wy *(02)%, s € (1,0), be such that vy — 0 weakly in Wy *(2) as k — o
and let {Gitren < G be a sequence of nested partitions of §2, i.e., Gi, < Giy1 for all k € N. Then,

3%’;\, v — 0 weakly in Wol’s(Q)d as k — o0.

Proof. Thanks to the uniform boundedness (3.6) of the sequence of linear operators {jgd’;v C Wt ()t —
V(Gr) © WO1 *(§2)%} e, we have that there exists a not relabelled weakly converging subsequence of {TJ%’;V Uk JheN
in W, *(2)%. By the compact embedding W, *(£2)? <> L(£2)? the sequence {3%’;\, Uk fren converges strongly
in L*(£2)%. Thanks to the uniqueness of the strong limit, it suffices to identify the limit of {J% wj}rey in
L#(£2)2. To this end, we introduce the sets

Q,j = ﬂ g; and Q,j ={F¢ Q,j: ./\fg"(E) c g,j},

j=k
i.e., N9 (E) = N9 (E) for all j = k and E e g,j For j > k, we consider the decomposition

~G; _ (~Yi gj
Javvi = Ty Uj)XQ(g”;) + (% Uj)XQ(gk\g”;y



AFEM FOR IMPLICIT POWER-LAW FLUIDS 1341

For the latter term, we have according to (3.7) that

19931, < [hoXugnen|, V9l

g;
H(Uj TG )Xo, AveADY R th Xu(@\g ||,

Here we have used the monotonicity of the mesh-size under refinement in the last step. It follows from ([34],
Cor. 4.1 and (4.15)) that thk
implies that

— 0 as k — oo. Thanks to the shape-regularity of G, this readily

= 0. (3.8)

]}LHOIO thk Xu(gk\gel-:) L*(£2)

By the compact embedding W, *(2)? << L*(2)% we have that v; — 0 strongly in L*(2)? as j — oo,
Combining these observations, we deduce that for any € > 0 there exists a K. > 0 such that

H(J%ﬂv V)X (G065  Se for all j > k > K. (3.9)

We next investigate the term (jijiv V)X G+~ Thanks to the definition of Q,j and (3.4) we have
k

~Gj ~Gi .
(T vi)lo@s) = % vi)logs forallj> k.

Since a linear operator between two normed linear spaces is norm-continuous if and only if it is weakly continuous
(¢f. Theorem 6.17 in [3], for example,) we deduce that, for fixed k € N, we have

(jiﬁv "j)|n(g°,j) —0 weakly in Wlas(g(ég-))d asj — 0.
By the compact embedding Wy*(2)4 <> L*(£2)¢ this implies that
(jiﬁv vj)xmg;) — 0  strongly in L*(2)? as j — .

Together with (3.9) we have, for all j > k > K., that

~Gj j Gj Gj .
HJ diy Uj < H Jdiv Uj)XQ(gk\g";f) + H(jdjw 'Uj)XQ(g";’) . <€+ H(jdjlv 'Uj)XQ(g";') . — € as j — 0.
Since € > 0 was arbitrary, this proves the assertion. O

Next, we shall introduce a quasi-interpolation operator, which will be important for the treatment of the,
generally non-polynomial, stress approximation.

Assumption 3.5. We assume that for each G € G there exists a linear projection operator ITg : L*({2; Rfyfr‘f)
Py 1(G; REX4) such that IIg is locally L' stable, i.e., there exists a ¢ > 0, depending on Gy, such that

Sym

Ssym

J |IIgS)| dazgcj |S| dz  for all S e L*(2; RIX%).
E U9 (E)

This implies that

1IgS|, <cs|S|,  forall S e L (2;RED), (3.10)

sym

with a constant ¢, depending on Gy and s; compare also with (3.6).
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Assumption 3.6 (Projector TJ%) We assume that for each G € G there exists a linear projection operator
3(% : L1(22) — Q(G) such that, for all s’ € (1, 0), 3(% is locally L' stable, i.e., there exists a ¢ > 0, independent
of G, such that

j 1384 dz < cj lgf dz  for all g€ L'(£2) and all E € G.
E MQ(E)

We may argue similarly as for 3%1‘, to deduce that
HJ(%qHS <cslq|, and J lq —3Gq|” dz < ¢;hfs |9l5ys. o () (3.11)
E

for all Ee G and ge W%5(£2), 6 € {0,1}.
As a consequence of (2.3) and Assumption 3.3 (compare also with (3.6)) the following discrete counterpart
of (2.3) holds; see [6].

Proposition 3.7 (Inf-sup stability). For all s,s" € (1,00) with % + % = 1, there exists a s > 0, independent
of G € G, such that

fQ QdivVdx
sup
02vev) Vi

=0 [Qly  forall Qe Qo(9).

Thanks to the above considerations, there exists a discrete Bogovskii operator, which has the following
properties; compare also with ([22], Cor. 9).

Corollary 3.8 (Discrete Bogovskii operator). The linear operator 89 := 3% o098 : divV(G) — V(G) satisfies

HQd
div(B°H)=H  and B |[B9H|, < sup [o Qdx
" oeao) 1Ry

for all H € divV(G) and s € (1,00), with a positive constant s, independent of G € G.
Moreover, let {Gr}lren © G be a sequence of nested partitions of 2, i.e., Gyy1 = Gy for all k € N, and let
V1. € V(Gi) be such that Vi, — 0 weakly in W, *(£2)* as k — 0. We then have that

BI:divVy, — 0  weakly in Wy *(2) as k — .

Proof. The claim follows as in ([21], Cor. 10) after replacing ([21], Prop. 7) in the proof by Proposition 3.4
here. O

Upon integration by parts, it follows that

—J (v®w):Vhdx—J (v®h): Vw + (divo)(w - h)dz (3.12)
o 2

for all v,w,h € D(2)%. The last term vanishes provided that dive = 0, i.e., the convection term is skew-
symmetric with respect to the second and the third argument, which implies that

J (v®wv): Vodx = 0.
[0
It can be easily seen that this is not generally true for finite element functions V' € V(G), even if

J QdivVdx =0 for all Q € Q(9), (3.13)
Q
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i.e., if V' is discretely divergence-free. As in [41], we wish to ensure that the discrete counterpart of the convection
term inherits this skew-symmetry of the convection term. To this end, we observe from (3.12) that

—J (vQw): Vhdx = lj (v®h): Vw — (v®w) : Vhdz =: B[v, w, h] (3.14)
o 2)a

for all v,w,h € Wol”fﬁv (2)2. We extend this definition to W1 ®(£2)? in the obvious way and deduce that
Blv,v,v] =0  forall v e WhH*(£2)4. (3.15)

We further investigate this modified convection term for fixed r,7" € (1,00) with % + % = 1; recall the

definition of 7 from (2.1). We note that 7 > 1 is equivalent to the condition r > d2_f2' In this case we can define

its dual 7 € (1,0) by % + % = 1 and we note that the Sobolev embedding
Whr(2)® — L2 (0)? (3.16)

holds. This is a crucial property in the continuous problem, which guarantees that
[ wow): Tnas <ol tul,, Inl, . (317)
Q

for all v, w, h € Wh*(02)%; see [14]. Because of the extension (3.14) of the convection term to functions that are
not necessarily pointwise divergence-free, we have to adopt the following stronger condition in order to ensure

that the trilinear form B[.,-,-] is bounded on W17 ()% x WL (2)? x W™ (£2)4. In particular, let r > f—fl,

in order to ensure that there exists an s € (1,00) such that % + % + % = 1. In other words, we have for
v,w,h e WH*(£2)? that

j (divo) (w-h)dz < [divol, |wl,: [k, < ¢ o], |w],, [h], 7
2

with a constant ¢ depending on r, {2 and d. Here we have used the embeddings (3.16) and W&’W(Q)d — L3(£2)%.
Consequently, together with (3.17) we thus obtain

Blv, w, h] < ¢ o]y, [wl,, [R]y 5 (3.18)
In view of (3.14), for v = (v1,...,v4)" € Wol’r(ﬁ)d, the convective term can be reformulated as
j Bl[v,v] - wdx = B[v, v, w], we W, (02)% (3.19)
2

where B[v,v] € L™(£2)? is defined by (B[v,v]); = %Z?Zl V4 S;J + %(vivj) for j = 1,...,d. In particular, for
v =V e V(G), we have that B[V, V] € Py,_1(G)%.

Example 3.9. The following velocity-pressure pairs of finite elements satisfy Assumptions 3.3 and 3.6 for
d = 2,3 (see, e.g., [6,24,25]):

e The lowest order Taylor—-Hood element;
e Spaces of continuous piecewise quadratic elements for the velocity and piecewise constants for the pressure
(see e.g. [12], Sect. VI Ex. 3.6).

We note that the MINI element and the conforming Crouzeix—Raviart Stokes element do not satisfy the nest-
edness hypothesis stated in (3.3).
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Remark 3.10. The boundedness of the trilinear form B[, -, -] stated in (3.18) requires that r > 2% In [21]

d+1°
and [22] the set of admissible values of r was the same range, r € (d2—4‘_12, o), as in the existence theorem for the
continuous problem in [14]; however, for r € (dQ—fQ, %] the finite element space for the velocity was assumed

in [21] and [22] to consist of pointwise divergence-free functions, whose construction is more complicated. For
simplicity, we shall therefore confine ourselves here to the limited range of r > d2—f1 so as to be able to admit
standard discretely divergence-free (cf. (3.13)) finite element velocity spaces.

3.4. The Galerkin approximation

We are now ready to state the discrete problem. Let {V(G),Q(G)}gec be the finite element spaces of
Section 3.3.

For n € Nand G € G we call a triple of functions (U, PJ) € V(G) x Q(G) a Galerkin approximation of (3.1)
if it satisfies

jS”(~,DU§):DV+B[UZ,U§]~V—P§didex—j f-Vde,

? “ (3.20)
j QdivUg dx =0,
(9]

for all V € V(G) and @ € Q(G).
Restricting the test-functions to Vo(G) the discrete problem (3.20) reduces to finding Ug € Vo(G) such that

jsn(‘,DUg):Dde—kB[ G g,V]—J f-Vdzx (3.21)
2 2

for all V' € Vy(G). Thanks to (3.15), it follows from Assumption 3.2 and Korn’s inequality (2.5) that the
nonlinear operator defined on Vo (G) by the left-hand side of (3.21) is coercive and continuous on Vo (G). Since
the dimension of V(G) is finite, Brouwer’s fixed point theorem ensures the existence of a solution to (3.21). The
existence of a solution triple to (3.20) then follows by the discrete inf-sup stability, Proposition 3.7. Of course,
because of the weak assumptions in the definition of the maximal monotone r-graph, (3.20) does not define the
Galerkin approximation (Ug, Pg) uniquely. However, supposing the axiom of choice, for each n e N, G € G, we
may choose an arbitrary one among possibly infinitely many solution triples and thus obtain

{( g"Dg’Sn('vDUg))}neN,geG' (3'22)

From (3.20) we see that Ug is discretely divergence-free and thus, thanks to (3.21) and (3.15), we have that

J S"(-,DUg) : DUGdx = {f, Ug) < |f|_, . |Ug],, -
0]

The coercivity of §" (Assump. 3.2) and Korn’s inequality (2.5) imply that the sequence {U }nen is bounded in
the norm of W()l’r(())d, independently of G € G and n € N. This in turn implies, again by Assumption 3.2, the

uniform boundedness of §"(-, DU¢) in L™ (2 ngxn‘f). In other words, there exists a constant ¢y > 0 depending
on the data f, such that

1Ugl,, +[s"¢.DUg)

. < cf, for all G € G and n e N. (3.23)

Hl,r

For the sake of simplicity of the presentation, if there is no risk of confusion, we will denote in what follows
S"(DUg) = 8"(-,DU).
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Remark 3.11. An alternative formulation of (3.21) is as follows: find a triple (Ug, Pg, S5) € V(G) x Qo(G) x
Py 1(G; REX4) such that

sym

Jsg:Dv+B[ g,Ug].V—Pgdidex—J f-Vada,
2 2

j Q divUgdx =0,
o)

J S¢: Ddx —J S§"(DUg) : Ddx,
o 2

for all V e V(G), Q € Q(G), and D € IP’g,l(Q;ngxn‘f). Here IP’g,l(Q;ngXH‘f) denotes the space of all piecewise
polynomials of degree < ¢ —1 on G with values in RE<?. In particular, if we define IIg : L'(2;RE<d) —
Pr_1(G; RE%D) by

Sym

J HgS:Ddx—j S:Ddz, forall DeP,_i(G;RYY),
22

sym
Q
then Assumption 3.5 can be easily verified and SG may take the role of IIgS™(DU ) in the subsequent analysis.

3.5. Discrete Lipschitz truncation

In this section we shall recall a discrete counterpart of Lipschitz truncation, which acts on finite element spaces.
This discrete Lipschitz truncation is a composition of a continuous Lipschitz truncation with a projection onto
the finite element space. The continuous Lipschitz truncation used here is based on results from [10,11,19],
which provides finer estimates than the original Lipschitz truncation technique proposed by Acerbi and Fusco
in [1]; for details consider [22].

We summarize the properties of the discrete Lipschitz truncation in the following result. Similar results for
Sobolev functions can be found in [19] and [10].

Proposition 3.12. Let 1 < s < o and let {Ey}ren be a sequence such that for all k € N we have Ey € V(Gi)
for some Gy € G. In addition, assume that {Ex}ren © Wy *(2)% converges to zero weakly in Wy * ()4, as
k — oo.

Then, there exists a sequence {\g j}k jen < R with 22 Ak < 22" =1 4nd Lipschitz truncated functions

Eyj = Eyg»,;, k,j€N, with the following properties:

(a) Ey;eV(Gr);

(®) [Ekl, , <c Bkl forl<s<o;

() IVEk o < cAr,js

(d) Er; —01n LP(2)¢ as k — ©;

e) VE,; —*0in Le(2) a5 k — oo;

f) For all k,j € N we have H)"CJ X{Ek#Ek‘_j}Hs <c27%

(
(

VEy|,.

The constants ¢ appearing in the inequalities (b), (c¢) and (f) depend on d, 2, Py and the shape-reqularity of
{Gk}ren. The constants in (b) and (f) also depend on s.

Proof. The proof is exactly the same as that of ([21], Thm. 17 and Cor. 18 replacing [21], Prop. 7) by
Proposition 3.4. U
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4. ERROR ANALYSIS

4.1. Graph approximation error

In order to quantify the error committed in the approximation of the graph A(zx), x € {2, we introduce the
following indicator. For D € L"(£2;R%%9), § e L™ (£2; R4 we define

sym sym

EA(D,S) :—f inf |D 5" +|S — 0'\ (4.1)
n (8,0)eA(z

The following result shows that this indicator is well-defined.

Proposition 4.1. Let D € L"(£2; RE*4) and S € L™ (2;R%%%); then, the mapping

sym sym

— 1 f D _6r+ S _ 'r‘l
’ (57171)I}5A(m)| (z) = 0| +[S(z) — o

is integrable. Moreover, there exist D € L" ({2 RExd) and SeL" (1 RIX4) such that (b(x), S'(ac)) e A(x) for
a.e. x € {2 and

r/
dx.

su(D,S) = J

Proof. The first claim is an immediate consequence of the second one. The second assertion follows from ([4],
Thm. 8.2.11) by observing that the mapping

2 x R X RO S (5(8,0)) = [D() = 8" +|S(z) — o

sym sym

is Carathéodory, i.e., z — |D(x) — 8|" + |S(z) — | is measurable for all §,0 € R4 and

sym
(8,0) — |D(x) — 8" +|S(x) — o|”
is continuous for a.e. z € 2. O

4.2. A posteriori finite element error estimates

In this section we shall prove bounds on the residual
R(UG, P§,8"(DUg)) = (RP*(Ug, P§, S"(DUE)), R(Ug)) € W7 (2)4 x Li(£2)

of (3.1). In particular, for (v,q,T) € Wy (2)% x Lj(2) x L" (2;RE9) we have

(R(v,4,T), (w,0)) := (RP*(v,¢,T), w) +(R*(v), 0)

:—j T :Dw + Blv,v] - w —qdivw—f-wdas—f odivv dz, (4.2)
Q 2

where (w, 0) € W, ’F’(())d x L' (2)/R. Although for the sake of simplicity we restrict ourselves here to residual-
based estimates, we note that in principle other a posteriori techniques, such as hierarchical estimates, flux-
equilibration or estimates based on local problems, can be used as well; compare with [34,38]. For n € N and
G e Glet (UG, Pg) € V(G) x Qo(G) be the Galerkin approximation defined in (3.20). We begin with some
preliminary observations.

The first part of the residual in (4.2), RPY(v,q,T) € W17 (£2)?, provides information about how well the
functions v, q, T satisfy the first equation in (3.1). For the second part, we have Ri¢(v) € (L5(§2))*. We note
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that the space (Lj(£2))* is isometrically isomorphic to L™ (£2)/R, which is, in turn, isomorphic to L (2) since
r € (1,00). The term (R(v), o) provides information about the compressibility of v.

We emphasize that R(v,q,T) = 0 if and only if RP¥(v,q,T) = 0 and R'°(v) = 0, but that a vanishing
residual itself does not guarantee that (Dwv(xz),T(z)) € A(z) for almost every x € 2. For this, additionally
EA(Dwv,T) = 0 is needed.

For the rest of the paper let ¢t and ¢ be such that

2d - 1 dt 3d
= o if < o0 4
d+1<t<r and t 573 ifr<o—5 (4.3a)
t=r and t=t =7F=1, otherwise. (4.3b)

Note that (4.3a) implies that if r < d?’—f2, then ¢t <7 and f < 7.

Lemma 4.2. The triple (u,p, S) € Wol’r(Q)d x Li(£2) x L (£2; RE%D) is a solution of (2.2) if and only if

sym
R(u,p,S) =0 in W H () x L(R)  and  Ea(u,S) =0.

Proof. Thanks to the fact, that Wol’t, (2)%x L' (2)/R is dense in WOI’F/ (2)%x L™ (£2)/R we have that R(u, p, S) =
0 in W—1H(2)? x LE(£2) is equivalent to R(w,p, S) = 0 in W—L7(£2)? x L5 (2). This is, in turn, equivalent to
the fact that the triple (u,p, S) satisfies the system of partial differential equations (2.2).

On the other hand we have that (Du(x), S(x)) € A(x) for almost every x € £2 if and only if £4(Dwu, S) = 0,
and that completes the proof. O

Note that Lemma 4.2 does not provide a quantitative relation between the error and the residual. Even for
simple r-Laplacian type problems, such a relation requires complicated techniques and problem-adapted error
notions (e.g. a suitable quasi-norm); cf. [7,18,31]. However, because of the possible nonuniqueness of solutions
to (2.2), such a relation cannot be guaranteed in our situation. We shall therefore restrict the a posteriori
analysis to bounding the residual of the problem instead of bounding the error.

Recalling the quasi-interpolation I1g from Assumption 3.5 as well as the representation of the discrete con-
vective term in (3.19), we define the local indicators on E € G as follows:

€5 (UG, Py, 8™ (DUG): E) := |hg (~ div IIgS" (DU) + BIUG. Ug] + VP — f)[;
- i -
+ g [1168" (DUE) ~ Pgid]l|,  +|S" (DUG) ~ HgS™ (DUF)|; .
(4.4a)
€5 (UG B) = | divUg], . (4.40)
and
&g (UG, Py, S™ (DUR) E) = £5% (UG, Pg. 8" (DUR) ;E) + &5 (UL E). (4.4c)

Here, for S € S(G), [ |s denotes the normal jump across S and [[-]]|o2 := 0. Moreover, we define the error
bounds to be the sums of the local indicators, i.e., for M c G, we have

EX° (UG, Py, S"(DUG)M) = Y EE*°(Ug, Py, S"(DUE); E),
FEeM
55( Z’M) = H div UZH;;Q(M)
and
& (UG, Pg, 8" (DUY)) = EE*(Ug, Pg, S"(DU)) + £ (Ug)
= £ (UG, Py, S"(DUE); G) + €5 (UE: G).
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Theorem 4.3 (Upper bound on the residual). Let n € N and G € G, and denote by (U", Pg) e V(G) x Qo(G)
a Galerkin approzimation of (3.20). We then have the following bounds:

[RP# (U5, Py, S (DUS)) -1 < C1 E(U P2, s (DU (4.52)
ic(TTn o l/t

RE(UD), ——— ) = &kt 4.5b

o (RO, ) = S (4.50)

The constant C1 > 0 depends only on the shape-reqularity of G, t, and on the dimension d.

Proof. The assertions are proved using standard techniques; compare e.g. with [2,42]. For the reader’s conve-

nience we sketch the arguments. For arbitrary (v, q) € W&’F(Q)d x LY (£2)/R with |vlly # = Pl =1 we deduce
from (3.20) that

(RP(Ug, By, 8" (DUY)), v) = f”@s” DU) : D(v 9%, v) + BUG, Ug]- (v =95, )~ f (0= 3, 0) d
—J Py div (v — 39, v) dx+J (S"(DUE) — MgS™(DUR)) : D(w — 3%, v) da.
7 o

Thanks to (3.19), local integration by parts and using Hélder’s inequality, we obtain

~G
—J div?

(RP(Ug, Py, S"(DUE)), v) < ) {|}—divﬂgsn(DUg)+B[ UL+ VP -
Eeg

1 .
|[168"OUZ) ~ g i)l o - 35,0

<C (Z {Iha(~ div11g5™(DUY) + BIUG, UG + VP - )]}

EegG
t,0FE
l/t
|t

Here, in the last inequality, we used the stability of 39 Jiv (see (3.5)), a scaled trace theorem, and the interpolation
estimate for jgdw in (3.7), as well as the finite overlapping of patches and a scaled trace theorem.

To prove the bound (4.5b), we first deduce from fQ 1divUg dz = 0 and Hélder’s inequality that for all c € R,
we have

iE H” i E

t',0F

+|S™(DUG) — IIgS™(

+|n* [11g5™ (DUY) -

+|S"(DUE) — 1IgS™(DUY)

J odivUg dx—f (0—c)divU¢da < | divUg H lo—c], -
Q Q

Taking the infimum over all ¢ € R and then the supremum over all 0 € L (£2) proves ‘<’ in (4.5b). In order to
prove ‘=’, we observe that

55(Ug)—j divUg |divUg|" 2divUgdz < sup <R'°( G) —>|}|dwU"f 2divUg|,,
2 oeL¥ (2)/R infeer o — ¢
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Together with the definition of S'gc(Ug) and noting that

L
7

|| divUg[2divUg|, = |divUg| ™" = gis(Ug) T = g (UR)7,

this yields (4.5b). O

Corollary 4.4. Under the conditions of Theorem 4.3, we have

.
(RP(US, P, 8" (DUR)), v) < C1 Y. E6%(UE, Py, 8" (DUL)E) " IV )7 0 1y
FEeg

and

<RIC Un q> Z 5 l/t Hth/ o)
Eeg

for allv e W&’F((Z)d and g € L' (£2).
Theorem 4.5 (Lower bound on the residual). Under the conditions of Theorem 4.3, we have

l/t 1/t

e EL°(U, PE, S"(DUR)) " < |[RP®(UE, PE, S™(DUE)) +oscg (Ug, S"(DUR)) (4.6)

-5

The constant c; > 0 depends solely on the shape-reqularity of G, t, and on the dimension d. The oscillation
term is defined by

OSCg(Ug,Sn(DUg)) = Z osc( E,S”(DUS),E)
FEeg

t
i

Z LI mln |ha (f — fE)HtE +|S*(DU) — 11gS™(DUE)
EeG’E 213 1

Proof. Let E € G and let S € §(G), i.e., there exist Eq, Fy € G, E1 # FEs, such that S = Fy n Es. Let fp € Pgeq
be arbitrary; for convenience we use the notation

Rp = —divIIgS"(DUR) + B[UL, UL + VPE — fpe Py, 4,
and
Js = [IIgS™"(DUg) — Pgid]||s e P2?,  where m = max{¢ — 1, 5}.
It is well-known that there exist local bubble functions bg, bs € WO1 "*(£2), such that
0 < bg,bs <1, suppbg = E and suppbs = wg := Ey1 u Es. (4.7a)

Moreover, we have that there exist pp € P, | and pg € P2*?, with lpelz g =1=|pslz g, such that

IRelfy < C | Rebeprds  [9(6e0e)lps < C 15 0l 5.

(4.7b)

- b

JS'&s“f Jsbspsda, [V (6sps)p s < C [hg"ps|
S b

and  |[bsps|p o <C Hhé/t pSH -
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compare, for example, with ([43], Chap. 3.6). Here the constants only depend on r, the polynomial degree of R,
respectively Jg, on the shape-regularity of G, and on the dimension d. Hence, for the element residual, we deduce
that

IREl; < C { (RP(UE, Py, S"(DUR)), bppi) + {gS" (DUE) — §"(DUG), D(bxpr)) + | f — Frlip |

where we have used Holder’s inequality and that 0 < bp < 1. Together with a triangle inequality and (4.7b),
this implies that

[hg(~ div IgS"(DUG) + BUG, UGl + VPG — f)|; , < C{ (R*™ (U, P§, §"(DUY)), habepr)

+ [ 1IgS"(DUG) - 8" (DUG)|; y+hg(f—F i)z p

——

(4.8)
For the jump residual, we deduce from (4.7a) and integration by parts, that
sles <€ [ 165" OUE) ~ P ] fsps s
_ o{ (RPU(U, P}, S"(DUR)), bsps)
+ Y JE (div [IgS" (DUR) — B[UG, US] ~ VPE + f)bsps da|.
i=1,2 Y E;
Therefore, we obtain, with (4.7b), Holder’s inequality and (4.8), that
Hh;/t~ [S"(DUL) — Prid]] His < C{ <dee( n P, S"(DUL)), h}fﬁsps>
+ ) [<de8( n Py, S (DUL)), hgbe, pr.)
i=1,2

+ | gs"(DUR) ~ S"OUY); . + [ho(F = Felip, |} (49)

We define the constants ap = |hg(— divIIgS"(DUg) + B[UE,Ug] + VPg —f)”:;;, E € G, and Bs :=

. -1
Hhé/t [17gS™(DUE) — Pgid]] H:S, S € 8(G). Then, combining (4.8) and (4.9) and summing over all E € G,
S e S(G), yields ’
£ (Ug, Py, S"(DUR)) = . ag|hg(— divIIgS™(DUE) + B[U, Ug] + VPG — i

EeG
+ Y s |ng [8"OUg) - pgid]]|
se€S(G) ’
< C{<dee( G, Pg,S"(DUY)), Z (aE + Z ﬁs) hgﬁEﬂE>
Eeg ScOEn2

+<dee( gapgvsn(DUg))v 2 ﬁsh}g/tﬁsps>

SeS(9)
+ Z (aE+ Z ﬁs> osc(Ug,S"(DUg),E)l/t}.
Eeg ScoEn?

Here we have used in the last step that f € P§, |, with E € G, are arbitrary.
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Thanks to the fact that the suppbg, E € G, are mutually disjoint up to a null-set, together with (4.7b), we
have that

H Y (aE+ Y ﬁs) hgﬁEpE)Hv —%(aEJr Y ﬁs>t L}th(ﬁEpE)f/ da

Eeg ScoEnS2 ScoEnS2

EaE+ Y 8L | < ey py, st oUR)
SeS(9)

where we have used that each element E has at most (d + 1) sides S € S(G) with S < 0F. The constants C
depend only on the shape-regularity of G. Analogously, we deduce from the fact that only finitely many of the
suppbs, S € S(G), overlap, that

VI X Bshgbsps H <o ¥ 4 J nVesps| < Y B < cere (U, py, st DU
SeS(G) SeS(G) ws SeS(G)
Combining Holder’s inequality with similar arguments yields for the last term
i
"~ (a“ ) ﬁs) osc(UG, 8" UL E) < | Yok + Y 6L ose(Uy 8" DU
EeG SCOEND EeG SeS(G)

< ey, py, s"(UL) Y ose(Ug, S"(DUL))M.
Altogether, we have thus proved that

17

eae( g,Pg,S”(DUg))<C{|}RPde( 4. Py, S"(DUY) & (Ug, Py, S"(DUR))

Now-17 0
+osc(Ug, 5" (DU)) €5 (Ug, P, 8" (DUg)) " }.
This is the desired bound. O

The following result states the local stability of the error bound and is referred to as local lower bound in the
context of linear elliptic problems.

Corollary 4.6 (Local stability). Suppose the conditions of Theorem 4.3 and let M < G; then, there exists a
constant C', depending solely on the shape-regularity of G, t, d and 2, such that

(U, Py, S"(DUE:E M) < C (|RP*(U, Py, S"(DUY))

HW’L{(Z/IQ(M)) + OSC(US, S"(DUS)’ M)l/t)

n n 2
c (H QHl,t;L{g(M) +| QHLt;ug y T | Pg Ht ws oy T 1 leue

U9 (M)

Proof. The first bound follows as in the proof of Theorem 4.5. In order to prove the second bound, let v €
W' (U9 (M))?. We then have with Hélder’s inequality and (3.18), with ¢ and 7 instead of r and 7, that

(RP(UE, PY, 8™ (DUE)), v) = Jngs" DUZ) : Dv + B[US, U] -v — Py dive — f - vdz

< ¢(|mgsm(Uy); 1P o gy + 1 s o))

;U9 (M

<ol 5240 ) -
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Note that in the case of (4.3a), we have

{_1 dt <1 dt
C2d—t 2d-r

/

1
=r—<r

r
Hence, Holder’s inequality, the stability of ITg (Assump. 3.5) and Assumption 3.2 yield

|TgS™(DUL)| | < (M) T |11gS™ (DU) T |11gS™(DUT)

~ <
t; U9 (M s UT (M) ‘Q s UI (M)

<C (HDUE

- Hl} .
M) r';u9<M>>

Ht;ug(
The oscillation term can be bounded above similarly, and the assertions follows. O

Remark 4.7. Corollary 4.6 states the stability properties of the estimator, which are required in order to
apply the convergence theory in [34, 38]; compare with ([38], Eq. (2.10b)), for example. The stability of the
estimator is also of importance for the efficiency of the estimator. If Corollary 4.6 fails to hold, it may happen
that the a posteriori error estimator is unbounded even though the sequence of discrete solutions is convergent;
in particular, div§"(DU¢) need not belong to L’"/(E) when 1 < r < 2. This problem already appears in the a
posteriori analysis of quadratic finite element approximations of the r-Laplacian, or the r-Stokes problem (cf. [8])
for 1 < r < 2. In order to avoid this, we use IIgS"(DUY) instead of §"(DUY) in the element residual (4.4a).

This is compensated by the term |S"(DUg) — HgS”(DUg)Hz~ in the a posteriori bounds (4.5a) and (4.6);
¢f. the Appendix in [30] for further details.

5. CONVERGENT ADAPTIVE FINITE ELEMENTS

This section is concerned with the proof of convergence of an adaptive finite element algorithm for the implicit
constitutive model under consideration.

5.1. The adaptive finite element method (AFEM)

In this section, we shall introduce an adaptive finite element method for (2.2).
Algorithm 5.1 (AFEM).

Let £ =0, ngp = 1, and let Gy be a given partition of (2.

1: loop

2:  let S = 8",

3: (U, Py, Sk(-,DUY})) = SOLVE(ng, Gk)

4: compute {Sgk (Uk, Py, Sk(‘, DUk); E)}Eegk’ and SA(DUk, Sk(-, DUk))

5. if &g, (U, Py, Sk(-.DU%)) = EA(DUy, Si(-,DU)) then

6: M, = MARK ({&g, (Uk,Pk,Sk(~,DUk);E)}Eegk,gk)

7: Gry1 = REFINE(Qk, ./\/lk) % mesh-refinement
8: Nkg+1 = N

9: else

10: Nk+1 =Nk + 1 % graph-refinement
11:  end if

122 k=k+1

13: end loop
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The details of the subroutines used in the process are listed below:

The routine SOLVE. We assume that for arbitrary n € N, G € G, the routine SOLVE(n,G) =
(Ug, P, 8"(-,DUg)) computes an exact solution (Ug, P,) € V(G) x Q(G) of (3.20).

The routine MARK. For a fixed function g : R — R{, which is continuous at 0 with g(0) = 0, we assume that
the set M = MARK({&g(Ug, Pg,S"(DUg); E)}Eeg’ G) satisfies

max {€g(UE, P§,S"(-,DUG); E) : E € G\M} < g(max{&(U§, P§,S"(-,DUG);E) : Ee M}).  (5.1)

Hence the marking criterion guarantees that all indicators in G are controlled by the maximal indicator in M.
Note that this criterion covers most commonly used marking strategies with g(s) = s; cf. [34,38].

For the definition of the routine REFINE see Section 3.2.

For the sake of simplicity of the presentation, in the following, we will suppress the dependence on z in our
notation and write S, (DU}) = S (-, DU}) if there is no risk of confusion.

5.2. Convergence of the AFEM
Let {Gk}reny © G be the sequence of meshes produced by AFEM. For s € (1, 0], we define
— ————Il.
Ve o= VG T ewpt(@)? and Q%= QG < Li(). (5.2)

k=0 k=0

(R

Lemma 5.2. Let {(Uk,Pk,Sk(DUk))}keN c WE(2)4 x L5(2) x LT'(Q;Rf;n‘f) be the sequence produced by
AFEM; then, at least for a not relabelled subsequence, we have

Ui — up weakly in W' (£2)%,
P — pyo weakly in Lj(£2),
Sk(DUL) — Soe  weakly in L™ (2;RE:D),
for some (oo, po, Sop) € V7, x QT x L (£2). Moreover, we have that
R(Us, Py, S(DU)) —* R(uop, po, o) weakly™ in W17 (£2)*

and

(R(Uooy Poos Seo)s (0,9)) =0 for allqe(@;;,veV;.
Proof. The proof is postponed to Section 6.1. O

Corollary 5.3. Let {(Uy, Py, Si(DU})) }keN c W) x L(2)x L™ (£2; Rfyﬁg) be a not relabelled subsequence

with weak limit (Wo, Do, Sop) € Vo x Q7 x LT/(Q;Rg;n‘f) as i Lemma 5.2. Then,
&6, Uk, Py, Sp(DUL)) — 0, ask — oo
implies that
R(Uep, P, Sop) = 0€ WL (2)2,
Proof. The upper bound, Theorem 4.3, together with &g, (U, Pi, Skx(DU})) — 0 as k — oo, implies that
R(Up, P, Se(DU})) — 0 strongly in W~ 1E(2).

Thus the assertion follows from Lemma 5.2 and the uniqueness of the limit. O
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Lemma 5.4. Let {(Uy, Py, Sk(DUk))}keN c WE(2)? x Li(2) x L™ (2;R%*%) be a not relabelled subsequence

sym

with weak limit (Uo, P, Sw) € Vi, x QI x L7 (2, REx) as in Lemma 5.2. Assume that
EA(DU, Sk(DUE)) -0 as k — wo;
then,
(Dus(x),Sxw(x)) € Al(x)  for almost every x € (2.
Proof. The proof of this lemma is postponed to Section 6.2 below. O
Lemma 5.5. Assume that the sequence {nj}ren satisfies n, — N < o0 as k — o0. We then have that
g, (U, Py, S (DUy)) — 0 as k — o0.
Proof. The proof of this lemma is postponed to Section 6.3 below. O

We further assume that the graph approximation is uniform with respect to the graph approximation indi-
cator.

Assumption 5.6. For every € > 0, there exists an N = N(¢) € N, such that
Ea(Dv,S"(-,Dv)) <e  forallve Wy (2)% and n > N.

We note that this and Assumption 3.2 are the only strong assumptions among the ones we have made; Assump-
tion 5.6 is, however, only used in the proof of the next theorem, and is not required for any of the preceding
results.

Theorem 5.7. Suppose that Assumption 5.6 holds and let {(Uy, Py, Sp(DU}L))} be the sequence of function
triples produced by the AFEM. We then have that

SA(DUk,Sk(DUk)) — 0 as k — o
and, for a not relabelled subsequence, we have that

&, Uk, Py, Si(DU)) — 0 as k — o0.

Proof. We argue by contradiction. First assume that there exists an € > 0 such that, for some subsequence, we
have that

EA(DUy,, Sy, (DUL,)) >€¢  forall (€N,

Consequently, by Assumption 5.6, we have that n;, = N, for some ¢y, N € N, and all £ > ;. Moreover, thanks
to Lemma 5.2, there exists a not relabelled subsequence {(U;w,P;w, Sk, (D ka))}eeN that converges weakly in

WE(2)% x Li(02) x L™ (£2; ngxn‘f). Combining these facts, we deduce with Lemma 5.5 that

ggk,g (Ukes Pry, Sk, (DU, )) — 0.

In particular, there exists an £ > £y, such that Sg,% (Uy,, Py,,Sk,(DUL,)) < e. Therefore, by line 10 of AFEM
we have that ng,+1 = N + 1, a contradiction. Consequently, we have (for the full sequence) that

SA(DUk,Sk(DUk))ﬁO as k — oo.

This proves the first claim.
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Assume now that there exists an € > 0 such that we have that
&, Uy, Py, Sp(DUY)) > € for all ke N. (5.3)

By the above considerations, there exists a ko € N such that E4(DUy, Sk (DUY})) < € for all k > kg. Therefore,
according to line 5 of AFEM, we have that n, = ng, for all k > ko. Consequently, Lemma 5.5 contradicts (5.3).
Combining the two cases proves the assertion. O

Corollary 5.8. Let {(Uy, Py, Sp(DUYy))} be the sequence of function triples produced by the AFEM. Then,
there exists a not relabelled subsequence with weak limit (We, poo, Soo) € Wy (2)% x Li(2) x L™ (£2; RIX4) such
that

Ea(DU, Sk(DUk)) >0 and &g, (Ui, P, Sx(DUL)) — 0,
as k — o0 and (We, P, Soo) solves (2.2).
Proof. The claim follows from Theorem 5.7, Lemma 5.4, Corollary 5.3, and Lemma 4.2. O

Remark 5.9. We emphasize that even in the case when the exact solution of (2.2) is unique, we do not have
that the statement of Corollary 5.8 is true for the full sequence. This is due to the fact that the finite element
error estimator is not necessarily decreasing with respect to the refinement of the graph approximation. However,
when the exact solution is unique, it is easy to select a converging subsequence with the help of the estimators;
one can choose, for example, a subsequence, such that &g, (Uy,, Pr,, Sk, (DU},)) is monotonic decreasing in /.

6. THE PROOFS OF THE AUXILIARY RESULTS

6.1. Proof of Lemma 5.2
We recall (3.23) and observe that the spaces Wy (£2)¢ and L"' (£2; R%*4), 7 € (1,0), are reflexive. Therefore,

sym
there exist uq € VI, and So, € LT/(Q; RZxd) guch that for a not relabelled subsequence we have

Sym
Ur — uep weakly in W, (£2)? (6.1)
and
Sr(DU) — S weakly in LTI(Q;ngXH‘f), (6.2)

as k — o0. The function uy, is discretely divergence-free with respect to &;, i.e.,

J qdivug dz = lim J (J%’“q) divUpdx =0 for all g € Qg.
0 k—o0 0
This follows from (3.11) as in the proof of ([22], Lem. 19), replacing ([22], (3.5)) with the density of the union
of the discrete pressure spaces in Q.

Moreover, using compact embeddings of Sobolev spaces, we have that

se(l,dr_dr), if r <d,

(6.3)
s € (1,00), otherwise.

Ui > uyp strongly in  L*(2)¢  for all {

This implies, for arbitrary v € Wol’oo(ﬁ)d, that

B[Uk7 Uk7 'U] - B[u007 U, 'U]v
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or equivalently,
B[U},Ui] — Bltto, ups]  weakly in W—11(2)4

as k — oo0; compare also with ([22], Lem. 19).
We now prove convergence of the pressure. Thanks to (3.18), we have

JPkdidex—J S,(DU}L) : DV + B[U, U] -V — f-Vda
(] (]

2
< [Sk@UR)|,. DV, + e UL, VI z + £y IV

for all V' e V(Gi). By (3.23) and the discrete inf-sup condition stated in Proposition 3.7, it follows that the
sequence { Py }ren is bounded in the reflexive Banach space Lj(£2). Hence, there exists a po, € Q7 = Li(§2) such
that, for a (not relabelled) subsequence,

Py — po weakly in L{(§2).

On the other hand we deduce for an arbitrary v € V2 ¢ W, *(22)4 that
f Deo div o dz « f Py divedr = j Py div 3% vdax
2 2 Q

- | 5D DI v - 795, 0+ BIUL UL 9 v
2
—»J Sw : Dvde + Bluw, ug] - v — f-vdz
2

as k — oo, where we have used (6.2), the properties of jgd’;v together with the density of the union of the discrete
velocity spaces in V% and the boundedness of the sequence { Py }ren in Li(£2). The assertion for all v € V. then
follows from the density of V2 in V7 . ]

6.2. Proof of Lemma 5.4

According to Proposition 4.1, for k € N there exist Dy, € LT(Q;RS;IS) and S, ¢ LTI(Q;ngXH‘f), such that
(D(z), Si(z)) € A(z) for a.e. z € 2 and

HDUk _ D, = E4(DU, Sp(DUL)) =0 as k — oo, (6.4)

: + HSk(DUk) — Sy,

Thanks to (3.23), the sequences {Dy}ren and {Sy}ren are bounded in L7 (£;REx) and LT'(Q;Rg;rg) respec-
tively. Since both spaces are reflexive, together with the uniqueness of the limit, we obtain that

D, — Du., weakly in L"(§2; R;iyxn‘f), (6.5a)
S, — S, weakly in L (2; R4S (6.5b)

as k — o0.
Let S* : 2 x Rg;lg — Rg;lg be a measurable selection with (8, 5"(z,d)) € A(z) for a.e. x € 2 and thus
(Duw (), S*(z, Duy(x))) € A(x) for a.e. x € £2; compare with Remark 2.2. Consequently, for every bounded
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sequence {¢ytren € L*(£2) of nonnegative functions, we have (recall (A3)) that

r

0 <limsup | [S,— S*(Duoo)) : (Dk — Duy)| ¢y dz
k—0o0 o)

r

= lim sup (S’k — S*(Dum)) : (Dk — Duy,) ¢ da

k—o0 (9]
=limsup | (Sp(DUg)— S*(Duy)) : (DU — Duy) ¢, dz, (6.6)
k—owo Jo

=:ay(z)
where we have used (6.4) in the last step. We assume for the moment that a; — 0 in measure and therefore
ap — 0 a.e. in 2 (6.7)

for at least a subsequence of ay. Since ay is bounded in L!({2), we obtain with the biting lemma (Lem. 2.3)
and Vitali’s theorem, that there exists a nonincreasing sequence of measurable subsets E; < 2 with |E;| — 0
as j — oo, such that for all j € N, we have

ap — 0 strongly in L'({\E;) as k — oo.
This, together with (6.6) and (6.5), implies for all nonnegative ¢ € LP(f2\E;) < L*(2) (extend ¢ by zero
on E;) and each fixed j € N, that

lim J Si. : Dpodx —J S : Duy¢du.
k=% Jo\E, N\E;

Consequently, since the graph is monotone and (Dy (), Si(z)) € A(z) for a.e. z € £2, we observe for arbitrary
§ € R4 and all nonnegative ¢ € L (2\E;), that

sym
0 < lim J (S, — 8*(,8)) : (D), — 8)¢pdx = J (Soo — 8*(+,8)) : (Duey — 8)¢ da.
k=% Jo\E; O\E;

Since ¢ was arbitrary, we have that

(S — 8(-,8)) : (Dus, — 6) =0 for all § € R%%% and a.e. v € Q\E;.

Sym

According to Lemma 3.1, this implies that
(Dug(x), Sw(x)) € A(x) for almost every x € 2\E;.

The assertion then follows from |E;| — 0 as j — c0.
It remains to verify that ay — 0 in measure as k — 00. We divide the proof into four steps.

Step 1: First, we introduce some preliminary facts concerning discrete Lipschitz truncations. For convenience
we use the notation

By := 3%, Uk —ux) = U — 3%, uw € V(Gr)

and let {E} j}x, jen be the sequence of Lipschitz-truncated finite element functions according to Proposition 3.12.
Recall from Lemma 5.2 that Ej, — 0 weakly in W()l’r(())d, i.e., we are exactly in the situation of Proposition 3.12.
Although Ey, € Vo(Gy), i.e., Ey, is discretely divergence-free, this does not necessarily imply that Ey, ; € Vo(Gy)
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and thus we need to modify Ej ; in order to be able to use it as a test function in (3.21). With the discrete
Bogovskii operator B := B9 from Corollary 3.8, we define

Wkﬂ‘ = %k(diVEkJ) € V(gk) (68&)
The ‘corrected’ function
PDyj = Eyj — Wr,; € Vo(Gk) (6.8b)

is then discretely divergence-free. We need to control the correction in a norm. To this end we recall from
Section 3.3 that Q(G) = span{Q¥, ..., Q’ka} for a certain locally supported basis. Then, thanks to properties
of the discrete Bogovskii operator and Corollary 3.8, we have that

div Ey ; dx div By ; — div E} dx

/67" Hwk7]| 1r < sup fQQ—k’J — sup fQ Q k,j k

QGQ(gk) ”QHT" QEQ(gk) HQHT‘/
QF div (EM — Ey) dx

Q= Zl 1 piQ suppQFc{Ey, ;=E} HQHW
n 2 [ piQF div (Ey j — Ey) da:)
suppQF {Ey ;#E}#J HQHT(
QY div (B ; — Ex)dz

= sup ( Z Jo PiQ (Q|1w k)

Q:Zf’:’a piQ7 \suppQlF n{Ey ;#E,}#J ‘ v/

QY div By, ; dx
= sup ( 2 fQ pZQz k,j
Q= Z % piQ suppQF n{Ey, j#E,}#J HQHT/
stuprf’m{Ekd;&Ek};&@ szf ,
le Ek JXQk 5up r
(Ep, j#Eg} r Q= Z ik HQHW
E < E
div Ey, ; X_Q{Ek Ly ¢ |VEy,; XQ{Ek .
where Xy p is the characteristic function of the set
k k

(ZfEk,ﬂ&Ek} 1= U {(Zg | E € Gy such that E < m} ,

Note that in the penultimate step of the above estimate we have used norm equivalence on the reference space
]P’Q from (3.2b). In particular, we see by means of standard scaling arguments that for Q = ZZ | piQF the norms

N , -
= (L loil” [QE;
=1

are equivalent with constants depending on the shape-regularity of G, and I@’Q only. This directly implies the
desired estimate.
Observe that |() ‘ c|E| for all E € Gy, k € N, with a shape-dependent constant ¢ > 0; hence, ‘(Zk

{Er,j#Ek} S
c|{Ex,; # Ey}|, and it follows from Proposition 3.12f that

rN\ 17
)7 ad -l

Bl < < c27 I |VE, . (6.9)

c Ak,jXQf

Erj7Bil| .
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Moreover, we have from Proposition 3.12 and the continuity properties of B" (see Cor. 3.8) that
b, Wr; —0 weakly in W, *(2)?  for all s € [1,0), (6.10a)
b, Wr; —0 strongly in L*(2)¢  for all s € [1,00), (6.10b)

as k — 0.

Step 2: We shall prove (recall the last line of (6.6) for the definition of ay) that

lim supf lax| dz < 279/,
no% HEw=Ey ;}

with a constant ¢ > 0 independent of j. To see this we first observe that |ay| = ar + 2a, with the usual notation
a, (r) = max{—a(x),0}, x € £2. Therefore, we have that

k—o0 k—o0 k—00

limsupJ lak| doz < limsupj apdz + QIimsupj a, dz. (6.11)
(En—En3} (En—Enj} (En—Eni}

By choosing ¢y, := Xoupp(a?) € L*(£2) in (6.6), we observe that the latter term is zero. In order to bound the

first term, we recall (6.8) and observe that

j ar dz = J (S), — 8*(-,Duy)) : (DI, up — Duy,) dz
{Er,=E},;} {E,=E} ;}

+J Sy : Dék,j dz +j S : DlI/kJ dx —J S*(~,Duoo) : DEk,j dz
2 2 2

+J (S*(~,Dum)—Sk) :DEk,j dz
{EL#E} ;}
= Ik,j + Hk’j + HIk,j + IVk,j + Vk,j.

Thanks to (5.2) and (3.23) we have that
L] < j [Sk(-,DU) — 8" (-, Dusy)| DI, wse — Do da
{Er=Ek;}

<||Sk(-,DU}) — 8*(-,Duc)|,, [DI%, ey — Dus| — 0

r

as k — o. In order to estimate II; ; we recall that @y ; € Vo(Gy) is discretely divergence-free, and we can
therefore use it as a test function in (3.21) to deduce that

I = =B[Uy, Uk,¢k,j]+J f P dr—0 as k — 0.
0

Indeed, the second term vanishes thanks to (6.10a). The first term vanishes thanks to (6.3) and the weak
convergence (6.10a) of @, ;. The term III; ; can be bounded by means of (6.9); in particular,

lim sup. 15| < lim sup | S, DU, [D 51, < 279",
k—o0

k—o0

where we have used (3.23). Proposition 3.12 implies that

khi& IV ; = 0.
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Finally, by (3.23) and Proposition 3.12, we have that
lirgljolp Vil < lirgljolp (8™, Dux)|,, + 1Sk, DU, ) |DEr jx (B 2B} ],
<c279m,
In view of (6.11), this completes Step 2.
Step 3: We prove, for any 9 € (0, 1), that

lim J lax|” dz =0, (6.12)
k—o0 1)

which then implies the assertion a; — 0 in measure as k — 0.
Using Holder’s inequality, we easily obtain that

[ loul? as = | nl” o+ | arl? da
n {Er=Ey ;} {Ex#Ey,;}

9 9
< |0 (J |ak|dx> +(j akdx) (B = B}
{Ex=Ey ;} ?

Thanks to (3.23), we have that ([, |ax| dz)” is bounded uniformly in k and by Proposition 3.12 we have that

1Bk _.c

E). + Ey ;)| < <<
H k7'é k,J}‘ c )\z,j 22.77«

where we have used that { Ej} ren is bounded in W, " (£2)¢ according to (3.23) and Assumption 3.3. Consequently,
from Step 2 we deduce that

. 9 1-9 5—j0 ¢
lim SUPJQ ja|” dz < e |77 279 ¢ 92ir(1—v)

k—o0

The left-hand side is independent of j and we can thus pass to the limit j — co. This proves (6.12). ]
6.3. Proof of Lemma 5.5

Since ny — N as k — o0, we may, w.l.o.g., assume that ny = N for all k € N.

Step 1: We shall first prove that, in this case, we have that the (sub)sequences in Lemma 5.2 do actually
converge strongly, i.e.,

Up - up in W()l’t(g)dﬂ
Py = poy in L (1), (6.13)
Si(DU) = S¥(DU) — 8o = S¥(Dus)  in L2 RELY).

To this end, we investigate
ap := (SY(DUL) — S¥(Duw)) : DUy — ux) =0

(compare with Assump. 3.2) distinguishing two cases: r < d3_+d2 and r > d3—+‘12.

Ifr< d3—f2, then we can deduce, as in the proof of Lemma 5.4 in Section 6.2, that

0< L lag|? da: = L ((SN(DUk) — S¥(Dus)) : DU — uoo))ﬂdas 0, (6.14)
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where we have used that a,, = 0 almost everywhere in (2. Thus, recalling that SN is strictly monotone, we
obtain that

DU, —»Du, and SY(DU;) — SV (Duy)  ae in 2, (6.15)

at least for a subsequence of k — o0. Since 1 <t < r and 1 < < ' (compare with (4.3a)), we obtain with
Lemma 5.2 and Vitali’s theorem that
Up - up in WEH(2), and SNDU,) — S¥(Duy) = S in LI(2;RED).

Sym

Indeed, using Hoélder’s inequality, we obtain with (3.23) that
DU — Duce,, < |w| 7 [DU% — Duce,,

for all measurable w < §2; i.e., {| DUy — Doy |' }ren is uniformly integrable and the claim follows from Vitali’s
theorem and (6.15). The convergence of the stress sequence follows analogously and the claim S N (Duy) = Sy
is a consequence of the uniqueness of the limit.

If r > d3—+d2, then t = r and £ = 7 = r’; compare with (4.3b). We deduce from Lemma 5.2 and (3.20) that

0 < limsup (S’N(DUk)—SN(DuOO)) DUk — uw) dx
k=0 Jo
=limsup | SY(DUy) : DU, — Sy : Duy dz
k—o J0

n

= lim sup f-Uk—Soc:Duocdw—J f up — Sy :Duydx =0.
k—o0 J0 o

As before, thanks to the strict monotonicity of S, we have that
Up—>u, and SYDU) - SYDuy) ae in (6.16)

at least for a subsequence of k — co. Moreover,

limj SN(DUk):Ddeas—j SN (Duy) : Duy, dz,
k—o0 0 0

and thanks to (3.23), we have that S"(DU}) : DU}, is bounded in L'(£2), hence SY(DU}) : DU, LN
SN(DuOO) : Duyy; compare with Lemma 2.3. Recalling Assumption 3.2 we have 0 < m + SN(DUk) : DUy,
almost everywhere in 2. Combining these properties, it follows from Lemma 2.4 that m + SN(D Uy) : DUy —
m + SN (Duy) : Duy in L'(2) and thus S (DU}) : DU, — SV (Duy) : Duy in L1(£2). Consequently, by
the DunfordPettis theorem, {S™ (DU}) : DU} }gex is uniformly integrable. Thanks to the coercivity of %,
we have that {| DU|" }xen and {|SY (DUL)|™ }ren are uniformly integrable and hence we deduce from (6.16),
with Vitali’s theorem, that
Up - uy, i We'(2)4 and SNDUL) — S, in L7 (2; R,

sym

It remains to prove the strong convergence of the pressure (sub)sequence { Py }gen in L§(£2). Thanks to (2.3),
for k € N there exists a vj, € Wy'' (£2)¢ with |vk|; = 1, such that

o [P — Pz < J (poo — Pr) div oy, da.
o
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Since {vg}ren is bounded in WO1 ’EI(())d, there exists a not relabelled weakly converging subsequence with weak

limit v € WO1 ’t/(Q)d. Therefore, we deduce using the properties of 3%’;V (see Assump. 3.3) that

Qar |poo_Pk£<J (Poo—Pk)diV’dex—j
(]

(oo — Py) div 39 vy da + j Peo div (vg, — 3% vy) da.
2

9}

The second term vanishes thanks to Proposition 3.4. For the first term, we have, thanks to Lemma 5.2 and (3.20),
that

j (poo — Py) div 39 vy da = J (S — SN (DUY)) : 3%, vi, + (B[, us] — B[U, Uy]) - 3%, v dz — 0,
2 9]

as k — o0. Here we have used in the last step the strong convergence of {SN(DUk)}kGN and {Ug}ren in
LH(62; RE%) respectively W' (2)4, as well as that the latter result implies that B[Uy, Ux] — Bltes, te]

sym

strongly in L¥ (£2)?. This completes the proof of (6.13).
Step 2: As a consequence of (6.13) we shall prove that

R(Uy, P, SN(DUk)) — R (U, Pos, SN(DuOO)) strongly in Wﬁl’f(ﬁ)d. (6.17)

To this end we observe, for v € W&’F(Q)d, that
(R (U, Py, SV (DUL)) = R (us,pis, ), v )

_J (SY(DUk) — S) : Dv + (B[Uy, U] — Bltw, ue]) - vda
2

+ J (Py — po) divo dx
7
<{|$¥OUL) - S|, + IBUL ULl = Bluo, uclly + |1 = pcly | 0],
Hence, thanks to (2.1), (6.13), and the fact, that B[U}, U] — B[y, ue] strongly in L (£2) (see Step 1), this

proves the assertion for RPY. The assertion for R is an immediate consequence of (6.13).

Step 3: We use the techniques of [38] to prove that

To this end, we first need to recall some results from [38].
For each x € {2, the mesh-size hg, () is monotonically decreasing and bounded from below by zero; hence,
there exists an ho, € L (£2), such that

lim hg, = hy in LP(02); (6.19)

k—o0

compare e.g. with ([38], Lem. 3.2). We next split the domain {2 according to

Gi=()Gi={EeG:EeG foralli>k} and G :=Gi\Gy,

i=k

i.e., setting 2,7 := 2(G;}) and 2 := 2(G))), we have 2 = F U 2. 1t is proved in ([38], Cor. 3.3) (compare
also (3.8)) that, in the limit, the mesh-size function hg vanishes on (27, i.e.,

(6.20)

lim |hg,xog| = 0= lim [hg,xa], -
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Here 27 := U9(£29) and we have used the local quasi-uniformity of meshes for the latter limit. Since G;' <
G < Gy for any k > i, we have

= Q(G7) = 2(Gx\GT).
Now, fix v € W2 (2)4 n W&’F((Z)d and ¢ € W' (02), with |[vlly 7 =1 =lgll; ;- We shall prove that
<R(Uk, P, SY(DUL)), (v, q)> - <dee(Uk, P, SN(DUY)), v — 3, v > +(RE(U), q — g

vanishes as k — o0. Here we use the abbreviations %, := 3%’;’\, and 3@ = 3%’“. Then, (6.18) follows from (6.17)

and the density of W2(2) A Wol’f(ﬁ)d in W()l’g(())d and of W' (£2) in L' (£2). We shall estimate the two
terms on the right-hand side separately. For the first one, we have with Corollary 4.4 that

<R"de(Uk,Pk,SN(DUk)),v—J’givv>§ Y €8 (Uy, P, SN (DU B) Y |[Vo — Vb, v

U9k (E)
Eegy,
< Z 5gpie(Uk,Pk,S (DU); E )Ut [Vo - Vv 7 U9 (E)
Eegk\g,?
+ Y (UL, P, 8Y (DU E) Vo - 35, 0] e )
Eeg}f
< Spde(Uk,Pk, SN(DUk),gk\g:_)l/t HV - vjdw t,0F
+ & (U, P, Y (DU 65) [ Vo = V34, 0] oo

where we have used Holder’s inequality and the finite overlapping of the U9 (E), E € G,. In view of Lemma 5.2
and Corollary 4.6 we obtain that

EE (U, Pe, SN (DUL); Gi\G) < E5%°(Uy,, P, SN (DUY)) <1
Recalling (3.7), we thus obtain from the monotonicity of the mesh-size function that

<dee(Uk,Pk, SY(DUy)), v — 3%, v> < |hg.xa: |, + EgiE(Uk,Pk,SN(DUk); gi+)1/£.

A similar argument shows that

(R(Uk), ¢—38a) < |he,

AT
Thanks to (6.20), for € > 0 there exists an ¢ € N such that
(R(U, P, S (DUL)), (v,0) ) S € + £, (Un, Pr, S¥(DUL); 67 ),
and it therefore remains to prove that
6, (Uk, Pe, S¥(DUR);:G) -0 ask — o (6.21)

in order to deduce (6.18). To this end, let

E 1= €, (Uk, Py, SV (DUL); By) i= max { &g, (Ux, Py, S (DUL) E): E € My},
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Then, by the stability estimate, Corollary 4.6, and (4.4b) we have that

2t
1

~ - it
< UK s + 1 PelEs ) + 1oy + B,

t
Ltus(Ey) T U]

. t
uBy 145 Uslezio s,

t 2t t . t
S Uk — vl o (my) + 10Uk — voolly o,y + 1P = Pollzye gy + 14V Uklligie (g,
t

i of i i -
Fluoli vy s + 18oli vy sy + 1Polius g + 1F 17 s + HkH

tUS (Ey)

The first line of this bound vanishes thanks to (6.13). Since Ej € 29, we have that |E|Y? < |hg, Hoo;(zg and

the remaining terms therefore vanish thanks to (6.20) and the observation that Ej € £29. Therefore, we deduce
with (5.1) that

€6, (U, Pr, S (DUL); GF) < #G; max {ggk (Ui, Py, SN (DU E): E e gj} < #Gg(Er) — 0

as k — o0, where we have used the continuity of g at zero and that G;" < Q,j c Gr\Mj. Combining these
observations proves (6.18).

Step 4: In this step, we shall prove that
&g, (Up, Py, SY(DUR)) -0 ask — .
To this end, we observe from (6.21) that it suffices to prove that
&g, (UkakasN(DUk)ng\g;_) — 0 as k — o0
for some fixed ¢ > 0. In view of Corollary 4.6, (6.17) and (6.18), it thus suffices to show that
osc(Uy, SN (DUY); Gr\G;T) — 0 as k — o0.

This is a consequence of the properties of the oscillation, (6.20), (6.13), and Assumption 3.5, noting that

HSN(DU;C) 115, SV (DUY)

N
‘f;ng < Hﬂngo@ — 115,57 (DUy) ‘5;95’

‘f;f)? '

Observing that this readily implies that the estimator vanishes on the whole sequence completes the proof. o

7. GRAPH APPROXIMATION

In this section we shall discuss the approximation of certain typical maximal monotone graphs satisfying
Assumption 5.6. Admittedly, for particular problems the approximations suggested here might not always rep-
resent the best possible choices, and in the context of discrete nonlinear solvers, such as Newton’s method,
properties of the smoothness of the approximation may become important as well. We believe however that the
following examples provide a reasonable guideline for constructing graph approximations with properties that
are required in applications.

7.1. Discontinuous stresses

Typical examples of discontinuous dependence of the stress on the shear rate are Bingham or Herschel—-
Bulkley fluids. In this case, the fluid behaves like a rigid body when the shear stress is below a certain critical
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FIGURE 1. Bingham fluid (left) and schematic approximation of a more complex law (right).

value and like a Navier—Stokes fluid, respectively power-law fluid, otherwise; compare with Figure 1. To be more
precise, for some yield stress o > 0, we have

IS|<o < D=0,

D
S>>0 = 8= D] +2v(|D|*)D, (7.1)

where v > 0 denotes the viscosity v > 0; see [23]. A selection of the corresponding maximal monotone graph is
given, for example, by

D
|D|’

0, if D=0

*(D) := S*(|D
S§*(D) := S5*(|D]) o+ 2v(D)D, otherwise.

with S*(D) := { (7.2a)

For the sake of simplicity of presentation, we restrict ourselves in the following to v > 0 being a constant.

However, we emphasize, that the approximation techniques presented below can be generalized to more complex
relations such as, for example,

S3(D) ifD<3§
* D _ 1 ’
S7(D) {SQ*(D), otherwise,

q;—2

S*(D) = ¢;(k? + D*)" 7T D, (7.2b)

for D > 0. Here 6 = 0 and ¢1,c2, k1, k2 = 0, g1 > 1, g2 = r, such that S1(5) < S2(9).

We denote the maximal monotone graph containing {(D,S*(D)): t = 0} by a and observe that (§,0) € A
if and only if (||, |o|) € a. Therefore, the approximation of the monotone graph reduces to approximating
the univariate function S* by some smooth S™ : Rj — R{. The explicit smooth approximation of S* is then
obtained by setting

D
—  for all D e R4 (7.3)

5§"(D) := S"(IDI)‘D‘ sym-

A simple approximation. A simple approach to approximating S* in (7.2a) is to use the following smooth
explicit law (cf. [28]):

ST(D) := (21/ + DL>D, where D, :=+/D? + 72.

T
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First assume that o > S7(D); then, (0,57(D)) € a according to (7.1). If D < 7, then
|ST(D) = ST(D)|* + |D = 0]* = [D] < 7%

Otherwise, we have

o> (21/ v Di)D < or2>2DD,(D+ D,) > 4vD?,

and hence

™ _ar 2 02 2 11/3 2/3
ST(D) — STD) + D=0 = |DI* < (L) 7.

Assume now that 0 < o < S7(D); then, D < 7 implies
2

D
2wD + o— = S™(D D> >
v +O’DT ST(D)>o0 < > >DT(D+DT) 1

[\~
A
2
—

In other words this case can occur only for ‘large’ 7 > ¢-. If D > 7 then we have similarly
1/3
o2 <20DD.(D + D,) <8vD? < D> 72/3(81) ,
v

Therefore, we obtain

D,—D or? or? 3 1/3_9/:
*(D) — ST(D)| = T _ < 4 2/3 1/3 2/3.
|S*(D) - ST(D)| = o D b.DiD) S DF < 4B q 3

Combining the above cases shows the validity of Assumption 5.6 with 7 = %, for example. The verification of
Assumption 3.2 is left to the reader.

Approximation by mollification. We can extend S* to an odd function on the whole real axis by setting
S*(D) :=-S*(—D) for D <O0.
Then, for n € N, we define an approximation of S* by
0
S"(t) = j S*(s)n" (s —t)ds,
—00

with 7™ (¢) = nn(nt); here n € C°(R) is a nonnegative even function with support (—1, 1) such that [, n(s) ds = 1.
Consequently, the function S™ € C(R) is odd and thus S™(0) = 0.

For D € R} we have, by the monotonicity of S* and the definition of the function S™, that there exists a D*
with 0 < D* e (D — 1, D + 1), such that (D*, S"(D)) € a. Therefore, we have

’ 1
[S™(D) = S*(D)]" +|D = D" <0+ —,
and consequently
1
Ea(d,8"(0)) < i 0 asn— o

for all § € R%X4. This shows that Assumption 5.6 holds. Moreover, ¢,, satisfies Assumption 3.2; compare e.g.

sym *

with [14,26,27].
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FIGURE 2. Graph with plateau (left) and plateau and jump (right).

7.2. Monotone graph with plateaus

Similarly to (7.2), we consider a maximal monotone graph with selection S*(D) = S*(|D\)%, but now

assume that S* : Rf — Ry is continuous with

S:(D), if D < 6,
S*(D) = { o = const., if 61 < D < 9
S3(D), else,
with
q;—2
SH(D) = ¢;(k? + D*) "7 D, i=1,2.

Here ¢1,c2, k1, k2 = 0, ¢1 > 1, g2 = r, such that S7(67) = S5 = S3(63); compare with Figure 2(left). In this case,
we are basically in the same situation as in Section 7.1 with interchanged roles of S and D. Therefore, using
the approximation techniques of Section 7.1, we can construct an approximation of the monotone graph where
the shear rate depends explicitly on the shear stress. However, in a practical numerical method this relation
typically has to be inverted, which may cause additional computational difficulties.

Another approach is to use an approximation of the form

S1(D) if S1(D)<o—1
S"(D) := { Sy(D) if $1(D) >0+ %
S™(D) otherwise,

where S7 is the linear interpolant between o — % and o + % with corresponding values for D.
Combined with an approximation strategy as in Section 7.1, this procedure can also be applied to cases where
jumps and plateaus are both present; compare with Figure 2(right).

Remark 7.1. The arguments of Sections 7.1 and 7.2 can be obviously extended to finitely many jumps/plateaus
and even to cases with countably many jumps/plateaus.
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