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Abstract. The method of two scale convergence is implemented to study the homogenization of
time-dependent nonlocal continuum models of heterogeneous media. Two integro-differential models
are considered: the nonlocal convection-diffusion equation and the state-based peridynamic model in
nonlocal continuum mechanics. The asymptotic analysis delivers both homogenized dynamics as well
as strong approximations expressed in terms of a suitable corrector theory. The method provides a
natural analog to that for the time-dependent local PDE models with highly oscillatory coefficients
with the distinction that the driving operators considered in this work are bounded.
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1. Introduction

A popular approach to model and analyze the effect of heterogeneities across macroscopic length scales is given
by the theory of homogenization. This approach is now highly developed for continuum models described by
partial differential equations. Recently, studies of nonlocal models have attracted much attention. For example,
for the mechanics of materials deformation and failure, a nonlocal peridynamic (PD) continuum theory has
been introduced by Silling in [31] and subsequently extended in [32, 33].

The PD formulation is distinguished in its ability to seamlessly evolve both smooth and discontinuous de-
formation in a way useful for describing propagation of singularities. Peridynamic modeling in the presence of
heterogeneities is challenging; however recent work offers proposals for the modeling and simulation of composite

Keywords and phrases. Multiscale analysis, peridynamics, nonlocal equations, Navier equation, homogenization, heterogeneous
materials, two-scale convergence.

∗ Qiang Du’s research is supported in part by NSF grant DMS-1318586, DMS-1312809 and AFOSR MURI center for Material
Failure Prediction through peridynamics.
∗∗ Robert Lipton’s research is supported in part by NSF grant DMS-1211066 and NSF EPSCOR Cooperative Agreement
No. EPS-1003897 with additional support from the Louisiana Board of Regents.
∗∗∗ Tadele Mengesha’s research is supported by NSF grant DMS-1506512.

1 Department of Applied Physics and Applied Mathematics, Columbia University, New York, 10027, USA. qd2125@columbia.edu
2 Department of Mathematics, Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, 70803,
USA. lipton@math.lsu.edu
3 Department of Mathematics, The University of Tennessee, Knoxville, TN 37996, USA. mengesha@utk.edu

Article published by EDP Sciences c© EDP Sciences, SMAI 2016

http://dx.doi.org/10.1051/m2an/2015080
http://www.esaim-m2an.org
http://www.edpsciences.org


1426 Q. DU ET AL.

material systems using peridynamics [6,7,18,19,21]. These approaches are of the top down type and are based
on a volume averaged approach so that forces acting across macroscopic length scales are spatial averages of
forces acting across smaller length scales. A more explicit account of heterogeneities has also been considered
within the peridynamic model at the computational meshing level, see for example [21]. On the other hand,
in the peridynamics framework, bottom up multiscale approaches are given in [2, 25]. Here local field interac-
tion between heterogeneities are modeled directly. The work in [2] provides a systematic and rigorous method
for developing multiscale approximations to solutions of bond based peridynamic problems in fiber reinforced
media. The approach delivers homogenized dynamics and strong approximation using correctors. A similar but
mathematically distinct analysis for the stationary case is provided in [25] for the more general time-independent
state-based model. In contrast to the latter, the present work is focused on time-dependent model problems.

Besides the nonlocal peridynamic theory, there are also other nonlocal evolution equations of practical in-
terests. The so called nonlocal convection-diffusion equations [13] provides nonlocal extensions of the classical
convection-diffusion equations. It can be used to describe general stochastic jump processes. For heterogeneous
media, we may encounter cases in which the jump rates are spatially dependent and vary on both fast and slow
scales. This leads to another example of homogenized dynamics of nonlocal evolution equations.

In this paper, we build on earlier work on local homogenization [3,9,14,15,27,29,34] and develop a framework
for identifying the homogenized evolution and corrector theory for linear evolution equations associated with
integral bounded operators defined over a heterogeneous medium. To describe the main results in this paper, let
us consider the nonlocal convection-diffusion equation for simplicity. Suppose that Ω is an open and bounded
subset of R

d, and Y is the unit cube in R
d for some d ≥ 1. Given a continuous function Θ(x,y) that is periodic

in y, and an integrable even function ρ(ξ) we consider the nonlocal highly oscillatory operator

Lεu(x) =
∫

Ω

ρ(x′ − x)
(
Θ

(
x′,

x′

ε

)
u(x′) −Θ

(
x,

x
ε

)
u(x)

)
dx′

and the nonlocal convection-diffusion equation⎧⎨
⎩
uε

t(x, t) = Lεu
ε(x, t), for x ∈ Ω, t > 0

uε(x, 0) = u0

(
x,

x
ε

)
, for x ∈ Ω,

(1.1)

for a given sufficiently smooth initial data u0(x,y). For 1 < p < ∞, the operator Lε : Lp(Ω) → Lp(Ω) is
a uniformly bounded (in ε) linear operator. As a consequence, corresponding to each ε > 0 and T > 0 a
unique solution uε ∈ C1([0, T ];Lp(Ω)) exists to (1.1). Moreover, the sequence of solutions uε is also bounded in
C1([0, T ];Lp(Ω)). One of the main results of this paper is the qualitative study of the asymptotic behavior of
uε as ε → 0. It is not surprising that reflecting the presence of high oscillations in the “coefficient” Θ(x,x/ε),
the solutions uε will also have high fluctuations. We will use the notion of two scale convergence to capture the
fast and slow scales of fluctuation of uε. To that end, we will prove the following theorem.

Theorem 1.1. The sequence of solutions uε to (1.1) two scale converges to u(x,y, t) in Lp(Ω × Y ), where u
solves the two scale evolution equation

{
ut(x,y, t) = L0u(x,y, t), for (x,y) ∈ Ω × Y , 0 < t < T

u(x,y, 0) = u0(x,y), for (x,y) ∈ Ω.

Moreover, for each t ∈ [0, T ], x �→ u(x,
x
ε
, t) gives a strong approximation in the sense that

lim
ε→0

‖uε(·, t) − u
(
x,

·
ε

)
, t‖Lp(Ω) = 0.
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The two-scale operator L0 presented in the above theorem is given by

L0u(x,y) =
∫

Ω

∫
Y

ρ(x′ − x) (Θ(x′,y′)u(x′,y′) −Θ(x,y)u(x,y)) dx′ dy′

is a bounded linear operator on Lp(Ω×Y ). We notice that from the two scale convergence, uε actually converges

weakly in Lp to uH(x, t) =
∫

Y

u(x,y, t)dy making it the effective or homogenized solution. Rewriting u(x,y, t) =

uH(x, t) + w(x,y, t), the implication of Theorem 1.1 is that w(x,x/ε, t) serves as a corrector as the strong
approximation result in Theorem 1.1 states that for each t ∈ [0, T ]

‖uε(·, t) − uH(·, t) − w(·, ·/ε, t)‖Lp → 0, as ε→ 0.

A similar result as Theorem 1.1 will be proven for the heterogeneous peridynamic equation of motion in Section 4.
We note that the results and the approach used have similar structure as in the work in [2]. However this work
is distinct from [2] in many technical details. To begin with, the focus in [2] is the implementation of the method
of two scale convergence to the study of the homogenization of bond-based peridynamic models. The current
work is focused on the more inclusive and technically involved state-based model. The bond-based peridynamic

model considered in [2] was also specific and is based on the interaction kernel ρ(ξ) =
1
|ξ| in R

3 (this corresponds

to the linearized bond-stretch model given in [31]), whereas in this paper we consider any positive even integral
kernel ρ, based on the linearized model given in [33]. To handle this major difference, the technical approach
implemented is also significantly different. A consequence of this is that, for example, the strong approximation
results in [2] is valid for 3/2 < p < ∞ and uses the function space C(Ω;Lp

per(Y )), while in this work it is
valid for all p ∈ (1,∞) and uses the function space Lp(Ω;Cper(Y )). The implementation of the approach to the
convection-diffusion equation is also another distinctive feature of this paper.

In this paper we consider nonlocal multiscale convection diffusion equations with kernels having oscillations
over the length ε relative to the horizon size. This choice is made to illustrate how a non-local homogenized
operator is recovered in the limit. The analysis of the heterogeneous multiscale equation of motion is carried out
in the presence of two length scales of interaction. The small length scale is associated with small inhomogeneities
interacting over a microscopic horizon of length ε. The larger length scale is fixed and represents nonlocal
interaction over a mesoscopic horizon of order unity. Other choices for the scaling of horizon and kernel can be
made and this is the subject of future study. See the discussion in Remark 4.1 in Section 4.

The plan of the paper is as follows. The notion of two scale convergence and other main ingredients are
reviewed in Section 2. In the same section, we will provide a rundown of the asymptotic analysis program we
will be using. In Section 3, the proof of the above theorem is given with proper detail for the non-local linear
convection-diffusion equations. Homogenized and corrector evolution equations will be provided for uH and w
as coupled systems. The program will also be implemented to the state based peridynamic evolution system in
Section 4. In the two model problems, the solution of the original evolution equation is represented by a strong
Lp approximation of the sum of the homogenized evolution and the corrector that directly encodes the effects
of local oscillations in the medium.

2. Tools and preliminary results

We develop the asymptotic analysis of time-dependent problems of the form{
uε

t(x, t) = Pεuε(x, t) + bε(x, t), for x ∈ Ω, t > 0

uε(x, 0) = uε
0(x), for x ∈ Ω,

(2.1)

where for positive integers k and d, Ω ⊂ R
d is an open bounded domain, and Pε : Lp(Ω; Rk) → Lp(Ω; Rk) is a

family of bounded linear operators parametrized by ε > 0 with the uniform bound

sup
ε>0

‖Pε‖ ≤M <∞,
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for some positive constant M . Here, the parameter ε characterizes, say in the case of nonlocal diffusion models,
the scale of heterogeneities or fine scale oscillations of material properties, and ‖·‖ denotes the operator norm for
operators defined on the space Lp(Ω; Rk) with 1 < p <∞. For notational convenience, we write uε(t) = uε(·, t),
and bε(t) = bε(·, t) in the sequel.

The above uniform bound on Pε, with respect to ε, is a special feature that distinguishes this discussion from
the homogenization theory of time dependent PDEs where the associated operators are typically unbounded
elliptic partial differential operators from Lp(Ω; Rk) to Lp(Ω; Rk).

For applications to periydnamics, we are also interested in the equation of motion which involves second
order time derivatives such as {

uε
tt(t) = Pεuε(t) + bε(t)

uε(0) = uε
0 and uε

t(0) = vε
0.

(2.2)

It can be formulated as an abstract evolution equation in Lp(Ω; Rk) × Lp(Ω; Rk) given by{
Uε

t(t) = PεUε + bε

Uε(0) = Uε
0

(2.3)

where

Uε(t) =
(

uε(t)
∂tuε(t)

)
, Uε

0 =
(

uε
0

vε
0

)
, bε(t) =

(
0

bε(t)

)
, and Pε =

(
0 I
Pε 0

)
.

Here the notation I denotes the identity map in Lp(Ω; Rk) and we also have

sup
ε>0

‖Pε‖ ≤ C,

We easily see that the forms of (2.1) and (2.3) are the same except formal notational change. Thus any result
presented for (2.1) can be readily modified for (2.3). For completeness, we present the results for (2.1) and (2.2)
in parallel without repeating the technical proofs.

2.1. Existence of a solution to the abstract equation

The following theorem presents the existence of a unique solution to the abstract time-dependent Prob-
lem (2.1) which can be proved by standard semigroup theory [17, 26, 28]. Our main objective is to state the
appropriate bounds on the solution which will be used in the multiscale analysis.

Theorem 2.1. Assume that the sequence uε
0 is uniformly bounded in Lp(Ω; Rk) with respect to ε > 0. Suppose

that T > 0 and that bε(·, t) is uniformly bounded in C([0, T ];Lp(Ω; Rk)) with respect to ε > 0. Then we have
the following result.

(1) Equation (2.1) has a unique classical solution uε ∈ C1([0, T ]; Lp(Ω; Rk)) which is given by

uε(t) = etPεuε
0 +

∫ t

0

e(t−s)Pεbε(s) ds. (2.4)

(2) The sequences (uε)ε>0 is a uniformly bounded sequence in C1([0, T ]; Lp(Ω; Rk)) with respect to ε > 0. i.e.

sup
ε>0

sup
t∈[0,T ]

{‖uε(t)‖Lp + ‖∂tuε(t)‖Lp} <∞.

The proof of the theorem follows from standard semigroup theory, see for example [28]. The uniformly bounded
sequence of linear operators Pε is a generator of the uniformly continuous semigroup {etPε}t≥0, where for each t

etPε =
∞∑

n=0

tn

n!
(Pε)n.
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As a consequence the inhomogeneous abstract time-dependent problem (2.1) has a unique classical solution
uε ∈ C1([0, T ];Lp(Ω; Rk)) given by the “variations of parameters” formula (2.4). Moreover, from (2.4) there
exists C > 0 independent of ε such that

sup
t∈[0,T ]

‖uε(t)‖Lp(Ω;Rk) ≤ C.

that follows from the assumption of the uniform boundedness of uε
0, bε and the fact that ‖etPε‖ ≤ et M , where

M := sup
ε>0

‖Pε‖.
By the equivalence between (2.2) and (2.3), we get as a direct consequence to the above the following result.

Theorem 2.2. Assume that the sequences uε
0, vε

0 are uniformly bounded in Lp(Ω; Rk) with respect to ε > 0.
Suppose that T > 0 and that bε(·, t) is uniformly bounded in C([0, T ];Lp(Ω; Rk)) with respect to ε > 0. Then
we have the following result.

(1) The sequence Pε is a sequence of uniformly bounded linear operators on Lp(Ω; Rk) × Lp(Ω; Rk).
(2) Equation (2.2) has a unique classical solution uε ∈ C2([0, T ]; Lp(Ω; Rk)) which is given by

uε(t) = C(tPε)uε
0 + S(tPε)vε

0 +
∫ t

0

S((t− τ)Pε)bε(τ) dτ. (2.5)

(3) The sequences (uε)ε>0, is uniformly bounded, with respect to ε > 0, in C2([0, T ]; Lp(Ω; Rk)). i.e.

sup
ε>0

sup
t∈[0,T ]

{‖uε(t)‖Lp + ‖∂tuε(t)‖Lp + ‖∂2
t u

ε(t)‖Lp

}
<∞.

In the above theorem the operators cosh and sinh are defined as

C(tPε) :=
∞∑

n=0

t2n

(2n)!
(Pε)n

S(tPε) :=
∞∑

n=0

t2n+1

(2n+ 1)!
(Pε)n

Using the equation (2.4) on the abstract time-dependent problem (2.3) and taking out the first component
of Uε, we obtain an explicit formula for the solution uε of (2.2) given in (2.5).

2.2. Two scale convergence

In this paper we apply the method of two scale convergence to study the homogenization of equations of
type (2.1) and (2.2). We begin with the definition of two scale convergence and state some results. The content
of the discussion in this subsection is standard. We are presenting it here to introduce the necessary definitions
and to clarify their relations especially for functions that are defined in space and time, as most often such
properties are only used for functions of spatial variables in the literature.

2.2.1. Definitions of two scale convergence

Let p and p′ be two real numbers such that 1 < p, p′ < ∞ and
1
p

+
1
p′

= 1. We rely on the definition

and properties of vector-valued function spaces such as L1(Ω; Cper(Y )) found in [23]. We want to point out
quickly that if f ∈ L1(Ω;Cper(Y )), then f can be identified with f(x,y) in Ω ×R

d, f is of Caratheodory type,
f ∈ L1(Ω × Y ), and that for all ε >, f(x,

x

ε
) is measurable. See ([23], Thm. 4) for other function spaces.
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Definition 2.3 (Two-scale convergence [3, 27]). A sequence (vε) of functions in Lp(Ω), is said to two-scale
converge to a limit v ∈ Lp(Ω × Y ) if, as ε→ 0∫

Ω

vε(x)ψ
(
x,

x
ε

)
dx →

∫
Ω×Y

v(x,y)ψ(x,y) dxdy

for all ψ ∈ Lp′
(Ω; Cper(Y )). We often use vε 2

⇀ v to denote that (vε) two-scale converges to v.

We note that if (vε) is bounded in Lp(Ω), the space Lp′
(Ω; Cper(Y )) can be replaced by C∞

c (Ω; C∞
per(Y ))

in Definition (2.3) (see [23]). A motivation for Definition 2.3 is given by the following compactness result of
Nguetseng (see [27] and Allaire [3]).

Proposition 2.4. Let (vε) be a bounded sequence in Lp(Ω). Then there exists a subsequence and a function
v ∈ Lp(Ω × Y ) such that the subsequence two-scale converges to v.

For time-dependent sequence of functions vε(x, t) one slightly modifies the above two-scale convergence to allow
for homogenization with a parameter, see [9,14,15,29,30]. In this case, the variable t will serve as a parameter,
and the modification involves devising a convergence mechanism that does not seek oscillatory behavior in
vε(x, t) in the t variable. To do that in the definition of the two scale limit we restrict the class of test functions
to ψ ∈ Lp′

(Ω × (0, T ); Cper(Y )) instead of ψ ∈ Lp′
(Ω × (0, T ); Cper(Y × [0, 1])). The following definition makes

this precise.

Definition 2.5. A sequence (vε) of functions in Lp(Ω × (0, T )), is said to two-scale converge to a limit v ∈
Lp(Ω × (0, T ) × Y ) if, as ε→ 0∫

Ω×(0,T )

vε(x, t)ψ
(
x, t,

x
ε

)
dxdt→

∫
Ω×(0,T )×Y

v(x,y, t)ψ(x, t,y) dxdtdy

for all ψ ∈ Lp′
(Ω × (0, T ); Cper(Y )).

A two-scale compactness result similar to (and as a consequence of) Proposition 2.4 holds for time dependent
bounded sequence of functions as well and is stated in the following proposition.

Proposition 2.6. Let (vε) be a bounded sequence in Lp(Ω × (0, T )). Then there exists a subsequence and a
function v ∈ Lp(Ω × (0, T )× Y ) such that the subsequence two-scale converges to v.

Proof. Applying Proposition 2.4 over the domain Ω × (0, T ) and Y × [0, 1] being the corresponding unit cube,
there exists a subsequence (not labeled) and ṽ(x, t,y, τ) ∈ Lp(Ω × (0, T ) × Y × [0, 1]) such that∫

Ω

vε(x, t)ψ
(
x, t,

x
ε
,
t

ε

)
dxdt →

∫
Ω×[0,T ]×Y ×[0,1]

ṽ(x, t,y, τ)ψ(x, t,y, τ) dxdt dy dτ

for all ψ ∈ Lp′
(Ω × (0, T ); Cper(Y × [0, 1])). Observe that the space inclusion Lp′

(Ω × (0, T ); Cper(Y )) ⊂
Lp′

(Ω × (0, T ); Cper(Y × [0, 1])) holds and that in Definition 2.5 we test the sequence vε(x, t) against ψ ∈
Lp′

(Ω × (0, T ); Cper(Y )). It then follows from the preceding convergence that as ε→ 0,∫
Ω

vε(x, t)ψ
(
x, t,

x
ε

)
dxdt→

∫
Ω×[0,T ]×Y ×[0,1]

ṽ(x, t,y, τ)ψ(x, t,y) dxdt dy dτ

for all ψ ∈ Lp′
(Ω× (0, T ); Cper(Y )). Applying Fubini’s theorem and iterating the integral, the limit integral can

be written as∫
Ω×[0,T ]×Y ×[0,1]

ṽ(x, t,y, τ)ψ(x, t,y) dxdt dy dτ =
∫

Ω×[0,T ]×Y

v(x, t,y)ψ(x, t,y) dxdt dy
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where v(x, t,y) =
∫ 1

0

ṽ(x, t,y, τ)dτ. To complete the proof we apply Fubini once again to observe that v ∈
Lp(Ω × (0, T ) × Y ). �

For a function u(x,y) ∈ Lp(Ω × Y ; Rk), we may define the average function 〈u〉(x) for almost all x ∈ Ω

〈u〉(x) :=
∫

Y

u(x,y)dy.

Note that 〈u〉 ∈ Lp(Ω; Rk) and that applying Fubini’s theorem and Minkowski’s inequality

‖〈u〉‖Lp(Ω) ≤ ‖u‖Lp(Ω×Y )

Based on the above definitions and together with their natural extensions to vector fields, we record two well
known results on two-scale convergence that can be found in [23].

Lemma 2.7.

1. Let (vε) be a bounded sequence in Lp(Ω× (0, T ); Rk) that two-scale converges to v ∈ Lp(Ω×Y × (0, T ); Rk),
then vε → 〈v〉(x, t) weakly in Lp(Ω × (0, T ); Rk) as ε→ 0.

2. Suppose ψ is in Lp(Ω;Cper(Y ; Rk)), or Lp
per(Y ;C(Ω; Rk)). Then ψ(x,

x
ε
) two-scale converges to ψ(x,y) and

the sequence of norms also converge:

lim
ε→0

∫
Ω

∣∣∣ψ(x,
x
ε
)
∣∣∣p dx =

∫
Ω

∫
Y

|ψ(x,y)|p dy dx.

Remark 2.8. Given a function u(x,y, t) ∈ C([0, T ];Lp(Ω;Cper(Y ; Rk))), for each t ∈ [0, T ], u(·, ·, t) ∈
Lp(Ω;Cper(Y ; Rk)) and as a consequence, as ε→ 0,

u
(
x,

x
ε
, t
)

2
⇀ u(x,y, t) in Lp(Ω × Y ; Rk)

with the sequence of norms converging as well; that is for all t ∈ [0, T ],

lim
ε→0

∫
Ω

∣∣∣u(x, x
ε
, t
)∣∣∣p dx =

∫
Ω

∫
Y

|u(x,y, t)|pdxdy.

Two scale convergence combined with norm convergence is usually referred to as strong two scale convergence,
see [3, 14].

2.2.2. Two scale convergence and convolution

For the problems we will be studying in the next section, the underlying operators are given by finite sums of
convolution-type operators. It is thus important to understand the relationship between two scale convergence
and the kind of convolution-type operators of interests here. We should mention that the two scale limit of a
convolution of an integrable function with a two scale convergent sequence is given in ([14], Prop. 2.13). We
will not be using ([14], Prop. 2.13) however, as our operators involve convolution of an integrable function with
sequences of functions of both spatial and time variables with the convolution only in the spatial variables. In
this direction a result that we will need later is contained in the following theorem. Before stating the theorem,
let us give the following elementary result. Given a function f defined on Ω, we denote its extension by zero
outside Ω by f.

Lemma 2.9. Suppose that v(x, t) ∈ Lp(Ω × [0, T ]; Rk) and g ∈ L1(Rk). Then the convolution of g and v in
the x-variable defined as

(g ∗x v)(x, t) =
∫

Rk

g(x− x′)v(x′, t)dx′

is in Lp(Ω × [0, T ]; Rk) with the estimate

‖g ∗x v‖Lp(Ω×[0,T ]) ≤ ‖v‖Lp(Ω×[0,T ])
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Proof. Although not difficult, let us show that the function (x, t) �→ (g ∗x v)(x, t) is a measurable function in
R

k × R. Clearly the function (x′,x, t) �→ g(x − x′)v(x′, t) is a measurable function in R
k × R

k × R. Iterating
the integral, and applying Young’s inequality for each t, we obtain that∫ ∞

−∞

∫
Rk

∫
Rk

|g(x − x′)||v|(x′, t)dx′dxdt ≤ ‖g‖L1

∫ ∞

−∞

∫
Rk

|v|(x, t)dxdt

≤
∫ T

0

∫
Ω

|v|(x, t)dxdt <∞

where the finiteness of the last integral follows from the assumption. And therefore, by Fubini’s theorem,
(x, t) �→ (g ∗x v)(x, t) is a measurable function. The estimate

‖g ∗x v‖Lp(Ω×[0,T ]) ≤ ‖g‖L1‖v‖Lp(Ω×[0,T ])

follows from the standard Young’s inequality.
�

Theorem 2.10. Suppose that uε(x, t) is a bounded sequence in C([0, T ];Lp(Ω; Rk)), and two scale converges
to u(x,y, t) in Lp(Ω × Y × [0, T ]; Rk). Then given g(ξ) ∈ L1(Rk), there exists a subsequence uεn such that the
following holds.

(1) For any φ ∈ C[0, T ], as n→ ∞ the sequence of functions

Uεn

φ (x, t) =
∫ ∞

−∞

∫
Rk

g(x − x′)χ[0,T ](t′ − t)φ(t′)uεn(x′, t′)dx′ dt′

strongly converges in Lp(Ω × [0, T ]; Rk) to

Uφ(x, t) =
∫ ∞

−∞

∫
Rk

g(x − x′)χ[0,T ](t′ − t)φ(t′)〈u〉(x′, t′)dx′ dt′,

where χ[0,T ](s) is the characteristic function on [0, T ].
(2) As n→ ∞, the sequence of convolutions (in x)

g ∗x uεn(x, t) 2
⇀ g ∗x 〈u〉(x, t) in Lp(Ω × Y × [0, T ]; Rk)

where the convolution ∗x is as defined in Lemma 2.9.

Proof. 1). We begin noting that since uε 2
⇀ u, in Lp(Ω×[0, T ]×Y ; Rk), by Lemma 2.7, we have uε ⇀ 〈u〉 weakly

in Lp(Ω × [0, T ]; Rk), and therefore for any φ ∈ C[0, T ], φ(t)uε(x, t) ⇀ φ(t)〈u〉(x, t) weakly in Lp(Ω × [0, T ]) as
well. Defining W (x, s) = g(ξ)χ[0,T ](s) in L1(Rd+1), we observe that for any φ ∈ C[0, T ], (x, t) ∈ R

d+1,

Uε
φ(x, t) = W ∗ (φuε)(x, t).

Now using the compactness of the convolution operator (see [8]) and the weak convergence of φuε, we can
extract a subsequence (that may depend on φ) so that as ε→ 0,

W ∗ (φuε)(x, t) → W ∗ (φ〈u〉)(x, t)
strongly in Lp(Ω × [0, T ]; Rk). We use now the separability of C[0, T ], to remove the dependence of the subse-
quence on φ. Although the argument is standard, we would like to include it for completeness. Let {φk}∞k=1 be
a countable dense subset of C[0, T ]. For each k, there exists a subsequence εkn such that as n→ ∞

W ∗ (φku
εk

n)(x, t) →W ∗ (φk〈u〉)(x, t)
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strongly in Lp(Ω × [0, T ]). Now using a standard diagonalization procedure, we can extract the subsequence
εnn = εn such that for any k, as n→ ∞

W ∗ (φku
εn)(x, t) →W ∗ (φk〈u〉)(x, t)

strongly in Lp(Ω × [0, T ]). Now let φ ∈ C[0, T ], and φk′ ⊂ {φk} such that ‖φ− φk′‖L∞ → 0, as k′ → ∞. Then
using triangular inequality, for each n and k′,

‖W ∗ (φuεn) −W ∗ (φ〈u〉)‖Lp(Ω×[0,T ]) ≤ ‖W ∗ ((φ− φk′)uεn)‖Lp(Ω×[0,T ])

+ ‖W ∗ (φk′uεn) −W ∗ (φk′〈u〉)‖Lp(Ω×[0,T ]) + ‖W ∗ ((φ− φk′)〈u〉)‖Lp(Ω×[0,T ]).

Fixing k′ and letting n→ ∞, we observe that

lim
n→∞

‖W ∗ (φuεn) −W ∗ (φ〈u〉)‖Lp(Ω×[0,T ]) ≤ lim
n→∞

‖W ∗ ((φ− φk′)u
εn)‖Lp(Ω×[0,T ])

+ lim
n→∞

‖W ∗ ((φ− φk′)〈u〉)‖Lp(Ω×[0,T ]). (2.6)

Let us estimate the right hand side. For each n and k′, using Young’s inequality

‖W ∗ ((φ− φk′)uεn)‖Lp(Ω×[0,T ]) ≤ ‖W‖L1(Rd+1)‖(φ− φk′)uεn)‖Lp(Ω×[0,T ])

≤ ‖W‖L1(Rd+1)‖φ− φk′‖L∞[0,T ]‖uεn‖Lp(Ω×[0,T ])

≤ C‖φ− φk′‖L∞[0,T ]

where C is independent of n as ‖uεn‖Lp(Ω×[0,T ]) ≤ ‖uε‖C([0,T ];Lp(Ω;Rk)) ≤ C′ < ∞, by assumption. Therefore
the right hand side in (2.6) will approach to 0 as k′ → 0. That concludes the proof of part 1).

Let us now prove part 2). We begin by noting that applying Lemma 2.9, g ∗x uε(x, t) is a bounded sequence
in Lp(Ω × [0, T ]; Rk) and so up to a subsequence two scale converges in Lp(Ω × Y × [0, T ]; Rk). Let us identify
the two scale limit. Let ζ(t) ∈ C[0, T ] and ψ(x,y) ∈ Lp′

(Ω;Cper(Y ; Rk)). Now using the strong convergence of
Uεn

ζ (x, t) in Lp(Ω × [0, T ]), we see that as n→ ∞

lim
n→∞

∫ T

0

∫
Ω

ψ

(
x,

x
εn

)
· Uεn

ζ (x, t)dxdt =
∫ T

0

∫
Ω

∫
Y

ψ(x,y) · Uζ(x, t)dy dxdt.

Let us rewrite each of these integrals separately. We begin iterating the integral in the left hand side, which is
allowed using Fubini’s theorem as the integral is finite in the product space. It follows then that∫ T

0

∫
Ω

ψ

(
x,

x

εn

)
· Uεn

ζ (x, t)dxdt

=

∫ T

0

∫
Ω

ψ

(
x,

x

εn

)
·
∫ ∞

−∞

∫
Rd

g(x′ − x)χ[0,T ](t
′ − t)ζ(t′)uεn(x′, t′)dx′ dt′dxdt

=

∫ ∞

−∞

∫
Ω

ψ

(
x,

x

εn

)
·
∫

Rd

g(x′ − x)

(∫ T

0

χ[0,T ](t
′ − t)dt

)
ζ(t′)uεn(x′, t′)dx′ dt′dxdt

= T

∫ ∞

0

∫
Ω

ζ(t′)ψ
(
x,

x

εn

)
·
∫

Rd

g(x′ − x)uεn(x′, t′)dx′ dxdt′

= T

∫ T

0

∫
Ω

ζ(t′)ψ
(
x,

x

εn

)
· (g ∗x uεn)(x, t′) dxdt′

where we used the fact that for all t′,
∫ T

0

χ[0,T ](t′ − t)dt =
∫ T

0

χ[t′−T,t′](t)dt = T Similarly,

∫ T

0

∫
Ω

∫
Y

ψ(x,y) ·Uζ(x, t)dy dxdt = T

∫ T

0

∫
Ω

∫
Y

ζ(t′)ψ(x,y) · (g ∗x 〈u〉)(x, t′) dy dxdt′
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Recaping, we have just demonstrated that

lim
n→∞ T

∫ T

0

∫
Ω

ζ(t)ψ
(
x,

x
εn

)
· (g ∗x uεn)(x, t) dxdt

= T

∫ T

0

∫
Ω

∫
Y

ζ(t)ψ(x,y) · (g ∗x 〈u〉)(x, t) dy dxdt.

From the arbitrariness of ζ and ψ we conclude that the two scale limit of the sequence g ∗x uεn is g ∗x 〈u〉. �

Remark 2.11. An important consequence of the above theorem is that if G(x) is an integrable R
k×k matrix

function and uε is a bounded sequence in C([0, T ];Lp(Ω; Rk)) that two scale converges to u(x,y, t), then as a
finite sum of a sequence of convolutions, we can extract a subsequence εn such that, as n→ ∞, the sequence of
functions

(G ∗x uεn)(x, t) =

∫
Ω

G(x′ − x)uεn(x′, t)dx′ 2
⇀ G ∗x 〈u〉(x, t) =

∫
Ω

G(x′ − x)〈u〉(x′, t)dx′

in Lp(Ω × [0, T ]× Y ; Rk).

2.3. Two scale convergence and time derivatives

As we have seen at the beginning of the section, we will be dealing with both sequences of functions and
their time derivatives. Recall that from our existence result, if uε

0(x) is bounded in Lp(Ω) and bε(x, t) is
bounded in C([0, T ];Lp(Ω; Rk)), then a unique solution uε(x, t) to the evolution equation (2.1) exists and
the sequence of solutions is uniformly bounded in C1([0, T ];Lp(Ω; Rk)). Similarly, in the event that Uε

0(x) is
bounded in Lp(Ω; Rk) × Lp(Ω; Rk), then the sequence of solutions uε(x, t) to (2.2) is uniformly bounded in
C2([0, T ];Lp(Ω; Rk)). The following lemma relates the two scale limit of the sequence of functions with the two
scale limit of the sequence of time derivatives.

Lemma 2.12 (two-scale convergence and time derivative). Given a bounded sequence uε ∈
C1([0, T ];Lp(Ω; Rk)), i.e. sup

t∈[0,T ]

{‖uε(t)‖Lp + ‖∂tuε(t)‖Lp} is bounded. Suppose also that for almost all

x ∈ Ω, uε(x, 0) = uε
0(x), uε

0(x) 2
⇀ u0(x,y) in Lp(Ω×Y ; Rk) and ∂tuε 2

⇀ u∗(x,y, t) in Lp(Ω×Y × (0, T ); Rk).
Define the function

u(x,y, t) =
∫ t

0

u∗(x,y, τ)dτ + u0(x,y)

for almost all (x,y) ∈ Ω×Y and all t ∈ [0, T ]. Then uε 2
⇀ u(x,y, t) in Lp(Ω×Y ×(0, T ); Rk) and ∂tu(x,y, t) =

u∗(x,y, t). As a consequence ∂tuε 2
⇀ ∂tu in Lp(Ω×Y × (0, T ); Rk), and uε(x, 0) 2

⇀ u(x,y, 0) in Lp(Ω×Y ; Rk).

Proof. Noting that for almost all t ∈ [0, T ], u∗(·, ·, t) ∈ Lp(Ω × Y ; Rk), it is not difficult to see that u is in
C([0, T ];Lp(Ω×Y ; Rk)), ∂tu(x,y, t) = u∗(x,y, t) ∈ Lp(Ω×Y ×[0, T ]; Rk), and that for almost all (x,y) ∈ Ω×Y,
u(x,y, ·) ∈ C[0, T ]. By definition, for all almost (x,y) ∈ Ω×Y , pointwise evaluation of u(x,y, ·) makes sense and
u(x,y, 0) = u0(x,y). Let us show that uε two scale converges to u(x,y, t). Let ψ ∈ Lp′

(Ω×(0, T );Cper(Y ; Rk)).
We will show that as ε→ 0,∫

Ω×[0,T ]

uε(x, t) · ψ
(
x,

x
ε
, t
)

dxdt →
∫

Ω×(0,T )×Y

u(x,y, t) ·ψ(x,y, t)dxdtdy.

Define

φ(x,y, t) =
∫ t

0

ψ(x,y, τ)dτ −
∫ T

0

ψ(x,y, τ)dτ.
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Then φ ∈ Lp′
(Ω × (0, T );Cper(Y ; Rk)), ∂tφ = ψ, and φ(x, y, T ) = 0. Integrating by parts we obtain that∫

Ω

∫ T

0

∂tuε(x, t)φ
(
x,

x
ε
, t
)

dtdx =
∫

Ω

uε(x, 0)
∫ T

0

ψ
(
x,

x
ε
, τ
)

dτdx

−
∫

Ω

∫ T

0

uε(x, t)ψ
(
x,

x
ε
, t
)

dxdt.

Taking the limit on both sides and using the facts that ∂tuε 2
⇀ u∗, uε

0
2
⇀ u0(x,y), and the function (x,y) �→∫ T

0

ψ(x,y, τ)dτ is an admissible test function, we have

lim
ε→0

∫
Ω

∫ T

0

uε(x, t) ·ψ
(
x,

x

ε
, t
)

dxdt

=

∫
Ω×Y

∫ T

0

u0(x,y) ·ψ(x,y, t)dxdydt−
∫

Ω×Y

∫ T

0

u∗(x,y, t) · φ(x,y, t)dtdx dy

Integrating by parts the second integral in the right hand side shows that

−
∫

Ω×Y

∫ T

0

u∗(x,y, t) · φ(x,y, t)dtdxdy =

∫
Ω×Y

∫ T

0

(∫ t

0

u∗(x,y, τ )dτ
)
·ψ(x,y, t)dtdxdy.

Combining the above and using the definition of u we have

lim
ε→0

∫
Ω

∫ T

0

uε(x, t) ·ψ
(
x,

x
ε
, t
)

dxdt

=
∫

Ω×Y ×(0,T )

(
u0(x,y) +

∫ t

0

u∗(x,y, τ)dτ
)
·ψ(x,y, t)dxdydt,

=
∫

Ω×Y ×(0,T )

u(x,y, t) · ψ(x,y, t)dxdydt,

proving that uε 2
⇀ u in Lp(Ω × [0, T ]× Y ; Rk). �

Remark 2.13. Given a sequence uε(t) that is bounded in C1([0, T ];Lp(Ω; Rk)) and an Lp- bounded sequence
of initial values uε(0), the lemma provides a means of constructing a two scale limit u(x,y, t) ∈ C([0, T ];Lp(Ω×
Y ; Rk)) for a subsequence uεk with the additional property that the sequence of initial values uεk(0) 2

⇀ u(x,y, 0),
in Lp(Ω × Y ; Rk) and the sequence of time derivatives ∂tuεk

2
⇀ ∂tu in Lp(Ω × [0, T ]× Y ; Rd). Indeed, starting

with the Lp-bounded sequences, ∂tuε and uε(0), we can extract a subsequence εk such that, as k → ∞, ∂uεk

and uεk two scale converges to u∗(x,y, t) and u0(x,y) in Lp respectively. We now use Lemma 2.12 to construct
u(x,y, t).

The following is a consequence of Lemma 2.12 as well as its counterpart for (2.2). We notice that the results
follow exactly the same argument as in the proof of Lemma 2.12. For an alternate proof of the following lemma
see [2].

Lemma 2.14. Let uε ∈ C2([0, T ];Lp(Ω; Rk)) be a bounded sequence; i.e.

sup
ε>0

sup
t∈[0,T ]

{‖uε(t)‖Lp + ‖∂tuε(t)‖Lp + ‖∂2
t u

ε(t)‖Lp} <∞.

Suppose that for almost all x ∈ Ω, uε(x, 0) = uε
0(x), ∂tuε(x, 0) = vε

0(x), uε
0

2
⇀ u0(x,y), vε

0
2
⇀ v0(x,y) in

Lp(Ω × Y ; Rk) and ∂2
t u

ε 2
⇀ u∗∗(x,y, t) ∈ Lp(Ω × Y × (0, T ); Rk). Define the function

u(x,y, t) =
∫ t

0

∫ τ

0

u∗∗(x,y, l)dldτ + tv0(x,y) + u0(x,y)
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for almost all (x,y) ∈ Ω × Y and all t ∈ [0, T ]. Then uε 2
⇀ u(x,y, t), ∂tuε 2

⇀ ∂tu(x,y, t), and ∂2
t u(x,y, t) =

u∗∗(x,y, t). As a consequence ∂2
t u

ε 2
⇀ ∂2

t u(x,y, t) ∈ Lp(Ω × Y × (0, T ); Rk), ∂tuε(x, 0) 2
⇀ ∂tu(x,y, 0) and

uε(x, 0) 2
⇀ u(x,y, 0) in Lp(Ω × Y ; Rk).

2.4. Standard asymptotic analysis

The asymptotic analysis program we are going to implement in the next sections to model equations of
type (2.1) and (2.2) involves two steps: identify the dynamics associated with the two scale limit of solutions,
and prove a strong approximation to the solution using a properly scaled solution to the two scale limit equation.
Let us discuss the two steps separately.

2.4.1. Two scale limit equation

We have seen that the sequence of solutions uε to (2.1) associated with uniformly bounded linear operators
Pε is bounded in C1([0, T ];Lp(Ω; Rk)) provided that the initial data uε

0 is bounded in Lp(Ω; Rk) and the body
force bε(x, t) is bounded in C([0, T ];Lp(Ω; Rk)). The sequence of solutions uε, thus, has a subsequence that two
scale converges to say, u(x,y, t) in Lp(Ω × [0, T ]× Y ; Rk). One then inquires if there is a dynamics associated
with u. In fact, for the model problems that we will be dealing in this paper, we will prove the existence of a
“limiting” bounded linear operator P0 in Lp(Ω × Y ; Rk) such that u actually satisfies the system

∂tu(x,y, t) = P0u(x,y, t) + b(x,y, t), (2.7)

supplemented with initial conditions

u(x,y, 0) = u0(x,y), (2.8)

where u0(x,y), and b(x,y, t) are two scale limits of uε
0 and bε respectively. Applying the general existence

of a solution, if b(x,y, t) ∈ C([0, T ];Lp(Ω × Y )), then u is uniquely defined. This in turn implies not only a
subsequence but also the whole sequence uε two scale converges to u.

2.4.2. Strong approximation by two scale functions

The two scale convergence of the solutions uε of the evolution equation implies the weak convergence uε ⇀ 〈u〉,
weakly in Lp(Ω × [0, T ]), and that for any subdomain V ⊂ Ω, and any interval (t0, t1),

lim
ε→0

∫
V ×(t0,t1)

uε(x, t)dxdt = lim
ε→0

∫
V ×(t0,t1)

〈u〉(x, t)dxdt. (2.9)

Defining uH(x) = 〈u〉(x), we may write u(x,y, t) = uH(x, t) + w(x,y, t). Then w ∈ Lp(Ω × Y × [0, T ]; Rd)
and 〈w〉(x, t) = 0 for all (x, t) ∈ Ω × [0, T ]. Plugging this decomposition in the two scale limit equation (2.7),
one may obtain dynamics of “the homogenized limit” uH(x, t) and “the corrector” w(x,y, t). The goal in this
second step is to prove that for each t ∈ [0, T ]

‖uε(·, t) − u
(
·, ·
ε
, t
)
‖Lp → 0,

as ε→ 0, in the event that u(x,
x
ε
, t) is a measurable function. Note here that u(x,

x
ε
, t) = uH(x, t)+w(x,

x
ε
, t)

and we see that w(x,
x
ε
, t) plays the role of corrector. We also observe that for almost all t ∈ [0, T ], u(·, ·, t) is

merely in Lp(Ω × Y ; Rk) and thus the function u(x,
x
ε
, t) may not be measurable unless u(x,y, t) belongs to a

smoother function space. As a solution to a system of model equations, we know in fact that u does belong to
a smoother function space when additional regularity on the data b,u0 and v0 is imposed.
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3. Homogenization of nonlocal convection-diffusion

We consider a special variant of the homogeneous linear nonlocal convection-diffusion model studied in [13]

∂tu
ε(x, t) = Lεu

ε(x, t) for x ∈ Ω, t > 0, (3.1)

for a real-valued function uε = uε(x, t) satisfying the initial condition given by

uε(x, 0) = uε
0(x), ∀x ∈ Ω. (3.2)

The nonlocal convection-diffusion operator Lε is defined by

Lε(v)(x) =
∫

Ω

(γε(x′,x)v(x′) − γε(x,x′)v(x)) dx′

for a non-negative interaction kernel γε.

When Ω is a bounded domain, the equation (3.1) imposes natural modifications to the nonlocal interactions
near the boundary so that no additional boundary or volume conditions are required [11]. We refer to [13]
for more detailed discussions. Here for mathematical convenience we specialize the kernel γε to get a nonlocal
operator Lε of the form

Lε(u)(x) =
∫

Ω

ρ(x′ − x) (Θε(x′)u(x′) −Θε(x)u(x)) dx′ (3.3)

where in this case γε(x′,x) = ρ(x′ −x)Θε(x′) and ρ = ρ(ξ) is a locally integrable, even and nonnegative density
andΘε(x) = Θ(x,

x
ε
) measures heterogeneity. The function Θ = Θ(x,y) is assumed to belong to L∞(Ω;Cper(Y ))

and is uniformly bounded from above and below by some positive constants. Note that we have made ρ to be
independent of ε which simplifies the analysis, and at the same time, also allows us to highlight the difference
from other kernels used in the peridynamic operators considered in the next section.

3.1. Two scale limit equation

It is not difficult to show that the nonlocal convection-diffusion operator Lε given in (3.3) is a bounded linear
operator on Lp(Ω) [13]. Moreover, the operator norm is uniformly bounded from above in ε. One may easily
obtain the well-posedness of the equation from Theorem 2.1 (see also [13]). Let us introduce an operator L0

given by

(L0u)(x,y) =
∫

Ω

ρ(x′ − x) (〈Θu〉(x′) −Θ(x,y)u(x,y)) dx′. (3.4)

It is not difficult to prove that L0 : Lp(Ω × Y ) → Lp(Ω × Y ) is a bounded linear operator.

Theorem 3.1. Suppose that uε(x, t) is the sequence of solutions to the nonlocal convection-diffusion initial
value problem (3.1)−(3.2), with the sequence of initial values uε

0
2
⇀ u0(x,y) in Lp(Ω × Y ). Suppose also that

L0 is the operator defined by (3.4). Then there exists a unique u = u(x,y, t) ∈ C1([0, T ];Lp(Ω × Y )) such that
uε

2
⇀ u in Lp and u solves the equation

∂tu(x,y, t) = (L0u)(x,y, t), (x,y) ∈ Ω × Y, t > 0 (3.5)

with the initial condition
u(x,y, 0) = u0(x,y). (3.6)
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Proof. Step 1. By the existence result Theorem 2.1 and the remark following Lemma 2.12, there exists and
subsequence εn and u ∈ C([0, T ];Lp(Ω × Y )) with the property that ∂tu ∈ Lp(Ω × Y × [0, T ]) and u(x,y, 0) =
u0(x,y) and as n→ ∞

uεn
2
⇀ u and ∂tu

εn
2
⇀ ∂tu

in Lp(Ω × Y × [0, T ]). We further claim that there exists a sub subsequence εnj such that as j → ∞

Lεnj
uεnj

2
⇀ L0u.

in Lp(Ω × Y × [0, T ]). Indeed, we first write Lε as a sum of two operators as

Lεnu
εn(x, t) = ρ ∗x (Θεnu

εn)(x, t) −Θεn(x)uεn(x, t)
∫

Ω

ρ(x − x′)dx′.

We then note the fact that Θ(x,y) ∈ L∞(Ω;Cper(Y )), Θε
2
⇀ Θ(x,y) in Lp(Ω × Y ), as a result, when n → ∞

the product two scale converges

Θεn u
εn

2
⇀ Θ(x,y)u(x,y, t)

in Lp(Ω × [0, T ] × Y ). Now applying part 2) of Theorem 2.10 we can extract a subsequence nj such that as
j → ∞

ρ ∗x (Θεnj
uεnj )(x, t) 2

⇀ ρ ∗x 〈Θu〉(x, t)
in Lp(Ω × Y × [0, T ]). For this subsequence, the two scale limit of the second part of Lεnuεn can be found as
j → ∞

Θεnj
(x)uεnj (x, t)

∫
Ω

ρ(x − x′)dx′ 2
⇀ Θ(x,y)u(x,y, t)

∫
Ω

ρ(x − x′)dx′

in Lp(Ω×Y × [0, T ]). Combining the parts, and letting j → ∞ on both sides of (3.1) we compute the two scale
limits and obtain equation (3.5), u satisfying the initial value u(x,y, 0) = u0(x,y) ∈ Lp(Ω×Y ). Now using the
fact that L0 is a linear bounded operator on Lp(Ω × Y ), we conclude, from the existence theorem, that u is
unique. Moreover, using the same argument as above, any two scale converging subsequence of uε will satisfy
equation (3.5) together with the initial value u0(x,y); and by uniqueness of the solution the two scale limit
must be u. And therefore, the entire sequence uε two scale converges to the solution to equation (3.5). �

Remark 3.2. We make two remarks. The first one is that for each t, the solution u(x,y, t) to (3.5) will belong
to the same space as the initial condition u0 provided that the operator L0 is a bounded operator on that
function space. An important space that we use in the sequel is Lp(Ω;Cper(Y )) for any 1 < p < ∞. From
the simple structure of the limiting operator L0, it is not difficult to show that L0 is indeed a linear bounded
operator on Lp(Ω;Cper(Y )). The implication of having u ∈ C1([0, T ];Lp(Ω;Cper(Y ))), is that for each t, the
map x �→ u(x,

x
ε
, t) is a measurable function. We will use this property to obtain a strong approximation result.

Second, given the fact that Θ(x,y) is periodic in the y-variable, we note that the periodic extension of
u(x,y, t) (we will keep the notation the same) in the y-variable will also solve (3.5) in Ω × R

d, provided the
initial data u0(x,y) is also periodic in the y-variable. This is the case if u0 ∈ Lp(Ω;Cper(Y )), for example.

3.2. Homogenized nonlocal convection-diffusion model

From the two scale convergence of uε to u, we obtain that as ε→ 0,

uε ⇀ uH(x, t) =
∫

Y

u(x,y, t)dy
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weakly in Lp(Ω × [0, T ]). In this subsection we obtain a dynamics for uH . Let us begin by writing the operator
L0 given in (3.4) as

(L0u)(x,y) = L1
aveu

H(x) + (L1
oscu

H)(x,y) + (M(u− uH))(x,y)

with the operators on the right hand side defined by

(L1
aveu

H)(x) =
∫

Ω

ρ0(x′ − x)〈Θ〉(x′)(uH(x′) − uH(x)) dx′,

(L1
oscu

H)(x,y) =
(∫

Ω

ρ0(x′ − x)(〈Θ〉(x′) −Θ(x,y))dx′
)
uH(x),

(Mw)(x,y) =
∫

Ω

ρ0(x′ − x) (〈Θw〉(x′) −Θ(x,y)w(x,y)) dx′.

We note that

〈L1
oscu

H〉(x) =
(∫

Ω

ρ(x′ − x)(〈Θ〉(x′) − 〈Θ〉(x))dx′
)
uH(x)

and
〈Mw〉(x) =

∫
Ω

ρ0(x′ − x) (〈Θw〉(x′) − 〈Θw〉(x)) dx′.

Now write u(x,y, t) = uH(x, t) + w(x,y, t). Then w ∈ Lp(Ω × Y × [0, T ]) and 〈w〉(x, t) = 0 for all (x, t) ∈
Ω × [0, T ]. We thus get

uH
t (x, t) = L1

aveu
H(x, t) + 〈L1

oscu
H〉(x, t) + 〈Mw〉(x, t).

and
wt(x,y, t) = (M(0)w)(x,y, t) + L1(0)

osc u
H(x,y, t),

where (M(0)w)(x,y, t) := (Mw)(x,y, t) − 〈Mw〉(x, t) and

L1(0)
osc u

H(x,y, t) = L1
oscu

H(x,y, t) − 〈L1
oscu

H〉(x, t)
= (〈Θ〉(x) −Θ(x,y))

∫
Ω

ρ(x′ − x)dx′ uH(x, t).

The initial data are given by

uH(x, 0) = 〈u0〉(x), w(x,y, 0) = w0(x,y) = u0(x,y) − 〈u0〉(x).

One may solve the initial value problem for w first as a function of uH and may utilize the formula

w(x,y, t) = etM(0)
w0(x,y) +

∫ t

0

e(t−s)M(0)L1(0)
osc u

H(x,y, s) ds,

to get

uH
t (x, t) = L1

aveu
H(x, t) + 〈L1

oscu
H〉(x, t)

+
∫ t

0

〈Me(t−s)M(0)L1(0)
osc u

H〉(x, s) ds + 〈MetM(0)
w0〉(x, t).

The above equation actually demonstrates a nonlocal version of a well known fact from evolution PDEs that
whenever there is an oscillatory coefficient (in our case 〈Θ〉(x)−Θ(x,y) is not identically zero), the homogenized
dynamics exhibits a history dependence, see [34].
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3.3. Strong approximation to nonlocal convection-diffusion

In this subsection, we prove that for each t ∈ [0, T ], the re-scaled function u(x,
x
ε
, t) of the solution to the

two scale limit problem, can be used to approximate the original uε(x, t). The main theorem we will be proving
is the following.

Theorem 3.3. Let (uε) be the sequence of solutions of (3.1)−(3.2) with initial data uε
0 = u0(x,

x
ε
) where u0 ∈

Lp(Ω;Cper(Y )). Then the solution u of the two scale limit equation (3.5)−(3.6) is in C1((0, T );Lp(Ω;Cper(Y ))).
Moreover, for each t ∈ [0, T ], u(x,

x
ε
, t) give the strong approximation to uε as

lim
ε→0

∥∥∥uε(·, t) − u(·, ·
ε
, t)
∥∥∥

Lp(Ω)
= 0. (3.7)

Proof. The fact that u ∈ C1((0, T );Lp(Ω;Cper(Y ))), when u0 ∈ Lp(Ω;Cper(Y )) follows from standard Semi-
group theory as L0 is a bounded linear operator on Lp(Ω;Cper(Y )) as discussed in Remark 3.2. What remains
is to show the Lp-strong approximation.

Step 1. Let us identify an evolution equation for the error eε(x, t) = uε(x, t) − u(x,
x
ε
, t). We begin by first

writing the dynamics for u(x,
x
ε
, t), by plugging y =

x
ε

in equation (3.5) to obtain that

∂tu
(
x,

x
ε
, t
)

= (L0u)
(
x,

x
ε
, t
)
,

together with the initial condition u(x,
x
ε
, 0) = u0(x,

x
ε
). Subtract this equation from the original abstract

equation (3.1)−(3.2). Denoting the difference eε(x, t) := uε(x, t) − u(x,
x
ε
, t), it follows that

{
∂te

ε = Lεe
ε(x, t) +Dε(x, t) x ∈ Ω, t > 0

eε(x, 0) = 0, x ∈ Ω
(3.8)

where Dε(x, t) = Lε(u(x,
x
ε
, t)) − (L0u)(x,

x
ε
, t).

Step 2. To make the evolution equation (3.8) wellposed in Lp(Ω), and to be able to estimate the solution eε,
let us show that for all ε > 0, Dε(x, t) ∈ C([0, T ], Lp(Ω)) and

lim
ε→0

‖Dε(·, t)‖Lp(Ω) = 0, and sup
ε>0

sup
t∈[0,T ]

‖Dε(·, t)‖Lp(Ω) <∞.

To that end, let us first note that simplifying Dε we have that

Dε(x, t) =
∫

Ω

ρ(x′ − x)
(
Θ

(
x′,

x′

ε

)
u

(
x′,

x′

ε
, t

)
− 〈Θ u〉(x′, t)

)
dx′. (3.9)

It is then clear that there exits a positive constant C such that for each t and ε, Dε(x, t) ∈ Lp(Ω) (after some
simplification)

‖Dε(·, t)‖Lp(Ω) ≤ C‖u(·, ·, t)‖Lp(Ω×Y ).

We then have that for each ε > 0,

sup
t∈[0,T ]

‖Dε(·, t)‖Lp(Ω) ≤ C sup
t∈[0,T ]

‖u(·, ·, t)‖Lp(Ω×Y ) ≤ C‖u‖Lp(Ω;Cper(Y )).

The last inequality shows that the estimate is uniform in ε. Similarly, it is not difficult to show that for any
t1, t2 ∈ [0, T ] and any ε

‖Dε(·, t1) −Dε(·, t2)‖Lp(Ω) ≤ C‖u(·, ·, t1) − u(·, ·, t2)‖Lp(Ω×Y )
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from which we use the fact that u ∈ C([0, T ];Lp(Ω;Cper(Y ))) to conclude that Dε(x, t) ∈ C([0, T ];Lp(Ω)).
Lastly, the strong Lp-convergence of Dε(·, t) to 0 follows from the fact that the convolution operator is a
compact operator. Indeed, for each t, as ε→ 0

Θ
(
x,

x
ε

)
u
(
x,

x
ε
, t
)
⇀ 〈Θu〉(x, t)

weakly in Lp(Ω). Therefore from (3.9) and the above observation we conclude that as ε→ 0

Dε(x, t) = ρ ∗x

(
Θε u

(
·, ·
ε
, t
)
− 〈Θ u〉(·, t)

)
(x) → 0,

strongly in Lp(Ω).

Step 3. We are now ready to estimate ‖eε(·, t)‖Lp(Ω). The unique solution eε ∈ C1([0, T ];Lp(Ω)) of (3.8) is
given by the formula,

eε(x, t) =
∫ t

0

∞∑
n=0

(t− τ)n

n!
(Lε)

n
Dε(x, τ)dτ.

For fixed t ∈ [0, T ], we now estimate the Lp norm of eε to obtain that

‖eε(·, t)‖Lp(Ω) ≤
∫ t

0

∞∑
n=0

(t− τ)n

(n)!
‖Lε‖n‖Dε(·, τ)‖Lp(Ω)

≤
∫ t

0

∞∑
n=0

(t− τ)n

(n)!
Mn‖Dε(·, τ)‖Lp(Ω)dτ

≤
∫ t

0

exp(M(t− τ))‖Dε(·, τ)‖Lp(Ω)dτ

where we have used the uniform estimate assumption on the operators Lε; that is there exists M > 0, so that

sup
ε>0

‖Lε‖ ≤M.

Using the facts we proved in Step 2 on Dε and the uniform convergence theorem, we see that ‖eε(·, t)‖Lp(Ω;Rd) →
0, as ε→ 0. That completes the theorem. �

4. Multiscale approximation and homogenization of linear peridynamics

We consider the state-based linear peridynamic model given in [32]. For convenience, we use the same notation
as that given in [24] which is consistent with the original definition given in [32]. A bond based peridynamic
model for fiber reinforced materials is considered in [2]. The elastic displacement inside the heterogeneous body
Ω with density pε is denoted by uε(x, t) and satisfies the peridynamic equation of motion given by

pε(x)∂ttuε(x, t) = Lεuε(x, t) + bε(x, t), for x ∈ Ω, t > 0, (4.1)

The initial conditions are given by

uε(x, 0) = uε
0(x), ∂tuε(x, 0) = vε

0(x), ∀x ∈ Ω.

Here bε(x, t) is a body force and by the notation of [24], the operator Lε is defined as,

Lε(u)(x) =
∫

Ω

(αε(x) + αε(x′))
ρε(x,x′ − x)
|x′ − x|2 (x′ − x)(x′ − x) · (u(x′) − u(x))dx′

+
∫

Ω

τε(x′)ρε(x,x − x′)(x′ − x)
(∫

Ω

ρε(x′,x′ − z)(z − x′) · (u(z) − u(x′))dz
)

dx′

+
∫

Ω

τε(x)ρε(x,x − x′)(x′ − x)
(∫

Ω

ρε(x,x − z)(z − x) · (u(z) − u(x))dz
)

dx′.
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where

ρε(x, ξ) = ρ0(ξ) + β

(
x
ε
,
x + ξ
ε

)
ρε
2(ξ),

β(·, ·) is a continuous periodic symmetric function, β(y,y′) = β(y′,y), that is bounded from above and below
by positive constants, ρ0(ξ) is an integrable, positive and even function supported on B(0, γ), the ball centered

at 0 of radius γ, ρε
2(ξ) =

1
εd
ρ2(
ξ

ε
), and ρ2(ξ) is an integrable, positive and even function with support contained

in B(0, δ). In addition, αε(x) and kε(x) are the shear and bulk moduli of the material occupying the position
x
ε
,

pε(x) = p
(x
ε

)
, αε(x) = α

(x
ε

)
, kε(x) = k

(x
ε

)
,

and
mε(x) =

∫
Ω

ρε(x,x′ − x)|x′ − x|2dx′.

where p, α, k ∈ Cper(Y ) are uniformly bounded from above and below by some positive constants, and the scalar
function

τε(x) =
d2kε(x)
mε(x)2

− αε(x)
mε(x)

·

Observe that for any x′,x ∈ Ω

ρε(x,x′ − x) = ρε(x,x − x′) = ρε(x′,x′ − x).

Remark 4.1.

a) We would like to make the observation that Lεuε represents the linearized total internal force applied at
material point x and in our formulation is made up of the force due to long-range interactions (represented
by the kernel ρ0) and the short range one represented by ρ2. The function β(x,y) tracks the properties of
two interacting material points. A simple change of variables shows that with the scaling given above, the
short range forces act within ε δ neighborhood of x. The ε−d scaling is a technical artifact that is chosen
for ρε

2(ξ) so that the asymptotic dynamics is of peridynamic form. Other choices can be made and this is
the subject of future study. For the derivation of the linearized peridynamics equation of motion (4.1) and
related discussion on peridynamics see references [12,22,24,32,33], see also [10,16] for recent reviews on the
mathematics of peridynamics.

b) We also note that since our interest is at the nonlocal level, we will take γ and δ as given parameters with
fixed values. Certainly, estimates for the operator and solutions will depend on γ and δ and we will neither
track nor quantify that dependance. In passing, we mention that for fixed ε and when ρ2 = 0, with proper
scaling of ρ0 with respect to the horizon γ, it is shown in [24, 32] that for small γ

Lεu ≈ div(με(x)∇u) + ∇[(με(x) + λε(x))div u]

for a function u that is either smooth or have properly defined local and nonlocal derivatives. The asymptotic
relationship associate with different scalings of the heterogeneity length scale ε and the nonlocal horizon γ
is a subject of future study.

Remark 4.2. From the conditions imposed above, the weighted volume

m0(x) =
∫

Ω

ρ0(x′ − x)|x′ − x|2dx′
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is a positive continuous function on Ω, (and so min
x∈Ω

m0(x) > 0). Moreover,lim
ε→0

‖mε − m0‖L∞ = 0 and there

exists ε0 > 0 and a constant C > 0, such that

sup
ε∈(0,ε0)

sup
x∈Ω

τε(x) ≤ C.

4.1. Properties of PD operators

To apply the preliminary results we obtained in Section 2 to the peridynamic model, we need to demonstrate
that the peridynamic operator satisfies the linearity and boundedness assumptions. Comparing operators, we
note that Pε becomes p−1

ε Lε. Because of the nondegeneracy assumption on the density pε, essentially all prop-
erties of Lε can easily be shown to hold for Pε.

We present the following result on the uniform boundedness of the nonlocal peridynamic operators which
extends the uniform boundedness of Lε : L2(Ω; Rd) → L2(Ω; Rd) demonstrated in [24] to any Lp space.

Theorem 4.3. The peridynamic operator Lε : Lp(Ω; Rd) → Lp(Ω; Rd) is a bounded linear operator. Moreover,
the operator norm is uniformly bounded from above in ε.

Proof. We write Lε = Lε
b + Lε

s1 + Lε
s2. We will show that each of these maps are bounded linear operators on

Lp(Ω; Rd). In the above decomposition,

Lε
bu(x) =

∫
Ω

(αε(x) + αε(x′))
ρε(x,x′ − x)
|x′ − x|2 (x′ − x)(x′ − x) · (u(x′) − u(x))dx′,

Lε
s1u(x) =

∫
Ω

τε(x′)ρε(x,x − x′)(x′ − x)
(∫

Ω

ρε(x′,x′ − z)(z − x′) · (u(z) − u(x′))dz
)

dx′

and

Lε
s2u(x) =

∫
Ω

τε(x)ρε(x,x − x′)(x′ − x)
(∫

Ω

ρε(x,x − z)(z − x) · (u(z) − u(x))dz
)

dx′.

It is obvious that they are all linear operators. Let us show that they map Lp(Ω) into Lp(Ω). Let us begin
estimating. First

|Lε
bu(x)| ≤ gε ∗ |u|(x) + f ε(x)|u|(x)

where gε(ξ) = 2Aρ0(ξ) +Bρε
2(ξ), and f ε(x) = 2Amε(x) with A = max

x∈Ω
α(x), B = max

y,y′∈Y
β(y,y′). Then we can

estimate the Lp norm of the first term in the right hand side as

‖gε ∗ |u|‖Lp(Ω) ≤ ‖gε‖L1(Rd)‖u‖Lp(Ω).

It is not difficult to show that

sup
ε>0

‖gε‖L1(Rd) <∞ and sup
ε>0

sup
x∈Ω

f ε(x) <∞.

Combining the above estimates, there exists a positive constant C independent of ε such that

‖Lε
bu‖Lp(Ω) ≤ C‖u‖Lp(Ω).

To show the boundedness of other operators, define the sequence of operators u �→ Γε(u) given by

Γ ε(u)(x′) =
∫

Ω

ρε(x′,x′ − z)(z − x′) · (u(z) − u(x′))dz.
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Following the above procedure, we have the estimate

‖Γ ε(u)‖Lp(Ω) ≤ C‖u‖Lp(Ω),

where C is independent of ε. Now we may write

Lε
s1u(x) =

∫
Ω

τε(x′)ρε(x,x − x′)(x′ − x)Γ ε(u)(x′)dx′,

and

Lε
s2u(x) =

(
τε(x)

∫
Ω

ρε(x,x − x′)(x′ − x)dx′
)
Γ ε(u)(x).

Thus we can estimate
‖Lε

siu‖Lp ≤ C‖Γ ε(u)‖Lp , for i = 1, 2.

after noting that
sup
ε>0

sup
x∈Ω

τε(x) <∞.

Together, we get the boundedness of Lε. �

We will also need to study the operator Lε defined over the space Lp(Ω × [0, T ]; Rd). It is clear that using
Lemma 2.9, for v ∈ Lp(Ω × [0, T ]; Rd), the function Lεv(x, t) is also in Lp(Ω × [0, T ]; Rd). Moreover, repeating
the exact argument as above, one can show that Lε is a uniformly bounded linear operator on Lp(Ω× [0, T ]; Rd).

4.2. Two scale limit equation

As part of obtaining the two scale limit equation, let us discuss the two scale convergence of Lεuε, for a given
two scale convergent sequence uε. The theorem we plan to prove is the following.

Theorem 4.4. Assume that Lε is the peridynamic operator given above. Suppose also that uε ∈
C([0, T ];Lp(Ω; Rd) is a bounded sequence that two scale converges to u ∈ Lp(Ω × Y × [0, T ]; Rd). Then there
exist bounded linear L0 on Lp(Ω × Y × [0, T ]; Rd) and a subsequence εn such that as n→ ∞

Lεnuεn 2
⇀ L0u

in Lp(Ω × Y × [0, T ]; Rd).

For simplification, let us introduce a few notations corresponding to the kernel ρ0(x′ − x), we let

λ0(x′ − x) = ρ0(x′ − x)(x′ − x), Λ(x) =
∫

Ω

λ0(x′ − x)dx′,

m0(x) =
∫

Ω

ρ0(x′ − x)|x′ − x|2dx′.

The following is an elementary result that will be used to find the two scale limit of Lεuε.

Lemma 4.5. Suppose that the bounded sequence uε(x, t) two scale converges to u(x,y, t) in Lp(Ω × Y ×
[0, T ]; Rd). Suppose also that α, k are in Cper(Y ). Then we have the following. As ε→ 0,

(1) the sequence αεuε 2
⇀ α(y)u(x,y, t) in Lp(Ω × Y × [0, T ]; Rk);
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(2) the sequence τε
2
⇀ τ(x,y) where τ(x,y) :=

d2k(y)
m0(x)2

− α(y)
m0(x)

in Lp(Ω × Y ). Moreover, τε ⇀ τ (x) weakly in

Lp(Ω) with

τ(x) :=
d2〈k〉
m0(x)2

− 〈α〉
m0(x)

= 〈τ((x,y)〉,

and
τε uε 2

⇀ τ(x,y)u(x,y, t) in Lp(Ω × [0, T ]× Y ; Rk).

Proof. We only proof part (2) of the lemma. Let us define

τ0
ε (x) =

d2kε(x)
m0(x)2

− αε(x)
m0(x)

·

Then noting that for all ε > 0, for all x ∈ Ω, mε(x) ≥ m0(x) ≥ min
x∈Ω

m0(x) > 0, and α and k are bounded

functions, it follows that there exists a constant C > 0 such that for all ε > 0

‖τε − τ0
ε ‖L∞(Ω) ≤ C

(‖m2
ε −m2

0‖L∞ + ‖mε −m0‖L∞
)
,

and therefore ‖τε − τ0
ε ‖L∞(Ω) → 0, as ε→ 0. As a consequence τε and τ0

ε will have the same two scale limit. We

now use the fact that αε
2
⇀ α(y) and kε

2
⇀ k(y) to conclude that τ0

ε
2
⇀ τ(x,y) as claimed. �

Next, similar to the steps taken in [24], we introduce an auxiliary operator Lε
bs given by

(Lε
bsv)(x, t) :=

∫
Ω

(αε(x) + αε(x′))
ρε(x,x′ − x)
|x′ − x|2 (x′ − x) ⊗ (x′ − x) (v(x′, t) − v(x, t)) dx′

+
∫

Ω

τε(x′)λ0(x′ − x)
(∫

Ω

λ0(z − x′) · (v(z, t) − v(x′, t))dz
)

dx′

+ τε(x)Λ(x)
∫

Ω

λ0(z − x) · (v(z, t) − v(x, t))dz,

which is, as we prove below, is the first order approximation of Lε. The uniform boundedness of Lε
bs and the

estimate on Lε − Lε
bs given below again extend related results in the L2 case proved in [24].

Theorem 4.6. Lε
bs is a bounded linear operator on Lp(Ω× [0, T ],Rd). Moreover, the difference of the operators

Lε and Lε
bs, Lε − Lε

bs → 0 in the operator norm, as ε→ 0.

Proof. For any u ∈ Lp(Ω × [0, T ]; Rd), the difference of the operator values (Lε − Lε
bs)u can be written as

(Lε − Lε
bs)u = Jε

1u + Jε
2u + Jε

3u + Jε
4u + Jε

5u + Jε
6u

where using the notation λ2(ξ) = ρ2(ξ)ξ, and the scaling λε
2(ξ) =

1
εd
λ2

(
ξ

ε

)

Jε
1u(x, t) =

∫
Ω

τε(x′)λ0(x′ − x)
(∫

Ω

(β
(

x′

ε
,
z
ε

)
λε

2(z − x′) · (u(z, t) − u(x′, t))dz
)

dx′

Jε
2u(x, t) =

∫
Ω

τε(x′)(β
(

x
ε
,
x′

ε

)
λε

2(x
′ − x)

(∫
Ω

λ0(z − x′) · (u(z, t) − u(x′, t))dz
)

dx′

Jε
3u(x, t) =

∫
Ω

τε(x′)β
(

x
ε
,
x′

ε

)
λε

2(x
′ − x)

(∫
Ω

(β
(

x′

ε
,
z
ε

)
λε

2(z − x′) · (u(z, t) − u(x′, t))dz
)

dx′
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Jε
4u(x, t) = τε(x)Λ(x)

(∫
Ω

β
(x
ε
,
z
ε

)
λε

2(z − x) · (u(z, t) − u(x, t))dz
)

Jε
5u(x, t) =

(
τε(x)

∫
Ω

β

(
x
ε
,
x′

ε

)
λε

2(x
′ − x)dx′

)(∫
Ω

λ0(z − x) · (u(z, t) − u(x, t))dz
)

Jε
6u(x, t) =

(
τε(x)

∫
Ω

β

(
x
ε
,
x′

ε

)
λε

2(x
′ − x)dx′

)(∫
Ω

β
(x
ε
,
z
ε

)
λε

2(z − x) · (u(z, t) − u(x, t))dz
)
.

Using Lemma 2.9, it is not difficult to prove that Jε
i , for i = 1, . . . , 6 are bounded linear operators on

Lp(Ω × [0, T ]; Rd). Moreover, the operator norm of each of these operators goes to 0 as ε → 0. In fact, after
simple estimating we obtain that

sup
u∈Lp(Ω×[0,T ];Rd)

‖Jε
i u‖Lp

‖u‖Lp

=
{

C ε if i = 1, 2, 4, 5
C ε2 if i = 3, 6

,

for a constant C independent of ε. �

The following lemma introduces the “limiting” operator L0 and whose boundedness and linearity is not difficult
to prove.

Lemma 4.7. Define the operator L0 as

(L0u)(x,y) =α(y)

∫
Ω

K0(x
′ − x)(〈u〉(x′) − u(x,y))dx′

+

∫
Ω

K0(x
′ − x)(〈αu〉(x′) − 〈α〉u(x,y))dx′

+

∫
Ω

λ(x′ − x)

∫
Ω

λ0(z − x′) · (τ(x′)〈u〉(z) − 〈τu〉(x′))dzdx′

+ τ (x,y)Λ(x)

∫
Ω

λ(z − x) · (〈u〉(z) − u(x,y))dz

+

∫
B(y,δ)

(α(y) + α(y′))β(y,y′)K2(y
′ − y)(u(x,y′) − u(x,y))dy′ (4.2)

where Ki(z) =
ρi(z)
|z|2 (z ⊗ z) for i = 0, 2. Then L0 is a bounded linear operator on Lp(Ω × Y ; Rd). As a

consequence, p−1L0 is also a bounded operator on Lp(Ω × Y ; Rd).

Remark 4.8. From the definition of operator L0 and Lemma 2.9, if u ∈ Lp(Ω × Y × [0, T ]; Rd), then
(L0u)(x,y, t) ∈ Lp(Ω×Y × [0, T ]; Rd). Moreover, L0 is also a bounded linear operator on Lp(Ω×Y × [0, T ]; Rd).

Proof of Theorem 4.4. Suppose that uε
2
⇀ u in Lp(Ω×Y × [0, T ]; Rd). From Theorem 4.6, Lεuε and Lε

bsuε have
the same two scale limit. Thus it suffices to find the two scale limit of the latter. The derivation of the two scale
limit rests on Lemmas 4.5, and 2.10, the fact that Lε

bsuε is a finite sum of convolution-type operators and the
convolution is a compact operator. We first write

Lε
bsuε = Lε,1

bs uε + Lε,2
bs uε + Lε,3

bs + Lε,4
bs uε
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and we will compute the two scale limit of each of the terms. First writing it as a sum of convolution type
integrals, and then application of Lemma 4.5, Lemma 2.10 and the remark following it we see that

Lε,1
bs uε(x, t) :=

∫
Ω

(αε(x) + αε(x′))K0(x′ − x) (uε(x′, t) − uε(x, t)) dx′

2
⇀ α(y)

∫
Ω

ρ0(x′ − x)
|x′ − x|2 (x′ − x) ⊗ (x′ − x)(〈u〉(x′, t) − u(x,y, t))dx′

+
∫

Ω

ρ0(x′ − x)
|x′ − x|2 (x′ − x) ⊗ (x′ − x)(〈αu〉(x′, t) − 〈α〉u(x,y, t))dx′.

Again with a similar approach the two scale limit of Lε,2
bs uε is computed as

Lε,2
bs uε(x, t) :=

∫
Ω

(αε(x) + αε(x′))β
(

x
ε
,
x′

ε

)
1
εd

K2

(
x′ − x
ε

)
(uε(x′, t) − uε(x, t)) dx′

2
⇀

∫
B(y,δ)

(α(y) + α(y′))β(y,y′)K2(y′ − y)(u(x,y′, t) − u(x,y, t))dy′.

Indeed, write Lε,2
bs uε(x, t) = Iε

1uε(x, t) − Iε
2uε(x, t), where

Iε
1uε(x, t) =

∫
Ω

(αε(x) + αε(x′))β
(

x
ε
,
x′

ε

)
ρε
2(x′ − x)
|x′ − x|2 (x′ − x) ⊗ (x′ − x)uε(x′, t)dx′

and

Iε
2uε(x, t) =

∫
Ω

(αε(x) + αε(x′))β
(

x
ε
,
x′

ε

)
ρε
2(x

′ − x)
|x′ − x|2 (x′ − x) ⊗ (x′ − x)dx′ uε(x, t).

We will find the two scale limit of each of these terms. Let us begin with Iε
1uε. For each x, after making the

change of variables x′ = x + εz, we have

Iε
1uε(x, t) =

∫
B(0,δ)

(
α
(x
ε

)
+ α

(x
ε

+ z
))

β
(x
ε
,
x
ε

+ z
)

K2(z)uε(x + εz, t)dz.

Now suppose that ψ(x,y, t), is a given smooth test function. Then for each z, Ψ (x,y) := (α(y) + α(y +
z))β(y,y + z)ψ(x,y, t) is also an admissible test function. Then we have that

∫ T

0

∫
Ω

Iε
1uε(x, t) ·ψ(x,x/ε, t)dxdt =

∫
B(0,δ)

ρ2(z)

|z|2
(∫ T

0

∫
Ω

z · uε(x + εz, t)z · Ψ
(
x,

x

ε
, t
)

dxdt

)
dz.

Denoting the inner integral by Qε(z), and noting that uε(x + εz, t)
2
⇀ u(x,y + z, t) and using Ψ as a test function, it

follows from the two scale convergence of uε that for each z,

Qε(z) →
∫ T

0

∫
Ω×Y

(α(y) + α(y + z))β(y, z + z)z · u(x,y + z, t)z ·ψ(x,y, t) dydxdt.

Also note that for each z, |Qε(z)| ≤ C‖uε‖Lp ≤ C. Then applying uniform bounded convergence theorem, it follows that
as ε→ 0,

∫ T

0

∫
Ω

Iε
1uε(x, t) · ψ(x,x/ε, t)dxdt =

∫
B(0,δ)

ρ2(z)

|z|2 Qε(z)dz

→
∫

B(0,δ)

ρ2(z)

|z|2
∫ T

0

∫
Ω×Y

(α(y) + α(y + z))β(y,y + z)z · u(x,y + z, t)z ·ψ(x,y, t) dydxdtdz.
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Rewriting the last limit we observe that

lim
ε→0

∫ T

0

∫
Ω

Iε
1uε(x, t) · ψ(x,x/ε, t)dxdt

=

∫ T

0

∫
Ω×Y

(∫
B(y,δ)

(α(y) + α(y′))β(y,y′)K2(y
′ − y)u(x,y′, t)dy′

)
· ψ(x,y, t) dy dxdt.

To find the two scale limit of Iε
2uε, we first observe after change of variables that

Iε
2uε(x, t) = (ϕ

(x

ε

)
+ fε(x))uε(x, t)

where ϕ(y) is a Y -periodic continuous matrix function given by change variables to obtain that

ϕ(y) =

∫
B(0,δ)

(α(y) + α(y + z))β (y,y + z)K2(z) dz

and for any x ∈ Ω

fε(x) =

∫
B(0,δ)

(χ(x + εz) − 1)(α(y) + α(y + z))β (y,y + z)K2(z) dz.

Clearly fε(x) → 0 strongly in Lp(Ω) for any p > 1, and therefore, Iε
2u

ε(x, t) and ϕ
(x

ε

)
uε have the same two scale limit.

We now apply Lemma 4.5 to prove that as ε → 0,

ϕ
(x

ε

)
uε 2

⇀ ϕ(y)u(x,y, t) in Lp(Ω × Y × [0, T ]; Rd).

We can then conclude that as ε→ 0,

Iε
2u

ε(x, t)
2
⇀

∫
B(y,δ)

(α(y) + α(y′)) β
(
y,y′)K2(y

′ − y) dy′ u(x,y, t).

Finally the two scale limit (up to a subsequence ) of Lε,3
bs uε and Lε,4

bs uε can be computed as follows using Lemma 4.5 and
Lemma 2.10

Lε,3
bs uε(x, t) :=

∫
Ω

τε(x
′)λ0(x

′ − x)

(∫
Ω

λ1(z − x′) · (uε(z, t) − uε(x′, t))dz
)

dx′

2
⇀

∫
Ω

λ(x′ − x)

∫
Ω

λ0(z − x′) · (〈τ 〉(x′)〈u〉(z, t) − 〈τu〉(x′, t))dzdx′

and

Lε,4
bs uε(x, t) := τε(x)Λ(x)

∫
Ω

λ0(z − x) · (uε(z, t) − uε(x, t))dz

2
⇀ τ (x,y)Λ(x)

∫
Ω

λ(z − x) · (〈u〉(z, t) − u(x,y, t))dz.

�

Finally we give the two scale limit equation of the heterogeneous peridynamic equaiton.

Theorem 4.9. Suppose that uε(x, t) is the solution to the peridynamics equation of motion (4.1) with the
forcing term bε two scale converge to b(x,y, t), the initial data uε

0, and vε
0 two scale converge in Lp(Ω×Y ; Rd)

to u0(x,y) and v0(x,y) respectively. If L0 is the operator defined in Lemma 4.7, then uε
2
⇀ u in Lp(Ω × Y ×

[0, T ]; Rd) where u(x,y, t) uniquely solves the nonlocal system of linear equations

p(y)∂ttu(x,y, t) = (L0u)(x,y, t) + b(x,y, t) (4.3)

with initial conditions
u(x,y, 0) = u0(x,y), ∂tu(x,y, 0) = v0(x,y). (4.4)
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The proof of the theorem exactly parallels that of Theoem 3.1, where we make use of Lemma 2.14 and Theo-
rem 4.4. We remark that given the linearity and the boundedness of the operator L0, the two scale limit u is
uniquely defined by the equations (4.3)−(4.4). Moreover, if both the body force, b(x,y, t) and the initial data
u0(x,y) and v0(x,y) are extended periodically with period Y, in the y-variable to the whole of R

d, then the
periodically extended function u will still be a solution to (4.3)−(4.4). From here on we assume that this is the
case.

4.3. Homogenized peridynamics

From Theorem 4.9 we obtain that the average value 〈u〉(x) of u(x,y, t), over period Y , approximates on
average or the overall behavior of the actual field uε solving (4.1). We also have and the weak convergence
uε ⇀ 〈u〉, weakly in Lp(Ω × [0, T ]), and that for any subdomain V ⊂ Ω, and any interval (t0, t1),

lim
ε→0

∫
V ×(t0,t1)

uε(x, t)dxdt = lim
ε→0

∫
V ×(t0,t1)

〈u〉(x, t)dxdt.

We may write the operator L0 given in (4.2) as

(L0u)(x,y) = L1
ave〈u〉(x) + (L1

osc〈u〉)(x,y) + M1(u − 〈u〉)(x,y) + (M2u)(x,y), (4.5)

where the operators on the right hand side are defined by

L1
aveu

H(x) =2〈α〉
∫

Ω

ρ0(x′ − x)
|x′ − x|2 (x′ − x) ⊗ (x′ − x)(uH(x′) − uH(x)) dx′

+
∫

Ω

〈τ〉(x′)λ0(x′ − x)
∫

Ω

λ0(z − x′) · (uH(z) − uH(x′))dzdx′

+ 〈τ〉(x)Λ(x)
∫

Ω

λ0(z − x) · (uH(z) − uH(x))dz,

(L1
oscu

H)(x,y) = (α(y) − 〈α〉)
∫

Ω

K0(x′ − x)(uH(x′) − uH(x)) dx′

+ (τ(x,y) − 〈τ〉)Λ(x)
∫

Ω

λ0(z − x) · (uH(z) − uH(x))dz,

and

(M1w)(x,y) =
∫

Ω

K0(x′ − x)〈αw〉(x′) dx′ −
∫

Ω

λ0(x′ − x)
∫

Ω

λ0(z − x′) · 〈τ w〉(x′)dzdx′

− (α(y) + 〈α〉)A(x)w(x,y) − τ(x,y)Λ(x) ⊗ Λ(x)(w(x,y))

=
∫

Ω

K0(x′ − x)〈αw〉(x′) dx′ −
∫

Ω

λ0(x′ − x)Λ(x′) · 〈τ w〉(x′) dx′ − P(x,y)(w(x,y))

where
A(x) =

∫
Ω

K0(x′ − x)dx′

and
P(x,y) = (α(y) + 〈α〉)A(x)) + τ(x,y)Λ(x) ⊗ Λ(x),

is the two scale limit of P
0
ε(x) which is defined as in [24] by,

P
0
ε(x) =

∫
Ω

(αε(x) + αε(x′))K0(x′ − x)dx′ + τ0
ε (x)Λ(x) ⊗ Λ(x).
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P
0
ε(x) is the so-called stability matrix and it has been shown to be uniformly positive definite [24]. And finally,

M2w(x,y) =
∫

B(y,δ)

(α(y) + α(y′))β(y,y′)K2(y′ − y)(w(x,y′) − w(x,y))dy′.

Defining uH(x) = 〈u〉(x), and write u(x,y, t) = uH(x, t) + w(x,y, t). Then w ∈ Lp(Ω × Y × [0, T ]; Rd) and
〈w〉(x, t) = 0 for all (x, t) ∈ Ω × [0, T ]. We now present a means of obtaining the functions uH and w(x,y, t).
Notice that the two scale dynamic equation (4.3) can be expressed as

uH
tt + wtt = p−1(y)L1

aveu
H(x, t) + p−1(y)(L1

oscu
H)(x,y, t)

+ p−1(y)(Mw)(x,y, t) + p−1(y)b(x,y, t) (4.6)

where (Mw)(x,y) = (M1w)(x,y)+M2w(x,y). Integrating over Y and using the fact that 〈w〉 = 0, we obtain
the equation for all (x, t) ∈ Ω × [0, T ],

uH
tt (x, t) = 〈p−1〉L1

aveu
H(x, t) + 〈p−1L1

oscu
H〉(x, t) + 〈p−1Mw〉(x, t) + 〈p−1b〉(x, t). (4.7)

We now plug in (4.7) in (4.6), we obtain that for all (x,y) ∈ Ω × Y and t > 0

wtt(x,y, t) = (PpuH)(x,y, t) + Kpw(x,y, t) + Bp(x,y, t), (4.8)

where the operator

(PpuH)(x,y, t) = (p−1(y) − 〈p−1〉)L1
aveu

H(x, t) + p−1(y)(L1
oscu

H)(x,y, t) − 〈p−1L1
oscu

H〉(x, t)
and

Kpw(x,y, t) := p−1(y)L0w(x,y, t) − 〈p−1L0w〉(x, t),
is defined over the set of functions w(x,y, t) such that 〈w〉 = 0 and the function Bp(x,y, t) := p−1(y)b(x,y, t)−
〈p−1b〉(x, t). The coupled system (4.7) and (4.8) together with the initial data

uH(x, 0) = 〈u0〉(x), uH
t (x, 0) = 〈v0〉(x),

w(x,y, 0) = u0(x,y) − 〈u0〉(x) and wt(x,y, 0) = v(x,y) − 〈v0〉
may be used to solve for both uH and w simultaneously. As discussed earlier, one may utilize the variation of
constant formula to decouple the equations for uH and w. In the presence of nontrivial heterogeneity, that is
when pε, αε and kε are all nonconstant functions there is the expected history dependence in the final equation
for uH .

4.4. Strong approximation to heterogeneous peridynamics

In this subsection we give a strong approximation for uε using the two scale limit function u(x,y, t) that is
uniquely determined by the system. We do this in the event of a smoother initial two scale data. Below is the
main theorem we would like to prove.

Theorem 4.10. Suppose that u0(x,y), and v0(x,y) are in Lp(Ω;Cper(Y ; Rd)), and that b(x,y, t) ∈
C([0, T ];Lp(Ω;Cper(Y ; Rd))). Suppose also that uε(x, t) is the solution to the peridynamics equation of

motion (4.1) with the forcing term bε = b
(
x,

x
ε
, t
)

and the initial data uε
0(x) = u0

(
x,

x
ε

)
, and

vε
0(x) = v0

(
x,

x
ε

)
. Then the unique solution to the nonlocal system of linear equations (4.3)−(4.4) u is in

C2([0, T ];Lp(Ω;Cper(Y ; Rd))). Moreover, for each t ∈ [0, T ],

lim
ε→0

∥∥∥uε(·, t) − u
(
x,

x
ε
, t
)∥∥∥

Lp(Ω;Rd)
= 0. (4.9)
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Proof. Given that the two scale initial data u0 and v0 belong to Lp(Ω;Cper(Y ; Rd)), the conclusion that the
solution u to the two scale limit equation is unique and belongs to C2([0, T ];Lp(Ω;Cper(Y ; Rd))) follows from
standard semi group theory, provided we can show that p−1L0 is a bounded operator on Lp(Ω,Cper(Y ; Rd).
The later can be proved using the fact that p, α, k and β belong to Cper(Y ). Indeed, it is not difficult to show
from the definition of the operator L0 given in Lemma 4.4, for any u ∈ Lp(Ω;Cper(Y ; Rd)), and any x ∈ Ω,
L0u(x, ·) ∈ Cper(Y ). Moreover, with tedious estimates we can find a positive constant C (that may depend on
the bounds of p, α, k and also on ρ0 and ρ2) such that for any u ∈ Lp(Ω;Cper(Y ; Rd)),

(∫
Ω

‖L0u(x, ·)‖p
L∞(Y )

)1/p

≤ C

[
‖〈u〉‖Lp(Ω) +

(∫
Ω

‖u(x, ·)‖p
L∞(Y )dx

)1/p
]
.

Noting that for any u ∈ Lp(Ω;Cper(Y ; Rd)),

‖〈u〉‖Lp(Ω) ≤
(∫

Ω

‖u(x, ·)‖p
L∞(Y )dx

)1/p

we have that
‖L0u‖Lp(Ω;Cper(Y ;Rd)) ≤ C‖u‖Lp(Ω;Cper(Y ;Rd)).

To prove the strong approximation given in (4.9), we follow the argument used in the proof of Theorem 3.3.
Denoting the error eε(x, t) = uε(x, t) − u(x,

x
ε
, t), we see that it solves the evolution equation

⎧⎪⎨
⎪⎩

eε
tt(x, t) = p−1

ε Lεeε(x, t) + Dε(x, t), x ∈ Ω, t ∈ [0, T ]
eε(x, 0) = 0 x ∈ Ω,

eε
t(x, 0) = 0 x ∈ Ω

where Dε(x, t) = p−1
ε [Lε(u(x,

x
ε
, t) − (L0u)(x,

x
ε
, t)]. If we show that for each ε > 0, Dε(x, t) ∈

C([0, T ], Lp(Ω; Rd)), we may use (2.5) in Theorem 2.2 to write eε in terms of Dε as

eε(t) =
∫ t

0

S((t − τ)Pε)Dε(τ) dτ

where Pε = p−1
ε Lε, and the operator S is as defined in Section 2. From the above formula, using the same

argument as in the proof of Theorem 3.3, we conclude that for each t, ‖eε‖Lp → 0, as ε → 0. The following
lemma proofs all assertions in connection with Dε to complete the proof of the theorem. �

Lemma 4.11. For 1 < p < ∞, assume that the two scale vector function u(x,y, t) belongs to
C([0, T ];Lp(Ω;Cper(Y ; Rd))). Then

i) for each ε > 0, Dε(x, t) ∈ C([0, T ], Lp(Ω; Rd)),
ii)

sup
ε>0

sup
t∈[0,T ]

‖Dε(·, t)‖Lp(Ω) <∞, and (4.10)

iii) for all t ∈ [0, T ],
lim
ε→0

‖Dε(·, t)‖Lp(Ω) = 0.

Proof. (Part i) and ii)) Noting the fact that the operators Lε and L0 are not intrinsically dependent in the time
variable and using their uniform boundedness as linear operators, the inequality (4.10) is not difficult to show.

To prove part i) we will drop the multiplier p−1 as it independent of t and is uniformly bounded by
1
p0
. It then
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suffices to show that both Lε(u(x,
x
ε
, t)) and (L0u)(x,

x
ε
, t) are in C([0, T ];Lp(Ω; Rd). To that end, let us pick

t1, t2 ∈ [0, T ] and estimate as

‖Lε
(
u
(
·, ·
ε
, t1

))
− Lε

(
u
(
·, ·
ε
, t2

))
‖Lp(Ω) = ‖Lε

(
u
(
·, ·
ε
, t1

)
− u

(
·, ·
ε
, t2

))
‖Lp(Ω)

≤ C‖u(·, ·
ε
, t1) − u

(
·, ·
ε
, t2

)
‖Lp(Ω)

≤ C‖u(·, ·, t1) − u(·, ·, t2)‖Lp(Ω×Y ),

where we used the uniform boundedness of the operator Lε in the first inequality and used the prop-
erty of the space Lp(Ω;Cper(Y ; Rd)) in the second inequality. Now continuity follows from the fact that
u ∈ C([0, T ];Lp(Ω;Cper(Y ; Rd))).

Next we will work on (L0u)(x,
x
ε
, t). By definition,

(L0u)
(
x,

x
ε
, t
)

= L1
ave〈u〉(x, t) + (L1

osc〈u〉)
(
x,

x
ε
, t
)

+ M1(u − 〈u〉)
(
x,

x
ε
, t
)

+ (M2u)
(
x,

x
ε
, t
)

We show that each term in the above expression belongs to the space. For that we merely apply the boundness of
the operators together with the following list of elementary facts. Suppose that u ∈ C([0, T ];Lp(Ω,Cper(Y ; Rd))).
Then the following are true.

a) 〈u〉(x, t) ∈ C([0, T ];Lp(Ω; Rd)).
b) ∀ε > 0, u(x,

x
ε
, t) ∈ C([0, T ];Lp(Ω; Rd)), and so are P(x,

x
ε
)u(x,

x
ε
, t), P(x,

x
ε
)〈u〉(x, t).

c) (M2u)(x,
x
ε
, t) ∈ C([0, T ];Lp(Ω; Rd)).

Indeed, part a) can be shown as

‖〈u〉(·, t1) − 〈u〉(·, t2)‖Lp ≤
∫

Y

‖u(·,y, t1) − u(·,y, t2)‖Lp dy ≤ ‖ sup
y∈Y

{u(·,y, t1) − u(·,y, t2)}‖Lp

where the first inequality is obtained applying Minkowski’s inequality. Part b) follows from the estimate that

‖u
(
·, ·
ε
, t1

)
− u

(
·, ·
ε
, t2

)
‖Lp(Ω) ≤ C‖u(·, ·, t1) − u(·, ·, t2)‖Lp(Ω×Y )

≤ C‖ sup
y∈Y

{u(·,y, t1) − u(·,y, t2)}‖Lp .

Part c) follows from the estimate

‖(M2u)
(
·, ·
ε
, t1

)
− (M2u)

(
·, ·
ε
, t2

)
‖Lp ≤ 4‖α‖L∞‖β‖L∞‖ρ2‖L1‖ sup

y∈Y
{u(·,y, t1) − u(·,y, t2)}‖Lp .

Now, we move to prove the Part iii) of the lemma. Recall for a fixed t and v(x) = u(x,
x
ε
, t),

Lεv(x) :=
∫

Ω

(αε(x) + αε(x′))
ρε(x,x′ − x)
|x′ − x|2 (x′ − x) ⊗ (x′ − x) (v(x′) − u(x)) dx′

+
∫

Ω

τε(x′)λ0(x′ − x)
(∫

Ω

λ1(z − x′) · (v(z) − v(x′))dz
)

dx′

+ τε(x)Λ(x)
∫

Ω

λ0(z − x) · (v(z) − v(x)dz + R(v(x)).
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Moreover,

(L0u)
(
x,

x
ε
, t
)

=α
(x
ε

)∫
Ω

K1 (x′ − x)
(
〈u〉 (x′, t) − u

(
x,

x
ε
, t
))

dx′

+
∫

Ω

K1 (x′ − x)
(
〈αu〉 (x′, t) − 〈α〉u

(
x,

x
ε
, t
))

dx′

+
∫

Ω

λ (x′ − x)
∫

Ω

λ0 (z − x′) [〈τ〉 (x′) 〈u〉 (z, t) − 〈τu〉 (x′, t)]dzdx′

+ τ
(
x,

x
ε

)
Λ (x)

∫
Ω

λ (z − x)
(
〈u〉 (z, t) − u

(
x,

x
ε
, t
))

dz

+
∫

B(0,δ)

(
α
(x
ε

)
+ α

(x
ε

+ z
))

β
(x
ε
,
x
ε

+ z
)

K2 (z)
(
u
(
x,

x
ε

+ z, t
)
− u

(
x,

x
ε
, t
))

dz.

The difference Lε(u(x,
x
ε
, t) − (L0u)(x,

x
ε
, t) can be written as

Lε(u
(
x,

x
ε
, t
)
− (L0u)

(
x,

x
ε
, t
)

=
8∑

k=1

dε
k(x, t)

where

dε
1 (x, t) =αε (x)

∫
Ω

K0 (x′ − x)
(
u
(
x′,

x′

ε
, t

)
− 〈u〉 (x′, t)

)
dx′

dε
2 (x, t) =

∫
Ω

K0 (x′ − x)
(
αε (x′)u

(
x′,

x′

ε
, t

)
− 〈αu〉 (x′, t)

)
dx′

dε
3 (x, t) =

∫
Ω

K0 (x′ − x) (αε (x′) 〈u〉 (x′, t) − 〈α〉〈u〉 (x′, t)) dx′

dε
4 (x, t) =

∫
Ω

(〈α〉 − αε (x′))K0 (x′ − x)u
(
x,

x
ε
, t
)

dx′

dε
5 (x, t) =

∫
Ω

τε (x′)λ0 (x′ − x)
(∫

Ω

λ0 (z − x′) ·
(
u
(
z,

z
ε
, t
)
− u

(
x′,

x′

ε
, t

))
dz
)

dx′

−
∫

Ω

λ0 (x′ − x)
∫

Ω

λ0 (z − x′) [〈τ〉 (x′) 〈u〉 (z, t) − 〈τu〉 (x′, t)]dzdx′

dε
6 (x, t) = τε (x)Λ (x)

∫
Ω

λ0 (z − x) ·
(
u
(
z,

z
ε
, t
)
− 〈u〉 (z, t)

)
dz

dε
7 (x, t) =R

(
u
(
x,

x
ε
, t
))

and

dε
8 (x, t) =

∫
B(0,δ)

[
χΩ (x + εz)

(
α
(x
ε

)
+ α

(x
ε

+ z
))

β
(x
ε
,
x
ε

+ z
)

×K2 (z)
(
u
(
x + εz,

x
ε

+ z, t
)
− u

(
x,

x
ε
, t
))]

dz

−
∫

B(0,δ)

(
α
(x
ε

)
+ α

(x
ε

+ z
))

β
(x
ε
,
x
ε

+ z
)

K2 (z)
(
u
(
x,

x
ε

+ z, t
)
− u

(
x,

x
ε
, t
))

dz

We show that for i = 1, . . . , 8, ‖dε
i(·, t)‖Lp → 0 as ε→ 0. The strong convergence of dε

i(·, t) to 0 for i = 1, . . . , 6
follows from the fact that the “operators” are of convolution type and applying Lemma 4.5. dε

7(·, t) can be
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estimated as follows.

‖dε
7(·, t)‖Lp = ‖R(u(x,x/ε, t))‖Lp ≤ εC‖u(x,x/ε, t)‖Lp ≤ εC‖u‖Lp(Ω×Y ).

To estimate dε
8(·, t), we denote η(y,y′) = (α(y) + α(y′))β(y,y′) and write dε

8(·, t) = dε,1
8 (·, t) + dε,2

8 (·, t) with

dε,1
8 (x, t) =

∫
B(0,δ)

χΩ(x + εz)η
(x
ε
,
x
ε

+ z
)
K2(z)(u(x + εz,

x
ε

+ z, t) − u(x,
x
ε

+ z, t))dz

and
dε,2

8 (x, t) =
∫

B(0,δ)

(χΩ(x + εz) − 1)η
(x
ε
,
x
ε

+ z
)
K2(z)(u(x,

x
ε

+ z, t) − u(x,
x
ε
, t))dz.

Let show the strong convergence of each of this terms. Using Minkowski’s inequality,

‖dε,2
8 (·, t)‖Lp(Ω) ≤ C

∫
B(0,δ)

ρ2(z)
(∫

Ω

(χΩ(x + εz) − 1)p‖u(x, ·)‖p
L∞(Y )dx

)1/p

dz

For each z ∈ B(0, δ), ∫
Ω

(χΩ(x + εz) − 1)p‖u(x, ·)‖p
L∞(Y )dx → 0,

from which it follows that as ε→ 0, ‖dε,2
8 (·, t)‖Lp(Ω) → 0. Moreover,

‖dε,1
8 (·, t)‖Lp(Ω) ≤ C

∫
B(0,δ)

ρ2(z)
(∫

Ω

χΩ(x + εz)‖u(x + εz, ·, t) − u(x, ·, t)‖p
L∞(Y )dx

)1/p

dz

which, by Lemma 5.2 of [25], goes to 0, as ε→ 0. For completeness, Lemma 5.2 of [25] states that if p ∈ (1,∞),
then for any u ∈ Lp(Ω,Cper(Y ; Rd)), we have

lim
‖h‖→0

∫
Ω

‖u(x + h, ·) − u(x, ·)‖p
L∞(Y )dx = 0. �

5. Conclusions

In this work we have studied the homogenized evolution and corrector theory for linear evolution equations
associated with integral bounded operators defined over a heterogeneous medium. Our approach uses two-scale
operator convergence and captures the oscillations of a periodic medium in the high frequency limit. The ideas
have been illustrated in the concrete settings of bounded linear non-local operators described by state based
peridynamics and non-local linear convection-diffusion equations. In all settings the solution uε(x, t) of the
evolution equation is represented by a strong Lp approximation of the form uH(x, t) + wε(x, t). Here uH is
the homogenized evolution and the corrector wε is described by the coupled evolution w(x,y, t) that directly
encodes the effects of local oscillations in the medium. For state based peridynamic evolutions these oscillations
are given by the highly oscillatory short range forces and we recover a bottom up multi-scale analysis for the
evolution. A similar analysis is carried out for the non-local linear convection-diffusion evolution where the
oscillations correspond to highly oscillatory material heterogeneities of the medium. The results derived for the
two representative nonlocal continuum models provide good illustration to more general settings and they shed
light on how one may improve the effectiveness of nonlocal modeling of multiscale mechanical problems and
heterogeneous stochastic processes. We note that the heterogeneities remain when the nonlocal effect diminishes
so that the results derived here are not only valid for nonlocal models but are also consistent with the classical
homogenization theory for time dependent PDEs in the local limit.
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