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A POSTERIORI ERROR ESTIMATES FOR DISCONTINUOUS GALERKIN
METHODS USING NON-POLYNOMIAL BASIS FUNCTIONS

PART I: SECOND ORDER LINEAR PDE
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Abstract. We present the first systematic work for deriving a posteriori error estimates for general
non-polynomial basis functions in an interior penalty discontinuous Galerkin (DG) formulation for
solving second order linear PDEs. Our residual type upper and lower bound error estimates measure
the error in the energy norm. The main merit of our method is that the method is parameter-free, in the
sense that all but one solution-dependent constants appearing in the upper and lower bound estimates
are explicitly computable by solving local eigenvalue problems, and the only non-computable constant
can be reasonably approximated by a computable one without affecting the overall effectiveness of the
estimates in practice. As a side product of our formulation, the penalty parameter in the interior penalty
formulation can be automatically determined as well. We develop an efficient numerical procedure to
compute the error estimators. Numerical results for a variety of problems in 1D and 2D demonstrate
that both the upper bound and lower bound are effective.
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1. Introduction

Let Ω be a bounded domain. We consider the development of a posteriori error estimates for the following
second order linear PDE

−Δu + V u = f, in Ω, (1.1)

using the discontinuous Galerkin (DG) formulation with general non-polynomial basis sets.
Such equation arises in many scientific and engineering problems such as in electromagnetism, geophysics,

quantum physics, to name a few. In order to solve equation (1.1) in practice, it is desirable to reduce the
number of degrees of freedom for discretizing equation (1.1) to have a smaller algebraic problem to solve. While
standard polynomial basis functions can approach a complete basis set and is versatile enough to represent
almost any function of interest, the resulting number of degrees of freedom is usually large even when high
order polynomials are used. Non-polynomial basis functions are therefore often employed to reduce the number
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of degrees of freedom, and are widely used to solve equation (1.1) and other equations, including the planewave
basis set for solving Helmholtz equation [12, 27], the heterogeneous multiscale method (HMM) [28] and the
multiscale finite element method [13] for solving multiscale elliptic equations, and the various non-polynomial
basis set used in quantum chemistry such as the Gaussian basis set [9], atomic orbital basis set [16], and adaptive
local basis set [20], etc.

Besides solving the equation, it is also often desirable to assess the accuracy of the numerical solution via
a posteriori error estimates and to design approximation spaces that result in a uniform distribution of the
error in space to achieve best accuracy for a given number of degrees of freedom. In this paper we focus on the
a posteriori error estimates in the interior penalty DG formulation [3–5,7, 21, 29].

The DG formulation has the advantage that it formally relaxes the continuity constraint of basis functions
at the inter-element boundary, and is therefore particularly suitable for incorporating general basis functions,
which are difficult to match at the inter-element boundary.

1.1. Previous work

Compared to the many existing works on a posteriori error estimates using polynomial basis functions in the
DG formulation [15,17,24], it is much more difficult to develop systematic a posteriori error estimates for general
non-polynomial basis functions. A hybrid approach can be found in DG-based reduced basis approximations
where the approximation is sought with special basis functions that are nevertheless contained in a underlying
polynomial space and a particular approach to quantify the error by means of a posteriori estimates can be
found in [23]. One of the important reasons is that approximation and scaling properties of the function space
spanned by non-polynomial basis functions, which are key to a posteriori error estimates, are generally difficult
to deduce. For instance, Amara et al. [2] developed the upper bound error estimates for the Helmholtz equation
in planewave basis enriched DG method, and the error is measured in the L2-norm. Kaye et al. [18] developed
the upper bound error estimates for solving linear eigenvalue problems using non-polynomial basis functions in
a DG framework, which generalizes the work of Giani et al. [10] for polynomial basis functions. However, the
assumption of approximation properties on the function space is in general difficult to verify. Though not in
the DG framework, Ohlberger et al. [11,22] developed the a posteriori error estimates for the HMM method for
elliptic homogenization problems.

The difficulties of a posteriori error analysis for general non-polynomial basis functions are largely due to the
lack of credible methods for measuring the ratio of the error using different norms, defined in proper function
spaces. For instance, approximately speaking, in a residual based error estimator, the constants associated
with the residual requires the estimation of ratio of the error measured using L2-norm and the H1-norm. The
scaling properties of such constants with respect to the increase of the number of basis functions on a particular
element can be rather intrigue for non-polynomial basis functions. The estimation of such constants is already
complicated for polynomial basis functions or planewave basis functions, not to mention the case when the
non-polynomial basis functions come from numerical solution without an analytic recipe, or even worse, the
basis functions do not in practice form a complete basis set with only saturating accuracy.

1.2. Contribution

To the extent of our knowledge, this is the first systematic work for deriving a posteriori error estimates
for general non-polynomial basis functions in a DG framework. Our upper and lower bound error estimates
are residual type estimators for the error in the energy norm. In our formulation, all but one basis-dependent
constants appearing in the upper and lower bound estimates are explicitly computable by solving local eigenvalue
problems. For solution with sufficient regularity (for instance u ∈ H2(Ω)), the only non-computable constant
can be reasonably approximated by a computable one without affecting the overall effectiveness of the estimates.
While the requirement of H2(Ω) regularity appears to be a formal drawback in the context of a posteriori error
estimates, the main goal of this work is to develop a posteriori error estimates for general basis sets rather than
for h-refinement, and the difficulty of general basis sets holds even if the solution has C∞(Ω) regularity. Therefore
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we think our method can have important practical values. As a side product of our results, the penalty parameter
in the interior penalty formulation is also automatically computed, and the computed constants guarantees that
the coercivity of the resulting DG bilinear form for Poisson’s equation.

We develop an efficient numerical procedure to compute these constants. Both the formulation and the
practical implementation of our method are independent of how the basis functions are generated. Although the
numerical procedure is developed for general non-polynomial basis functions, we find that the procedure, when
applied to standard polynomial basis functions, generates constants are even more accurate than the analytical
asymptotic result. Numerical results for a variety of problems in 1D and 2D indicate that both the upper bound
and lower bound are sharp, and the effectiveness of the estimators holds even at the level of each element.

1.3. Outline

The rest of the paper is organized as follows. After an introduction to some technical results in Section 2,
we start with the derivation of the upper bound a posteriori error estimates for the Poisson’s equation in
Section 3, without the potential term V . We then generalize the derivation of the upper bound error estimates
to indefinite problems with the potential term, as well as the lower bound error estimates in Section 4. We
elaborate in Section 5 on the numerical methods for computing the constants appearing in the upper and lower
bound estimates needed in our analysis. Finally, we present numerical results in Section 6, before we conclude
in Section 7 followed by an appendix.

2. Preliminary results

2.1. Mesh, broken spaces, jump and average operators

Let Ω = (0, 1)d, d = 1, 2, 3 and let K be a regular partition of Ω into elements κ ∈ K. That is, we assume that
the interior of κ ∩ κ′, for any κ, κ′ ∈ K, is either an element of K, a common face, edge, vertex of the partition
or the empty set. For simplicity, we identify the boundary of Ω in a periodical manner. That means, that we
also assume the partition to be regular across the boundary ∂Ω. We remark that although the assumption of
a rectangular domain with periodic boundary condition appears to be restrictive, such setup already directly
finds its application in important areas such as quantum chemistry and materials science. However, the analysis
below is not restricted to equations with periodic boundary condition. Other boundary conditions, such as
Dirichlet or Neumann boundary conditions can be employed as well with minor modification. Generalization to
non-rectangular domain does not introduce conceptual difficulties either, but may lead to changes in numerical
schemes for estimating relevant constants in Section 5, if the tensorial structure of the grid points is not preserved.

Let N = (Nκ)κ∈K denote the vector of the local number of degrees of freedom Nκ on each element κ ∈ K. Let
VN =

⊕
κ∈K VN (κ) by any piecewise discontinuous approximation space on a partition K of the domain Ω. It

is important to highlight that little is known about the a priori information of VN except that we assume that
each VN (κ) contains constant functions and that VN (κ) ⊂ H

3
2 (κ), so that the traces of ∇vN on the boundary

∂κ are well-defined for all vN ∈ VN (κ), for all κ ∈ K. We denote by Hs(κ) the standard Sobolev space of
L2(κ)-functions such that all partial derivatives of order s ∈ N or less lie as well in L2(κ). By Hs(K), we denote
the set of piecewise Hs-functions defined by

Hs(K) =
{
v ∈ L2(Ω)|v|κ ∈ Hs(κ), ∀κ ∈ K} ,

also referred to as the broken Sobolev space. We denote by H1
#(Ω) the space of periodic H1-functions on Ω.

We further define the element-wise scalar-products and norms as

(v, w)K =
∑
κ∈K

(v, w)κ and ‖v‖K = (v, v)
1
2
K.

The L2-norm on κ and Ω are denoted by ‖ · ‖κ and ‖ · ‖Ω, respectively.
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The jump and average operators on a face F = κ ∩ κ′ are defined in a standard manner by

{{v}} = 1
2 (v|κ + v|κ′), and [[v]] = v|κnκ + v|κ′nκ′ ,

{{∇v}} = 1
2 (∇v|κ + ∇v|κ′), and [[∇v]] = ∇v|κnκ + ∇v|κ′nκ′ ,

where nκ denotes the exterior unit normal of the element κ.
Finally we recall the standard result of piecewise integration by parts formula that will be employed several

times in the upcoming analysis.

Lemma 2.1. Let v, w ∈ H2(K). Then, there holds∑
κ∈K

[
(Δv, w)κ + (∇v,∇w)κ

]
= 1

2

∑
κ∈K

[
([[∇v]], w)∂κ + (∇v, [[w]])∂κ

]
.

2.2. Projections

For any element κ ∈ K, let us denote by Πκ
0 : L2(κ) → R the L2(κ)-projection onto constant functions

defined by
(Πκ

0 v, w)κ = (v, w)κ, ∀w ∈ R,

that is explicitly given by Πκ
0 v = 1

|κ|
∫

κ v dx. On H1(κ) we define the following scalar product and norm

(v, w)�,κ = (Πκ
0 v, Πκ

0 w)κ + (∇v,∇w)κ, (2.1)

‖v‖�,κ = (v, v)
1
2
�,κ,

for all v, w ∈ H1(κ) and the corresponding projection Πκ
N : H1(κ) → VN(κ) by

(Πκ
Nv, wN )�,κ = (v, wN )�,κ ∀wN ∈ VN (κ). (2.2)

Then, it is easy to see that this projection satisfies the following properties

(v − Πκ
Nv, c)κ = 0, ∀c ∈ R, ∀v ∈ H1(κ),

or equivalently expressed as Πκ
0 (v − Πκ

Nv) = 0. This implies that

(∇(v − Πκ
Nv),∇wN )κ = 0, ∀wN ∈ VN (κ), ∀v ∈ H1(κ), (2.3)

‖∇(v − Πκ
Nv)‖κ ≤ ‖∇v‖κ, ∀v ∈ H1(κ), (2.4)

‖v − Πκ
Nv‖�,κ ≤ ‖v‖�,κ, ∀v ∈ H1(κ).

2.3. Local scaling constants

In this section, we are going to define some local constants that will be used in the upcoming a posteriori
error analysis. We start with defining the local trace inverse inequality constant dκ for each κ ∈ K defined by

dκ ≡ sup
vN∈VN (κ)

‖∇vN ·nκ‖∂κ

‖vN‖�,κ
> 0.

Further, let

aκ ≡ sup
v∈H1(κ),
v⊥VN (κ)

‖v‖κ

‖v‖�,κ
and bκ ≡ sup

v∈H1(κ),
v⊥VN (κ)

‖v‖∂κ

‖v‖�,κ
,

where ⊥ is in the sense of the scalar product (·, ·)�,κ defined by (2.1).
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Remark 2.2 (The computation of the constants aκ, bκ and dκ). We provide more details in Section 5 on how
these local constants can be approximated by solving local eigenvalue problems.

Lemma 2.3. Let κ ∈ K, v ∈ H1(κ). Then, there holds that

‖v − Πκ
Nv‖κ ≤ aκ ‖∇v‖κ,

‖v − Πκ
Nv‖∂κ ≤ bκ ‖∇v‖κ.

Proof. The proof consists of simply combining the definition of aκ resp. bκ and the stability of the projection
Πκ

N described in (2.4)

‖v − Πκ
Nv‖κ ≤ aκ ‖v − Πκ

Nv‖�,κ = aκ ‖∇(v − Πκ
Nv)‖κ ≤ aκ ‖∇v‖κ,

since Πκ
0 (v − Πκ

Nv) = 0. The proof for the second inequality is almost identical. �

3. Poisson’s equation

As has been motivated in the introduction we start with a simple model problem that however reflects the
difficulties associated to the discontinuous Galerkin method using non-polynomial functions. The problem then
reads: find u ∈ H1

#(Ω) ∩ H2(K) such that

−Δu = f, in Ω, (3.1)

for some f ∈ L2(Ω).
Given a piecewise constant and positive penalty function γ such that γ|κ = γκ ∈ R

+ for all κ ∈ K, the
discontinuous bilinear form is defined by

a(w, v) =
∑
κ∈K

[
(∇w,∇v)κ − 1

2 (∇w, [[v]])∂κ − θ
2 ([[w]],∇v)∂κ + γκ

2 ([[w]], [[v]])∂κ

]
,

for any w, v ∈ H2(K) and for θ ∈ R. Note that this is equivalent to the somewhat more standard notation

a(w, v) = (∇w,∇v)K − ({{∇w}}, [[v]])F − θ([[w]], {{∇v}})F + (γF[[w]], [[v]])F ,

with γF = {{γ}} and where (·, ·)F denotes the face-wise L2-inner product over all faces of the mesh. The choice
of θ = 1,−1 corresponds to the symmetric and non-symmetric interior penalty discontinuous Galerkin (SIPG
[3,29] or NIPG [6]) method, respectively. The former case results in a symmetric bilinear form.

Then, the discontinuous Galerkin approximation is defined by: Find uN ∈ VN such that

a(uN , vN ) = (f, vN )Ω, ∀vN ∈ VN . (3.2)

In this context we define the following broken energy norm by

|||v|||2 =
∑
κ∈K

[
‖∇v‖2

κ + γκ

2 ‖[[v]]‖2
∂κ

]
, ∀v ∈ H1(K). (3.3)

Observe that
|||v|||2 =

∑
κ∈K

|||v|||2κ with |||v|||2κ = ‖∇v‖2
κ + γκ

2 ‖[[v]]‖2
∂κ,

and that this is indeed a norm as γ > 0. As usual, the penalty parameter γ needs to be chosen carefully to
ensure coercivity. Even when polynomial basis functions are used, the choice of an optimal γ is not completely
trivial and related discussions can be found in [1, 8]. The scaling in the element sizes and the polynomial order
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is however known [14, 26]. The involved constants result from applying trace and inverse inequalities, but no
inverse inequality is known if general non-polynomial basis functions are employed. To have a precise idea of the
values of the combined trace and inverse inequalities for the generic non-polynomial basis functions spanning
VN , we propose here to use the local constants that were defined in Section 2. In consequence, we can give a
precise value of the piecewise constant function γ that is needed to ensure coercivity of the bilinear form a(·, ·).
This is stated in the following lemma.

Lemma 3.1. Under the assumption that ||| · ||| is a norm (which is assumed here since γ > 0) and if additionally
γκ ≥ 1

2 (1 + θ)2 (dκ)2 for each κ ∈ K, then the bilinear form is coercive on VN , i.e., there holds

1
2 |||vN |||2 ≤ a(vN , vN ), ∀vN ∈ VN .

Proof. Since for any vN ∈ VN we have ∇vN = ∇(vN −Πκ
0 vN ) and ‖vN −Πκ

0 vN‖�,κ = ‖∇vN‖κ we can develop

a(vN , vN ) = 1
2

∑
κ∈K

[
2 ‖∇vN‖2

κ − (1 + θ)(∇(vN − Πκ
0 vN ), [[vN ]])∂κ + γκ‖[[vN ]]‖2

∂κ

]
≥ 1

2

∑
κ∈K

[
2 ‖∇vN‖2

κ − (1 + θ) dκ‖vN − Πκ
0 vN‖�,κ‖[[vN ]]‖∂κ + γκ‖[[vN ]]‖2

∂κ

]
≥ 1

2

∑
κ∈K

[
‖∇vN‖2

κ +
(
γκ − 1

4 (1 + θ)2 (dκ)2
)
‖[[vN ]]‖2

∂κ

]
and obtain

1
2 |||vN |||2 ≤ a(vN , vN )

for any γκ ≥ 1
2 (1+θ)2 (dκ)2. Note however that for the particular choice of θ = −1, γκ stills needs to be positive

in order that ||| · ||| is indeed a norm. �

3.1. Error representation

Define the scaled error function ϕ = u−uN

|||u−uN ||| and develop

|||u − uN ||| =
∑
κ∈K

[
(∇(u − uN),∇ϕ)κ + γκ

2 ([[u − uN ]], [[ϕ]])∂κ

]
= a(u − uN , ϕ) + 1+θ

2

∑
κ∈K

(∇ϕ, [[u − uN ]])∂κ.

We prefer to work with the scaled error function ϕ for the sake of a simple presentation of the upcoming error
analysis. Observe that due to the regularity of u ∈ H1

#(Ω), which implies [[u]] = 0, and since u is indeed the
solution of (3.1), there holds

a(u, ϕ) =
∑
κ∈K

[
(∇u,∇ϕ)κ − 1

2 (∇u, [[ϕ]])∂κ

]
= −(Δu, ϕ)Ω = (f, ϕ)Ω .

On the other hand, since uN ∈ VN is the DG-solution solution of (3.2), we obtain

−a(uN , ϕ) = −a(uN , ϕ − ϕN ) − (f, ϕN )Ω ,
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for any ϕN ∈ VN . Thus, using the integration by parts and Lemma 2.1, we can develop

−a(uN , ϕ) =
∑
κ∈K

[
− (∇uN ,∇(ϕ − ϕN ))κ + 1

2 (∇uN , [[ϕ − ϕN ]])∂κ + θ
2 ([[uN ]],∇(ϕ − ϕN ))∂κ

− γκ

2 ([[uN ]], [[ϕ − ϕN ]])∂κ

]
− (f, ϕN )Ω

=
∑
κ∈K

[
(ΔuN , ϕ − ϕN )κ − 1

2 ([[∇uN ]], ϕ − ϕN )∂κ + θ
2 ([[uN ]],∇(ϕ − ϕN ))∂κ

− γκ

2 ([[uN ]], [[ϕ − ϕN ]])∂κ

]
− (f, ϕN )Ω,

and obtain the error representation equation

|||u − uN ||| =
∑
κ∈K

[
(f + ΔuN , ϕ−ϕN )κ − 1

2 ([[∇uN ]], ϕ−ϕN )∂κ

− γκ([[uN ]], (ϕ−ϕN )nκ)∂κ − 1
2 ([[uN ]],∇ϕ+θ∇ϕN )∂κ

]
. (3.4)

3.2. A posteriori error estimation

After recalling that we assumed that u ∈ H2(κ), we start by introducing the constant du
κ(uN ) defined by

du
κ(uN ) =

‖∇(u − uN )·nκ‖∂κ

‖∇(u − uN )‖κ
,

and define the constant cκ by
cκ = du

κ(uN) + dκ|θ|.
We note that in practice, the constant du

κ(uN) can not be evaluated since u is unknown. The treatment of this
term will be discussed in Section 6.4.

Remark 3.2. Observe that du
κ(uN ) is bounded by the constant

sup
vN∈VN (κ)

‖∇(u − vN )·nκ‖∂κ

‖∇(u − vN )‖κ
< ∞,

which, in turn, is independent of the approximation uN (but still depends on the exact solution u and the
approximation space VN ).

Define the following estimators

ηR,κ ≡ aκ‖f + ΔuN‖κ, (3.5)
ηF,κ ≡ bκ

2 ‖[[∇uN ]]‖∂κ, (3.6)
ηJ,κ ≡ (bκ γκ + cκ

2 )‖[[uN ]]‖∂κ. (3.7)

Theorem 3.3. Let u ∈ H1
#(Ω) ∩ H2(K) be the solution of (3.1) and uN ∈ VN the DG-approximation defined

by (3.2). Then, we have the following a posteriori upper bound

|||u − uN ||| ≤
(∑

κ∈K

[
ηR,κ + ηF,κ + ηJ,κ

]2) 1
2

.
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Proof. Using the triangle inequality, observe that

‖(∇ϕ + θ∇ϕN )·nκ‖∂κ ≤ ‖∇ϕ·nκ‖∂κ + |θ|‖∇ϕN ·nκ‖∂κ ≤ du
κ(uN )‖∇ϕ‖κ + dκ|θ|‖∇ϕN‖κ.

So far, the results where valid for any arbitrary discrete function ϕN ∈ VN . In this proof we consider the
particular choice ϕN |κ = Πκ

Nϕ so that we can easily state

‖∇ϕN‖κ ≤ ‖∇ϕ‖κ

by splitting Πκ
Nϕ = ϕ + (Πκ

Nϕ − ϕ) and using the orthogonality relation (2.3). Then, there holds

‖(∇ϕ + θ∇ϕN )·nκ‖∂κ ≤ (du
κ(uN ) + dκ|θ|)︸ ︷︷ ︸

=cκ

‖∇ϕ‖κ ≤ cκ‖∇ϕ‖κ, (3.8)

by applying a simple triangle inequality.
If we apply the Cauchy–Schwarz inequality to the error representation formula (3.4), in combination with

Lemma 2.3, equation (3.8) and another Cauchy–Schwarz inequality, we have (recall that ϕ = u−uN

|||u−uN |||)

|||u − uN ||| ≤
∑
κ∈K

[
‖f + ΔuN‖κ ‖ϕ − ϕN‖κ + 1

2‖[[∇uN ]]‖∂κ ‖ϕ − ϕN‖∂κ + γκ‖[[uN ]]‖∂κ ‖ϕ − ϕN‖∂κ

+ 1
2‖[[uN ]]‖∂κ ‖(∇ϕ + θ∇ϕN )·nκ‖∂κ

]
≤
∑
κ∈K

[
aκ ‖f + ΔuN‖κ + bκ

2 ‖[[∇uN ]]‖∂κ + (γκbκ + cκ

2 )‖[[uN ]]‖∂κ

]
‖∇ϕ‖κ

≤
(∑

κ∈K

[
aκ ‖f + ΔuN‖κ + bκ

2 ‖[[∇uN ]]‖∂κ + (γκbκ + cκ

2 )‖[[uN ]]‖∂κ

]2) 1
2

=

(∑
κ∈K

[
ηR,κ + ηF,κ + ηJ,κ

]2) 1
2

. �

4. Second order indefinite problems

In this section we consider the more general indefinite equation: find u ∈ H1
#(Ω) such that

−Δu + V u = f, in Ω, (4.1)

for some f ∈ L2(Ω) and where we only assume that V ∈ L∞(Ω) is bounded and that the operator −Δ +V has
no zero eigenvalue. For the particular choice of V = −k2 ∈ R this framework includes the Helmholtz equation.
The DG-bilinear form is provided by

a(w, v) =
∑
κ∈K

[
(∇w,∇v)κ + (V w, v)κ − 1

2 (∇w, [[v]])∂κ − θ
2 ([[w]],∇v)∂κ + γκ

2 ([[w]], [[v]])∂κ

]
,

such that the DG-approximation is defined by: Find uN ∈ VN such that

a(uN , vN ) = (f, vN )Ω, ∀vN ∈ VN , (4.2)

and we keep the definition of the broken energy norm of (3.3). Of course the choice γκ = 1
2 (1 + θ)2 (dκ)2 does

not imply coercivity of the bilinear form in this setting any more. We assume that γκ has been chosen by the
user to insure that the DG-problem has a unique solution and focus on how to quantify the error a posteriori.
Observe that whenever the DG-problem is not uniquely solvable, the solver of the numerical system typically
reveals the lack of well-posedness. The following analysis requires that the DG-solution satisfies (4.2).
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4.1. Computable upper bounds

We first introduce a modified norm. For this consider V+++ and V--- defined by V+++ = max(V, 0) ≥ 0 and
V--- = max(−V, 0) ≥ 0 so that V = V+++ − V--- and |V | = V+++ + V--- . Then, define

|||v|||2 =
∑
κ∈K

|||v|||2κ with |||v|||2κ = ‖∇v‖2
κ + ‖V 1

2
+++ v‖2

κ + γκ

2 ‖[[v]]‖2
∂κ, ∀v ∈ H1(K).

Applying similar arguments as in Section 3 the following error representation can be developed

|||u − uN ||| =
∑
κ∈K

[
(f + ΔuN − V uN , ϕ−ϕN )κ + (V--- (u − uN ), ϕ)κ

]
− 1

2

∑
κ∈K

[
([[∇uN ]], ϕ−ϕN )∂κ + γκ([[uN ]], [[ϕ−ϕN ]])∂κ + ([[uN ]],∇ϕ+θ∇ϕN )∂κ

]
. (4.3)

Redefining the residual as
ηR,κ ≡ aκ‖f + ΔuN − V uN‖κ, (4.4)

the following bound can be developed.

Theorem 4.1. Let u ∈ H1
#(Ω) ∩ H2(K) be the solution of (4.1) and uN ∈ VN the DG-approximation defined

by (4.2). Then, we have the following a posteriori upper bound

|||u − uN ||| ≤
(∑

κ∈K

[
ηR,κ + ηF,κ + ηJ,κ

]2) 1
2

+
‖V 1

2
--- (u − uN )‖2

K
|||u − uN ||| ,

where ηR,κ is defined by (4.4) and ηF,κ, ηJ,κ are defined by (3.6)–(3.7).

Proof. This estimate can be obtained by applying the Cauchy–Schwarz inequality to the error representation
equation (4.3) similar as in the proof of Theorem 3.3. Only the additional term

(V--- (u − uN), ϕ)K =
‖V 1

2
--- (u − uN )‖2

K
|||u − uN |||

is not estimated. �

Remark 4.2. For V--- ∈ L∞, the term
‖V

1
2

--- (u−uN )‖2
K

|||u−uN ||| is small compared to the upper bound estimator in the
limit of complete basis sets. On the other hand, when only a small number of basis functions are used, this term
can become large, and the upper bound error estimator can underestimate the true error in energy norm.

We remark that this problem remains even when standard polynomial basis functions are used.

4.2. Computable lower bounds

The goal of this section is to derive computable lower bounds of the approximation error. We note that the
following theory applies also to the Poisson, i.e., with V = 0.

Observe that
ηJ,κ =

(
bκ γκ + cκ

2

) ‖[[uN ]]‖∂κ ≤
√

2
γκ

(
bκ γκ + cκ

2

) |||u − uN |||κ.

Second, for any face F of ∂κ, denote by κ′ the adjacent element such that F = ∂κ ∩ ∂κ′ such that there holds

η2
F,κ = b2κ

4 ‖[[∇uN ]]‖2
∂κ = b2κ

4 ‖[[∇(u − uN)]]‖2
∂κ ≤ b2κ

2

∑
F∈∂κ

(
‖∇(u − uN )|κ · nκ‖2

F + ‖∇(u − uN)|κ′ · nκ′‖2
F

)
. (4.5)
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Let ω(κ) be the patch consisting of κ and its adjacent elements sharing one face, then

η2
F,κ ≤ b2κ

2

∑
κ′∈ω(κ)

(
du

κ′(uN )‖∇(u − uN )‖κ′
)2 ≤ b2κ

2

(
max

κ′∈ω(κ)
du

κ′(uN)
)2 ∑

κ′∈ω(κ)

‖∇(u − uN)‖2
κ′ .

Further, let gκ be a smooth non-negative bubble function with supx∈κ gκ(x) = 1 and local support, i.e.
supp(gκ) ⊂ κ, which in turn implies that gκ|∂κ = 0. Finally, let us denote the residual by R = f + ΔuN − V uN

and define
σκ = aκ

‖R‖κ

‖g 1
2
κ R‖2

κ

·

Denote by ϕκ ∈ H1
0 (κ) the solution to

−Δϕκ = V gκR, on κ,

so that

ηR,κ = aκ‖R‖κ = σκ‖g
1
2
κ R‖2

κ = σκ

∫
κ

gκ

[
− Δ(u − uN ) + V (u − uN)

]
R

= −σκ

∫
κ

[
Δ(u − uN) gκ R − Δϕκ(u − uN)

]
= σκ

∫
κ

[
∇(u − uN ) · ∇(gκ R) −∇(u − uN) · ∇ϕκ

]
≤ σκ‖∇(u − uN)‖κ‖∇(gκ R − ϕκ)‖κ,

and in consequence
ηR,κ

|||u − uN |||κ ≤ σκ‖∇(gκ R − ϕκ)‖κ.

The results above indicate that

|||u − uN |||κ ≥ max
{

ηR,κ
cR,κ

,
ηJ,κ
cJ,κ

}
, |||u − uN |||ω(κ) ≥ ηF,κ

cF,κ
, (4.6)

where, denoting by |ω(κ)| the cardinality of the set ω(κ), we use the definitions

|||v|||2ω(κ) =
1

|ω(κ)|
∑

κ′∈ω(κ)

‖∇v‖2
κ′ + γκ

2 ‖[[v]]‖2
∂κ,

and

cR,κ = aκ
‖R‖κ‖∇(bκ R − ϕκ)‖κ

‖b1/2
κ R‖2

κ

,

cF,κ = bκ

√
|ω(κ)|

2 max
κ′∈ω(κ)

du
κ′(uN ),

cJ,κ =
√

2
γκ

(
bκ γκ + cκ

2

) ·
We summarize the results in the following proposition.

Proposition 4.3 (Local lower bound). Let u ∈ H1
#(Ω) ∩ H2(K) be the solution of (4.1) and uN ∈ VN the

DG-approximation defined by (4.2). Then, the quantity

ξκ = max
{

ηR,κ
cR,κ

,
ηF,κ
cF,κ

,
ηJ,κ
cJ,κ

}
,
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is a local lower bound of the local error

max
{|||u − uN |||κ, |||u − uN |||ω(κ)

}
.

Remark 4.4. Since in practice, the nominator as well as the denominator of any of those fractions might
become very small, these ratios are not numerically stable. It turns out that

ξκ =
ηR,κ + ηF,κ + ηJ,κ
cR,κ + cF,κ + cJ,κ

is numerically more robust and still meaningful as it replaces the maximum by the average.

On a global level, the following result holds.

Proposition 4.5 (Global lower bound). Let u ∈ H1
#(Ω) ∩ H2(K) be the solution of (4.1) and uN ∈ VN the

DG-approximation defined by (4.2). Then, there holds that

ξ =

(∑
κ∈K
[
ηR,κ + ηF,κ + ηJ,κ

]2) 1
2

√
3 maxκ∈K

(
c2
R,κ + b2

ω(κ)d
u
κ(uN)2 + c2

J,κ

) 1
2
≤ |||u − uN |||,

where

b2
ω(κ) = max

F∈∂κ
{{b2

κ}}|F = max
F∈∂κ

(
b2κ
2 + b2

κ′
2

) ∣∣∣∣
F

.

Proof. Observe that by (4.5) there holds∑
κ∈K

η2
F,κ ≤

∑
κ∈K

b2κ
2

∑
F∈∂κ

‖∇(u − uN )|κ · nκ‖2
F +

∑
κ∈K

b2κ
2

∑
F∈∂κ

‖∇(u − uN )|κ′ · nκ′‖2
F

=
∑
κ∈K

b2κ
2

∑
F∈∂κ

‖∇(u − uN )|κ · nκ‖2
F +

∑
κ∈K

∑
F∈∂κ

b2
κ′
2 ‖∇(u − uN)|κ · nκ‖2

F

=
∑
κ∈K

∑
F∈∂κ

(
b2κ
2 + b2

κ′
2

)
‖∇(u − uN)|κ · nκ‖2

F =
∑
κ∈K

∑
F∈∂κ

{{b2
κ}}‖∇(u − uN )|κ · nκ‖2

F

≤
∑
κ∈K

b2
ω(κ)‖∇(u − uN )|κ · nκ‖2

∂κ ≤
∑
κ∈K

b2
ω(κ)d

u
κ(uN )2‖∇(u − uN )‖2

κ.

Then, using the other local estimates for ηR,κ and ηJ,κ given by (4.6) yields∑
κ∈K

[
ηR,κ + ηF,κ + ηJ,κ

]2
≤ 3
∑
κ∈K

(
η2
R,κ + η2

F,κ + η2
J,κ

) ≤ 3
∑
κ∈K

(
c2
R,κ + b2

ω(κ)d
u
κ(uN )2 + c2

J,κ

)
|||u − uN |||2κ

≤ 3 max
κ∈K

(
c2
R,κ + b2

ω(κ)d
u
κ(uN )2 + c2

J,κ

)
|||u − uN |||2. �

5. Practical strategies for estimating the constants

In this section we discuss how to compute the constants dκ, aκ, bκ as defined in Section 2 in the a posteriori
error estimator for general non-polynomial basis functions in the discontinuous Galerkin framework. The basic
strategy is to discretize the infinite dimensional representative space H1(κ) using a finite dimensional space such
as high order polynomials, and to replace the various inner products defined in Section 2 by discrete bilinear
forms using Gauss quadrature. With the help of these bilinear forms, dκ, aκ, bκ can be estimated by solving an
eigenvalue problem, locally on each element κ.
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5.1. Finite dimensional discretization

For simplicity let κ = [0, h]d, d = 1, 2, 3 and all quantities be real. We start the discussion with d = 1, i.e.
κ = [0, h]. All numerical quadrature are to be performed using the Legendre–Gauss–Lobatto (LGL) quadrature
with Ng points. The LGL grid points are denoted by {yj}Ng

j=1, and the corresponding LGL weights by {ωj}Ng

j=1.
The Lobatto quadrature implies that

y1 = 0, yNg = h,

which facilitates the description of the boundary integrals as in the estimate of dκ and bκ. The LGL grid points
{yj}Ng

j=1 correspond to a unique set of Lagrange polynomials of degree (Ng − 1), denoted by {pj(x)}Ng

j=1, and
satisfy

pj(yi) = δij , 1 ≤ i, j ≤ Ng,

where δij is the Kronecker δ function. We can then approximate v ∈ H1(κ) using the linear combination of
Lagrange polynomials as

v(x) ≈
Ng∑
j=1

vj pj(x).

The sequence of spaces PNg of polynomials of degree Ng being dense in H1(κ) implies that, for any v ∈ H1(κ)
and any ε > 0, there exists Ng and v1

Ng
, v2

Ng
∈ PNg such that

‖v − v1
Ng

‖κ

‖v‖κ
≤ ε and similarly

‖v − v2
Ng

‖�,κ

‖v‖�,κ
≤ ε,

if choosing Ng large enough. That is, elements in H1(κ) can be approximated, in the sense of L2 and H1 with
any desired accuracy by elements of PNg . This motivates us to work in PNg instead of H1(κ) for Ng large enough.
We assume that Ng is large enough so that the above approximation error in the local L2 and H1-norms are
very small. Further, for functions u, v ∈ PNg , the LGL quadrature for computing the inner product (u, v)κ

converges rapidly with respect to the increase of Ng.
We denote by v = (v1, . . . , vNg)T the column vector corresponding to the coefficients of v ∈ PNg , and denote

by Y = (y1, . . . , yNg)T , w = (ω1, . . . , ωNg)T the column vector corresponding to the LGL grid points and
weights, respectively. With some slight abuse of notation we can compute the inner product using linear algebra
notation as

(u, v)κ =
Ng∑
j=1

ujωjvj ≡ uT Wv, (5.1)

where W = diag[w] is a diagonal matrix with the entries of vector w on the diagonal entries.
The Lagrange polynomials also induce a differentiation matrix D of size Ng × Ng, defined as

Dij = p′j(yi), 1 ≤ i, j ≤ Ng. (5.2)

Taking the derivative of a polynomial yields

v′(x) =
Ng∑
j=1

p′j(x)vj .

Let v′ = (v′(y1), . . . , v′(yNg ))T be the column vector of the derivative quantity v′(x) on the LGL grid points,
then

v′ = Dv. (5.3)
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Equation (5.3) shows that the differentiation matrix maps the values of a function to the values of its derivative
on the LGL grid points. Using the differentiation matrix, inner products of the form (u′, v′)κ can be expressed
in linear algebra notation as

(u′, v′)κ = (Du)T W (Dv) = uT (DT WD)v. (5.4)

In order to compute the inner product (u, v)�,κ we also need to compute (Πκ
0 u, Πκ

0 v)κ. Note that

Πκ
0 v =

1
|κ| (1, v)κ =

1
|κ|w

T v,

with |κ| = h. Then

(Πκ
0 u, Πκ

0 v)κ =
1

|κ|2 uT wwT v|κ| = uT

(
w

1
|κ|w

T

)
v.

Therefore the inner product (u, v)�,κ can be computed as

(u, v)�,κ = uT

(
DT WD + w

1
|κ|w

T

)
v. (5.5)

We also need to compute inner products on the boundary ∂κ. In 1D, v|∂κ(x) is completely described by two
points v(0) and v(h), which are given by the discretization on the LGL grid points as v1 and vNg . Define the
weight vector at 0-dimension as w̃ = (1, 0, . . . , 0, 1)T , and W̃ = diag[w̃], then the inner product on the boundary
can be expressed as

(u, v)∂κ = u1v1 + uNgvNg ≡ uT W̃v. (5.6)

Similarly
(u′, v′)∂κ = u′

1v
′
1 + u′

Ng
v′Ng

≡ uT DT W̃Dv. (5.7)

The inner products (5.1), (5.4), (5.5) and (5.7) are sufficient for estimating dκ, aκ, bκ for d = 1.
Now we generalize all the definition above to d > 1. Though in practice we only consider d = 2, 3, the

formalism developed here holds for any dimension. For any x ∈ κ = [0, h]d, we denote by x = (x(1), . . . , x(d))T ,
with x(l) being the component of x along the lth dimension. Then the set of Nd

g LGL grid points in the dimension
d is given by

Y [d] = {yj1,...,jd
≡ (yj1 , . . . , yjd

)T |1 ≤ j1, . . . , jd ≤ Ng}. (5.8)

We define the tensor product of d matrices A(1), . . . , A(d) of size Ng × Ng as

Ai1j1,...,idjd
=

d∏
l=1

A
(l)
iljl

, 1 ≤ i1, j1, . . . , id, jd ≤ Ng, (5.9)

which can be written in a compact form as

A ≡
d⊗

l=1

A(l). (5.10)

From the computational point of view, it is more convenient to rewrite the tensor product A as a matrix by
stacking the i1, . . . , id and j1, . . . , jd indices, respectively. In other words, we can view A as a large matrix of
size Nd

g × Nd
g , and each matrix element Ai1j1,...,idjd

corresponds to a matrix element AIJ , with the index

I = 1 +
d∑

l=1

(il − 1)N (l−1)
g , J = 1 +

d∑
l=1

(jl − 1)N (l−1)
g .

Note that when d = 2, the stacked representation of the tensor product of A(1) and A(2) is the Kronecker
product of A(2) and A(1).
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We also define a special case for the tensor product of d vectors v(1), . . . , v(d) of size Ng. By viewing each v(l)

as a matrix of size Ng × 1, we have

vj1,...,jd
=

d∏
l=1

v
(l)
jl

, 1 ≤ j1, . . . , jd ≤ Ng. (5.11)

Equation (5.11) can be written in a compact form as

v ≡
d⊗

l=1

v(l). (5.12)

By stacking the indices j1, . . . , jd together, we can view v as a vector of size Nd
g , and each element vj1,...,jd

corresponds to an element vJ with J = 1 +
∑d

l=1(jl − 1)N (l−1)
g . Using the notation of tensor product, the set

of LGL weights is described by a vector

w[d] =
d⊗

l=1

w. (5.13)

Similar to the 1D case, each LGL grid point yj1,...,jd
uniquely corresponds to a Lagrange polynomial

pj1,...,jd
(x) =

d∏
l=1

pjl
(x(l)).

It can be readily seen that

pj1,...,jd
(yi1,...,id

) =
d∏

l=1

δiljl
.

As in the 1D case, a polynomial u(x) defined on κ can be expressed using the Lagrange polynomials as

u(x) =
∑

1≤j1,...,jd≤Ng

pj1,...,jd
(x)u(yj1,...,jd

) ≡
∑

1≤j1,...,jd≤Ng

pj1,...,jd
(x)uj1,...,jd

. (5.14)

Denote by W [d] = diag[w[d]] as a matrix of size Nd
g × Nd

g , the inner product (u, v)κ can be written as

(u, v)κ =
∑

1≤j1,...,jd≤Ng

uj1,...,jd
vj1,...,jd

w
[d]
j1,...,jd

= uT W [d]v. (5.15)

The Lagrange polynomials pj1,...,jd
(x) can be used to define d differentiation matrices, defined as

D
[d]
l =

(
l−1⊗
i=1

I

)⊗
D
⊗(

d⊗
i=l+1

I

)
. (5.16)

Here I is an Ng×Ng identity matrix. D
[d]
l can be understood as the discretized differential operator ∂l, 1 ≤ l ≤ d.

Similar to equation (5.3), we denote by ∂lv a column vector with its entries defined as below

(∂lv)j1,...,jd
= (∂lv)(yi1,...,id

),

then ∂lv can be expressed in the linear algebra notation as

∂lv = D
[d]
l v. (5.17)
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Therefore the inner product (∇u,∇v)κ can be computed as

(∇u,∇v)κ = uT

(
d∑

l=1

(D[d]
l )T W [d]D

[d]
l

)
v. (5.18)

The inner product (u, v)�,κ can be evaluated similar to equation (5.5) as

(u, v)�,κ = uT

(
d∑

l=1

(D[d]
l )T W [d]D

[d]
l + w[d] 1

|κ| (w
[d])T

)
v, (5.19)

with |κ| = hd.
In order to evaluate the inner product on the boundary ∂κ, we define d weight vectors corresponding to the

(d − 1) dimensional surface for each dimension l (l = 1, . . . , d), denoted by w̃
[d]
l with the expression(

w̃
[d]
l

)
j1,...,jd

=

{
w

[d−1]
j1,...,jl−1,jl+1,...,jd

, jl = 1 or jl = Ng,

0, 1 < jl < Ng.
(5.20)

Define W̃
[d]
l = diag

[
w̃

[d]
l

]
, then the inner product on the boundary can be expressed as

(u, v)∂κ = uT

(
d∑

l=1

W̃
[d]
l

)
v, (5.21)

and

(∇u · nκ,∇v · nκ)∂κ = uT

(
d∑

l=1

(D[d]
l )T W̃

[d]
l D

[d]
l

)
v. (5.22)

Now we are ready to use the finite dimensional representation of the inner products to evaluate the constants
dκ, aκ, bκ.

5.2. Estimation of dκ

Recall that

(dκ)2 ≡ sup
vN∈VN (κ)

‖∇vN ·nκ‖2
∂κ

‖vN‖2
�,κ

= sup
vN∈VN (κ)

(∇vN ·nκ,∇vN ·nκ)∂κ

(vN , vN )�,κ
·

Using equations (5.22) and (5.19), we have

(dκ)2 = sup
vN∈VN (κ)

vT
NMδvN

vT
NKvN

· (5.23)

Here

Mδ =
d∑

l=1

(D[d]
l )T W̃

[d]
l D

[d]
l , (5.24)

K =
d∑

l=1

(D[d]
l )T W [d]D

[d]
l + w[d] 1

|κ| (w
[d])T . (5.25)

Let {ϕ1(x), . . . , ϕN (x)} be a set of basis functions of the finite dimensional space VN (κ). We denote by ϕi (i =
1, . . . , N) the column vector corresponding to the values of ϕi(x) evaluated at the LGL grid points, and denote by

Φ = [ϕ1, . . . , ϕN ], (5.26)
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the collection of all column vectors which is an Nd
g × N matrix. Then for any vector v(x) ∈ VN (κ), the

corresponding column vector v can be represented as

v = Φc,

where c is a coefficient vector of size N . Then equation (5.23) can be rewritten as

(dκ)2 = sup
c∈RN

cT (ΦT MδΦ)c
cT (ΦT KΦ)c

· (5.27)

Equation (5.27) can be solved as an eigenvalue problem,

ΦT MδΦc = λΦT KΦc, (5.28)

and (dκ)2 is equal to the largest eigenvalue λ. Since the size of the matrix ΦT MδΦ is N ×N and N is relatively
small, equation (5.28) can be solved as a generalized eigenvalue problem using dense linear algebra.

5.3. Estimation of aκ, bκ

Recall that

a2
κ ≡ sup

v∈H1(κ),
v⊥VN (κ)

‖v‖2
κ

‖v‖2
�,κ

= sup
v∈H1(κ),
v⊥VN (κ)

(v, v)κ

(v, v)�,κ
,

then using equation (5.15) and (5.19) and the density arguments above, it can be shown that

sup
v∈PNg ,

v⊥VN (κ)

vT Mav

vT Kv

Ng→∞−→ a2
κ, (5.29)

where Ma = W [d], and K is given in equation (5.25). We can express the orthogonality condition v ⊥ VN (κ)
in terms of a projection operator Q = I − Πκ

N so that for any v ∈ H1(κ), Qv ⊥ VN (κ), where I is the identity
operator. Denoting by Φ as in equation (5.26) the collection of spanning vectors of the space VN (κ), then using
the Lagrange polynomials corresponding to the LGL grid points as a basis, the projection operator Πκ

N can be
expressed as an Nd

g × Nd
g matrix

Πκ
N = Φ(ΦT KΦ)−1ΦT K ≡ ΦΨT . (5.30)

where Ψ = KΦ(ΦT KΦ)−1. Therefore the Πκ
N is a low rank matrix with rank N . The projection operator Q and

its adjoint operator QT expressed in the basis of Lagrange polynomials become

Q = I − ΦΨT , QT = I − ΨΦT . (5.31)

Using equation (5.31), the computation of aκ can be simplified as

a2
κ≈ sup

v∈R
Nd

g

vT QT MaQv

vT QT KQv
· (5.32)

In other words, a2
κ corresponds to the largest eigenvalue of the generalized eigenvalue problem

QT MaQv = λQT KQv. (5.33)

From a computational point of view, there are two major differences between equations (5.28) and (5.33).
First, the dimension of the matrices in equation (5.28) is N × N , and the dimension of the matrices in equa-
tion (5.33) is Nd

g × Nd
g . For 3D simulation, if Ng = 30 then Nd

g = 27 000, and the corresponding eigenvalue
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problem is very costly to solve if QT MaQ and QT KQ are treated as dense matrices. Second, the matrix ΦT KΦ
in equation (5.28) is a positive definite matrix since K is positive definite, and the problem (5.28) can be solved
directly as a dense generalized eigenvalue problem. On the other hand, QT KQ is a rank deficient matrix with
the rank of its kernel being N . Therefore it can potentially cause a large numerical error if equation (5.33) is
solved directly as a dense generalized eigenvalue problem.

In order to overcome the two difficulties mentioned above, we note that for any vector v, the computa-
tional cost for the matrix vector multiplication Qv, QT v, Mav, Kv is only proportional to Nd

g thanks to the low
rank representation of the operators. Therefore equation (5.33) can be solved using iterative methods. Another
advantage of using iterative methods is that since we only need the largest eigenvalue corresponding to equa-
tion (5.33), at the kth step of the CG iteration we only need to keep three vectors: the current approximation of
eigenvector v(k), the conjugate direction p(k) and the residual r(k). Even though the matrix QT KQ is singular,
the projection onto the 3 dimensional subspace [v(k), p(k), r(k)] is usually well conditioned. In practice we use
the Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) method [19] (with block size equal
to 1) for evaluating the largest eigenvalue for equation (5.33). It should be noted that since there is no apparent
preconditioner that can be applied efficiently to solve equation (5.33), the convergence of the largest eigenvalue
may be slow. However, we should keep in mind that the estimation of aκ, bκ is only used in the a posteriori
error estimator, and only low accuracy is needed. In fact aκ, bκ is already very accurate in the sense of the
preconstant in the estimator even if the relative error is 10%. Therefore the slow convergence of the conjugate
gradient method is compensated by the low accuracy required in the computation of the constants.

The constant bκ can be estimated similarly to aκ. Recall that

b2
κ ≡ sup

v∈H1(κ),
v⊥VN (κ)

‖v‖2
∂κ

‖v‖2
�,κ

= sup
v∈H1(κ),
v⊥VN (κ)

(v, v)∂κ

(v, v)�,κ
,

and using the same projection operator Q, bκ can be expressed as

b2
κ≈ sup

v∈R
Nd

g

vT QT MbQv

vT QT KQv
, (5.34)

with Mb =
∑d

l=1 W̃
[d]
l . Similar to equation (5.33), b2

κ can be solved as the largest eigenvalue of

QT MbQv = λQT KQv. (5.35)

Equation (5.35) can be solved using the same iterative strategy as for obtaining aκ.

6. Numerical results

In this section we test the effectiveness of the a posteriori error estimators. The test program is written in
MATLAB, and all results are obtained on a 2.7 GHz Intel processor with 16 GB memory. All numerical results
are performed using the symmetric bilinear form (θ = 1). The effectiveness of the upper bound and lower
bound on the global domain will be justified by comparing |||u − uN ||| and η, and by comparing |||u − uN ||| and
ξ, respectively. It should be noted that although our theory does not directly predict the effectiveness of the
estimator on each local element κ, we can measure the local effectiveness of the upper and lower bound on each
local element κ by defining

Cη(κ) =
ηR,κ + ηF,κ + ηJ,κ

|||u − uN |||κ , Cξ(κ) =
ξκ

|||u − uN |||κ , (6.1)

where the broken energy norm |||u − uN |||κ is defined according to equation (3.3).
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The numerical results are organized as follows. In Section 6.1, we apply the general approach developed
in Section 5 to compute the constants aκ, bκ, dκ for polynomial basis functions, and verify that the scaling
properties of the numerically computed constants match the analytic results known in the literature [25]. In
Section 6.2, we illustrate the behavior of the upper bound and the lower bound error estimates for second order
PDEs associated with positive definite operators. We then demonstrate the results for indefinite operators in
Section 6.3. In the a posteriori error estimates of both the upper bound and the lower bound, we make the
assumption that the non-computable number du

κ(uN) can be approximated by dκ without significant loss of
effectiveness. We justify such treatment in Section 6.4 by directly calculating du

κ(uN ) using the numerically
computed reference solution.

Our test problems include both one dimensional (1D) and two dimensional (2D) domains with periodic
boundary conditions. Our non-polynomial basis functions are generated from the adaptive local basis (ALB)
set [20] in the DG framework. The ALB set was originally proposed to systematically reduce the number of basis
functions used to solve Kohn–Sham density functional theory calculations, and in this section we demonstrate its
usage to solve second order linear PDEs. We denote by N the number of ALBs per element. For operators in the
form of A = −Δ + V with periodic boundary condition, the basic idea of the ALB set is to use eigenfunctions
computed local domains as basis functions corresponding to the lowest few eigenvalues. The eigenfunctions
are associated with the same operator A, but with modified boundary conditions on the local domain. More
specifically, in a d-dimensional space, for each element κ, we form an extended element κ̃ consisting of κ and its
3d − 1 neighboring elements in the sense of periodic boundary condition. On κ̃ we solve the eigenvalue problem

−Δϕ̃i + V ϕ̃i = λiϕ̃i, (6.2)

with periodic boundary condition on ∂κ̃. This eigenvalue problem can be solved using standard basis set such as
finite difference, finite elements, or planewaves. Here we solve the local eigenvalue problem (6.2) using planewaves
which naturally satisfy periodic boundary conditions. Since this eigenvalue problem is solved on a extended
element κ̃ the computational cost is not large. The collection of eigenfunctions (corresponding to lowest N
eigenvalues) are restricted from κ̃ to κ, i.e.

ϕi(x) =

{
[ϕ̃i] |κ(x), x ∈ κ;

0, otherwise.

After orthonormalizing {ϕi} locally on each element κ and removing the linearly dependent functions, the
resulting set of orthonormal functions are called the ALB functions.

Since periodic boundary condition is used on the global domain Ω, in all the calculations, the reference
solution, which can be treated as a numerically exact solution, is solved using a planewave basis set with a
sufficiently large number of planewaves. The ALB basis set is also computed using a sufficiently large number
of planewaves on the extended element κ̃. Then a Fourier interpolation procedure is carried out from κ̃ to the
local element κ on a Legendre–Gauss–Lobatto (LGL) for accurate numerical integration.

6.1. Estimating the constants for polynomial basis functions

Although the main purpose of this paper is to design a posteriori error estimator for non-polynomial basis
functions, the computational strategies discussed in Section 5 can be applied to polynomial functions as well.
Let κ = [0, h]d and VN (p; κ) = span{∏d

l=1 xjl

l , jl ∈ N,
∑d

l=1 jl ≤ p} be the space spanned by polynomials with
degree less than or equal to p. Then the asymptotic scaling of aκ, bκ, dκ with respect to h and p is known [15]

a2
κ ∼ h2

p2
, b2

κ ∼ h

p
, d2

κ ∼ p2

h
· (6.3)

These results are asymptotically correct as p → ∞, and we will show that the strategy discussed in Section 5
leads to the same asymptotic result, but the result is more accurate in the pre-asymptotic regime due to the
explicit computation of the constants.
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Figure 1. Numerically computed constants a2
κ, b2

κ, d2
κ with respect to the polynomial degrees

p in 1D, 2D and 3D.

From numerical point of view, the scaling with respect to h is naturally satisfied. To verify this, we can simply
consider a reference element κ|h=1 = [0, 1]d and scale the weight matrix W [d] and the differentiation matrix D

[d]
l

accordingly. The technique is the same as that used in [25].

We now directly verify the scaling with respect to p in Figure 1, using the algorithms presented in Section 5.
The LGL grid sizes for 1D, 2D and 3D calculation are chosen to be 100, 100×100, and 50×50×50, respectively.
The largest degree of polynomials is 64 for 1D and 2D, and is 16 for the 3D case. Note that in the 3D case, the
dimension of VN (p = 16; κ) is already 969. Figure 1a shows the behavior of a2

κ, which asymptotically agrees
with the 1/p2 scaling. It is interesting to see that the computed a2

κ can be approximated by C h2

p2 where the
constant C is around 0.1. The recovery of the constant indicates that the numerically computed constant aκ can
offer a sharper estimator even for the standard hp-refinement. Similarly Figure 1b shows that b2

κ asymptotically
scales as 1/p for 2D and 3D simulation. The 1D case is not shown in the picture, since the numerical value
of b2

κ is already as small as 10−20 for p = 2. This can be interpreted from Proposition A.1 in the Appendix.
Finally, direct computation in Figure 1c shows that d2

κ asymptotically scales as p2 for all dimensions. Again,



1212 L. LIN AND B. STAMM

0 2 4 6
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

x

u
(x

)

(a)

0 2 4 6
−4

−3

−2

−1

0

1

2

3
x 10

−8

x

u
(x

)
−

u
N

(x
)

(b)

Figure 2. (a) The reference solution u(x) corresponding to V (x) = 0.01 and the right hand
side f(x) = sin(6x). (b) Point-wise error between the reference solution u(x) and the numerical
solution uN (x) calculated using the ALB set with 7 elements and N = 11 basis functions per
element. The domain is partitioned into 7 elements indicated by black dashed lines.

the computed constant d2
κ differs from the asymptotic scaling in the pre-asymptotic regime, indicating that the

numerically computed constant should be sharper for low order polynomials (p ≤ 4).

6.2. Positive definite operators

We first demonstrate the effectiveness of the a posteriori error estimates for a positive definite operator on
a 1D domain Ω = (0, 2π), using the ALB set as non-polynomial basis functions. Due to the periodic boundary
condition, we choose V (x) = 0.01 so that the operator A = −Δ + V is non-singular and positive definite. The
right hand side is chosen to be f(x) = sin(6x) which is periodic on Ω. In the ALB computation, the domain is
partitioned into 7 elements, as indicated by black dashed lines. Figure 2 shows solution u to equation (4.1) and
the point-wise error u − uN using N = 11 ALBs per element.

Figure 3a shows the absolute error in the energy norm, the upper bound and lower bound estimates as
the number of ALBs per element N increases from 3 to 15. The relative error can be deduced by comparing
Figures 3a and 2a. We find that the computed η and ξ are indeed upper and lower bounds of the true error
|||u − uN ||| for all N across a wide range of accuracy (from 10−1 to 10−8). It also appears that the lower bound
estimator ξ follows the true error more closely than the upper bound estimator η. Figures 3b and 3c illustrate
the local effectiveness Cη(κ) and Cξ(κ) for each element κ. Though not guaranteed by our theory, we observe
that ηκ and ξκ are upper and lower bounds for |||u − uN |||κ for each element κ, respectively. The effectiveness
as measured by Cη(κ) and Cξ(κ) depends only weakly on the number of adaptive local basis functions, or the
accuracy of the numerical solution.

Our next example is to solve a 2D problem with Ω = (0, 2π) × (0, 2π). Again we choose V (x, y) = 0.01 so
that A = −Δ + V is non-singular and positive definite. The right hand side is f(x, y) = cos(3x) cos(y), which
satisfies the periodic boundary condition. Figure 4 shows the reference solution u to equation (4.1) and the
point-wise error u − uN using N = 31 ALBs per element. In the ALB computation, the domain is partitioned
into 5 × 5 elements, indicated by black dashed lines.

Figure 5a shows the error in the energy norm, the computed upper bound and the lower bound as the number
of ALBs per element N increases from 11 to 41. Both the computed upper and the lower bound estimates are
effective for all calculations. Figures 5b–5d illustrates the local effectiveness of the upper and lower bound
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Figure 3. (a) Global error and the upper/lower bound estimator for V (x) = 0.01 and f(x) =
sin(6x). (b) Local effectiveness of the upper bound characterized by Cη(κ) for each element.
(c) Local effectiveness of the lower bound characterized by Cξ(κ) for each element.

estimates for the two extreme cases N = 11 and N = 41, and the estimator ηκ and ξκ are effective for all
elements, and the effectiveness depends weakly on the number of basis functions per element.

6.3. Indefinite operators

We now demonstrate the effectiveness of the upper and lower bound estimates for indefinite operators. We
start from a 1D example on a domain Ω = (0, 2π) with periodic boundary conditions. The potential function
V (x) is given by the sum of three Gaussians with negative magnitude, as shown in Figure 6a. The operator
A = −Δ + V has 3 negative eigenvalues and is indefinite. The right hand side is f(x) = sin(6x). The domain is
partitioned into 7 elements for the ALB calculation. Figure 6b shows the reference solution u to equation (4.1),
and Figure 6c shows the point-wise error u − uN using N = 11 ALBs per element.

Figure 7a shows the error in the energy norm, the computed upper and lower bound estimates as the number
of ALBs per element N increases from 3 to 15. Similar to Figure 3, the computed η and ξ are upper and lower
bounds for the true error |||u − uN ||| for all N across a wide range of accuracy. Furthermore, the computed ξ is
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Figure 4. (a) The reference solution u(x, y) corresponding to V (x, y) = 0.01 and f(x, y) =
cos(3x) cos(y). (b) Point-wise error between the reference solution u(x, y) and the numerical
solution uN(x, y) calculated using the ALB set with 5× 5 elements and N = 31 basis functions
per element.
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Figure 5. (a) Global error and the upper/lower bound estimator for V (x, y) = 0.01 and
f(x, y) = cos(3x) cos(y). (b) Local effectiveness of the upper bound characterized by Cη in each
element for N = 11. (c) Local effectiveness of the upper bound characterized by Cη in each
element for N = 41. (d) Local effectiveness of the lower bound characterized by Cξ in each
element for N = 11. (e) Local effectiveness of the lower bound characterized by Cξ in each
element for N = 41.
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Figure 6. (a) The potential V (x) given by the sum of three Gaussians with negative magnitude.
(b) The reference solution u(x) corresponding to the potential V (x) in (a) and the right hand
side f(x) = sin(6x). (c) Point-wise error between the reference solution u(x) and the numerical
solution uN (x) calculated using the ALB set with 7 elements and N = 11 basis functions per
element.

always a lower bound of |||u − uN ||| from N = 3 to N = 15. This is guaranteed by the property of the lower
bound in Proposition 4.5.

We should note that when the number of basis functions is very small (N = 3), the accuracy is low and the
ALB approximation is in its pre-asymptotic regime. In such case, the upper bound is very close to the true
error. In fact as indicated by Theorem 4.1, η may not even be a rigorous upper bound for highly indefinite
operators with very few basis functions.

Our final examples are two indefinite problems on a 2D domain Ω = (0, 2π) × (0, 2π). The first problem
is a homogeneous Helmholtz equation with V (x, y) = −16.5 and the operator A = −Δ + V has 49 negative
eigenvalues. The right hand side is

f(x, y) = exp(−2(x − π)2 − 2(y − π)2), (6.4)

which is a Gaussian located at the center of Ω. The second problem is that V is given by the sum of four
Gaussians with negative magnitude, as illustrated in Figure 10a. The operator A = −Δ + V has 26 negative
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Figure 7. (a) Global error and the upper/lower bound estimator for V (x) given in Figure 6a
and f(x) = sin(6x). (b) Local effectiveness of the upper bound characterized by Cη in each
element. (c) Local effectiveness of the lower bound characterized by Cη in each element.

eigenvalues. The right hand side is chosen to be f(x, y) = cos(3x) cos(y) satisfying the periodic boundary
condition. For the first problem, Figure 8b shows the reference solution u to equation (4.1) and Figure 8c shows
the point-wise error u−uN using N = 31 ALBs per element. In the ALB computation, the domain is partitioned
into 5× 5 elements, indicated by black dashed lines. Similarly for the second problem, Figure 10 shows solution
u to equation (4.1) and the point-wise error u − uN using N = 31 ALBs per element.

Figures 9a–9e illustrates the global and local effectiveness of the upper and lower bound estimates for the
Helmholtz problem, as the number of ALBs per element N increases from 21 to 51. Compared to the positive
definite case in Figure 5, the true error is larger using a comparable number of basis functions, reflecting that
the Helmholtz equation is more difficult to solve. Nonetheless, η and ξ provide effective bounds for the true
error in all cases. Similar results can be found for the indefinite example with negative Gaussian potentials in
Figures 11a–11e. In all calculations, the computed lower bound estimator remains a lower bound for the true
error. In particular, the estimators still hold quite tightly in the pre-asymptotic regime (N = 11) where the
ALB approximation is crude and has large numerical error.

6.4. Justification of the treatment of du
κ(uN)

In the numerical computation of the upper and lower bound estimates, we approximated the non-computable
constant du

κ(uN) by the computable constant dκ. Below we provide numerical justification of such approximation
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Figure 8. (a) The reference solution u(x, y) corresponding to V (x, y) = −16.5 and f(x, y) in
equation (6.4), which is a Gaussian localized at the center of Ω. (b) Point-wise error between
the reference solution u(x, y) and the numerical solution uN (x, y) calculated using the ALB set
with 5 × 5 elements and N = 31 basis functions per element.
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Figure 9. (a) Global error and the upper/lower bound estimator for V (x, y) = −16.5 and
f(x, y) in equation (6.4), which is a Gaussian localized at the center of Ω. (b) Local effectiveness
of the upper bound characterized by Cη in each element for N = 21. (c) Local effectiveness of
the upper bound characterized by Cη in each element for N = 51. (d) Local effectiveness of
the lower bound characterized by Cξ in each element for N = 21. (e) Local effectiveness of the
lower bound characterized by Cξ in each element for N = 51.
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Figure 10. (a) The potential V (x, y) four Gaussians with negative magnitude. (b) Solution
u(x, y) corresponding to V (x, y) given in (a) and f(x, y) = cos(3x) cos(y). (c) Point-wise error
between the reference solution u(x, y) and the numerical solution uN(x, y) calculated using the
ALB set with 5 × 5 elements and N = 31 basis functions per element.

by direct computation of du
κ(uN ) via the reference solution. We compare with dκ and bκγκ since these three

terms appear together in ηJ,κ in equation (3.7).
Figures 12a and 12b compare du

κ(uN ), dκ and bκγκ for the positive definite and the indefinite 1D examples,
respectively. We observe that the magnitude of du

κ(uN ) is comparable to that of dκ. bκγκ is much smaller
compared to du

κ(uN ) and dκ. This is a direct consequence of Proposition A.1, which states that bκ is in general
very small for 1D systems.

Figure 13 compare du
κ(uN), dκ and bκγκ for the positive definite case V = 0.01, the indefinite case V = −16.5,

and the indefinite case with V given by the sum of negative Gaussians in Figure 10a. In all cases, the magnitude
of du

κ(uN ) is comparable to that of dκ. Furthermore, both du
κ(uN ) and dκ are much smaller compared to βκγκ.

Therefore the effectiveness of the estimator remains unchanged even if du
κ(uN) is neglected. We expect similar

results can be observed for systems of higher dimensionality.
Finally we provide a second justification by comparing the total contribution of the jump term in the upper

bound estimator
η2

J =
∑

κ

η2
J,κ,

and the total contribution of the jump term in the energy norm

EJ =
∑

κ

γκ

2 ‖[[uN ]]‖2
∂κ.
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Figure 11. (a) Global error and the upper/lower bound estimator for V (x, y) given in Fig-
ure 10a and f(x, y) = cos(3x) cos(y). (b) Local effectiveness of the upper bound characterized
by Cη in each element for N = 11. (c) Local effectiveness of the upper bound characterized by
Cη in each element for N = 41. (d) Local effectiveness of the lower bound characterized by Cξ

in each element for N = 11. (e) Local effectiveness of the lower bound characterized by Cξ in
each element for N = 41.
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Figure 12. Comparison of du
κ(uN ), dκ and bκγκ for (a) the positive definite case with V (x) =

0.01 with N = 7. (b) The indefinite case with V (x) given in Figure 6a with N = 7.
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Figure 13. Comparison of du
κ(uN ), dκ and bκγκ for 2D test problems for (a–c) the positive

definite case V = 0.01 (d–f) the indefinite case V = −16.5 (g–i) the indefinite case with V
given by the sum of negative Gaussians in Figure 10a.

Table 1. Comparison of the total contribution of the jump term in the estimator η2
J , and the

total contribution of the jump term in the energy error EJ .

Problem N EJ η2
J

1D V = 0.01 7 2.0179 × 10−8 2.0182 × 10−8

2D V = 0.01 21 1.2030 × 10−5 9.1593 × 10−5

1D Gaussian 11 6.4687 × 10−11 6.4697 × 10−11

2D V = −16.5 31 4.7352 × 10−3 5.6649 × 10−2

2D Gaussian 21 1.6226 × 10−3 2.8348 × 10−2

This is given in Table 1. It shows that the approximation du
κ(uN ) ≈ dκ does not lead to underestimation of the

jump term, which is consistent with the observation in Figures 12 and 13.
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7. Conclusion and future work

We present the first systematic work for deriving a posteriori error estimates for general non-polynomial
basis functions in a interior penalty discontinuous Galerkin (DG) formulation for solving second order linear
PDEs. The estimates not only serve to quantify the error sharply for a given computation, but also can lead
an adaptive algorithm to refine the elements non-uniformly by adding (or even removing/coarsening) basis
functions to certain elements. This allows a best approximation for a given number of degrees of freedom in
order to reduce the computing time even when relatively few degrees of freedom are employed. A non-uniform
distribution of the number of local basis functions is in this case mandatory to develop powerful solvers, in
particular when inhomogeneous data of the PDE is involved. It turns out that the standard polynomial hp
DG-method may benefit from this analysis as it involves numerically computed constants.

Our analysis requires the exact solution to lie in H2(κ) for each element κ which may seem limiting when
dealing with a posteriori estimates for Poisson’s equation as a uniform refinement leads to optimal convergence
rates in the asymptotic limit. We remark that despite the above asymptotic reasoning there are numerous cases
where the a posteriori analysis for regular functions is still interesting, for example if the PDE involves a strong
small-scale character (but still being smooth) either due to strongly oscillating material coefficients or a wave-
like character of the underlying PDE (Helmholtz equation for instance). Or, if the data of the PDE and thus
the solution as well has an inhomogeneous character so that a uniform refinement involves too many degrees of
freedom. In this case, combining the estimates with an adaptive algorithm as outlined above will result in an
optimal balance of degrees of freedom per element.

Our framework for developing explicitly computable constants for a posteriori error estimates are not limited
to second order PDEs, nor it is necessarily limited to discontinuous Galerkin framework. In a forthcoming
publication we will demonstrate the method for eigenvalue problems. It is also possible to generalize the method
to multiscale methods and reduced basis methods.

Appendix.

Proposition A.1. Let κ = [a, b] be a 1D element and VN (p; κ) = span{xj , j ≤ p} be the function space spanned
by polynomials with degree less than or equal to p. Then ∀p ≥ 2, bκ = 0.

Proof. Define c = (a + b)/2. For any v ∈ H1(κ), v ⊥ VN (p; κ) with p ≥ 2, we have

(v, 1)�,κ = 0, (v, (x − c))�,κ = 0, (v, (x − c)2)�,κ = 0.

Using the definition of the inner product (·, ·)�,κ∫ b

a

v(x) dx = 0,

∫ b

a

v′(x) dx = 0,

∫ b

a

v′(x)(x − c)dx = 0.

With integration by parts, we have v(a) = v(b) = 0. Therefore ‖v‖∂κ = 0. Using the definition of bκ we obtain
bκ = 0. �
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[24] D. Schötzau and L. Zhu, A robust a posteriori error estimator for discontinuous Galerkin methods for convection–diffusion
equations. Appl. Numer. Math. 59 (2009) 2236–2255.

[25] C. Schwab, p-and hp-Finite Element Methods. Oxford University Press, New York (1998).

[26] B. Stamm and T. Wihler, hp-Optimal discontinuous Galerkin methods for linear elliptic problems. Math. Comput. 79 (2010)
2117–2133.

[27] R. Tezaur and C. Farhat, Three-dimensional discontinuous Galerkin elements with plane waves and Lagrange multipliers for
the solution of mid-frequency Helmholtz problems. Int. J. Numer. Meth. Eng. 66 (2006) 796–815.

[28] W. E and B. Engquist, The heterognous multiscale methods. Commun. Math. Sci. 1 (2003) 87–132.

[29] M.F. Wheeler, An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15 (1978) 152–161.


	Introduction
	Previous work
	Contribution
	Outline

	Preliminary results
	Mesh, broken spaces, jump and average operators
	Projections
	Local scaling constants

	Poisson's equation
	Error representation
	A posteriori error estimation

	Second order indefinite problems
	Computable upper bounds
	Computable lower bounds

	Practical strategies for estimating the constants
	Finite dimensional discretization
	Estimation of d
	Estimation of a,b

	Numerical results
	Estimating the constants for polynomial basis functions
	Positive definite operators
	Indefinite operators
	Justification of the treatment of du(uN)

	Conclusion and future work
	
	References


