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NITSCHE’S METHOD FOR PARABOLIC PARTIAL DIFFERENTIAL
EQUATIONS WITH MIXED TIME VARYING BOUNDARY CONDITIONS
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Abstract. We investigate a finite element approximation of an initial boundary value problem as-
sociated with parabolic Partial Differential Equations endowed with mixed time varying boundary
conditions, switching from essential to natural and vice versa. The switching occurs both in time and
in different portions of the boundary. For this problem, we apply and extend the Nitsche’s method
presented in [Juntunen and Stenberg, Math. Comput. (2009)] to the case of mixed time varying bound-
ary conditions. After proving existence and numerical stability of the full discrete numerical solution
obtained by using the θ-method for time discretization, we present and discuss a numerical test that
compares our method to a standard approach based on remeshing and projection procedures.
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1. Introduction and motivation

The study of initial boundary value problems associated with parabolic Partial Differential Equations (PDEs)
and complemented with mixed time varying boundary conditions (BCs) represents a challenging task both for the
theoretical analysis and the numerical approximation. This kind of model may be suitable to describe physical
problems as, e.g. the distribution of the temperature in a body with temperature and heat flux prescribed on a
portion of the boundary changing in time, or flows in cavities (e.g. the heart ventricles and atria) with opening
and closing valves. Despite its applicative interest, to the best of our knowledge, neither numerical examples nor
numerical studies are available in literature. On the other hand, in the last decades, several works have been
devoted to the analysis of this class of problems, even if only from a theoretical point of view [1,5,9,10,18,21,29].
In particular, the focus has been on the existence and regularity properties of the solution; in this respect, since
the 1970s, different techniques have been developed. Starting from the standard theory of abstract evolution
equations of Kato, Lions, and Magens [18,19], works as [9,10] adapted these arguments to the case of time varying
mixed BCs, leading to solutions with properties connected to the geometrical structure of the boundaries. Then,
by developing a more general result on abstract evolution equations in variable domains, Baiocchi [5] investigated
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the solution of these problems in spaces independent of the geometry under relatively weak assumptions on the
data and on the regularity of the boundary. This latter approach has been further extended by Savaré in [29].

In [29], it is noted that the proposed abstract approach for the proof of the existence of the solution of a
parabolic PDE defined by a second order elliptic spatial operator and endowed with mixed time varying BCs can
be extended to a Finite Element (FE) formulation [25]. Starting from the framework of [29], one can consider a
numerical method based on the backward Euler (BE) method [25] for the discretization in time and on the FE
method for the spatial approximation. Specifically, one can use the standard (strong) imposition of Dirichlet
BCs in the discretization of the parabolic PDE with mixed time varying BCs, thus building a family of closed
time varying FE function subspaces. This method, which we identify with the name time varying FE method,
exhibits some drawbacks which may considerably affect the computational performances of the simulations.
Indeed, at each time step, the number of degrees of freedom associated to the FE space changes and, as well as,
the size and the structure of the associated discrete problem. Moreover, when implementing the time varying
FE method by using commercial codes, it may be necessary to re-mesh the domain and use extension and
projection operators of the intermediate solutions for all the time steps.

In order to overcome the drawbacks of the time varying FE method, in this work we propose and analyse a
new numerical approach for mixed time varying BCs which yields a FE semi-discretized spatial approximation
with time independent function spaces and is based on the Nitsche’s method [22]. Moreover, even if in this
paper we focus on the θ-method [25, 26] for the time discretization, we highlight that any other scheme could
similarly be used. We remark that the Nitsche’s method for parabolic problems with mixed time varying BCs is
formulated in the framework of [17], but considering the more general case of space-time weighting functions in
place of constant coefficients, characterizing both the type of data and the degree of penalization; in addition we
consider a general advection-diffusion-reaction PDE. We remark that the proposed approach introduces penalty
and consistency terms in the variational formulation of the problem. Specifically, the Dirichlet BCs are imposed
weakly in the variational formulation rather than strongly in the space of test functions by means of penalty
terms; for the Neumann BCs, additional terms are introduced with respect to those of the classical formulation.

In our theoretical analysis we prove the well posedness of the semi-discrete problem; then, we study the
stability of the full discrete problem with stability conditions depending on both the data and the penalty
functions. We show results in accordance with the ones presented in literature involving the weak imposition
of essential BCs, which is commonly used in the context of the Discontinuous Galerkin (DG) method [25, 27].
As a matter of fact, the weak imposition of essential BCs (see e.g. [6]) represents a particular case of the more
general scheme proposed in this paper.

This paper is organized as follows. In Section 2, we describe the continuous problem and we recall the results
on the existence and regularity properties of the solution already established in [29]. Then, we present the
standard numerical method based on the BE scheme for the time discretization and the spatial approximation
by means of the FE method with time varying spaces in the framework of [29]. In Section 3, we introduce
the proposed approach for mixed time varying BCs based on the Nitsche’s method. We analyse the proposed
semi-discrete formulation, then we introduce the approximation in time by using the θ-method, and we finally
analyse the fully discretized problem; specifically, we provide results on the numerical stability of the method.
Finally, in Section 4, we report and discuss some numerical results to highlight the efficiency of the proposed
method. Conclusions follow.

2. The continuous problem

In this section, we introduce the parabolic problem with mixed time varying BCs. In Section 2.1 we recall
some notions and notations on Banach spaces by referring in particular to [2], we describe the problem defined
by a PDE with a second order elliptic spatial operator and we recall a result on the existence and uniqueness
of the solution of Savaré in [29]. Finally, in Section 2.2, we present the FE method with time varying function
spaces.
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2.1. The continuous problem: Preliminaries and well-posedness analysis

We assume that Ω ⊆ Rn, with n ∈ N, is an open connected bounded set with regular boundary Γ ≡ ∂Ω,
satisfying a strong local Lipschitz condition. The independent spatial variable x will be defined in Ω, while the
independent time variable t will take values in an interval I := (0, T ) ⊆ R with 0 < T < ∞. For any positive
integer m ≥ 0 and any real number 1 ≤ p ≤ ∞, we denote the Sobolev space of order m as Wm,p(Ω) :={
v ∈ Lp(Ω) : D(ι)v ∈ Lp(Ω) for all ι = (ι1, . . . , ιd) ∈ Nn with 0 ≤ |ι| = ι1 + . . . + ιn ≤ m

}
, with D(ι)

denoting the distributional partial differential operator. The corresponding norm and semi-norm are indicated
as ‖·‖Wm,p(Ω) and |·|Wm,p(Ω), respectively. Moreover, for p = 2, we denote by Hm(Ω) the Hilbert space Wm,2(Ω)
and by Hm

ΓD
(Ω) the space of functions v ∈ Hm(Ω) vanishing on ΓD ⊆ Γ ≡ ∂Ω in the sense of the traces, i.e.

Hm
ΓD

:= {v ∈ Hm : v|ΓD ≡ 0}.
Let H be a Banach space endowed with norm ‖·‖H defined over Ω. Then, the space of measurable func-

tions with respect to the Lebesgue measure, defined on the interval I and having values in H with fi-
nite Bochner integral on I, is denoted by L1(I;H) := {v : I → H :

∫
I ‖v(s)‖H ds < ∞}. More gener-

ally, for any p such that 1 ≤ p < ∞, we have Lp(I;H) := {v : I → H :
∫

I ‖v(s)‖p
H ds < ∞}, and

L∞(I;H) := {v : I → H: ess supt∈I ‖v(t)‖H < ∞}. Analogously, for any positive integer m ≥ 0, we con-
sider the Hilbert spaces of measurable functions defined on I with values in H, say Hm(I;H) =

{
v ∈ L2(I;H) :

D
(ι)
t v ∈ L2(I;H) for all ι = (ι1, . . . , ιd) ∈ Nd with 0 ≤ |ι| = ι1 + . . . + ιd ≤ m

}
, where D

(ι)
t is the distributional

partial derivative with respect to the independent variable t ∈ I. Finally, for any fractional numbers, r and
s ∈ Q, we denote by Hr,s(Ω) the space defined as Hr,s(Ω) = L2(I; Hr(Ω)) ∩ Hs(I; L2(Ω)).

Now, let QT = Ω×(0, T ) be the space-time domain. We consider the linear parabolic equation in the unknwn
u : QT → R, which reads:

∂u

∂t
(x, t) + Lu(x, t) = f(x, t) in QT , (2.1)

endowed with suitable initial and boundary conditions; f : QT → R is the source term and L is a linear elliptic
second order partial differential operator in the form:

Lu = −∇ · (σ∇u) + β · ∇u + κu. (2.2)

Specifically, the diffusivity tensor σ, with σij ∈ W1,∞(QT ), is assumed to be symmetric and elliptic, i.e. σij = σji

and:

∃α > 0 :
n∑

i,j=1

σij(x, t)ξiξj ≥ α |ξ|2 ∀ξ ∈ Rn, ∀(x, t) ∈ QT ; (2.3)

moreover, we require a global Lipschitz condition on the coefficients σij for any i, j = 1, . . . , n. The vec-
tor β is supposed to be solenoidal (∇ · β = 0) with components βi ∈ L∞(QT ); finally, κ ∈ L∞(QT )
represents the reaction term. We highlight that, under the hypothesis on β, Lu can be rewritten as
Lu = −∇ · (σ∇u − uβ) + κu.

In order to define the mixed time varying boundary value Cauchy problem associated with equation (2.1),
we introduce, analogously to [29], a family of C1,1 submanifolds with boundary Γ

(t)
D for t ∈ (0, T ) on the lateral

boundary Σ = Γ × (0, T ). We denote by ΣD and ΣN the subsets of Σ covered by these submanifolds and their
complement defined as:

ΣD :=
⋃

t∈(0,T )

Γ
(t)
D × {t} and ΣN := Σ\ΣD, (2.4)

respectively; ΣD and ΣN represent the lateral time varying parts of the boundary on which we prescribe Dirichlet
and Neumann BCs as:

u(x, t) = g(x, t) on ΣD, (2.5a)
− Φdiff(u(x, t)) · n = G(x, t) on ΣN , (2.5b)
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respectively, where n indicates the outward directed unit vector normal to ΣN , while Φdiff denotes the
diffusive flux tensor associated to L, which reads Φdiff(u) := −σ∇u. We suppose that the functions
g : ΣD → R and G : ΣN → R are defined in suitable trace spaces. Finally, the problem (2.1) endowed
with mixed time varying BCs and initial condition u0 : Ω → R reads:

find u : QT → R :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂u

∂t
(x, t) + Lu(x, t) = f(x, t) in Ω × (0, T ), (2.6a)

u(x, t) = g(x, t) on ΣD, (2.6b)
−Φdiff(u(x, t)) · n = G(x, t) on ΣN . (2.6c)
u(x, 0) = u0(x), in Ω. (2.6d)

We recall a result on the existence and uniqueness of the solution of equation (2.6) provided by Savaré in [29].3

Specifically, by introducing the distance d(·, ·) defining a metric space over ΣD, we focus on the case in which
a two-sided condition on the dilatation of the Dirichlet boundary Γ

(t)
D is defined by the Hausdorff distance as:

dH(Γ (t)
D , Γ

(s)
D ) = max{ sup

y∈Γ
(s)
D

inf
x∈Γ

(t)
D

d(x,y), sup
x∈Γ

(t)
D

inf
y∈Γ

(s)
D

d(x,y)}. (2.7)

Theorem 2.1. Let the source term f ∈ L2(QT ), the initial condition u0 ∈ H1(Ω), and the boundary data
g ∈ H3/2,3/4(ΣD) and G ∈ H1/2,1/4(ΣN ), with the initial compatibility condition u0(x) = g(x, 0) on Γ

(0)
D

satisfied. If the excess of dilatation dH(Γ (t)
D , Γ

(s)
D ) of equation (2.7) is controlled by a weighted measure of the

interval of time, i.e.:

∃ρ ∈ L4(0, T ) : dH(Γ (t)
D , Γ

(s)
D ) ≤

∫ t

s

ρ(τ)dτ, 0 ≤ s < t ≤ T, (2.8)

then, equation (2.6) possesses a unique solution u : QT → R such that:

∂u

∂t
, Lu ∈ L2(QT ), and u ∈ C0(0, T ; H1(Ω)). (2.9)

2.2. FE method with time varying function spaces

In order to introduce a spatial FE approximation of the PDE (2.6), firstly, we recast this problem in weak
formulation. For any t ∈ (0, T ), we define the trial affine space V

(t)
g :=

{
v ∈ H1(Ω) : v(t,x)|

Γ
(t)
D

= g(t,x)
}

and we introduce a lifting function ḡ(t,x) ∈ H1(Ω) satisfying the essential BC (2.6b) in the sense of the traces,
i.e. such that γ

Γ
(t)
D

ḡ(t,x) = g(t,x). Moreover, ḡ is such that for all the functions u ∈ V
(t)
g there exists a unique

w ∈ V
(t)
0 :=

{
v ∈ H1(Ω) : v(t,x)|

Γ
(t)
D

= 0
}

for which u = ḡ + w. We remark that, the Dirichlet BC (2.6b)
is imposed strongly in the space of test functions, while the Neumann BC (2.6c) is weakly introduced in the
variational formulation. The weak formulation of equation (2.6) reads for a.e. t ∈ (0, T ):

find w(t) ∈ V
(t)
0 :

(
∂w

∂t
(t), ϕ

)
+ aσ,β,κ(t; w(t), ϕ) = F̃(t; ϕ) ∀ϕ ∈ V

(t)
0 , (2.10)

with
aσ,β,κ(t; w, ϕ) :=

∫
Ω

∇ϕ · (σ∇w) dΩ +
∫

Ω

ϕβ · ∇w dΩ +
∫

Ω

ϕκw dΩ, (2.11)

3 A more general result is provided in [29] considering a weaker condition on the dilatation of the Dirichlet boundary and
solutions in Besov spaces [2, 8, 20].
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and
F̃(t; ϕ) :=

∫
Ω

ϕf(t) dΩ +
∫

Γ
(t)
N

ϕG(t) dΓ − aσ,β,κ(t; ḡ(t), ϕ). (2.12)

At this point, we introduce a time discretization of equation (2.10), by using the BE scheme4, yielding the
semi-discrete problem. Let NT ∈ N be a given integer and consider an uniform partition of the time interval
(0, T ) into subintervals {[tn, tn+1)}NT −1

n=0 of size Δt := T/NT , with tn := nΔt, for n = 0, . . . , NT . By evaluating
the data f, g, and G at the time tn as fn, gn, and Gn, for n = 1, . . . , NT , and by setting u0 = u0 in Ω, we solve
recursively the following family of elliptic problems in the unknowns un ∈ V (tn), for n = 1, . . . , NT , reading:

find wn ∈ V
(tn)
0 :

1
Δt

(
(wn − wn−1), ϕ

)
L2(Ω)

+ aσ,β,κ(tn; wn, ϕ) = F̃(tn; ϕ) ∀ϕ ∈ V
(tn)
0 ; (2.13)

with un = wn + ḡn.
Finally, in order to obtain the full discrete FE formulation, we consider a regular family of quasi-uniform

triangulations {T n
h }h of Ω, denoting with hT := diamT the diameter of any mesh element T ∈ T n

h and by
hn := maxT∈T n

h
hT the mesh size at time tn ([26, 33]). Moreover, we assume that for any mesh size h, the

mesh T n
h is conforming with the boundary Γ ≡ ∂Ω and we denote by En

h the corresponding triangulation on
the interface, whose elements (edges or faces) are denoted by Γb for b = 1, . . . , Nh

b with associated diameter
hn

b := diamΓ n
b , respectively. We remark that the mesh T n

h varies or changes with the time tn, as well as En
h .

Therefore, for any n = 1, . . . , NT , the full discrete problem (2.6) is defined by looking for a FE approximated
solution un

h of equation (2.13) in the FE space of degree k ≥ 1 defined as:

Vn
0,h := Xn

h ∩ V
(tn)
0 , (2.14)

where Xn
h :=

{
ϕh ∈ C0(Ω) : ϕh|T ∈ Pk ∀T ∈ T n

h

}
and Pk denotes the space of polynomials of degree less than

or equal to k. We remark that the FE space Xn
h depends on the mesh T n

h , which may change at each time step
in order to match Γ

(tn)
D . Then, the full discrete problem reads, for n = 1, . . . , NT :

find un
h ∈ V (tn) : (wn

h , ϕh) + Δt aσ,β,κ(tn; wn
h , ϕh) = Δt F̃(tn; ϕh) +

(
wn−1

h , ϕh

)
∀ϕh ∈ Vn

0,h; (2.15)

with un
h = wn

h + ḡn
h , given u0

h ∈ Vh, where F̃ involves the approximate lifting function ḡn ∈ Vn
g,h := Xh ∩ V

(tn)
g ,

e.g. obtained by a L2 projection technique.

Remark 2.2. The FE spaces of equation (2.14) are time varying function spaces. Specifically, depending on
the measure of Γ

(tn)
D , the number of degrees of freedom associated to the FE space V(n)

0,h changes accordingly, as
well as the size and the structure of the associated discrete problem.

Remark 2.3. When implementing problem (2.15) by using the standard Galerkin FE formulation with time
varying function spaces, the FE space can only be defined after the Dirichlet boundary Γ

(tn)
D is prescribed

at time tn. Therefore, one needs to re-mesh and re-define a new FE space for any discrete time tn, for all
n = 1, . . . , NT . Moreover, for any tn, suitable injection and projection operators need to be introduced to
account for the variation of the mesh T n

h . In practice, to account for this variation, we need to introduce

a mapping T n acting on the data un−1 as T n : Vn−1
g,h

In
h↪→ H1(Ω)

P n
h−−→ Vn

g,h, where In
h denotes the injection

operator of the solution un−1 ∈ Vn−1
g,h into H1(Ω), while Pn

h is the projection operator from H1(Ω) onto the FE
space Vn

g,h. Accounting for such operators in commercial software or FE codes is neither straightforward nor
computationally efficient.

4 We use the BE scheme in the framework of the proof of Theorem 2.1 in [29], for which the author shows that, under suitable
hypotheses, the continuous and piecewise linear (with respect to time) solution of the semi-discrete problem converges to the
solution u(t) of equation (2.6) when the time step tends to zero.
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3. Nitsche’s method for mixed time varying BCs

In this section, we propose the Nitsche’s method for the treatment of the mixed time varying BCs of equa-
tion (2.6). Following what done in [17] for elliptic PDEs, we consider equation (2.6a) endowed with a generalized
Robin BCs in the form:

−Φdiff(u(x, t)) · n + γ(x, t)u(x, t) = G(x, t) + γ(x, t)g(x, t) on Σ, (3.1)

where γ : Σ → (0, +∞) ⊆ R. Indeed, given f ∈ L2(0, T ; L2(Ω)), u0 ∈ H1(Ω), g ∈ L2(0, T ; H1/2(Γ (t)
D )), and

G ∈ L2(0, T ; L2(Γ (t)
N )), we consider the problem:

find u : Ω × (0, T ) → R :⎧⎪⎪⎨⎪⎪⎩
∂u

∂t
(x, t) + Lu(x, t) = f(x, t) in Ω × (0, T ), (3.2a)

−Φdiff(u(x, t)) · n + γ(x, t)u(x, t) = G(x, t) + γ(x, t)g(x, t) on Σ, (3.2b)
u(0) = u0 in Ω, (3.2c)

with u0(x) = g(x, 0) on Γ
(0)
D . We notice that in the limit γ → 0, equation (3.2b) tends to the pure Neumann BC

of equation (2.6c), while, in the limit γ → ∞, we recover the pure Dirichlet BC of equation (2.6b). Problem (3.2)
can therefore be regarded as more general than (2.6).

3.1. The Nitsche’s method: Spatial discretization

For the spatial discretization of equation (3.2), we introduce a FE approximation based on the Nitsche’s
method [17,22] to treat the time varying BCs by looking for a solution of the weak counterpart of equation (3.2)
in H1(Ω) with function spaces independent of time. We introduce the FE space of degree k ≥ 1 defined as:

Vh := Xh ∩ H1(Ω), (3.3)

with Xh being the FE space of Lagrangian basis functions defined over the mesh Th, which is now fixed in Ω
and in time; h := maxT∈Th

hT represents the mesh size, hT := diamT the diameter of any element T ∈ Th, Eh

the triangulation on the boundary, whose elements (edges or faces) are denoted by Γb for b = 1, . . . , Nh
b with

associated diameter hb := diamΓb. Moreover, let Tb, for b = 1, . . . , Nh
b be the boundary triangle of Th associated

to Γb, i.e. Γb := Tb ∩ Γ .

3.1.1. The semi-discrete problem

We consider the following problem, for all t ∈ (0, T ):

find uh(t) ∈ Vh :
(

∂uh

∂t
(t), ϕh

)
+ ah(t; uh(t), ϕh) = Fh(t; ϕh) ∀ϕh ∈ Vh, (3.4)

where:

ah(t; uh(t), ϕh) := aσ,β,κ(t; uh(t), ϕh) +
Nh

b∑
b=1

[∫
Γb

ϕh

(
− γhb

ξ + γhb

)
σ∇uh · n dΓ

+
∫

Γb

(Φ∗
in(ϕh) · n)

(
− γhb

ξ + γhb

)
uh dΓ +

∫
Γb

ϕh

(
|σ| ξγ

ξ + γhb

)
uh dΓ

+
∫

Γb

(Φ∗
in(ϕh) · n)

(
− hb

|σ| (ξ + γhb)

)
σ∇uh · n dΓ

]
,

(3.5)
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and:

Fh(t; ϕh) := F(t; ϕh) +
Nh

b∑
b=1

[∫
Γb

(Φ∗
in(ϕh) · n)

(
− γhb

ξ + γhb

)
g dΓ +

∫
Γb

ϕh

(
|σ| ξγ

ξ + γhb

)
g dΓ

+
∫

Γb

(Φ∗
in(ϕh) · n)

(
− hb

|σ| (ξ + γhb)

)
G dΓ +

∫
Γb

ϕh

(
ξ

ξ + γhb

)
G dΓ

]
,

(3.6)

with aσ,β,κ(t; uh, ϕh) defined in equation (2.11), F(t; ϕh) :=
∫

Ω ϕhf dΩ, χin and χout the characteristic functions
of the subsets of the boundary corresponding to the inflow and outflow parts, respectively:

χin : Σ → {0, 1}, χin(x, t) :=

{
1 if β(x, t) · n < 0,

0 otherwise,
, and χout := 1 − χin, (3.7)

and Φ∗
in is the adjoint of the inflow flux tensor:

Φ∗
in(u(x, t)) := σ(x, t)∇u(x, t) + u(x, t)β(x, t)χin(x, t); (3.8)

moreover, ξ :
⋃Nh

b

b=1 Γb × (0, T ) → (0, +∞) is the penalty function.

Remark 3.1. The first boundary term of equation (3.5) is a consistency term, while the remaining terms of
equations (3.5) and (3.6) ensure a weak enforcement of the BCs. The case of pure Neumann BC, i.e. when
ΣN ≡ Σ, is recovered for γ(x, t) → 0+ a.e. (x, t) ∈ Σ. Indeed, in that case, equation (3.4) becomes:

find uh(t) ∈ Vh :
(

∂uh

∂t
(t), ϕh

)
+ aσ,β,κ(t; uh, ϕh) +

Nh
b∑

b=1

∫
Γb

(Φ∗
in(ϕh) · n)

(
− hb

|σ| ξ

)
σ∇uh · n dΓ

= F(t; ϕh) +
∫

Γ

ϕhG dΓ +
Nh

b∑
b=1

∫
Γb

(Φ∗
in(ϕh) · n)

(
− hb

|σ| ξ

)
G dΓ ∀ϕh ∈ Vh.

(3.9)

We notice that the last terms on either side of equation (3.9) represent additional terms with respect to the
standard formulation, which however do not affect the consistency of the method. The case of a pure Dirichlet
BC, i.e. when ΣD ≡ Σ, is recovered for γ(x, t) → +∞ a.e. (x, t) ∈ Σ. In this case, equation (3.4) reads:

find uh(t) ∈ Vh :
(

∂uh

∂t
(t), ϕh

)
+ aσ,β,κ(t; uh, ϕh) +

Nh
b∑

b=1

∫
Γb

−ϕh (σ∇uh · n) dΓ

+
Nh

b∑
b=1

∫
Γb

− (Φ∗
in(ϕh) · n) uh dΓ +

Nh
b∑

b=1

∫
Γb

ϕh

(
|σ| ξ
hb

)
uh dΓ

= F(t; ϕh) +
Nh

b∑
b=1

∫
Γb

− (Φ∗
in(ϕh) · n) g dΓ +

Nh
b∑

b=1

∫
Γb

ϕh

(
|σ| ξ
hb

)
g dΓ.

(3.10)

Equation (3.10) corresponds to the weak treatment of the Dirichlet BCs as considered e.g. in [6]. As a matter
of fact, the weak imposition of Dirichlet BCs of [6] represents a particular case of the more general scheme
proposed in this paper. Weak imposition of Dirichlet BCs is easily accommodated in the context of the Discon-
tinuous Galerkin (DG) method [25, 27], where the inter-element continuity of the solution is weakly enforced.
In particular, in view of the analysis of the penalty terms added to the variational formulation, we refer the
interested reader to [3, 27].
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Remark 3.2. Concerning the penalty function ξ = ξ(x, t), we attribute a different role to ξ on the boundary
of the space-time cylinder Σ where we impose either Dirichlet or Neumann BCs. Indeed, from definitions (3.5)
and (3.6), we infer that, for the weak imposition of the Dirichlet BC on Γ , the bigger the value of ξ, the more
significant is the penalization on the Dirichlet data g. Conversely, for the Neumann BC on Γ , the larger the
value of ξ, the smaller is the contribution of the additional consistency terms, see equation (3.9).

We remark that equation (3.4) considers a different treatment of the inflow boundary part with respect to
the outflow one, with the aim of controlling both the regimes of dominating advection or diffusion. The scaling
with respect to |σ| of the boundary terms of equations (3.5) and (3.6) allows to consider the correct dimensions
in the formulation. The weak treatment of the Dirichlet BCs at the inflow and outflow boundaries, which is
obtained for γ(x, t) → +∞, can be justified analogously to e.g. [6]. For the analysis of the Nitsche’s method, we

impose the following restrictions on ξ :
⋃Nh

b

b=1 Γb × (0, T ) → (0, +∞); ξ is a measurable function for which there
exists two positive constants ξ0 and ξ∞ such that:

0 < ξ0 ≤ ξ(x, t) ≤ ξ∞ < +∞, ∀(x, t) ∈
Nh

b⋃
b=1

Γb × (0, T ). (3.11)

Then, let us define the following weighting functions for the Nitsche’s method:

ξb
k : Γ × (0, T ) → R : (x, t) �→ δb

k

ξ(x, t) + γ(x, t)hbχΓb
(x)

, (3.12)

for k = 1, . . . , 4, with:

δb
1 := γ(x, t)hbχΓb

(x), δb
2 := ξ(x, t)γ(x, t), δb

3 := hbχΓb
(x), and δb

4 := ξ(x, t), (3.13)

for all b = 1, . . . , Nh
b and with χΓb

the characteristic functions of the subset Γb, i.e. χΓb
: Γ → {0, 1} :

x �→
{

1 if x ∈ Γb,

0 otherwise
. For the weighting functions (3.12), we have the following upper bounds:

∣∣ξb
1(x, t)

∣∣ ≤ 2,
∣∣ξb

2(x, t)
∣∣ ≤ 2

ξ∞
minb hb

� ξ∞
h

,∣∣ξb
3(x, t)

∣∣ ≤ maxb hb

ξ0

� h

ξ0

,
∣∣ξb

4(x, t)
∣∣ ≤ 1, ∀(x, t) ∈ Γ × (0, T ),

(3.14)

where equation (3.14) for ξb
2 and ξb

3 follow from the quasi-uniformity of the family of triangulations Th.

3.1.2. Some preliminary lemmas

We recall the following inverse inequalities for traces of finite element functions from [3, 33]. Let Γ̃ ⊆ ∂Ω,
then there exist positive constants C̃1 and C̃2 > 0 independent of h, but possibly dependent on the FE degree
k such that:

‖φ‖2
L2(Γ̃ ) ≤ C̃1h

−1 ‖φ‖2
L2(Ω) and ‖∇φ · n‖2

L2(Γ̃ ) ≤ C̃2h
−1 |φ|2H1(Ω) ∀φ ∈ Vh. (3.15)

Moreover, for b = 1, . . . , Nh
b , there exist constants C1 and C2 > 0 dependent on k, but independent of hb, such

that:

‖φ‖2
L2(Γb)

≤ C1h
−1
b ‖φ‖2

L2(Tb)
∀φ ∈ Vh, (3.16a)

‖∇φ · n‖2
L2(Γb)

≤ C2h
−1
b |φ|2H1(Tb)

∀φ ∈ Vh. (3.16b)
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Finally, thanks to the quasi-uniformity of Th, the following inverse inequality holds [33] for a positive constant
C̄ independent of h:

|φ|2H1(Ω) ≤ C̄h−2 ‖φ‖2
L2(Ω) ∀φ ∈ Vh. (3.17)

For our analysis, we introduce the following h-dependent norm:

‖v‖h :=

⎛⎝|v|2H1(Ω) +
Nh

b∑
b=1

‖ζv‖2
L2(Γb)

⎞⎠1/2

, (3.18)

where, for the sake of simplicity, we have introduced from equation (3.12), with k = 2, the function:

ζ : Σ → R : (x, t) �→
√

ξb
2(x, t). (3.19)

We recall the following result, consequence of the Peetre−Tartar Lemma [15], from which we deduce the
successive lemmas.

Lemma 3.3. Let O be a general open bounded connected set with Lipschitz boundary and let F be a linear
functional on H1(O) whose restriction on constant functions is not null; then, there exists a positive constant
CO > 0, dependent on the domain O, such that:

CO ‖ϕ‖H1(O) ≤ |ϕ|H1(O) + |F (ϕ)| ∀ϕ ∈ H1(O). (3.20)

Lemma 3.4. Under the hypotheses of Lemma 3.3, for O = Tb, there exists a constant CΩB > 0, related to the
boundary elements of the mesh Tb for b = 1, . . . , Nh

b , such that for the norm ‖·‖h of equation (3.18):

Nh
b∑

b=1

‖ϕh‖2
H1(Tb)

≤ CΩB ‖ϕh‖2
h ∀ϕh ∈ Vh. (3.21)

Proof. By applying Lemma 3.3 for O ≡ Tb and F (ϕ) = 1
hb

∫
Γb

ζϕ dΓ , we have:

|F (ϕ)| =
1
hb

∣∣∣∣∫
Γb

ζϕ dΓ

∣∣∣∣ ≤ 1
hb

‖1‖L2(Γb)
‖ζϕ‖L2(Γb)

= ‖ζϕ‖L2(Γb)
, (3.22)

and, for any b = 1, . . . , Nh
b , there exists CTb

> 0, such that:

CTb
‖ϕh‖H1(Tb)

≤ |ϕh|H1(Tb)
+ |F (ϕh)| ≤ |ϕh|H1(Tb)

+ ‖ζϕh‖L2(Γb)
; (3.23)

therefore,
C2

Tb

2 ‖ϕh‖2
H1(Tb)

≤ |ϕh|2H1(Tb)
+ ‖ζϕh‖2

L2(Γb)
. By summing the latter over b = 1, . . . , Nh

b , we have:

Nh
b∑

b=1

C2
Tb

2
‖ϕh‖2

H1(Tb)
≤ |ϕh|2H1(Ω) +

Nh
b∑

b=1

‖ζϕh‖2
L2(Γb)

= ‖ϕh‖2
h ; (3.24)

by setting CΩB := 2
minb C2

Tb

, equation (3.21) follows. �

Lemma 3.5. Under the hypotheses of Lemma 3.3, for O = Ω, there exists a constant CΩ > 0 such that, for
the norm ‖·‖h of equation (3.18):

‖ϕh‖2
H1(Ω) ≤

2
C2

Ω

‖ϕh‖2
h ∀ϕh ∈ Vh, (3.25a)

‖ϕh‖2
L2(Γ ) ≤

2C2
tr

C2
Ω

‖ϕh‖2
h ∀ϕh ∈ Vh, (3.25b)

with Ctr trace constant, such that:
‖ϕh‖L2(Γ ) ≤ Ctr ‖ϕh‖H1(Ω) . (3.26)
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Proof. By applying Lemma 3.3 for O ≡ Ω and F (ϕ) := 1√
2Nh

b maxb hb

∑Nh
b

b=1

∫
Γb

ζϕ dΓ , we obtain:

CΩ ‖ϕh‖H1(Ω) ≤ |ϕh|H1(Ω) + |F (ϕh)| ≤ |ϕh|H1(Ω) +
1√
2Nh

b

Nh
b∑

b=1

‖ζϕh‖L2(Γb)
, (3.27)

where the upper bound for |F (ϕh)| follows by the triangle inequality and Schwarz inequality

|F (ϕ)| ≤ 1√
2Nh

b

∑Nh
b

b=1 ‖ζϕ‖L2(Γb)
. Furthermore, since

(∑Nh
b

b=1 ‖ζϕ‖L2(Γb)

)2

≤ 2Nh
b

∑Nh
b

b=1 ‖ζϕ‖2
L2(Γb)

, we obtain:

C2
Ω ‖ϕh‖2

H1(Ω) ≤ 2 |ϕh|2H1(Ω) + 2
Nh

b∑
b=1

‖ζϕh‖2
L2(Γb)

= 2 ‖ϕh‖2
h , (3.28)

yielding (3.25a); (3.25b) follows from (3.25a) and (3.26). �

Lemma 3.6. There exist positive constants C
(1)
1 and C

(2)
1,h > 0 such that:

C
(1)
1 ‖ϕh‖H1(Ω) ≤ ‖ϕh‖h ≤ C

(2)
1,h ‖ϕh‖H1(Ω) ∀ϕh ∈ Vh, (3.29)

where C
(1)
1 is independent of h, while C

(2)
1,h :=

√
1 + 2C2

tr ξ∞
minb hb

scales as h−1/2 for h → 0.

Proof. By using Lemma 3.5, we obtain the left inequality of equation (3.29), with C
(1)
1 := CΩ√

2
. Using the

bound (3.14) for the function ξb
2 and the trace inequality (3.26), we obtain:

Nh
b∑

b=1

‖ζϕ‖2
L2(Γb)

≤ 2ξ∞
minb hb

Nh
b∑

b=1

‖ϕ‖2
L2(Γb)

≤ 2ξ∞
minb hb

‖ϕ‖2
L2(Γ ) ≤

2C2
tr ξ∞

minb hb
‖ϕ‖2

H1(Ω) . (3.30)

�
Lemma 3.7. For the norm ‖·‖h, there exists a constant C̃0 > 0 independent of h such that:

‖ϕh‖h ≤ C̃0h
−1 ‖ϕh‖L2(Ω) ∀ϕh ∈ Vh. (3.31)

Proof. By considering the inverse inequalities (3.16a) and (3.17) together with the second upper bound of the
inequality (3.30), we have:

‖ϕh‖2
h ≤ |ϕh|2H1(Ω) +

2ξ∞
minb hb

‖ϕ‖2
L2(Γ ) ≤ C̄h−2 ‖ϕh‖2

L2(Ω) + 2ξ∞C̃1h
−2 ‖ϕh‖2

L2(Ω) . (3.32)

The latter inequality follows from the hypothesis of the quasi-uniformity of {Th}h; indeed, there exists a constant
τ > 0 such that minT∈Th

hT ≥ τh for h := maxT∈Th
hT for which we embed the constant τ in C̃1. The thesis

follows with C̃2
0 := max {C̄, 2ξ∞C̃1}. �

3.1.3. Analysis of the Nitsche’s method: consistency and well posedness

We start by verifying the consistency of the formulation (3.4) with respect to problem (2.6).

Lemma 3.8. Let uh(t) ∈ Vh be solution of (3.4) and u(t) : Ω × (0, T ) → R the solution of (3.2), then, for all
t ∈ (0, T ), it holds: (

∂

∂t
(uh(t) − u(t)) , ϕh

)
+ ah(t; (uh(t) − u(t)) , ϕh) = 0 ∀ϕh ∈ Vh, (3.33)

where ah(t; ·, ·) is defined in equation (3.5).
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Proof. By multiplying equation (3.2a) by ϕh ∈ Vh, integrating over Ω, and using the Green’s integration formula,
we have: ∫

Ω

ϕh
∂u

∂t
dΩ +

∫
Ω

∇ϕh · σ∇u dΩ +
∫

Ω

ϕh β · ∇u dΩ +
∫

Ω

ϕh κu dΩ

−
∫

Γ

ϕh(σ∇u · n) dΓ =
∫

Ω

ϕh f dΩ.

(3.34)

Next, we consider the BC of equation (3.2b) multiplied by the function ξb
4ϕh, where ξb

4 is defined in equa-
tion (3.12), with k = 4. By integrating this equation over Γb, for all b = 1, . . . , Nh

b , we obtain:∫
Γb

ϕh

(
ξ

ξ + γhb

)
(σ∇u · n) dΓ +

∫
Γb

ϕh

(
ξγ |σ|

ξ + γhb

)
u dΓ =

∫
Γb

ϕh

(
ξ

ξ + γhb

)
(G + γ |σ| g) dΓ. (3.35)

Similarly, by multiplying the BC of equation (3.2b) by the function
(
− 1

|σ|ξ
b
3 Φ∗

in(ϕh) · n
)
, where ξb

3 is defined
in equation (3.12), with k = 3, and Φ∗

in(·) in equation (3.8), and by integrating the resulting equation over Γb,
for all b = 1, . . . , Nh

b , we have:∫
Γb

Φ∗
in(ϕh) · n

(
− 1
|σ|

hb

ξ + γhb

)
(σ∇u · n) dΓ +

∫
Γb

Φ∗
in(ϕh) · n

(
− γhb

ξ + γhb

)
u dΓ

=
∫

Γb

Φ∗
in(ϕh) · n

(
− 1
|σ|

hb

ξ + γhb

)
(G + γ |σ| g) dΓ.

(3.36)

Therefore, by summing side by side equations (3.34),(3.35), and(3.36), by noticing that
∑Nh

b

b=1

∫
Γb

· dΓ ≡
∫

Γ · dΓ ,
and by using the definitions of equations (3.5) and (3.6), the thesis follows since

∫
Ω

ϕh
∂uh

∂t dΩ +ah(t; uh, ϕh) =
Fh(t; ϕh) for all ϕh ∈ Vh. �

In the following two lemmas we show the continuity and coercivity of the bilinear form ah(·; ·, ·) in equa-
tion (3.5) and the continuity the functional Fh(·; ·) in equation (3.6) both in terms of the norm ‖·‖h.

Lemma 3.9. Let σ0 := inf(x,t)∈QT
{σ(x, t)}, κ0 := inf(x,t)∈QT

{κ(x, t)} and

ᾱ :=
σ0 + 1

2 infQT {β · n}C2
tr − 3

2 ‖β · n‖L∞(QT ) C2
tr

‖σ‖W1,∞(QT )

· (3.37)

Moreover, let the data of problem(3.4) satisfy the following conditions:

ᾱ > 0 and κ0 +
1
2

inf
QT

{β · n}C2
tr − 3

2
‖β · n‖L∞(QT ) C2

tr > 0. (3.38)

In addition, let the penalty function ξ satisfy the condition:

ξ(x, t) > hb χΓb
(x) ∀(x, t) ∈ Σ, ∀b = 1, . . . , Nh

b , (3.39)

and its lower bound ξ0 satisfy the following one:

ξ0 >
C2

ᾱ

(
‖β · n‖L∞(QT )

2σ0
+

‖σ‖W1,∞(QT )

2σ0

)
, (3.40)
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with C2 the constant associated to the trace inequality(3.16b). Then, there exist positive constants Ma > 0 and
αa > 0, both independent of h, such that:

(i) |ah(t; uh, ϕh)| ≤ Ma ‖uh‖h ‖ϕh‖h ∀uh, ϕh ∈ Vh and a.e. in (0, T );
(ii) ah(t; ϕh, ϕh) ≥ αa ‖ϕh‖2

h ∀ϕh ∈ Vh and a.e. in (0, T ).

Proof.
(i) For uh, ϕh ∈ Vh and by applying the triangle inequality to |ah(t; uh, ϕh)|, we have:

|ah(t; uh, ϕh)| ≤ | aσ,β,κ(t; uh, ϕh)| +
Nh

b∑
b=1

[ ∣∣∣∣∫
Γb

ϕh

(
− γhb

ξ + γhb

)
(σ∇uh · n) dΓ

∣∣∣∣
+
∣∣∣∣∫

Γb

(σ∇ϕh · n + ϕh(β · n)χin)
(
− γhb

ξ + γhb

)
uh dΓ

∣∣∣∣+ ∣∣∣∣∫
Γb

ϕh

(
|σ| ξγ

ξ + γhb

)
uh dΓ

∣∣∣∣
+
∣∣∣∣∫

Γb

(σ∇ϕh · n + ϕh(β · n)χin)
(
− hb

|σ| (ξ + γhb)

)
(σ∇uh · n) dΓ

∣∣∣∣
]
.

Moreover, by using the hypothesis(3.39), we have ξb
1(x, t) ≤ ξb

2(x, t). Then, in combination with the bounds(3.14),
we have:

|ah(t; uh, ϕh)| ≤ ‖σ‖W1,∞(QT ) |ϕh|H1(Ω) |uh|H1(Ω) + ‖β‖L∞(QT ) ‖ϕh‖L2(Ω) |uh|H1(Ω)

+ ‖κ‖L∞(QT ) ‖ϕh‖L2(Ω) ‖uh‖L2(Ω)

+
Nh

b∑
b=1

⎡⎣‖σ‖W1,∞(QT ) ‖ζϕh‖L2(Γb)

∥∥∥∥∥
√

hb

ξ

√
γhb

ξ + γhb
∇uh · n

∥∥∥∥∥
L2(Γb)

+ ‖σ‖W1,∞(QT )

∥∥∥∥∥
√

hb

ξ

√
γhb

ξ + γhb
∇ϕh · n

∥∥∥∥∥
L2(Γb)

‖ζuh‖L2(Γb)

+ ‖β · n‖L∞(QT ) ‖ζϕh‖L2(Γb)
‖ζuh‖L2(Γb)

+ |σ| ‖ζϕh‖L2(Γb)
‖ζuh‖L2(Γb)

+
‖σ‖2

W1,∞(QT )

|σ|
h

ξ0

‖∇ϕh · n‖L2(Γb)
‖∇uh · n‖L2(Γb)

+
‖σ‖W1,∞(QT )

|σ| ‖β · n‖L∞(QT )

h

ξ0

‖ϕh‖L2(Γb)
‖∇uh · n‖L2(Γb)

]
.

By using the Hölder’s inequality,(3.16),(3.25b), and(3.21), we have:

|ah(t; uh, ϕh)| ≤ ‖σ‖W1,∞(QT ) |ϕh|H1(Ω) |uh|H1(Ω) + ‖β‖L∞(QT )

√
2

CΩ
‖ϕh‖h |uh|H1(Ω)

+ ‖κ‖L∞(QT )

2
C2

Ω

‖ϕh‖h ‖uh‖h

+ ‖σ‖W1,∞(QT ) ‖ϕh‖h

√
2C2CΩB

ξ0

‖uh‖h + ‖σ‖W1,∞(QT )

√
2C2CΩB

ξ0

‖ϕh‖h ‖uh‖h

+ ‖β · n‖L∞(QT ) ‖ϕh‖h ‖uh‖h + |σ| ‖ϕh‖h ‖uh‖h +
‖σ‖2

W1,∞(QT )

|σ|
C2

ξ0

CΩB ‖ϕh‖h ‖uh‖h

+
‖σ‖W1,∞(QT )

|σ| ‖β · n‖L∞(QT )

CΩB

√
C1C2

ξ0

‖ϕh‖h ‖uh‖h .
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Since |·|H1(Ω) ≤ ‖·‖h, the continuity of ah(·; ·, ·) follows by setting:

Ma := max

{
‖σ‖W1,∞(QT ) max

{
1,

√
2C2CΩB

ξ0

,
‖σ‖W1,∞(QT )

|σ|
C2

ξ0

CΩB ,
‖β · n‖L∞(QT )

|σ|
CΩB

√
C1C2

ξ0

}
,

‖β‖L∞(QT )

√
2

CΩ
, ‖κ‖L∞(QT )

2
C2

Ω

, ‖β · n‖L∞(QT ) , |σ|
}

.

(3.41)

(ii) To show the coercivity of the bilinear form, we firstly focus on its boundary terms:

aγ(t; ϕh, ϕh) :=
Nh

b∑
b=1

∫
Γb

ϕh

(
− γhb

ξ + γhb

)
(σ∇ϕh · n) dΓ +

∫
Γb

(Φ∗
in(ϕh) · n)

(
− γhb

ξ + γhb

)
ϕh dΓ

+
∫

Γb

ϕh

(
|σ| ξγ

ξ + γhb

)
ϕh dΓ +

∫
Γb

(Φ∗
in(ϕh) · n)

(
− hb

|σ| (ξ + γhb)

)
(σ∇ϕh · n) dΓ. (3.42)

We have:

aγ(t; ϕh, ϕh) ≥
Nh

b∑
b=1

(−2) ‖σ‖W1,∞(QT )

∥∥ξb
1

∥∥
L∞(Γb)

‖ϕh‖L2(Γb)
‖∇ϕh · n‖L2(Γb)︸ ︷︷ ︸

(a)

−
‖β · n‖L∞(QT )

σ0
‖σ‖W1,∞(QT )

∥∥ξb
3

∥∥
L∞(Γb)

‖ϕh‖L2(Γb)
‖∇ϕh · n‖L2(Γb)︸ ︷︷ ︸

(b)

+ ‖σ‖W1,∞(QT ) ‖ζϕh‖2
L2(Γb)

−
∫

Γb

(β · n)χin ξb
1 ϕ2

h dΓ︸ ︷︷ ︸
(c)

−
‖σ‖2

W1,∞(QT )

σ0

∥∥ξb
3

∥∥
L∞(Γb)

‖∇ϕh · n‖2
L2(Γb)︸ ︷︷ ︸

(d)

. (3.43)

The term (a) is bounded using the Young’s inequality ιυ ≤ δι2 + 1
4δ υ2 for ι, υ ∈ R, for all δ > 0, where

we set ι = h
ξ0

‖ζ‖L∞(Γb)
‖σ‖1/2

W1,∞(QT ) ‖∇ϕh · n‖L2(Γb)
and υ = 2 ‖ζ‖L∞(Γb)

‖σ‖1/2
W1,∞(QT ) ‖ϕh‖L2(Γb)

. Then, by
considering(3.16b), we have:

(a) ≥ −
Nh

b∑
b=1

{
1
δ

h2

ξ
2

0

‖ζ‖2
L∞(Γb)

‖σ‖W1,∞(QT ) ‖∇ϕh · n‖2
L2(Γb)

+ δ ‖ζ‖2
L∞(Γb)

‖σ‖W1,∞(QT ) ‖ϕh‖2
L2(Γb)

}

≥ −
Nh

b∑
b=1

{
1
δ

h

ξ
2

0

‖ζ‖2
L∞(Γb)

‖σ‖W1,∞(QT ) C2 |ϕh|2H1(Tb)
+ δ ‖σ‖W1,∞(QT ) ‖ζϕh‖2

L2(Γb)

}
; (3.44)
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The term (b) is bounded by applying the previous Young’s inequality with ι = ‖ϕh‖L2(Γb)
,

υ = ‖∇ϕh · n‖L2(Γb)
, and δ = 1

2 , together with(3.16b), as:

(b) ≥ −
Nh

b∑
b=1

‖β · n‖L∞(QT )

σ0
‖σ‖W1,∞(QT )

∥∥ξb
3

∥∥
L∞(Γb)

(
‖ϕh‖2

L2(Γb)

2
+

‖∇ϕh · n‖2
L2(Γb)

2

)

≥ −
Nh

b∑
b=1

‖β · n‖L∞(QT )

σ0
‖σ‖W1,∞(QT )

(
ξ∞
2ξ0

‖ζϕh‖2
L2(Γb)

−
∥∥∥∥ 1

ξ + γhb

∥∥∥∥
L∞(Γ )

C2 |ϕh|2H1(Tb)

)
.

(3.45)

As for term (c), we simply observe that:

(c) ≥ −2
Nh

b∑
b=1

∫
Γb

(β · n)χinϕ2
h dΓ ≥ −2

∫
Γ

(β · n)χinϕ2
h dΓ. (3.46)

Finally, the term (d) can be bounded similarly to term (b), for which we have:

(d) ≥ −
Nh

b∑
b=1

∥∥∥∥ 1
ξ + γhb

∥∥∥∥
L∞(Γ )

‖σ‖2
W1,∞(QT )

σ0
C2 |ϕh|2H1(Tb)

. (3.47)

On the other hand, the hypothesis ∇ ·β = 0 a.e. in Ω yields the identity
∫

Ω
ϕhβ · ∇ϕh dΩ = 1

2

∫
Γ

ϕ2
h β · n dΓ .

Then, using the trace inequality(3.26), we can bound the sum of aσ,β,κ(t; ϕh, ϕh) and term (c) as:

aσ,β,κ(t; ϕh, ϕh) + (c) ≥ σ0 |ϕh|2H1(Ω) + κ0 ‖ϕh‖2
L2(Ω) +

1
2

∫
Γ

(β · n)[χin + χout]ϕ2
h dΓ

− 2
∫

Γ

(β · n)χinϕ2
h dΓ

≥ σ0 |ϕh|2H1(Ω) + κ0 ‖ϕh‖2
L2(Ω) +

(
1
2

inf
QT

{β · n} − 3
2
‖β · n‖L∞(QT )

)
‖ϕh‖2

L2(Γ )

≥
(

σ0 +
1
2

inf
QT

{β · n} − 3
2
‖β · n‖L∞(QT )

)
C2

tr |ϕh|2H1(Ω)

+
(

κ0 +
1
2

inf
QT

{β · n} − 3
2
‖β · n‖L∞(QT )

)
C2

tr ‖ϕh‖2
L2(Ω) . (3.48)

By combining(3.48),(3.44),(3.45), and(3.46), under the hypothesis(3.38), we have:

ah(t; ϕh, ϕh) = aσ,β,κ(t; ϕh, ϕh) + aγ(t; ϕh, ϕh)

≥
(

σ0 +
1
2

inf
QT

{β · n}C2
tr − 3

2
‖β · n‖L∞(QT ) C2

tr

)
|ϕh|2H1(Ω)

− 1
δ

h

ξ
2

0

‖ζ‖2
L∞(Γb)

‖σ‖W1,∞(QT ) C2 |ϕh|2H1(Ω) − δ ‖σ‖W1,∞(QT )

Nh
b∑

b=1

‖ζϕh‖2
L2(Γb)

−
‖β · n‖L∞(QT )

2σ0
‖σ‖W1,∞(QT )

ξ∞
ξ0

Nh
b∑

b=1

‖ζϕh‖2
L2(Γb)

−
‖β · n‖L∞(QT )

2σ0
‖σ‖W1,∞(QT )

∥∥∥∥ 1
ξ + γhb

∥∥∥∥
L∞(Γ )

C2 |ϕh|2H1(Ω) .

+ ‖σ‖W1,∞(QT )

Nh
b∑

b=1

‖ζϕh‖2
L2(Γb)

−
∥∥∥∥ 1

ξ + γhb

∥∥∥∥
L∞(Γ )

‖σ‖2
W1,∞(QT )

σ0
C2 |ϕh|2H1(Ω) . (3.49)
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Introducing the constant ᾱ > 0 of(3.37) into(3.49); we obtain:

ah(t; ϕh, ϕh) ≥ ‖σ‖W1,∞(QT ) ᾱ |ϕh|2H1(Ω)

− ‖σ‖W1,∞(QT ) C2

[
1
δ

h

ξ
2

0

‖ζ‖2
L∞(Γ ) +

∥∥∥∥ 1
ξ + γhb

∥∥∥∥
L∞(Γ )

(
‖β · n‖L∞(QT )

2σ0
+

‖σ‖W1,∞(QT )

2σ0

)]
|ϕh|2H1(Ω)

+ ‖σ‖W1,∞(QT )

(
1 − δ −

‖β · n‖L∞(QT )

2σ0

ξ∞
ξ0

) Nh
b∑

b=1

‖ζϕh‖2
L2(Γb)

≥ ‖σ‖W1,∞(QT ) ᾱ ‖ζ‖2
L∞(Γb)

[(
ess inf
x∈Γ

1
γ

)(
1 − C2

ᾱ

1
ξ0

(
‖β · n‖L∞(QT )

2σ0
+

‖σ‖W1,∞(QT )

2σ0

))

+
h

ξ∞

(
1 − C2

ᾱ

1
δ

ξ∞

ξ
2

0

)]
|ϕh|2H1(Ω) + ‖σ‖W1,∞(QT )

(
1 − δ −

‖β · n‖L∞(QT )

2σ0

ξ∞
ξ0

) Nh
b∑

b=1

‖ζϕh‖2
L2(Γb)

. (3.50)

By the hypothesis(3.40) on ξ0 and selecting δ such that C2
ᾱ

ξ∞
ξ
2
0

< δ < 1 − ‖β·n‖L∞(QT )

2σ0

ξ∞
ξ0

, the coercivity follows

with constant:

αa := ‖σ‖W1,∞(QT ) min

{
ᾱ

(
1 − C2

ᾱ

1
δ

ξ∞

ξ
2

0

)
,

(
1 − δ −

‖β · n‖L∞(QT )

2σ0

ξ∞
ξ0

)}
> 0. (3.51)

�

Lemma 3.10. Under the hypotheses of Lemma 3.9, there exists a positive constant MF
h , dependent on h and

on the data of the problem, such that:

|Fh(t; ϕh)| ≤ MF
h ‖ϕh‖h ∀ϕh ∈ Vh and a.e. in (0, T ).

Proof. The continuity of the functional Fh follows by the triangle and Schwarz’s inequalities and by apply-
ing(3.14):

|Fh(t; ϕh)| ≤
∣∣∣∣∫

Ω

ϕh f dΩ

∣∣∣∣+
∣∣∣∣∣∣

Nh
b∑

b=1

[∫
Γb

(Φ∗
in(ϕh) · n)

(
− γhb

ξ + γhb

)
g dΓ +

∫
Γb

ϕh

(
|σ| ξγ

ξ + γhb

)
g dΓ

+
∫

Γb

(Φ∗
in(ϕh) · n)

(
− hb

|σ| (ξ + γhb)

)
G dΓ +

∫
Γb

ϕh

(
ξ

ξ + γhb

)
G dΓ

]∣∣∣∣∣
≤‖ϕh‖L2(Ω) ‖f‖L∞(0,T ;L2(Ω)) +

∣∣∣∣∫
Γ

ϕh G dΓ

∣∣∣∣
+

Nh
b∑

b=1

[
2 ‖σ‖W1,∞(QT ) ‖g‖L2(Γb)

‖∇ϕh · n‖2
L2(Γb)

+

√
2hb

ξ0

‖β · n‖L∞(QT ) ‖g‖L2(Γb)
‖ζϕh‖L2(Γb)

+ |σ|

√
ξ∞
hb

‖g‖L2(Γb)
‖ζϕh‖L2(Γb)

+
‖σ‖W1,∞(QT )

|σ|
hb

ξ0

‖G‖L2(Γb)
‖∇ϕh · n‖L2(Γb)

+
‖β · n‖L∞(QT )

|σ|
hb

ξ0

‖G‖L2(Γb)
‖ϕh‖L2(Γb)

]
.

(3.52)
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Moreover, by using(3.16),(3.21),(3.25a), and(3.25b), we obtain the thesis by defining the continuity constant
MF

h as:

MF
h :=

√
2

CΩ
‖f‖L∞(0,T ;L2(Ω))

+

(√
2Ctr

CΩ
+

‖σ‖W1,∞(QT )

|σ|

√
CΩB C2

ξ0

+
‖β · n‖L∞(QT )

|σ|

√
CΩB C1

ξ0

)
‖G‖L∞(0,T ;L2(∂Ω)) (3.53)

+
(√

2 ‖β · n‖L∞(QT ) +
1√
h

(
2 ‖σ‖W1,∞(QT )

√
CΩB C2 + |σ|

√
ξ∞

))
‖g‖L∞(0,T ;L2(∂Ω)) . �

Remark 3.11. The constant MF
h of equation (3.53) depends on the mesh size h and actually tends to infinity

as h → 0. This result is expected, since analogous results are obtained for the weak imposition of the Dirichlet
BCs [27] and follows from the fact that we use a mesh dependent norm ‖·‖h. A continuity constant M̃F

independent of h for the functional Fh(t; ·) can however be ensured for boundary data g and G sufficiently
regular, i.e. such that their extensions to the domain Ω are well-defined, as well as their corresponding ‖·‖h

norms; see [31].

The semi-discetized FE solution of problem(3.4) obtained by using the Nitsche’s method, can be ex-
pressed, for each time t ∈ (0, T ), by using the basis functions ϕh,i of the FE space Vh of equation (3.3)

as uh(x, t) :=
∑N(h)

i=1 di(t)ϕh,i(x), where N (h) := dimVh. By substituting the expression of uh in equa-
tion (3.4), we obtain a system of linear ordinary differential equations in the unknown vector of functions
d := (d1, . . . , dN(h)) : (0, T ) → RN(h)

, which reads:{
Mḋ(t) + A(t)d(t) = F (t) for t ∈ (0, T ),
Md(0) = ũ0,

(3.54)

where M and A are the mass and stiffness matrices, defined as M i,j := (ϕh,j , ϕh,i) and Ai,j(t) :=
ah(t; ϕh,j , ϕh,i), for all i, j = 1, . . . , N (h), respectively. Moreover, F (t) is a vector whose components are
F i(t) := Fh(t; ϕh,i) and the vector ũ0 is such that ũ0,i := (ũ0, ϕh,i), with ũ0 being the L2 projection of
u0 onto Vh. By definition, the matrix M is symmetric and positive definite; moreover, by the coercivity of the
bilinear form ah(t; ·, ·) established in Lemma 3.9 (ii), also the matrix A is positive definite. From the continuity
of both ah(t; ·, ·) and Fh shown in Lemmas 3.9 and 3.10, the existence and uniqueness of the solution d of
system (3.54), and consequently of the semi-discrete solution uh, follows from the theory of ordinary differential
equations [12, 26, 27].

Remark 3.12. We remark that the condition (3.40) established in Lemma 3.9 is necessary to yield the well
posedness of problem (3.4). Indeed, choosing values of ξ = ξ(x, t) which do not satisfy this condition leads the
coercivity of the bilinear form ah(·; ·, ·) to not hold any more. We remark that the explicit expression for the
lower bound of ξ0 in equation (3.40) depends on both the data of the problem (σ, β and Ω) and on the degree
of the finite element space k through the constant C2.

3.2. The full discrete problem: the Nitsche’s-θ method

Let NT ∈ N be a given integer and let us uniformly partition the time interval (0, T ) into a set of subintervals
{[tn, tn+1)}NT −1

n=0 of size Δt := T/NT , with tn := nΔt. By applying the θ-method [25] to the semi-discrete
problem (3.4), this yields, for n = 1, . . . , NT :

find un
h ∈ Vh :

⎧⎨⎩
1

Δt

(
un

h − un−1
h , ϕh

)
+ ah(tnθ ; un

h,θ, ϕh) = Fh(tnθ ; ϕh) ∀ϕh ∈ Vh, (3.55a)

ũ0
h = ũ0; (3.55b)
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where, for θ ∈ [0, 1], we have considered tnθ := θtn + (1 − θ)tn−1, un
h,θ := θun

h + (1 − θ)un−1
h , being un

h the
approximation of uh(x, tn). Moreover, for ũ0 ∈ Vh, the L2 projection of u0 onto Vh, we have from [26]:∥∥u0 − ũ0

h

∥∥
L2(Ω)

+ h
∥∥u0 − ũ0

h

∥∥
H1(Ω)

≤ Ch ‖u0‖H1(Ω) . (3.56)

In the following, we will show that equation (3.55) is unconditionally stable with respect to the L2 norm provided
that θ ∈ [1/2, 1], while is conditionally stable for θ ∈ [0, 1/2).

Theorem 3.13. Let us consider problem (3.55) and a regular family of quasi-uniform triangulations {Th}h of
Ω. Moreover, for θ ∈ [0, 1/2), assume that the following restriction holds on the time step:

Δt <
2αah2

(1 − 2θ)(Ma)2C̃2
0

, (3.57)

where αa and Ma, given in equations (3.41) and (3.51), are the coercivity and continuity constants of the bilinear
form ah(·; ·, ·) of equation (3.5), whereas C̃0 is given in (3.31). Then, under the hypotheses of Lemmas 3.9
and 3.10, un

h satisfies the following estimate for any θ ∈ [0, 1]:

‖un
h‖L2(Ω) ≤Cαa,C̃0,T

[∥∥u0
h

∥∥
L2(Ω)

+ M
(1)
σ,β,κ,Ω

(
‖G‖L∞(0,T ;L2(Γ )) + ‖f‖L∞(0,T ;L2(Ω))

)
+
(

Mβ +
1√
h

M
(2)
σ,β,κ,Ω

)
‖g‖L∞(0,T ;L2(Γ ))

]
, (3.58)

where Cαa,C̃0,T is a positive constant depending on αa, C̃0, and T , but independent of N , Δt, and h. Moreover,

M
(1)
σ,β,κ,Ω, Mβ, and M

(2)
σ,β,κ,Ω are positive constants depending on the domain Ω and the data of the problem,

reading:

M
(1)
σ,β,κ,Ω := max

{√
2

CΩ
,

√
2Ctr

CΩ
+

1
|σ|

√
CΩB

ξ0

(
‖σ‖W1,∞(QT )

√
C2 + ‖β · n‖L∞(QT )

√
C1

)}
, (3.59a)

Mβ =
√

2 ‖β · n‖L∞(QT ) , (3.59b)

M
(2)
σ,β,κ,Ω := 2 ‖σ‖W1,∞(QT )

√
CΩB C2 + |σ|

√
ξ∞. (3.59c)

Proof. Let us take ϕh = un
h,θ in equation (3.55), then, for any n ≥ 1, we have:

1
2

(
‖un

h‖
2
L2(Ω) −

∥∥un−1
h

∥∥2

L2(Ω)

)
+
(

θ − 1
2

)∥∥un
h − un−1

h

∥∥2

L2(Ω)
+ Δt ah(tnθ ; un

h,θ, u
n
h,θ) = Δt Fh(tnθ ; un

h,θ).

By the coercivity of the bilinear form ah(·; ·, ·) of Lemma 3.9 and by using the continuity constant MF
h of

equation (3.53) for the functional Fh(·; ·), we get, for any n ≥ 1:

‖un
h‖

2
L2(Ω) −

∥∥un−1
h

∥∥2

L2(Ω)
+ (2θ − 1)

∥∥un
h − un−1

h

∥∥2

L2(Ω)
+ 2Δt αa

∥∥un
h,θ

∥∥2

h
≤ 2Δt MF

h

∥∥un
h,θ

∥∥
h

.

By using a Young’s type inequality, we have for some ε > 0:

‖un
h‖

2
L2(Ω) −

∥∥un−1
h

∥∥2

L2(Ω)
+ (2θ − 1)

∥∥un
h − un−1

h

∥∥2

L2(Ω)
+ Δt (2 − ε)αa

∥∥un
h,θ

∥∥2

h
≤ Δt

(
MF

h

)2
εαa

· (3.60)

If θ ∈ [1/2, 1], by setting ε = 2, the left hand side of (3.60) can be bounded as:

‖un
h‖

2
L2(Ω) −

∥∥un−1
h

∥∥2

L2(Ω)
≤ Δt

(
MF

h

)2
2αa

· (3.61)
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If θ ∈ [0, 1/2), we start by considering in equation (3.55) ϕh = un
h − un−1

h ; then, we have:∥∥un
h − un−1

h

∥∥2

L2(Ω)
= −Δt ah(tnθ ; un

h,θ, u
n
h − un−1

h ) + Δt Fh(tnθ ; un
h − un−1

h ).

By using Lemmas 3.7, 3.9, and 3.10, we obtain:∥∥un
h − un−1

h

∥∥2

L2(Ω)
≤ Δt Ma

∥∥un
h,θ

∥∥
h

∥∥un
h − un−1

h

∥∥
h

+ Δt MF
h

∥∥un
h − un−1

h

∥∥
h

(3.62)

≤ Δt Ma
∥∥un

h,θ

∥∥
h

C̃0

h

∥∥un
h − un−1

h

∥∥
L2(Ω)

+ Δt MF
h

C̃0

h

∥∥un
h − un−1

h

∥∥
L2(Ω)

.

Therefore, the left hand side of (3.60) can be bounded from below as:

‖un
h‖

2
L2(Ω) −

∥∥un−1
h

∥∥2

L2(Ω)
+ (2θ − 1)Δt2

C̃2
0

h2

(
(Ma)2

∥∥un
h,θ

∥∥2

h
+
(
MF

h

)2
+2 MaMF

h

∥∥un
h,θ

∥∥
h

)
+ Δt (2 − ε)αa

∥∥un
h,θ

∥∥2

h
≤ Δt

(
MF

h

)2
εαa

,

for some ε > 0. By rearranging terms, we finally obtain:

‖un
h‖

2
L2(Ω) −

∥∥un−1
h

∥∥2

L2(Ω)
+ Δt

∥∥un
h,θ

∥∥
h

(
(2 − ε)αa − (1 − 2θ)Δt (Ma)2

C̃2
0

h2

)

≤
(

Δt

εαa
+ (1 − 2θ)Δt2

C̃2
0

h2

)(
MF

h

)2 − 2Δt2 MaMF
h

∥∥un
h,θ

∥∥
h

C̃2
0

h2

≤ Δt max
{

1
εαa

, (1 − 2θ) C̃2
0

}(
1 + Δt

1
h2

)(
MF

h

)2
.

Under the hypothesis of equation (3.57) and by choosing ε > 1−2θ
2αa > 0 we obtain:

‖un
h‖

2
L2(Ω) −

∥∥un−1
h

∥∥2

L2(Ω)
≤ Cε,αa,C̃0

Δt
(
MF

h

)2
, (3.64a)

with Cε,αa,C̃0
:= Δt max

{
1

εαa , (1 − 2θ) C̃2
0

}(
1 + Δt 1

h2

)
.

Therefore, for any θ ∈ [0, 1] and any fixed integer m such that 1 ≤ m ≤ NT , we obtain:

‖um
h ‖2

L2(Ω) ≤
∥∥u0

h

∥∥2

L2(Ω)
+ Cαa,C̃0

Δt

m−1∑
n=0

(
MF

h

)2 ≤
(∥∥u0

h

∥∥
L2(Ω)

+
√

Cαa,C̃0
mΔtMF

h

)2

, (3.65)

with Cαa,C̃0
a constant depending on 1

αa and C̃0. The thesis follows by the expression of MF
h of (3.53) by

considering Cαa,C̃0,T :=
√

Cαa,C̃0
T . �

We notice that the last term of the bound (3.58) tends to +∞ as the mesh size h tends to zero, due to the
dependency of MF

h on h. Therefore, the result of Theorem 3.13 does not imply the stability of the solution with
respect to h. Indeed, the finer the mesh size, the larger is the growth of the constant in the a priori estimate.
This result is coherent with that of [27]; as a matter of fact the weak imposition of the Dirichlet BCs represents
a particular case of equation (3.55), as already observed in Remark 3.1. However, as reported in Sections 4
and [31], stable (i.e. h independent) numerical results are obtained also in this case.

Remark 3.14. The numerical tools and recipes introduced in Sections 2 and3 can be suitably used to obtain
a priori error estimates with respect to the spatial and time discretizations. The technical details for the
derivations of such error estimates will be reported in [31].
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Γ1

Γ2 Γ4

Γ3

Ω

Γ
(t)
B

Γ
(t)
BD

Figure 1. Computational domain: Ω = (0, 1)2; the red line represents the part of the bound-
ary, Γ

(t)
B , on which we set mixed time varying BCs, while Γ

(t)
BD ⊆ Γ

(t)
B , the blue one, its the

subset where we impose Dirichlet BCs at time t ∈ (0, T ). (Color online).

4. A numerical example

We solve, by the proposed method, the heat equation complemented with mixed time varying BCs. Our
example considers an elliptic operator involving only the diffusive term. We compare the solutions obtained
to the the standard time varying FE method’s solutions and we refer the reader to [31] for a more exhaustive
discussion on numerical results.

By referring to equation (2.6), we consider a problem defined for t ∈ (0, T ), with T = 3, in the domain
Ω = (0, 1)2 given in Figure 1 with boundary defined as in equation (2.4), where Γ

(t)
D = Γ1 ∪Γ2 ∪Γ3 ∪Γ

(t)
BD ∪Γ4;

Γ
(t)
N := Γ

(t)
B \ Γ

(t)
BD represents the Neumann boundary. Specifically, the subset of the boundary Γ

(t)
BD ⊆ Γ

(t)
B is

defined as:

Γ
(t)
BD :=

{
(x, y) ∈ R2 : x ∈ I(t), y = 1

}
, with I(t) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∅ for t < 0.2 and 1.5 ≤ t < 3,

(−2t + 1.4, 1) for 0.2 ≤ t < 0.6,

(0.2, 1) for 0.6 ≤ t < 1,

(1.6t − 1.4, 1) for 1 ≤ t < 1.5.

(4.1)

As Σ = Γ × (0, T ) satisfies the hypotheses of Theorem 2.1, the continuous problem is well-posed. On ΣD and
ΣN , we prescribe homogeneous Dirichlet and Neumann BCs as in equations (2.5) by setting g = 0 on ΣD and
G = 0 on ΣN . The initial condition is u0 = 0 in Ω and the source term is defined as f = 1 in QT . Finally, as for
the linear second order elliptic operator L of equation (2.2), we consider the diffusivity tensor to be isotropic,
i.e. σ = σI , with I the identity tensor and σ = 0.1; moreover, β = 0 and κ = 0.

We use Lagrange P1 finite elements for the discretization in space, i.e. we consider in equations (2.14)
and (3.3), Vn

h and Vh defined for degree k = 1, respectively, and the BE method (θ = 1 in the general θ-scheme)
for the time discretization, with time step Δt = 0.01. The problem approximated by using the time varying
FE method described in Section 2.2 has been implemented in FreeFem++ [16], for which the considerations of
Remark 2.3 apply. Similarly, the full discrete problem (3.55) complemented with mixed time varying BCs has
been implemented in FreeFem++. Specifically, following Remarks 3.1 and 3.2, we set the values of the functions
γ(x, t) and ξ(x, t) as:

γ(x, t) :=

{
10−8 for x ∈ Γ

(t)
N ,

104 for x ∈ Γ
(t)
D ,

and ξ(x, t) :=

{
101 for x ∈ Γ

(t)
N ,

108 for x ∈ Γ
(t)
D ,

∀t ∈ (0, T ), (4.2)

respectively. Following this choice, we have that the lower bound ξ0 = 10 is larger than the right hand side of
condition (3.40); indeed, we computationally estimate the latter to be about 1.5.
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t = 0.3 t = 0.5 t = 1.1(a) (b) (a) (b) (a) (b)

t = 1.3 t = 1.4 t = 3.0(a) (b) (a) (b) (a) (b)

Figure 2. Solutions at different time steps for h = 0.00625; comparison between the Nitsche’s
method (case (a)) and the time varying FE method (case (b)) for some t ∈ (0, 3).

(a) t = 0.1. (b) t = 0.3. (c) t = 0.5.

(d) t = 1.1. (e) t = 1.4. (f) t = 3.

Figure 3. Solutions on Γ3 ∪ Γ
(t)
B at different time steps by considering the mesh size h =

0.00625; comparison between the Nitsche’s method (- -) and the time varying FE method (-)
solutions for some t ∈ (0, 3).

In Figure 2, we report the evolution of the computed solution at different time steps by considering the mesh
size h = 0.00625. By a qualitative comparison between the Nitsche’s method (case (a)) and the time varying
FE method (case (b)) the solutions look qualitatively very similar. In Figure 3, we compare the solutions profile
computed at different time steps through the upper bound of the domain Γ3 ∪ Γ

(t)
B , by considering the mesh

size h = 0.00625. We notice that the solutions obtained by using the Nitsche’s method (-) result in a smoother
curve, especially near the boundary between ΣD and ΣN , with respect to the profile of the approximate solution
computed with the time varying FE method (-). This is in agreement with the results obtained in [6] for the
linear advection-diffusion equation, where the authors observe that the weak imposition of the Dirichlet BCs



NITSCHE’S METHOD FOR PARABOLIC PDES WITH MIXED TIME VARYING BCS 561

(a) h = 0.025. (b) h = 0.0125.

(c) h = 0.00625. (d) h = 0.003125.

Figure 4. Solutions on Γ3∪Γ
(t)
B at t = 1.3 by considering different mesh sizes (h); comparison

between the Nitsche’s method (- -) and the time varying FE method (—) solutions.

Table 1. Comparison of the results (CPU time, number of elements, and DoFs) obtained by
using the Nitsche’s method and the time varying FE method for different characteristic mesh
sizes (h).

Nitsche’s method time varying FE method

h Nel NDoFs CPU Time (s) min Nel maxNel min NDoFs maxNDoFs CPU Time (s)

0.025 3 808 1 985 22 3 814 10 208 1 988 5 249 48

0.0125 15 176 7 749 95 15 094 40 740 7 708 20 659 208

0.00625 60 594 30 618 409 60 624 164 294 30 633 82 724 887

0.003125 243 178 122 230 2200 242 642 657 158 121 962 329 732 4 443

is able to reduce numerical oscillations, which may be caused by discontinuous boundary data. In Figure 4,
we compare the solutions profile computed at t = 1.3 through Γ3 ∪ Γ

(t)
B , by considering different mesh sizes

h = 0.025, 0.0125, 0.00625, and 0.003125. From the comparison between the Nitsche’s method (-) and the time
varying FE method (-), we can observe that the proposed method shows qualitatively good solutions already
with a coarse mesh, thus indirectly showing the effectiveness of the Nitsche’s method.

In Table 1, we report, for different values of the mesh size h = 0.025, 0.0125, 0.00625, and 0.003125, the
number of elements (Nel) and the degrees of freedom (NDoFs) associated to the FE spaces Vh for the Nitsche’s
method, and the minimum (min) and maximum (max) number of elements and degrees of freedom associated
to the time varying FE spaces Vn

h , respectively. Moreover, we record the corresponding CPU times. The smaller
the mesh size, the larger are the saving of the computational costs allowed by the Nitsche’s method with respect
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Figure 5. Mesh size (1/h) vs. CPU time in seconds; comparison between the Nitsche’s method
(-) and the time varying FE method (-) solutions.

to the time varying FE method, as highlighted in Figure 5; indeed, for h = 0.003125, the number of DoFs is
about the half with the proposed Nitsche’s method.

5. Conclusions

In this work, we considered a numerical approach developed within the FE method to solve initial boundary
value problems associated with parabolic second order PDEs endowed with mixed time varying BCs. Specifically,
we proposed a numerical scheme based on the Nitsche’s method in the framework of [17], but by considering
the more general case of time varying coefficients. We proved the existence and the numerical stability of the
solution based on the θ-method for the discretization in time; as expected, we obtained a stability condition of
the full discrete scheme dependent on the mesh size, according with the theory developed in the framework of
the weak imposition of the Dirichlet BCs [27]. Moreover, we presented some numerical results which highlight
the performance and, specifically, the computational efficiency of the proposed full discrete scheme compared
to a standard time varying FE method based on remeshing strategies, which represents the typical approach
for problems with mixed time varying BCs.
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