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ERROR ESTIMATES OF A STABILIZED LAGRANGE−GALERKIN SCHEME
FOR THE NAVIER−STOKES EQUATIONS
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Abstract. Error estimates with optimal convergence orders are proved for a stabilized
Lagrange−Galerkin scheme for the Navier−Stokes equations. The scheme is a combination of
Lagrange−Galerkin method and Brezzi−Pitkäranta’s stabilization method. It maintains the advan-
tages of both methods; (i) It is robust for convection-dominated problems and the system of linear
equations to be solved is symmetric. (ii) Since the P1 finite element is employed for both velocity and
pressure, the number of degrees of freedom is much smaller than that of other typical elements for the
equations, e.g., P2/P1. Therefore, the scheme is efficient especially for three-dimensional problems. The
theoretical convergence orders are recognized numerically by two- and three-dimensional computations.
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1. Introduction

The purpose of this paper is to prove the stability and convergence of a stabilized Lagrange−Galerkin scheme
for the Navier−Stokes equations. The scheme is a combination of a Lagrange−Galerkin (LG) method and
Brezzi−Pitkäranta’s stabilization method [8]. It has been proposed by us in [17, 18] and, to the best of our
knowledge, it is one of the earliest works which combine the two methods, Lagrange−Galerkin and stabilization.
Optimal error estimates are shown for both velocity and pressure.

The LG method is a finite element method embracing the method of characteristics. The LG method has
common advantages, robustness for convection-dominated problems and symmetry of the resulting matrix,
which are desirable in scientific computation of fluid dynamics. Many authors have studied LG schemes for
convection-diffusion problems [5, 10, 12, 22, 24] and for the Navier−Stokes, Oseen and natural convection prob-
lems [1, 3, 6, 15, 19–21,27], see also the bibliography therein. The convergence analysis of LG schemes for the
Navier−Stokes equations has been done by Pironneau [21] and improved by Süli [27]. The analysis has been
extended to a higher-order time scheme by Boukir et al. [6] and to the projection method by Achdou and
Guermond [1]. While in these analyses they use a stable element satisfying the conventional inf-sup condition [14],
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we extend the convergence analysis to a stabilized LG scheme. The reason to use the stabilized method is to
reduce the number of degrees of freedom (DOF). In fact the cheapest P1 element is employed in our scheme for
both velocity and pressure, which is based on Brezzi−Pitkäranta’s pressure-stabilization method. Hence, the
number of DOF is much smaller than that of typical stable elements, e.g., P2/P1. As a result, the scheme leads
to a small-size symmetric resulting matrix, which can be solved by powerful linear solvers for symmetric ma-
trices, e.g., minimal residual method (MINRES) [2,25]. It is, therefore, efficient especially in three-dimensional
computation.

In LG schemes the position at the previous time tn−1 of a particle is sought along the trajectory, which is
governed by a system of ordinary differential equations. The position at tn−1 of a particle at a point at tn is called
upwind point of the point or foot of the trajectory arriving at the point. While the system of ordinary differential
equations is assumed to be solved exactly in [1,27], approximate upwind points are computed explicitly without
assuming the exact solvability of the ordinary differential equations in [6, 21]. Therefore, we may say that the
latter schemes are fully discrete. Our scheme is also fully discrete since the approximate upwind points are
simply obtained by the Euler method. In fully discrete schemes, however, it is not obvious that the approximate
upwind points remain in the domain, which should be proved. Such difficulty caused by the nonlinearity of
the Navier−Stokes’s equations is overcome in the proof by mathematical induction, which has been developed
in [6, 27]. Thus, the stability and convergence with optimal error estimates are proved for the velocity in the
H1-norm and for the pressure in the L2-norm (Thm. 3.3) and for the velocity in the L2-norm (Thm. 3.6) under
the condition Δt = O(hd/4), where d is the dimension of the space. This condition is caused by the nonlinearity
of the problem and it is not required for the Oseen’s problem [20]. A stabilized LG scheme with an L2-type
pressure-stabilization for the Navier−Stokes’s equations has been proposed in [15], where the exact solvability of
the ordinary differential equations is assumed for upwind points. The optimal error estimates are proved under
a strong stability condition Δt = O(h2) for d = 2.

In the LG method we have to deal with the integration of composite functions that originate from the
convection term. It is reported in [16, 23, 28, 29] that instability may occur caused by quadrature error if rough
numerical quadrature is employed for the integration. Although several methods have been studied to avoid
the instability in [4, 16, 22, 23, 32], here we do not discuss the issue because the integration in our scheme can
be computed exactly by a method developed recently in [30, 31]. In our numerical examples we still employ
numerical quadrature, but with much care, cf. Remark 5.2.

This paper is organized as follows. Our stabilized LG scheme for the Navier−Stokes’s equations is presented
in Section 2. The main results on the stability and convergence with optimal error estimates are shown in
Section 3, and they are proved in Section 4. The theoretical convergence orders are recognized numerically by
two- and three-dimensional computations in Section 5. The conclusions are given in Section 6. In the Appendix
two lemmas used in Section 4 are proved.

2. A stabilized Lagrange−Galerkin scheme

We prepare the function spaces and the notation to be used throughout the paper. Let Ω be a bounded
domain in R

d(d = 2, 3), Γ ≡ ∂Ω the boundary of Ω, and T a positive constant. For an integer m ≥ 0 and a real
number p ∈ [1,∞] we use the Sobolev’s spaces Wm,p(Ω), W 1,∞

0 (Ω), Hm(Ω)(= Wm,2(Ω)), H1
0 (Ω) and H−1(Ω).

For any normed space X with norm ‖ · ‖X , we define function spaces C([0, T ];X) and Hm(0, T ;X) consisting
of X-valued functions in C([0, T ]) and Hm(0, T ), respectively. We use the same notation (·, ·) to represent the
L2(Ω) inner product for scalar-, vector- and matrix-valued functions. The dual pairing between X and the dual
space X ′ is denoted by 〈·, ·〉. The norms on Wm,p(Ω)d and Hm(Ω)d are simply denoted as

‖ · ‖m,p ≡ ‖ · ‖W m,p(Ω)d , ‖ · ‖m ≡ ‖ · ‖Hm(Ω)d (= ‖ · ‖m,2)

and the notation ‖ · ‖m is employed not only for vector-valued functions but also for scalar-valued ones. We also
denote the norm on H−1(Ω)d by ‖ · ‖−1. L2

0(Ω) is a subspace of L2(Ω) defined by

L2
0(Ω) ≡

{
q ∈ L2(Ω); (q, 1) = 0

}
.
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We often omit [0, T ],Ω and/or d if there is no confusion, e.g., we shall write C(L∞) in place of C([0, T ];L∞(Ω)d).
For t0 and t1 ∈ R we introduce the function spaces

Zm(t0, t1) ≡ {v ∈ Hj(t0, t1;Hm−j(Ω)d); j = 0, . . . ,m, ‖v‖Zm(t0,t1) <∞}

and Zm ≡ Zm(0, T ), where the norm ‖v‖Zm(t0,t1) is defined by

‖v‖Zm(t0,t1) ≡

⎧⎨
⎩

m∑
j=0

‖v‖2
Hj(t0,t1;Hm−j(Ω)d)

⎫⎬
⎭

1/2

.

We consider the Navier−Stokes’s problem; find (u, p) : Ω × (0, T ) → R
d × R such that

Du

Dt
−∇ · [2νD(u)] + ∇p = f in Ω × (0, T ), (2.1a)

∇ · u = 0 in Ω × (0, T ), (2.1b)
u = 0 on Γ × (0, T ), (2.1c)

u = u0 in Ω, at t = 0, (2.1d)

where u is the velocity, p is the pressure, f : Ω × (0, T ) → R
d is a given external force, u0 : Ω → R

d is a given
initial velocity, ν > 0 is a viscosity, D(u) is the strain-rate tensor defined by

Dij(u) ≡ 1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
, i, j = 1, . . . , d,

and D/Dt is the material derivative defined by

D

Dt
≡ ∂

∂t
+ u · ∇.

Letting V ≡ H1
0 (Ω)d and Q ≡ L2

0(Ω), we define the bilinear forms a on V × V , b on V × Q and A on
(V ×Q) × (V ×Q) by

a(u, v) ≡ 2ν
(
D(u), D(v)

)
, b(v, q) ≡ −(∇ · v, q), A

(
(u, p), (v, q)

)
≡ a(u, v) + b(v, p) + b(u, q),

respectively. Then, we can write the weak formulation of (2.1) as follows: find (u, p) : (0, T ) → V × Q such
that, for t ∈ (0, T ), (

Du

Dt
(t), v

)
+ A ((u, p)(t), (v, q)) = (f(t), v), ∀(v, q) ∈ V ×Q, (2.2)

with u(0) = u0.
Let Δt be a time increment and tn ≡ nΔt for n ∈ N ∪ {0}. For a function g defined in Ω × (0, T ) we denote

generally g(·, tn) by gn. Let X : (0, T ) → R
d be a solution of the system of ordinary differential equations,

dX
dt

= u(X, t). (2.3)

Then, it holds that

Du

Dt
(X(t), t) =

d
dt
u
(
X(t), t

)
,
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when u is smooth. Let X(·;x, tn) be the solution of (2.3) subject to an initial condition X(tn) = x. For a velocity
w : Ω → R

d let X1(w,Δt) : Ω → R
d be a mapping defined by

X1(w,Δt)(x) ≡ x− w(x)Δt. (2.4)

Since the position X1(un−1, Δt)(x) is an approximation of X(tn−1;x, tn) for n ≥ 1, we can consider a first order
approximation of the material derivative at (x, tn),

Du

Dt
(x, tn) =

d
dt
u
(
X(t;x, tn), t

)∣∣∣
t=tn

=
un − un−1 ◦X1(un−1, Δt)

Δt
(x) +O(Δt),

where the symbol ◦ stands for the composition of functions,

(v ◦ w)(x) ≡ v
(
w(x)

)
,

for v : Ω → R
d and w : Ω → Ω. X1(w,Δt)(x) is called an upwind point of x with respect to the velocity w.

The next proposition gives a sufficient condition to guarantee that all upwind points are in Ω.

Proposition 2.1 [24]. Let w ∈W 1,∞
0 (Ω)d be a given function, and assume that

Δt‖w‖1,∞ < 1.

Then, it holds that

X1(w,Δt)(Ω) = Ω.

For the sake of simplicity we assume that Ω is a polygonal (d = 2) or polyhedral (d = 3) domain. Let
Th = {K} be a triangulation of Ω̄ (=

⋃
K∈Th

K), hK a diameter of K ∈ Th, and h ≡ maxK∈Th
hK the

maximum element size. Throughout this paper we consider a regular family of triangulations {Th}h↓0 satisfying
the inverse assumption [9], i.e., there exists a positive constant α0 independent of h such that

h

hK
≤ α0, ∀K ∈ Th, ∀h. (2.5)

We define the function spaces Xh, Mh, Vh and Qh by

Xh ≡ {vh ∈ C(Ω̄)d; vh|K ∈ P1(K)d, ∀K ∈ Th}, Mh ≡ {qh ∈ C(Ω̄); qh|K ∈ P1(K), ∀K ∈ Th},

Vh ≡ Xh ∩ V and Qh ≡ Mh ∩ Q, respectively, where P1(K) is the space of linear functions on K ∈ Th. Let
NT ≡ �T/Δt� be the total number of time steps, δ0 a positive constant and (·, ·)K the L2(K)d inner product.
We define the bilinear forms Ch on H1(Ω) ×H1(Ω) and Ah on (V ×H1(Ω)) × (V ×H1(Ω)) by

Ch(p, q) ≡ δ0
∑

K∈Th

h2
K(∇p,∇q)K ,

Ah

(
(u, p), (v, q)

)
≡ a(u, v) + b(v, p) + b(u, q) − Ch(p, q). (2.6)

The bilinear form Ch has been originally introduced in [8] in order to stabilize the pressure.
Suppose f ∈ C([0, T ];L2(Ω)d) and u0 ∈ V . Let an approximate function u0

h ∈ Vh of u0 be given. Our
stabilized LG scheme for (2.1) is to find {(un

h, p
n
h)}NT

n=1 ⊂ Vh ×Qh such that, for n = 1, . . . , NT ,(
un

h − un−1
h ◦X1(un−1

h , Δt)
Δt

, vh

)
+ Ah

(
(un

h, p
n
h), (vh, qh)

)
= (fn, vh), ∀(vh, qh) ∈ Vh ×Qh. (2.7)
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Remark 2.2.

(i) By expanding un
h and pn

h in terms of a basis of Vh and Qh, the scheme (2.7) leads to a symmetric matrix
of the form (

A BT

B −C

)
,

where A, B and C are sub-matrices derived from 1
Δt (u

n
h, vh) + a(un

h, vh), b(un
h, qh) and Ch(pn

h, qh), respec-
tively, and the superscript “T ” stands for the transposition.

(ii) The matrix is independent of the time step n and is invertible. The invertibility is derived from the fact
that (un

h, p
n
h) = (0, 0) when un−1

h = fn = 0 since we have

1
Δt

‖un
h‖2

0 + 2ν‖D(un
h)‖2

0 + δ0
∑

K∈Th

h2
K‖∇pn

h‖2
L2(K)d = 0

by substituting (un
h,−pn

h) ∈ Vh ×Qh into (vh, qh) in (2.7).
(iii) There exists a unique solution (un

h, p
n
h) if X1(un−1

h , Δt) maps Ω into Ω. The condition is ensured if
Δt‖un−1

h ‖1,∞ < 1, cf. Proposition 2.1.

3. Main results

In this section we state the main results, conditional stability and optimal error estimates for the scheme (2.7),
which are proved in Section 4.

We use the following norms and a seminorm, ‖ · ‖Vh
≡ ‖ · ‖V ≡ ‖ · ‖1, ‖ · ‖Qh

≡ ‖ · ‖Q ≡ ‖ · ‖0,

‖u‖l∞(X) ≡ max
n=0,...,NT

‖un‖X , ‖u‖l2m(X) ≡
{
Δt

m∑
n=1

‖un‖2
X

}1/2

, ‖u‖l2(X) ≡ ‖u‖l2NT
(X),

|p|h ≡
{ ∑

K∈Th

h2
K(∇p,∇p)K

}1/2

,

for m ∈ {1, . . . , NT } and X = L∞(Ω), L2(Ω) and H1(Ω). DΔt is the backward difference operator defined by

DΔtu
n ≡ un − un−1

Δt
·

Definition 3.1. For (w, r) ∈ V ×Q we define the Stokes projection (ŵh, r̂h) ∈ Vh ×Qh of (w, r) by

Ah

(
(ŵh, r̂h), (vh, qh)

)
= A

(
(w, r), (vh, qh)

)
, ∀(vh, qh) ∈ Vh ×Qh. (3.1)

Hypothesis 3.2. The solution (u, p) of (2.2) satisfies u ∈ C([0, T ];W 1,∞(Ω)d) ∩ Z2 ∩H1(0, T ;V ∩H2(Ω)d)
and p ∈ H1(0, T ;Q ∩H1(Ω)).

Theorem 3.3. Suppose Hypothesis 3.2 holds. Then, there exist positive constants h0 and c0 independent of h
and Δt such that, for any pair (h,Δt),

h ∈ (0, h0], Δt ≤ c0h
d/4, (3.2)

the following hold.
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(i) Scheme (2.7) with u0
h, the first component of the Stokes’s projection of (u0, 0) by (3.1), has a unique

solution (uh, ph) = {(un
h, p

n
h)}NT

n=1 ⊂ Vh ×Qh.

(ii) It holds that

‖uh‖l∞(L∞) ≤ ‖u‖C(L∞) + 1. (3.3)

(iii) There exists a positive constant c̄ independent of h and Δt such that

‖uh − u‖l∞(H1),
∥∥∥DΔtuh − ∂u

∂t

∥∥∥
l2(L2)

, ‖ph − p‖l2(L2) ≤ c̄(Δt+ h). (3.4)

Remark 3.4. Since the initial pressure p0 is not given in (2.1), we cannot practice the Stokes’s projection of
(u0, p0). That is the reason why we employ the Stokes projection of (u0, 0) and set the first component as u0

h.
This choice is sufficient for the error estimates (3.4) and also (3.5) in Theorem 3.6 below.

Hypothesis 3.5. The Stokes’s problem is regular, i.e., for any g ∈ L2(Ω)d the solution (w, r) ∈ V ×Q of the
Stokes problem,

A
(
(w, r), (v, q)

)
= (g, v), ∀(v, q) ∈ V ×Q,

belongs to H2(Ω)d ×H1(Ω) and the estimate

‖w‖2 + ‖r‖1 ≤ cR‖g‖0

holds, where cR is a positive constant independent of g, w and r.

Theorem 3.6. Suppose Hypotheses 3.2 and 3.5 hold. Then, there exists a positive constant c̃ independent of h
and Δt such that

‖uh − u‖l∞(L2) ≤ c̃(Δt+ h2), (3.5)

where uh is the first component of the solution of (2.7) stated in Theorem 3.3(i).

Remark 3.7. Hypothesis 3.5 holds, e.g., if Ω is convex in R
2, cf. [14].

4. Proofs of Theorems 3.3 and 3.6

We use c, cu and c(u,p) to represent the generic positive constants independent of the discretization parameters
h andΔt. cu and c(u,p) are constants depending on u and (u, p), respectively. The symbol “′” (prime) is sometimes
used in order to distinguish between two constants, e.g., cu and c′u.

4.1. Preparations

We recall some lemmas and a proposition, which are directly used in our proofs. The next lemma is derived
from Korn’s inequality [11].

Lemma 4.1. Let Ω be a bounded domain with a Lipschitz-continuous boundary. Then, there exists a positive
constant α1 and the following inequalities hold.

‖D(v)‖0 ≤ ‖v‖1 ≤ α1‖D(v)‖0, ∀v ∈ H1
0 (Ω)d. (4.1)

We use inverse inequalities and interpolation properties.
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Lemma 4.2 [9]. There exist positive constants α2i, i = 0, . . . , 4, independent of h and the following inequalities
hold.

|qh|h ≤ α20‖qh‖0, ∀qh ∈ Qh, (4.2a)

‖vh‖0,∞ ≤ α21h
−d/6‖vh‖1, ∀vh ∈ Vh, (4.2b)

‖vh‖1,∞ ≤ α22h
−d/2‖vh‖1, ∀vh ∈ Vh, (4.2c)

‖Πhv‖0,∞ ≤ ‖v‖0,∞, ∀v ∈ C(Ω̄)d, (4.2d)

‖Πhv‖1,∞ ≤ α23‖v‖1,∞, ∀v ∈ W 1,∞(Ω)d, (4.2e)

‖Πhv − v‖1 ≤ α24h‖v‖2, ∀v ∈ H2(Ω)d, (4.2f)

where Πh : C(Ω̄)d → Xh is the Lagrange interpolation operator.

Remark 4.3.

(i) Although the inverse assumption (2.5) is supposed throughout the paper, it is not required for the esti-
mates (4.2a), (4.2d), (4.2e) and (4.2f). The assumption that {Th}h↓0 is regular is sufficient for them.

(ii) The inverse inequality (4.2b) is sufficient in this paper, while it is not optimal for d = 2.
(iii) We note α23 ≥ 1.

Lemma 4.4 [13]. There exists a positive constant α30 independent of h such that for any h

inf
(wh,rh)∈Vh×Qh

sup
(vh,qh)∈Vh×Qh

Ah

(
(wh, rh), (vh, qh)

)
‖(wh, rh)‖V ×Q‖(vh, qh)‖V ×Q

≥ α30· (4.3)

Remark 4.5. Although the conventional inf-sup condition [14],

inf
qh∈Qh

sup
vh∈Vh

b(vh, qh)
‖vh‖1‖qh‖0

≥ β∗ > 0,

does not hold true for the pair of Vh and Qh, the P1/P1 finite element spaces, Ah satisfies the stability
inequality (4.3) for this pair.

Proposition 4.6 [7].

(i) Suppose (w, r) ∈ (V ∩H2(Ω)d)× (Q∩H1(Ω)). Then, there exists a positive constant α31 independent of h
such that for any h the Stokes projection (ŵh, r̂h) of (w, r) by (3.1) satisfies

‖ŵh − w‖1, ‖r̂h − r‖0, |r̂h − r|h ≤ α31h‖(w, r)‖H2×H1 . (4.4a)

(ii) Suppose Hypothesis 3.5 additionally holds. Then, there exists a positive constant α32 independent of h such
that for any h

‖ŵh − w‖0 ≤ α32h
2‖(w, r)‖H2×H1 . (4.4b)

We recall some results concerning the evaluation of composite functions, which are mainly due to Lemma 4.5
in [1] and Lemma 1 in [10]. In the next lemma a and b are any functions in W 1,∞

0 (Ω)d satisfying

Δt‖a‖1,∞, Δt‖b‖1,∞ ≤ δ1,

where δ1 is a constant stated in (i) of the following lemma. We consider the mappings X1(a,Δt) and X1(b,Δt)
defined in (2.4).
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Lemma 4.7.

(i) There exists a constant δ1 ∈ (0, 1) such that

J(x) ≥ 1/2, ∀x ∈ Ω, (4.5)

where J is the Jacobian det(∂X1(a,Δt)/∂x).
(ii) There exist positive constants α4i, i = 0, . . . , 3, independent of Δt such that the following inequalities hold.

‖g − g ◦X1(a,Δt)‖0 ≤ α40Δt‖a‖0,∞‖g‖1, ∀g ∈ H1(Ω)d, (4.6a)

‖g − g ◦X1(a,Δt)‖−1 ≤ α41Δt‖a‖1,∞‖g‖0, ∀g ∈ L2(Ω)d, (4.6b)

‖g ◦X1(b,Δt) − g ◦X1(a,Δt)‖0 ≤ α42Δt‖b− a‖0‖g‖1,∞, ∀g ∈ W 1,∞(Ω)d, (4.6c)

‖g ◦X1(b,Δt) − g ◦X1(a,Δt)‖0,1 ≤ α43Δt‖b− a‖0‖g‖1, ∀g ∈ H1(Ω)d. (4.6d)

Proof. Since Jij = δij − Δt∂ai/∂xj , (4.5) is obvious. It holds that for any q ∈ [1,∞), p ∈ [1,∞], p′ with
1/p+ 1/p′ = 1 and g ∈W 1,qp′

(Ω)d

‖g ◦X1(b,Δt) − g ◦X1(a,Δt)‖0,q ≤ 2‖X1(b,Δt) −X1(a,Δt)‖0,pq‖∇g‖0,qp′

from Lemma 4.5 in [1], which implies (4.6a), (4.6c) and (4.6d). For the proof of (4.6b), refer to Lemma 1
in [10]. �

4.2. An estimate at each time step

Let (ûh, p̂h)(t) ∈ Vh ×Qh be the Stokes’s projection of (u, p)(t) by (3.1) for t ∈ [0, T ]. Letting

en
h ≡ un

h − ûn
h, εn

h ≡ pn
h − p̂n

h, η(t) ≡ (u− ûh)(t),

we have for n ≥ 1

(DΔte
n
h, vh) + Ah

(
(en

h, ε
n
h), (vh, qh)

)
= 〈Rn

h , vh〉, ∀(vh, qh) ∈ Vh ×Qh, (4.7)

where

Rn
h ≡

4∑
i=1

Rn
hi,

Rn
h1 ≡ Dun

Dt
− un − un−1 ◦X1(un−1, Δt)

Δt
, Rn

h2 ≡ 1
Δt

{
un−1 ◦X1(un−1

h , Δt) − un−1 ◦X1(un−1, Δt)
}
,

Rn
h3 ≡ 1

Δt

{
ηn − ηn−1 ◦X1(un−1

h , Δt)
}
, Rn

h4 ≡ − 1
Δt

{
en−1

h − en−1
h ◦X1(un−1

h , Δt)
}
.

(4.7) is derived from (2.7), (3.1) and (2.2). We note e0h = u0
h − û0

h and set ε0h ≡ p0
h − p̂0

h, where (u0
h, p

0
h) is the

Stokes projection of (u0, 0) by (3.1).
Hereafter, let δ1 be the constant in Lemma 4.7.

Proposition 4.8.

(i) Let (u0, p0) ∈ (H2(Ω)d ∩ V ) × (H1(Ω) ∩ Q) be given and assume that ∇ · u0 = 0. Then, there exists a
positive constant cI independent of h such that for any h

√
ν‖D(e0h)‖0 +

√
δ0
2
|ε0h|h ≤ cIh. (4.8)
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(ii) Let n ∈ {1, . . . , NT } be a fixed number and let un−1
h ∈ Vh be known. Suppose the inequality

Δt‖un−1
h ‖1,∞ ≤ δ1 (4.9)

holds. Then, there exists a unique solution (un
h, p

n
h) ∈ Vh ×Qh of (2.7).

(iii) Furthermore, suppose Hypothesis 3.2 and the inequality

Δt‖u‖C(W 1,∞) ≤ δ1 (4.10)

hold. Let pn−1
h ∈ Qh be known and suppose the equation

b(un−1
h , qh) − Ch(pn−1

h , qh) = 0, ∀qh ∈ Qh, (4.11)

holds. Then, it holds that

DΔt

(
ν‖D(en

h)‖2
0 +

δ0
2
|εn

h|2h
)

+
1
2
‖DΔte

n
h‖2

0 ≤ A1(‖un−1
h ‖0,∞)ν‖D(en−1

h )‖2
0

+A2(‖un−1
h ‖0,∞)

{
Δt‖u‖2

Z2(tn−1,tn) + h2

(
1
Δt

‖(u, p)‖2
H1(tn−1,tn;H2×H1) + 1

)}
, (4.12)

where Ai, i = 1, 2, are functions defined by

Ai(ξ) ≡ ci(ξ2 + 1)

and ci, i = 1, 2, are positive constants independent of h and Δt. They are defined by (4.19) below.

For the proof we use the next lemma, which is proved in Appendix A.1.

Lemma 4.9. Suppose Hypothesis 3.2 holds. Let n ∈ {1, . . . , NT } be a fixed number and let un−1
h ∈ Vh be known.

Then, under the conditions (4.9) and (4.10) it holds that

‖Rn
h1‖0 ≤ cu

√
Δt‖u‖Z2(tn−1,tn), (4.13a)

‖Rn
h2‖0 ≤ cu

(
‖en−1

h ‖0 + h‖(u, p)n−1‖H2×H1

)
, (4.13b)

‖Rn
h3‖0 ≤ ch√

Δt
(‖un−1

h ‖0,∞ + 1)‖(u, p)‖H1(tn−1,tn;H2×H1), (4.13c)

‖Rn
h4‖0 ≤ c‖un−1

h ‖0,∞‖en−1
h ‖1. (4.13d)

Proof of Proposition 4.8. We prove (i). Since (u0
h, p

0
h) and (û0

h, p̂
0
h) are the Stokes’s projections of (u0, 0) and

(u0, p0) by (3.1), respectively, we have

‖D(e0h)‖0 ≤ ‖e0h‖1 = ‖u0
h − û0

h‖1 ≤ ‖u0
h − u0‖1 + ‖u0 − û0

h‖1 ≤ 2α31h‖(u0, p0)‖H2×H1 ,

|ε0h|h = |p0
h − p̂0

h|h ≤ |p0
h − 0|h + |p̂0

h − p0|h + |p0|h ≤ α20

(
‖p0

h − 0‖0 + ‖p̂0
h − p0‖0

)
+ h‖p0‖1

≤ (2α20α31 + 1)h‖(u0, p0)‖H2×H1 ,

which imply (4.8) for cI ≡ {2
√
να31 +

√
δ0/2(2α20α31 + 1)}‖(u0, p0)‖H2×H1 .

(ii) is obtained from (4.9) and Remark 2.2-(iii).
We prove (iii). Substituting (DΔte

n
h, 0) into (vh, qh) in (4.7) and using the inequality (a2 − b2)/2 ≤ a(a− b),

we have

‖DΔte
n
h‖2

0 +DΔt

(
ν‖D(en

h)‖2
0

)
+ b(DΔte

n
h, ε

n
h) ≤

4∑
i=1

〈Rn
hi, DΔte

n
h〉, (4.14)
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where we have noted that X1(un−1, Δt) in Rn
hi (i = 1, 2) maps Ω onto Ω by (4.10). From (4.11) and (2.7) with

vh = 0 ∈ Vh we have that

b(uk
h, qh) − Ch(pk

h, qh) = 0, ∀qh ∈ Qh, (4.15)

for k = n− 1 and n. Since (ûn
h, p̂

n
h) is the Stokes’s projection of (un, pn) by (3.1), we have

b(ûk
h, qh) − Ch(p̂k

h, qh) = b(uk, qh) = 0, ∀qh ∈ Qh, (4.16)

for k = n− 1 and n. The equalities (4.15) and (4.16) imply that

b(DΔte
n
h, qh) − Ch(DΔtε

n
h, qh) = 0, ∀qh ∈ Qh,

which leads to

−b(DΔte
n
h, ε

n
h) + Ch(DΔtε

n
h, ε

n
h) = 0 (4.17)

by putting qh = −εn
h ∈ Qh. Adding (4.17) to (4.14) and using Lemma 4.9 and the inequality ab ≤ βa2/2 +

b2/(2β) (β > 0), we have

‖DΔte
n
h‖2

0 +DΔt

(
ν‖D(en

h)‖2
0 +

δ0
2
|εn

h|2h
)
≤

4∑
i=1

〈Rn
hi, DΔte

n
h〉

≤
(

4∑
i=1

βi

)
‖DΔte

n
h‖2

0 +
cuα

2
1

ν

(
1
β2

+
‖un−1

h ‖2
0,∞

β4

)
ν‖D(en−1

h )‖2
0

+ c′u

{
Δt

β1
‖u‖2

Z2(tn−1,tn) + h2

(
1
β2

‖(u, p)‖2
C(H2×H1) +

‖un−1
h ‖2

0,∞ + 1
β3Δt

‖(u, p)‖2
H1(tn−1,tn;H2×H1)

)}
(4.18)

for any positive numbers βi (i = 1, . . . , 4), where the inequality ‖en−1
h ‖0 ≤ ‖en−1

h ‖1 has been used. By setting
βi = 1/8 for i = 1, . . . , 4 in (4.18) we have that

DΔt

(
ν‖D(en

h)‖2
0 +

δ0
2
|εn

h|2h
)

+
1
2
‖DΔte

n
h‖2

0 ≤ cu
ν

(
‖un−1

h ‖2
0,∞ + 1

)
ν‖D(en−1

h )‖2
0

+ c(u,p)

{
Δt‖u‖2

Z2(tn−1,tn) + h2
(
‖un−1

h ‖2
0,∞ + 1

)( 1
Δt

‖(u, p)‖2
H1(tn−1,tn;H2×H1) + 1

)}
.

Putting

c1 ≡ cu/ν, c2 ≡ c(u,p), (4.19)

we obtain (4.12). �

4.3. Proof of Theorem 3.3

The proof is performed by induction through three steps.

Step 1. (Setting c0 and h0): Let cI and Ai (i = 1, 2) be the constant and the functions in Proposition 4.8,
respectively. Let a1, a2 and c∗ be constants defined by

a1 ≡ A1(‖u‖C(L∞) + 1), a2 ≡ A2(‖u‖C(L∞) + 1),

c∗ ≡ α1√
ν

exp(a1T/2)max
{
a
1/2
2 ‖u‖Z2, a

1/2
2

(
‖(u, p)‖H1(H2×H1) + T 1/2

)
+ cI

}
.
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We can choose sufficiently small positive constants c0 and h0 such that

α21

{
c∗(c0h

d/12
0 + h

1−d/6
0 ) + (α24 + α31)h

1−d/6
0 ‖(u, p)‖C(H2×H1)

}
≤ 1, (4.20a)

c0

[
α22

{
c∗(c0 + h

1−d/4
0 ) + (α24 + α31)h

1−d/4
0 ‖(u, p)‖C(H2×H1)

}
+ α23h

d/4
0 ‖u‖C(W 1,∞)

]
≤ δ1, (4.20b)

since all the powers of h0 are positive.

Step 2. (Induction): For n ∈ {0, . . . , NT } we define property P(n) as follows:

P(n) :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(a) ν‖D(en
h)‖2

0 +
δ0
2
|εn

h|2h +
1
2
‖DΔteh‖2

l2n(L2)

≤ exp(a1nΔt)
[
ν‖D(e0h)‖2

0 +
δ0
2
|ε0h|2h + a2

{
Δt2‖u‖2

Z2(0,tn) + h2
(
‖(u, p)‖2

H1(0,tn;H2×H1) + nΔt
)}]

,

(b) ‖un
h‖0,∞ ≤ ‖u‖C(L∞) + 1,

(c) Δt‖un
h‖1,∞ ≤ δ1,

where ‖DΔteh‖l2n(L2) vanishes for n = 0. P(n)-(a) can be rewritten as

xn +Δt

n∑
i=1

yi ≤ exp(a1nΔt)

(
x0 +Δt

n∑
i=1

bi

)
, (4.21)

where

xn ≡ ν‖D(en
h)‖2

0 +
δ0
2
|εn

h|2h, yi ≡
1
2
‖DΔte

i
h‖2

0,

bi ≡ a2

{
Δt‖u‖2

Z2(ti−1,ti) + h2

(
1
Δt

‖(u, p)‖2
H1(ti−1,ti;H2×H1) + 1

)}
.

We firstly prove the general step in the induction. Supposing that P(n − 1) holds true for an integer n ∈
{1, . . . , NT }, we prove that P(n) also holds. Since P(n−1)-(c) is nothing but (4.9), there exists a unique solution
(un

h, p
n
h) ∈ Vh × Qh of equation (2.7) from Proposition 4.8(ii). We prove P(n)-(a). (4.10) holds thanks to the

estimate,

Δt‖u‖C(W 1,∞) ≤ c0h
d/4
0 ‖u‖C(W 1,∞) ≤ c0α23h

d/4
0 ‖u‖C(W 1,∞) ≤ δ1,

from condition (3.2), Remark 4.3(iii) and (4.20b). (4.11) is obtained from (2.7) for n ≥ 2 and from the definition
of (u0

h, p
0
h), i.e., the Stokes’s projection of (u0, 0) by (3.1), for n = 1. Hence (4.12) holds from Proposition 4.8(iii).

Since the inequalities Ai(‖un−1
h ‖0,∞) ≤ ai (i = 1, 2) hold from P(n− 1)-(b), (4.12) implies

DΔtxn + yn ≤ a1xn−1 + bn,

which leads to

xn +Δtyn ≤ exp(a1Δt)(xn−1 +Δtbn) (4.22)

by 1 ≤ 1 + a1Δt ≤ exp(a1Δt). From P(n− 1)-(a), i.e.,

xn−1 +Δt

n−1∑
i=1

yi ≤ exp
{
a1(n− 1)Δt

}(
x0 +Δt

n−1∑
i=1

bi

)
, (4.23)
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we have that

xn +Δt

n∑
i=1

yi ≤ exp(a1Δt)(xn−1 +Δtbn) +Δt

n−1∑
i=1

yi (by (4.22))

≤ exp(a1Δt)

(
xn−1 +Δt

n−1∑
i=1

yi +Δtbn

)

≤ exp(a1Δt)

[
exp {a1(n− 1)Δt}

(
x0 +Δt

n−1∑
i=1

bi

)
+Δtbn

]
(by (4.23))

≤ exp(a1nΔt)

(
x0 +Δt

n∑
i=1

bi

)
,

which is (4.21), i.e., P(n)-(a).
For the proofs of P(n)-(b) and (c) we prepare the estimate of ‖en

h‖1. From P(n)-(a) and (4.8) we have that

ν‖D(en
h)‖2

0 +
δ0
2
|εn

h|2h +
1
2
‖DΔteh‖2

l2n(L2) ≤ exp(a1T )
[
c2Ih

2 + a2

{
Δt2‖u‖2

Z2 + h2
(
‖(u, p)‖2

H1(H2×H1) + T
)}]

≤ exp(a1T )
[
a2Δt

2‖u‖2
Z2 + h2

{
a2

(
‖(u, p)‖2

H1(H2×H1) + T
)
+ c2I

}]
≤
{
c3(Δt+ h)

}2
, (4.24)

where

c3 ≡ exp(a1T/2)max
{
a
1/2
2 ‖u‖Z2, a

1/2
2

(
‖(u, p)‖H1(H2×H1) + T 1/2

)
+ cI

}
.

(4.24) implies

‖en
h‖1 ≤ α1‖D(en

h)‖0 ≤ α1√
ν
c3(Δt+ h) = c∗(Δt+ h). (4.25)

We prove P(n)-(b) and (c). Let Πh be the Lagrange interpolation operator stated in Lemma 4.2. We have
that

‖un
h‖0,∞ ≤ ‖un

h −Πhu
n‖0,∞ + ‖Πhu

n‖0,∞ ≤ α21h
−d/6‖un

h −Πhu
n‖1 + ‖Πhu

n‖0,∞

≤ α21h
−d/6(‖un

h − ûn
h‖1 + ‖ûn

h − un‖1 + ‖un −Πhu
n‖1) + ‖Πhu

n‖0,∞

≤ α21h
−d/6{c∗(Δt+ h) + α31h‖(un, pn)‖H2×H1 + α24h‖un‖2} + ‖un‖0,∞ (by (4.25))

≤ α21{c∗(c0hd/12
0 + h

1−d/6
0 ) + (α24 + α31)h

1−d/6
0 ‖(u, p)‖C(H2×H1)} + ‖u‖C(L∞) (by (3.2))

≤ 1 + ‖u‖C(L∞) (by (4.20a)),

Δt‖un
h‖1,∞ ≤ c0h

d/4(‖un
h −Πhu

n‖1,∞ + ‖Πhu
n‖1,∞) ≤ c0h

d/4(α22h
−d/2‖un

h −Πhu
n‖1 + ‖Πhu

n‖1,∞)

≤ c0{α22h
−d/4(‖un

h − ûn
h‖1 + ‖ûn

h − un‖1 + ‖un −Πhu
n‖1) + hd/4‖Πhu

n‖1,∞}
≤ c0[α22h

−d/4{c∗(Δt+ h) + α31h‖(un, pn)‖H2×H1 + α24h‖un‖2} + α23h
d/4‖un‖1,∞]

≤ c0[α22h
−d/4{c∗(c0hd/4 + h) + (α24 + α31)h‖(un, pn)‖H2×H1} + α23h

d/4‖un‖1,∞]

≤ c0[α22{c∗(c0 + h
1−d/4
0 ) + (α24 + α31)h

1−d/4
0 ‖(u, p)‖C(H2×H1)} + α23h

d/4
0 ‖u‖C(W 1,∞)]

≤ δ1 (by (4.20b)).

Therefore, P(n) holds true.
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The proof of P(0) is easier than that of the general step. P(0)-(a) obviously holds with equality. P(0)-(b) and
(c) are obtained as follows.

‖u0
h‖0,∞ ≤ ‖u0

h −Πhu
0‖0,∞ + ‖Πhu

0‖0,∞ ≤ α21h
−d/6(‖u0

h − u0‖1 + ‖u0 −Πhu
0‖1) + ‖Πhu

0‖0,∞

≤ α21(α31 + α24)h1−d/6‖u0‖2 + ‖u0‖0,∞ ≤ 1 + ‖u‖C(L∞) (by (4.20a)),

Δt‖u0
h‖1,∞ ≤ c0h

d/4(‖u0
h −Πhu

0‖1,∞ + ‖Πhu
0‖1,∞) ≤ c0h

d/4(α22h
−d/2‖u0

h −Πhu
0‖1 + ‖Πhu

0‖1,∞)

≤ c0{α22h
−d/4(‖u0

h − u0‖1 + ‖u0 −Πhu
0‖1) + hd/4‖Πhu

0‖1,∞}
≤ c0{α22(α31 + α24)h1−d/4‖u0‖2 + α23h

d/4‖u0‖1,∞} ≤ δ1 (by (4.20b)).

Thus, the induction is completed.

Step 3. Finally we derive the results (i), (ii) and (iii) of the theorem. The induction completed in the previous
step implies that P(NT ) holds true. Hence we have (i) and (ii). The first inequality of (3.4) in (iii) is obtained
from (4.25) and the estimate

‖uh − u‖l∞(H1) ≤ ‖eh‖l∞(H1) + ‖η‖l∞(H1) ≤ ‖eh‖l∞(H1) + α31h‖(u, p)‖C(H2×H1).

Combining the estimate∥∥∥∥DΔtu
n
h − ∂un

∂t

∥∥∥∥
0

≤ ‖DΔte
n
h‖0 + ‖DΔtη

n‖0 +
∥∥∥∥DΔtu

n − ∂un

∂t

∥∥∥∥
0

≤ ‖DΔte
n
h‖0 +

α31h√
Δt

‖(u, p)‖H1(tn−1,tn;H2×H1) +

√
Δt

3

∥∥∥∥∂2u

∂t2

∥∥∥∥
L2(tn−1,tn;L2)

with (4.24), we get the second inequality of (3.4). Here, for the estimates of the last two terms, we have used
the equalities

(
DΔtη

n
)
(x) =

∫ 1

0

∂η

∂t
(x, tn−1 + sΔt)ds,

(
DΔtu

n − ∂un

∂t

)
(x) = −Δt

∫ 1

0

s
∂2u

∂t2
(x, tn−1 + sΔt)ds.

We prove the third inequality of (3.4). We have that

‖εn
h‖0 ≤ ‖(en

h, ε
n
h)‖V ×Q ≤ 1

α30
sup

(vh,qh)∈Vh×Qh

Ah

(
(en

h, ε
n
h), (vh, qh)

)
‖(vh, qh)‖V ×Q

=
1
α30

sup
(vh,qh)∈Vh×Qh

〈Rn
h , vh〉 − (DΔte

n
h, vh)

‖(vh, qh)‖V ×Q

≤ c(u,p)

{√
Δt‖u‖Z2(tn−1,tn) + h

( 1√
Δt

‖(u, p)‖H1(tn−1,tn;H2×H1) + 1
)

+ ‖en−1
h ‖1 + ‖DΔte

n
h‖0

}
(4.26)

for n = 1, . . . , NT . Here we have used Lemmas 4.4 and 4.9, the inequality ‖en−1
h ‖0 ≤ ‖en−1

h ‖1 and (3.3). We
obtain the result by combining (4.26), (4.24) and the estimate

‖ph − p‖l2(L2) ≤ ‖εh‖l2(L2) + ‖p̂h − p‖l2(L2) ≤ ‖εh‖l2(L2) +
√
Tα31h‖(u, p)‖C(H2×H1).

4.4. Proof of Theorem 3.6

We use the next lemma, which is proved in Appendix A.2.
Lemma 4.10. Suppose Hypotheses 3.2 and 3.5 hold. Let n ∈ {1, . . . , NT } be a fixed number and un−1

h ∈ Vh be
known. Then, under the conditions (4.9) and (4.10) we have that

‖Rn
h2‖0 ≤ cu

(
‖en−1

h ‖0 + h2‖(u, p)n−1‖H2×H1

)
, (4.27a)

‖Rn
h3‖V ′

h
≤ cu

(
‖(u, p)n−1‖H2×H1‖en−1

h ‖0+
h2

√
Δt

‖(u, p)‖H1(tn−1,tn;H2×H1)+h2
2∑

k=1

‖(u, p)n−1‖k
H2×H1

)
,

(4.27b)

‖Rn
h4‖V ′

h
≤ cu

(
1 + h−d/6‖en−1

h ‖1

) (
‖en−1

h ‖0 + h2‖(u, p)n−1‖H2×H1

)
. (4.27c)



374 H. NOTSU AND M. TABATA

Proof of Theorem 3.6. Since we have ‖eh‖l∞(H1) ≤ c∗(Δt + h) ≤ c∗(c0 + h
1−d/4
0 )hd/4 from (4.25) and (3.2),

(4.27c) implies

‖Rn
h4‖V ′

h
≤ cuc∗

(
‖en−1

h ‖0 + h2‖(u, p)n−1‖H2×H1

)
. (4.28)

Substituting (en
h ,−εn

h) into (vh, qh) in (4.7) and using Lemma 4.1, (4.13a), (4.27a), (4.27b), (4.28) and the
inequality ab ≤ βa2/2 + b2/(2β) (β > 0), we have

DΔt

(
1
2
‖en

h‖2
0

)
+

2ν
α2

1

‖en
h‖2

1 + δ0|εn
h|2h ≤

4∑
i=1

〈Rn
hi, e

n
h〉

≤ cu

(
1
β2

+
‖(u, p)‖2

C(H2×H1)

β3
+
c2∗
β4

)
‖en−1

h ‖2
0 +

(
4∑

i=1

βi

)
‖en

h‖2
1 + c′u

[
Δt

β1
‖u‖2

Z2(tn−1,tn)

+
h4

β3Δt
‖(u, p)‖2

H1(tn−1,tn;H2×H1) + h4

{(
1
β2

+
c2∗
β4

)
‖(u, p)‖2

C(H2×H1) +
1
β3

2∑
k=1

‖(u, p)‖2k
C(H2×H1)

}]

for any βi > 0 (i = 1, . . . , 4), where the inequality ‖en
h‖0 ≤ ‖en

h‖1 has been employed. Hence, we have that

DΔt

(
1
2
‖en

h‖2
0

)
+

ν

α2
1

‖en
h‖2

1 ≤ c(u,p)‖en−1
h ‖2

0 + c′(u,p)

(
Δt‖u‖2

Z2(tn−1,tn) +
h4

Δt
‖(u, p)‖2

H1(tn−1,tn;H2×H1) + h4

)

by setting βi = ν/(4α2
1) (i = 1, . . . , 4). From the discrete Gronwall’s inequality there exists a positive constant c4

independent of h and Δt such that

‖eh‖l∞(L2) ≤ c4(‖e0h‖0 +Δt+ h2).

Using (4.4b), we have

‖e0h‖0 ≤ ‖u0
h − u0‖0 + ‖u0 − û0

h‖0 ≤ 2α32h
2‖(u0, p0)‖H2×H1 ,

‖uh − u‖l∞(L2) ≤ ‖eh‖l∞(L2) + ‖η‖l∞(L2) ≤ ‖eh‖l∞(L2) + α32h
2‖(u, p)‖C(H2×H1).

Combining these three inequalities together, we get (3.5). �

5. Numerical results

In this section two- and three-dimensional test problems are computed by scheme (2.7) in order to recognize
the theoretical convergence orders numerically.

For the computation of the integral∫
K

un−1
h ◦X1(un−1

h , Δt)(x)vh(x) dx (5.1)

appearing in scheme (2.7) we employ numerical quadrature formulae [26] of degree five for d = 2 (seven points)
and 3 (fifteen points). The results obtained in Theorems 3.3 and 3.6 hold for any fixed δ0. Here we set δ0 = 1.
The system of linear equations is solved by MINRES [2, 25].

Example 5.1. In problem (2.1) we set Ω = (0, 1)d, T = 1 and we consider four values of ν,

ν = 10−k, k = 1, . . . , 4.

The functions f and u0 are given so that the exact solution is as follows:
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Figure 1. Portions of the meshes for d = 2 (left, N = 64, in [0.9, 1]2) and for d = 3 (right,
N = 64, in [0.9, 1]3).

for d = 2:

u(x, t) =
(
∂ψ

∂x2
,− ∂ψ

∂x1

)
(x, t), p(x, t) = sin{π(x1 + 2x2 + t)},

ψ(x, t) ≡
√

3
2π

sin2(πx1) sin2(πx2) sin{π(x1 + x2 + t)},

for d = 3:

u(x, t) = rotΨ(x, t), p(x, t) = sin{π(x1 + 2x2 + x3 + t)},

Ψ1(x, t) ≡
8
√

3
27π

sin(πx1) sin2(πx2) sin2(πx3) sin{π(x2 + x3 + t)},

Ψ2(x, t) ≡
8
√

3
27π

sin2(πx1) sin(πx2) sin2(πx3) sin{π(x3 + x1 + t)},

Ψ3(x, t) ≡
8
√

3
27π

sin2(πx1) sin2(πx2) sin(πx3) sin{π(x1 + x2 + t)}.

These solutions are normalized so that ‖u‖C(L∞) = ‖p‖C(L∞) = 1.

Let N be the division number of each side of the domain. We set N = 64, 128, 256 and 512 for d = 2 and
N = 64 and 128 for d = 3, and (re)define h ≡ 1/N . Portions of the meshes are shown in Figure 1 for d = 2
(left, N = 64, in [0.9, 1]2) and 3 (right, N = 64, in [0.9, 1]3). Setting Δt = γ1h and γ2h

2 (γ1 = 4, γ2 = 256), we
solve Example 5.1 by scheme (2.7) with u0

h, the first component of the Stokes’s projection of (u0, 0) by (3.1).
Two relations between Δt and h, i.e., Δt = γ1h and γ2h

2, are employed in order to recognize the convergence
orders of (3.4) and (3.5), respectively and we have (Δt =)γ1h = γ2h

2 for h = 1/64. For the solution (uh, ph) of
scheme (2.7) we define the relative errors Er1 and Er2 by

Er1 ≡
‖uh −Πhu‖l2(H1) + ‖ph −Πhp‖l2(L2)

‖Πhu‖l2(H1) + ‖Πhp‖l2(L2)
, Er2 ≡

‖uh −Πhu‖l∞(L2)

‖Πhu‖l∞(L2)
,

where Πh is the Lagrange interpolation operator to the corresponding space Xh or Mh. Figure 2 shows the
graphs of Er1 versus h for d = 2 and 3 (left, Δt = γ1h) and Er2 versus h for d = 2 (right, Δt = γ2h

2) in a
logarithmic scale, where the symbols are summarized in Table 1. The values of Er1, Er2 and the slopes are
presented in Table 2. We can see that Er1 is almost of first order in h for both d = 2 and 3 and that Er2 is
almost of second order in h. These results are consistent with Theorems 3.3 and 3.6.
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Figure 2. Er1 vs. h for d = 2 and 3 (left, Δt = γ1h, γ1 = 4) and Er2 vs. h for d = 2 (right,
Δt = γ2h

2, γ2 = 256).

Table 1. Symbols used in Figure 2.

ν

d 10−1 10−2 10−3 10−4

2 ◦ � � �
3 • � � �

Remark 5.2. In order to examine the influence on the results of numerical quadrature we have also solved
Example 5.1 using quadrature formulae of degree two with three points for d = 2 and four points for d = 3.
The differences of the results have been too small to distinguish them on the graphs.

6. Conclusions

A combined finite element scheme with a Lagrange−Galerkin’s method and Brezzi−Pitkäranta’s stabilization
method for the Navier−Stokes’s equations proposed in [17,18] has been theoretically analyzed. Convergence with
the optimal error estimates of order O(Δt+h) for the velocity in the H1-norm and the pressure in the L2-norm
(Thm. 3.3) and of order O(Δt+ h2) for the velocity in the L2-norm (Thm. 3.6) have been proved. The scheme
has the advantages of both methods: robustness for convection-dominated problems, symmetry of the resulting
matrix and a small number of DOF. We note that it is a fully discrete stabilized LG scheme in the sense that
the exact solvability of ordinary differential equations describing the particle path is not required. In order to
provide the initial approximate velocity we have introduced a stabilized Stokes projection, which works well in
the analysis without any loss of convergence order. The theoretical convergence orders have been recognized
numerically by two- and three-dimensional computations in Example 5.1. It is not difficult to consider a fully
discrete stabilized LG scheme of second order in time based on the ideas of [6, 12], and its convergence with
optimal error estimates will be proved by extending the argument of this paper.
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Table 2. Values of Er1, Er2 and slopes of the graphs in Figure 2.

Er1 Er2

N d = 2 Slope d = 3 Slope d = 2 Slope

ν = 10−1 : 64 7.24 × 10−2 – 6.37 × 10−2 – 1.03 × 10−1 –
128 3.85 × 10−2 0.91 3.25 × 10−2 0.97 2.96 × 10−2 1.80
256 1.99 × 10−2 0.95 – – 7.71 × 10−3 1.94
512 1.01 × 10−2 0.97 – – 1.96 × 10−3 1.97

ν = 10−2 : 64 1.70 × 10−1 – 2.10 × 10−1 – 2.74 × 10−1 –
128 9.51 × 10−2 0.84 1.10 × 10−1 0.94 8.66 × 10−2 1.66
256 5.13 × 10−2 0.89 – – 2.35 × 10−2 1.88
512 2.68 × 10−2 0.93 – – 6.09 × 10−3 1.95

ν = 10−3 : 64 2.14 × 10−1 – 3.78 × 10−1 – 3.41 × 10−1 –
128 1.21 × 10−1 0.82 2.02 × 10−1 0.90 1.10 × 10−1 1.63
256 6.63 × 10−2 0.87 – – 3.03 × 10−2 1.86
512 3.51 × 10−2 0.92 – – 7.88 × 10−3 1.95

ν = 10−4 : 64 2.39 × 10−1 – 4.45 × 10−1 – 3.50 × 10−1 –
128 1.35 × 10−1 0.83 2.35 × 10−1 0.92 1.13 × 10−1 1.63
256 7.34 × 10−2 0.88 – – 3.13 × 10−2 1.85
512 3.88 × 10−2 0.92 – – 8.14 × 10−3 1.94

Appendix A.

A.1. Proof of Lemma 4.9

Let t(s) ≡ tn−1 + sΔt (s ∈ [0, 1]). We prove (4.13a). Let y(x, s) ≡ x− (1 − s)un−1(x)Δt. We have that

Rn
h1(x) =

{(
∂

∂t
+ un(x) · ∇

)
u

}
(x, tn) − 1

Δt

[
u (y(x, s), t(s))

]1
s=0

=
{(

∂

∂t
+ un−1(x) · ∇

)
u

}
(x, tn) +

{(
(un − un−1)(x) · ∇

)
un
}

(x)

−
∫ 1

0

{(
∂

∂t
+ un−1(x) · ∇

)
u

}
(y(x, s), t(s)) ds

=Δt

∫ 1

0

ds
∫ 1

s

{(
∂

∂t
+ un−1(x) · ∇

)2

u

}
(y(x, s1), t(s1)) ds1 +Δt

∫ 1

0

{(
∂u

∂t
(x, t(s)) · ∇

)
un

}
(x)ds

=Δt

∫ 1

0

s1

{(
∂

∂t
+ un−1(x) · ∇

)2

u

}
(y(x, s1), t(s1)) ds1 +Δt

∫ 1

0

{(
∂u

∂t
(x, t(s)) · ∇

)
un

}
(x)ds

≡Rn
h11(x) +Rn

h12(x).

Each term Rn
h1i is estimated as follows:

‖Rn
h11‖0 ≤ Δt

∫ 1

0

s1

∥∥∥∥∥
{(

∂

∂t
+ un−1(·) · ∇

)2

u

}
(y(·, s1), t(s1))

∥∥∥∥∥
0

ds1 ≤ cu
√
Δt‖u‖Z2(tn−1,tn), (A.1a)

‖Rn
h12‖0 ≤ cuΔt

∫ 1

0

∥∥∥∥∂u∂t (·, t(s))
∥∥∥∥

0

ds ≤ cu
√
Δt

∥∥∥∥∂u∂t
∥∥∥∥

L2(tn−1,tn;L2)

, (A.1b)

where for the last inequality of (A.1a) we have changed the variable from x to y and used the evaluation
det(∂y(x, s1)/∂x) ≥ 1/2 (∀s1 ∈ [0, 1]) from Lemma 4.7-(i). From (A.1) we get (4.13a).
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(4.13b) is obtained as follows:

‖Rn
h2‖0 ≤ α42‖un−1

h − un−1‖0‖un−1‖1,∞ ≤ α42‖un−1‖1,∞(‖ηn−1‖0 + ‖en−1
h ‖0) (A.2)

≤ α42‖un−1‖1,∞(α31h‖(u, p)n−1‖H2×H1 + ‖en−1
h ‖0).

We prove (4.13c). Let y(x, s) ≡ x− (1 − s)un−1
h (x)Δt. Since we have that

Rn
h3 =

1
Δt

[η (y(·, s), t(s))]1s=0 =
∫ 1

0

{(
∂

∂t
+ un−1

h (·) · ∇
)
η

}
(y(·, s), t(s)) ds,

we also have

‖Rn
h3‖0 ≤

∫ 1

0

∥∥∥∥
{(

∂

∂t
+ un−1

h (·) · ∇
)
η

}
(y(·, s), t(s))

∥∥∥∥
0

ds

≤
∫ 1

0

(∥∥∥∥∂η∂t (y(·, s), t(s))
∥∥∥∥

0

+ ‖un−1
h ‖0,∞ ‖∇η (y(·, s), t(s))‖0

)
ds

≤
√

2
∫ 1

0

{∥∥∥∥∂η∂t (·, t(s))
∥∥∥∥

0

+ ‖un−1
h ‖0,∞ ‖∇η (·, t(s))‖0

}
ds (by Lem. 4.7-(i))

≤
√

2
Δt

(∥∥∥∥∂η∂t
∥∥∥∥

L2(tn−1,tn;L2)

+ ‖un−1
h ‖0,∞ ‖∇η‖L2(tn−1,tn;L2)

)

≤
√

2
Δt

α31h(‖un−1
h ‖0,∞ + 1)‖(u, p)‖H1(tn−1,tn;H2×H1),

which implies (4.13c).
(4.13d) is obtained as follows:

‖Rn
h4‖0 =

1
Δt

∥∥en−1
h − en−1

h ◦X1(un−1
h , Δt)

∥∥
0
≤ α40‖un−1

h ‖0,∞‖en−1
h ‖1.

A.2. Proof of Lemma 4.10

(4.27a) is obtained by combining (4.4b) with (A.2). For (4.27b) we divide Rn
h3 into three terms,

Rn
h3 = DΔtη

n +
1
Δt

{
ηn−1 − ηn−1 ◦X1(un−1, Δt)

}
+

1
Δt

{
ηn−1 ◦X1(un−1, Δt) − ηn−1 ◦X1(un−1

h , Δt)
}

≡ Rn
h31 +Rn

h32 +Rn
h33.

We have that, by virtue of (4.4b),

‖Rn
h31‖V ′

h
≤ ‖DΔtη

n‖0 ≤ 1√
Δt

∥∥∥∥∂ηn

∂t

∥∥∥∥
L2(tn−1,tn;L2)

≤ α32h
2

√
Δt

‖(u, p)‖H1(tn−1,tn;H2×H1), (A.3a)

‖Rn
h32‖V ′

h
≤ α41‖un−1‖1,∞‖ηn−1‖0 ≤ α41‖un−1‖1,∞ α32h

2‖(u, p)n−1‖H2×H1 , (A.3b)

‖Rn
h33‖V ′

h
= sup

vh∈Vh

1
‖vh‖1

1
Δt

(
ηn−1 ◦X1(un−1

h , Δt) − ηn−1 ◦X1(un−1, Δt), vh

)

≤ sup
vh∈Vh

1
‖vh‖1

1
Δt

∥∥ηn−1 ◦X1(un−1
h , Δt) − ηn−1 ◦X1(un−1, Δt)

∥∥
0,1

‖vh‖0,∞

≤ α43

∥∥un−1
h − un−1

∥∥
0
‖ηn−1‖1α21h

−d/6 (A.3c)

≤ α21α43h
−d/6‖ηn−1‖1(‖en−1

h ‖0 + ‖ηn−1‖0)

≤ α21α43α32h
1−d/6‖(u, p)n−1‖H2×H1

(
‖en−1

h ‖0 + α32h
2‖(u, p)n−1‖H2×H1

)
≤ c‖(u, p)n−1‖H2×H1

(
‖en−1

h ‖0 + h2‖(u, p)n−1‖H2×H1

)
. (A.3d)

From (A.3a), (A.3b) and (A.3d) we obtain (4.27b).
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For (4.27c) we use the bound on Rn
h3. R

n
h4 is obtained by replacing ηn−1 with −en−1

h in Rn
h32 +Rn

h33. Hence,
from (A.3b) and (A.3c) we have

‖Rn
h4‖V ′

h
≤ α41‖un−1‖1,∞‖en−1

h ‖0 + α21α43h
−d/6‖en−1

h ‖1

∥∥un−1
h − un−1

∥∥
0

≤ α41‖un−1‖1,∞‖en−1
h ‖0 + α21α43h

−d/6‖en−1
h ‖1

(
‖en−1

h ‖0 + α32h
2‖(u, p)n−1‖H2×H1

)
≤ cu(1 + h−d/6‖en−1

h ‖1)
(
‖en−1

h ‖0 + h2‖(u, p)n−1‖H2×H1

)
,

which implies (4.27c).
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