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MULTI-MARGINAL OPTIMAL TRANSPORT: THEORY AND APPLICATIONS ∗

Brendan Pass1

Abstract. Over the past five years, multi-marginal optimal transport, a generalization of the well
known optimal transport problem of Monge and Kantorovich, has begun to attract considerable atten-
tion, due in part to a wide variety of emerging applications. Here, we survey this problem, addressing
fundamental theoretical questions including the uniqueness and structure of solutions. The answers to
these questions uncover a surprising divergence from the classical two marginal setting, and reflect a
delicate dependence on the cost function, which we then illustrate with a series of examples. We go on
to describe some applications of the multi-marginal optimal transport problem, focusing primarily on
matching in economics and density functional theory in physics.
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1. Introduction

This paper surveys the theory and applications of multi-marginal optimal transport, the general problem of
aligning or correlating several measures so as to maximize efficiency (with respect to a given cost function).
There are two precise formulations; in the Monge formulation, given compactly supported Borel probability
measures μ1, . . . , μm (marginals) on smooth manifolds M1, . . . ,Mm, respectively, and a continuous cost function
c(x1, . . . , xm), ones seeks to minimize∫

M1

c(x1, F2(x1), . . . , Fm(x1))dμ1(x1) (1.1)

among all (m − 1)-tuples of maps, (F2, F3, . . . , Fm) such that Fi#μ1 = μi for i = 2, 3, . . .m. Here, the push-
forward Fi#μ1 of the measure μ1 by the map Fi : M1 → Mi is the measure on Mi defined by (Fi#μ1)(A) =
μ1(F−1

i (A)) for all Borel A ⊂Mi.
In the Kantorovich formulation, we seek to minimize∫

M1×M2×...×Mm

c(x1, x2, . . . , xm)dγ(x1, x2, . . . , xm) (1.2)
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solutions, matching, purity, density functional theory, strictly correlated electrons.
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over the set Π(μ1, μ2, . . . , μm) of positive joint measures γ on the product space M1 × M2 × . . . × Mm

whose marginals are the μi. Note that if F2, . . . , Fm satisfy the push-forward constraints in (1.1), then
γ := (Id, F2, . . . , Fm)#μ1 ∈ Π(μ1, μ2, . . . , μm), and∫

M1

c(x1, F2(x1), . . . , Fm(x1))dμ1(x1) =
∫
M1×M2×...×Mm

c(x1, x2, . . . , xm)dγ(x1, x2, . . . , xm),

and so problem (1.2) is a relaxation of (1.1).
The Kantorovich problem (1.2) amounts to a linear minimization over a convex, weakly compact set; it is not

difficult to assert existence of a solution. Much of the attention in the literature has focused on uniqueness and
the structure of the minimizer(s); in particular, a natural question is to determine when the solution concentrates
on the graph of a function (F2, . . . , Fm) over the first marginal, in which case this function induces a solution
to (1.1) (often called a Monge solution).

When m = 2, (1.1) and (1.2) correspond respectively to the classical (two marginal) optimal transport
problems of Monge and Kantorovich, which have seen a great outpouring of results over the last 25 years, and
remain very active research problems, at the interface of geometry, PDE, functional analysis and probability,
with applications in physics, economics, fluid mechanics, meteorology, etc. Theory in the two marginal setting
is fairly well understood, and is exposed nicely in two books by Villani [73, 74] and several survey papers,
including those by Ambrosio-Gigli [2], Evans [29] and McCann [54]. In particular, it is well known that under
mild conditions on the cost function and marginals, the solution to (1.2) is unique and is concentrated on the
graph of a function, which in turn solves (1.1).

The extension to m ≥ 3 marginals is not as well understood, but has recently begun to attract a fair bit of
attention, due to a diverse variety of emerging applications. Our main goals in this manuscript are first to survey
the theory of multi-marginal optimal transport problems, addressing questions on existence of Monge solutions,
as well as uniqueness and structure of Kantorovich solutions, and secondly, to discuss the consequences and
interpretation of this theory in the context of applications. On the theoretical side, the multi-marginal literature
is somewhat fractured, with many papers addressing particular cost functions, or providing generalizations of
earlier results. It is only recently that a clearer picture of the underlying structure has begun to emerge, and
one of the aims of this paper is to present a more unified view of what is known about multi-marginal problems.

We will attempt to frame the multi-marginal theory relative to the better understood two marginal theory;
throughout the text, we will comment on how many of the multi-marginal results we develop compare to
analogues from the two marginal setting and try to explain the differences. In particular, we will formulate
conditions that are analogous to the well known twist and non-degeneracy conditions, also known as (A1)
and (A2), introduced in the groundbreaking regularity theory of Ma, Trudinger and Wang [52]; our conditions
(MMA1) and (MMA2) (“multi-marginal” (A1) and (A2), respectively) imply structural results on optimal
measures analogous to those implied by (A1) and (A2) in the two marginal setting.

It will be clearly apparent that the conditions (MMA1) and (MMA2) are much more restrictive than their
two marginal counterparts (A1) and (A2), and this hints at a striking difference between two and multi-marginal
problems. A dichotomy has begun to emerge between multi-marginal costs which satisfy, for example, (MMA1),
in which case optimizers in (1.2) are concentrated on graphs over x1 and are unique, and those which violate
it, in which case solutions can concentrate on higher dimensional submanifolds of the product space, and may
be non unique. This sensitivity to the cost function is largely absent from two marginal problems, and, after
presenting the general theory, we illustrate it with a series of examples, exhibiting cost functions for which
optimizers have Monge solutions and are unique, as well as some for which these properties fail. Several of these
examples are relevant in the applications discussed subsequently.

Among several applications of multi-marginal optimal transport, we focus primarily on two, which reflect
and illustrate the theory. One comes from matching problems in economics, and here the theory mirrors the
two marginal case fairly closely. For the other, which originates in density functional theory (DFT), modeling
electronic correlations in physics, the theory is quite different. Our choice to focus here on matching problems
and density functional theory stems from two facts: (1) the structure of optimal measures obtained in these



MULTI-MARGINAL OPTIMAL TRANSPORT: THEORY AND APPLICATIONS 1773

applications is reasonably well understood and (2) these applications nicely demonstrate the strong qualitative
dependence of the solution on the cost function. The costs arising in matching problems satisfy (under certain
weak hypotheses) (MMA1) and (MMA2), resulting in low dimensional, unique solutions, closely resembling the
two marginal theory, whereas the costs relevant to DFT permit non-unique, higher dimensional solutions. For
both of these applications, we describe in some detail the modeling process leading to the optimal transport
problem, and then discuss what is known about the solution, leaning on the theory developed in the second
section. Other applications for multi-marginal problems or variants of them, in, for example, image processing
and mathematical finance are also described briefly.

Let us emphasis that the question of whether or not solutions are of Monge type is vital from an applied
point of view. First, computationally, they represent a considerable dimensional reduction; for the same reason,
even in the absence of Monge solutions, it is important to try and estimate the dimension of the sets on which
the solution can concentrate, which is largely the focus of Section 2.1. In addition, they can be interpreted as
interesting phenomena in various applications; for example, Monge solutions are known as pure solutions in
matching problems, and strictly correlated electrons in the DFT literature, concepts which we explain further
in section 3 below.

The paper is organized as follows. Section 2 is devoted to theory; we first formulate the conditions (MMA1)
and (MMA2). We then illustrate this theory with a series of examples, and close out the section with a brief
discussion of variants and extensions of (1.2). We turn our attention to applications in section 3; the discussion
on matching and DFT problems is followed by a short overview of a variety of other applications. Section 3 is
then concluded with a brief description of numerical methods for (1.2).

2. Theory

We will assume for simplicity that each Mi shares a common dimension, n := dim(Mi), as this case is the
most relevant in applications and has also received the most theoretical interest. We note, however, that much
of the theory, particularly in the first subsection, has partial extensions to problems where the dimensions differ.
Our main object of interest will be the support, spt(γ), of the optimal measure γ, which is defined as the smallest
closed subset of M1 ×M2 × . . .×Mm of full mass, γ(spt(γ)) = 1.

We begin by recording some notation from differential geometry. Let TxiMi denote the tangent space of Mi

at xi, and T ∗
xi
Mi its dual, the cotangent space of Mi at xi. Denote by Dxic ∈ T ∗

xi
Mi the differential of c with

respect to xi, that is Dxic = ∂c
∂x

αi
i

dxαi

i in local coordinates.2 For each i �= j, we consider the bilinear form

D2
xixj

c : TxiMi × TxjMj → R, defined in local coordinates by D2
xixj

c = ∂2c

∂x
αj
j ∂x

αi
i

dxαi

i ⊗ dxαj

j .3 We will often

identify D2
xixj

c with the corresponding n×n matrix, which is nothing other than the matrix mixed second order

partials D2
xixj

c := ( ∂2c

∂x
αi
i ∂x

βj
j

)αi,αj .

2.1. Local structure of the optimizer: dimension of the support

First, we discuss what can be said about the Hausdorff dimension of spt(γ). We first recall a result from the
two marginal case, proved with McCann and Warren [55], which requires the following assumption, originally
introduced in [52].
(A2). (Non-degeneracy). At a point (x1, x2) ∈M1 ×M2, assume the matrix D2

x1x2
c(x1, x2) has full rank.

Under this condition, we have the following result from [55].

Theorem 2.1 (Local n-rectifiability for two marginal problems). Let m = 2. Assume c is non-degenerate
at some point (x1, x2). Then there is a neighbourhood N of (x1, x2) such that, for any optimal measure, γ,
N ∩ spt(γ) is contained in an n-dimensional Lipschitz submanifold of the product space.

2Here and in what follows, summation on the repeated index αi is implicit, in accordance with the Einstein summation convention.
3The same notation will sometimes be used to denote the obvious extension of this form to the whole tangent space, Tx1M1 ×

Tx2M2 × . . . × TxmMm.
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An analogous result governing the behaviour of multi-marginal optimizers was proven by the author in [63]
and is given below. It helps classify the allowable dimensions of the support of γ. The statement of the result
requires some additional notation.

We let P be the set of partitions of {1, 2, . . . .,m} into two non empty disjoint subsets; that is, p := {p+, p−} ∈
P means that p+ ∪ p− = {1, 2, . . . .,m}, p+ ∩ p− = ∅ and p+, p− �= ∅. For each p := {p+, p−} ∈ P , we define
the bilinear form gp on M1 ×M2 × . . .×Mm by gp =

∑
i∈p+,j∈p−(D2

xixj
c+D2

xjxi
c). We can identify gp with an

mn×mn matrix whose i, j block is zero if i and j both belong to either p+ or p− and D2
xixj

c otherwise. Define
G := {∑p∈P tpgp : tp ≥ 0,

∑
p∈P tp = 1} to be the convex hull generated by the gp.

Note that the diagonal blocks of any g ∈ G are n × n 0 matrices. The off-diagonal blocks are nonnegative
multiples ∑

p={p+,p−}
xi∈p+ and xj∈p− or
xj∈p+ and xi∈p−

tpD
2
xixj

c

of the D2
xixj

c. Note that, as D2
xixj

c =
(
D2
xjxi

c
)T , each g ∈ G is symmetric and therefore its signature (the

number of positive, negative, and zero eigenvalues, respectively) is well-defined. The following theorem, proved
in [63], controls the dimension of the support of the optimizer(s) γ in terms of these signatures.

Theorem 2.2 (Dimensional bounds on spt(γ) for multi-marginal problems). Suppose that at some point x ∈
M1×M2× . . .×Mm, the signature of some g ∈ G is (λ+, λ−,mn−λ+−λ−). Then there exists a neighbourhood
N of x such that N ∩ spt(γ) is contained in a Lipschitz submanifold of the product space with dimension no
greater than mn− λ+. If spt(γ) is differentiable at x, it is timelike for g; that is vtgv ≤ 0 for any v ∈ Txspt(γ)
in the tangent space of spt(γ).

Remark 2.3. Because the zero diagonal blocks of each g ∈ G ensure the existence of an n-dimensional lightlike
subspace of Tx(M1 ×M2 × . . .×Mm) (that is, a subspace S for which vtgv = 0 for all v ∈ S), standard linear
algebra arguments imply that we must have λ− ≤ (m− 1)n; similarly, λ+ ≤ (m− 1)n. Therefore, the smallest
bound on the dimension of spt(γ) which Theorem 2.2 can provide is n. Provided that g is invertible, the bound
will be at most (m− 1)n, the largest allowable value of λ− = mn− λ+.

With Theorem 2.1 in mind, we introduce the following analogue of (A2).

(MMA2). At a point x ∈M1×M2× . . .×Mm, assume that there is some g ∈ G with signature ((m−1)n, n, 0).

As an immediate application of we have the following analogue of Theorem 2.1, which serves as the impetus
behind the nomenclature (MMA2).

Corollary 2.4. If c satisfies (MMA2) at some point x, then there is a neighbourhood N of x such that N∩spt(γ)
is contained in an n-dimensional Lipschitz submanifold of the product space.

Remark 2.5. When m = 2, the only g ∈ G, up to a positive multiplicative constant, is

ḡ :=
[

0 D2
x1x2

c
D2
x2x1

c 0

]
.

This is exactly the pseudo-metric introduced by Kim-McCann in the study of the covariant theory of the
regularity of optimal maps [45]. They noted that this g has signature (n, n, 0) whenever c is non-degenerate;
therefore Theorem 2.2 generalizes Theorem 2.1. In fact, Theorem 2.2 applies even when non-degeneracy fails,
and so provides new information even in the two marginal case; in this case, the signature of g is (r, r, 2n− 2r),
where r is the rank of D2

x1x2
c [63].
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For m ≥ 3, there is of course a lot of choice in the way we choose the tp’s, and for a particular cost one
can optimize the choice to get the best bound in Theorem 2.2. In our applications, we will mostly focus on
the simplest case when all the tp’s are taken to be the same, in which case we obtain (up to a multiplicative
constant) the off diagonal part of the matrix of second derivatives of c, given in block form by

ḡ :=

⎡
⎢⎢⎢⎣

0 D2
x1x2

c D2
x1x2

c . . . D2
x1xm

c
D2
x2x1

c 0 D2
x2x3

c . . . D2
x2xm

c
D2
x3x1

c D2
x3x2

c 0 . . . D2
x3xm

c
. . . . . . . . . . . . . . . .

D2
xmx1

c D2
xmx2

c . . . . . . 0

⎤
⎥⎥⎥⎦ .

However, other choices can be useful; for example, one can show that if m is even, for a generic cost the dimension
of the support is no more than mn

2 [63].
Finally, let us note that condition (MMA2) is much more restrictive than (A2), which will, roughly speaking,

be satisfied by a generic cost c at a generic point (x1, x2). On the other hand, (MMA2) implies negative definite-
ness of the symmetric part of D2

xixj
c[D2

xkxj
c]−1D2

xkxi
c for all distinct i, j, k, which is certainly not generically

true [61]. In Section 2.3, we will see several examples where (MMA2) fails, and the solution concentrates on sets
with dimension larger than n.

2.2. Uniqueness and graphical structure of optimal measures

We now turn to the question of when the optimizer has Monge, or graphical, structure. For two marginal
problems, the twist condition suffices for this, and also implies uniqueness of the optimal measure.

(A1). (Twist). Assume that c is semi-concave and that for each fixed x1, the map

x2 �→ Dx1c(x1, x2)

is injective on the subset {x2 : Dx1c(x1, x2) exists } ⊆M2 where c is differentiable with respect to x1.
The following result is well known; versions of it can be found, in comparable generality, in Caffarelli [10],

Gangbo [34], Gangbo and McCann [35] and Levin [50].

Theorem 2.6 (Monge solutions and uniqueness for two marginal problems). Suppose m = 2. Assume that the
first marginal μ1 is absolutely continuous with respect to local coordinates and that c satisfies (A1). Then the
optimal measure γ is concentrated on the graph of a function F : M1 → M2. This mapping is a solution to
Monge’s problem, and the solutions to both Monge’s problem and Kantorovich’s are unique.

When m ≥ 3, the most general known condition for Monge solutions and uniqueness was formulated with
Kim [47] and requires the following notion: S ⊂M2 ×M3 × . . .×Mm is a splitting set at x1 ∈M1 if there exist
functions ui : Mi → R, for i = 2, 3, . . .m, such that

m∑
i=2

ui(xi) ≤ c(x1, . . . , xm)

with equality on S. Splitting sets arise in optimal transport problems in connection with the duality theorem
(see [44] for a multi-marginal version); essentially, this shows that the set of all points which are optimally
coupled to x1 is a splitting set at x1.

Our multi-marginal version of the twist condition is the following.

(MMA1.) (Twist on splitting sets) Assume that c is semi-concave and, whenever S ⊂M2 ×M3 × . . .×Mm is
a splitting set at a fixed x1 ∈M1, the map

(x2, . . . , xm) �→ Dx1c(x1, x2, . . . , xm) (2.1)

is injective on the subset of S on which Dx1c exists, S ∩Dom(Dx1c).

Under this condition, we have the following analogue of Theorem 2.6, proved with Kim [46].
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Theorem 2.7 (Monge solutions and uniqueness for multi-marginal problems). Assume that μ1 is absolutely
continuous with respect to local coordinates and that c satisfies (MMA1). Then the optimal measure γ is con-
centrated on the graph of a function F = (F2, F3, . . . , Fm) : M1 → M2 ×M3 × . . . ×Mm. This mapping is a
solution to Monge’s problem, and the solutions to both Monge’s problem and Kantorovich’s are unique.

Let us mention as well the recent paper of Moameni, which shows that under a local version of (MMA1), one
can show that spt(γ) is concentrated on the union of several graphs [58].

The twist on splitting sets is complicated and difficult to verify directly. There are, however, a number of
known classes of examples which satisfy it (many of these are described in the following subsection), as well as
sufficient (but not necessary) local differential conditions on the cost, which we formulate now.

2.2.1. Local differential conditions for twistedness on splitting sets

Let Mi ⊆ R
n for each i = 1, . . . ,m.4 The most restrictive part of the differential conditions is based on the

following tensor.

Definition 2.8. Suppose c is (1,m)-non-degenerate (that is, the matrix D2
x1xm

c is non-singular.) Let y =
(y1, y2, . . . , ym) ∈M1×M2×. . .×Mm. For each i := 2, 3, . . . ,m−1 choose a point y(i) = (y1(i), y2(i), . . . , ym(i)) ∈
M1×M2×. . .×Mm such that yi(i) = yi. Define the following bi-linear maps on Ty2M2×Ty3M3×. . .×Tym−1Mm−1:

Sy = −
m−1∑
j=2

m−1∑
i=2
i�=j

D2
xixj

c(y) +
m−1∑
i,j=2

(D2
xixm

c (D2
x1xm

c)−1D2
x1xj

c)(y)

Hy,y(2),y(3),...,y(m−1) =
m−1∑
i=2

(D2
xixi

c(y(i)) −D2
xixi

c(y))

Ty,y(2),y(3),...,y(m−1) = Sy +Hy,y(2),y(3),...,y(m−1)

The main condition we will impose is negative definiteness of the tensor T , for all choices of the
y, y(2), y(3), . . . , y(m − 1); a structural condition on the domains, defined in terms of the following set, is
needed as well.

Definition 2.9. Let x1 ∈M1 and p1 ∈ T ∗
x1
M1. We define Y cx1,p1 ⊆M2 ×M3 × . . .×Mm−1 by

Y cx1,p1 = {(x2, x3, . . . , xm−1)| ∃ xm ∈Mm s.t. Dx1c(x1, x2, . . . , xm) = p1}
These conditions were introduced in [62], where it was proven that they imply Monge solution and uniqueness

results for the multi-marginal problem, before the twist on splitting set condition had been formulated. The
following result asserts that they indeed imply the twist on splitting sets condition; a proof can be found in [47].

Proposition 2.10 (Sufficient differential conditions).
Suppose that:

(1) c is (1,m)-non-degenerate; that is, D2
x1xm

c is non-singular everywhere.
(2) c is (1,m)-twisted; that is, xm �→ Dx1c(x1, x2, . . . xm) is injective for each fixed fixed x1, . . . xm−1.
(3) For all choices of y = (y1, y2, . . . , ym) ∈ M1 ×M2 × . . . × Mm and of y(i) = (y1(i), y2(i), . . . , ym(i)) ∈

M1 ×M2 × . . .×Mm such that yi(i) = yi for i = 2, . . . ,m− 1, we have

Ty,y(2),y(3),...,y(m−1) < 0.5

4The conditions in this section can actually be developed on somewhat more general spaces (essentially subsets on Rn, but with
non-Euclidean metrics); see [62].

5Note that the matrix Ty,y(2),y(3),...,y(m−1) need not be symmetric; the condition Ty,y(2),y(3),...,y(m−1) < 0 means that V T ·
Ty,y(2),y(3),...,y(m−1) · V < 0 for all V , or, equivalently, that the symmetric part of Ty,y(2),y(3),...,y(m−1) is negative definite.
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(4) For all x1 ∈M1 and p1 ∈ T ∗
x1
M1, Y cx1,p1 is convex.

Then c is twisted on splitting sets.

Let us remark that an example in [66] demonstrates that these conditions are not necessary for the twist on
splitting set condition. Some examples of cost functions satisfying these conditions can be found in Sections 2.3.2
and 2.3.5 below; additional examples can be found in [61].

2.3. Examples

Here we illustrate the theory from the previous few subsections by studying several examples.

2.3.1. Marginals with one dimensional support

Naturally, the simplest multi-marginal problems occur when the marginals are supported on intervals Mi =
(ai, bi) ⊂ R. It it well worth studying the one dimensional case, as a lot of intuition can be gleaned from it
which also applies to higher dimensional problems.

In this setting, the non-degeneracy condition (A2) amounts to the condition cx1x2 := ∂2c
∂x1∂x2

�= 0, which
means either cx1x2 > 0 or cx1x2 < 0 (this condition also implies (A1)). In this case, it is well known that the
one dimensional set in Theorem 2.1 above is either monotone increasing (if cx1x2 < 0) or monotone decreasing
(if cx1x2 > 0).

For multi-marginal problems, the interaction between the various mixed second order partials becomes rele-
vant. We say that the cost c is compatible if

cxixj(cxkxj)
−1cxkxi < 0

everywhere, for all distinct i, j, k. Monge solution and uniqueness results for compatible costs were essentially
established in[12]6, while an alternate argument, similar in spirit to Theorem 2.2 was developed in [61]; in
fact, a rearrangement inequality that is essentially equivalent can be traced back to Lorenz [51]. The ar-
guments in [12, 61] essentially showed that a splitting set S must be c-monotone, in the sense that if both
(x2, . . . , xm), (y2, . . . , ym) ∈ S, then (xi − yi)cxixj (xj − yj) ≤ 0 for all i �= j. We can then show that compatibil-
ity implies (MMA1), placing these results within the framework of the previous subsection:

Theorem 2.11. Suppose c is compatible. Then it satisfies (MMA1).

Proof. Suppose S ⊆M2 × . . .×Mm is a splitting set at x1 and x = (x2, . . . , xm), y = (y2, . . . , ym) ∈ S with

∂c

∂x1
(x1, x2, . . . , xm) =

∂c

∂x1
(x1, y2, . . . ym). (2.2)

We need to show x = y. Letting

x(s) = (x1, sx2 + (1 − s)y2, . . . , sxm + (1 − s)ym),

for s ∈ [0, 1], the equality (2.2) can be written as

∫ 1

0

m∑
i=2

cx1xi(x(s))(xi − yi)ds = 0

6This paper actually focused on submodular costs, which essentially means cxixj < 0 for all distinct i, j; compatibility is

equivalent to submodularity, up to a change of variables; see [61].
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Now, multiplying this by (x2 − y2)cx1x2(x(0)), we have

(x2 − y2)2cx1x2(x(0))
∫ 1

0

cx1x2(x(s))ds

+(x2 − y2)cx1x2(x(0))
∫ 1

0

m∑
i=3

cx1xi(x(s))(xi − yi)ds = 0

or

(x2 − y2)2cx1x2(x(0))
∫ 1

0

cx1x2(x(s))ds

+
∫ 1

0

m∑
i=3

(x2 − y2)cx1x2(x(0))
cxix2(x)
cxix2(x)

cx1xi(x(s))(xi − yi)ds = 0

Now note that the first term on the left hand side above is clearly non-negative, as cx1x2 cannot change sign
by the compatibility condition (a change of sign would imply a zero of cx1x2 , which would violate the strict
inequality in the compatibility condition). On the other hand, as cx1x2(x)

cxix2(x) cx1xi(x(s)) < 0 by compatibility and
(x2 − y2)cxix2(x)(xi − yi) ≤ 0 by the splitting set property, the remaining terms are nonnegative as well. Thus,
the only possibility is that all terms are zero, in particular, considering the first term, this implies x2 = y2. A
similar argument implies xi = yi for i = 3, . . .m, which implies the twist on splitting set property. �

Remark 2.12 (Heuristic interpretation of compatibility). Looking at the signs of cxixj , we can guess, based
on what is known about the m = 2 case whether the correlation between xi and xj should be positive (if
cxixj < 0, corresponding to an increasing graph) or negative (if cxixj > 0 corresponding to a decreasing graph).
The compatibility condition ensures that these guesses are consistent; from this perspective it is not surprising
that in this case we get Monge type solutions (with correlations as predicted by the signs of the cxixj). On
the other hand, when compatibility fails, the competing interactions can cause the solution to concentrate on
higher dimensional sets. For example, the cost c(x1, x2, x3) = (x1 + x2 + x3)2 is not compatible; looking at the
pairwise interactions cxixj might lead us to expect pairwise monotone decreasing relationships of the variables.
However, as monotone decreasing dependences of (x1, x2) and (x1, x3) together imply a monotone increasing
dependence of (x2, x3), this is not consistent. This cost allows optimizers with 2-d support; as the cost is 0 on
the plane x1 + x2 + x3 = 0 and positive elsewhere, it is clear that any measure concentrated on this plane is
optimal for its marginals.

When m = 3, an easy calculation shows that compatibility is equivalent to (MMA2); for larger m it is necessary
but I do not know if it is sufficient. It is interesting that these last two facts have very natural generalizations
to higher dimensions; for m = 3, (MMA2) is equivalent to D2

x2x1
c[D2

x3x1
c]−1D2

x3x2
c < 0 while for larger m

the condition D2
xixj

c[D2
xkxj

c]−1D2
xkxi

c < 0 for all distinct i, j, k is necessary (but possibly not sufficient) for
(MMA2) [61].

2.3.2. Functions on the sum

Suppose each Mi ⊆ R
n and c(x1, x2, . . . , xm) = h(

∑m
i=1 xi) for some C2 smooth h : R

n → R. Then each
D2
xixj

c = D2h, so

ḡ =

⎡
⎢⎢⎢⎣

0 D2h D2h . . . D2h
D2h 0 D2h . . . D2h
D2h 0 . . . D2

h
. . . . . . . . . . . . . . . .
D2h D2h . . . . . . 0

⎤
⎥⎥⎥⎦
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It is then an easy exercise to determine the signature of ḡ in terms of the signature of D2h (see [61, 63] for the
calculation and general formula). When h is uniformly concave, D2h < 0, the signature of ḡ turns out to be
((m − 1)n, n, 0) and so c satisfies (MMA2). Furthermore, c also satisfies (MMA1); one can show this either by
computing the local differential conditions in Proposition 2.10 (see the calculation in [61]) or by noticing that
h(

∑m
i=1 xi) = infz

∑m
i=1 xi · z− h∗(z) is of the infimal convolution form discussed below in Section 2.3.4, and so

(MMA1) follows from Proposition 2.17.
Historically, concave functions of the sum were among the first multi-marginal cost functions to be studied.

Partial results for the special case c = −|(∑m
i=1 xi)|2, or equivalently

∑m
i=1 |xi − xj |2 can be traced back to

Olkin and Rachev [59], Knott and Smith [49] and Ruschendorf and Uckelmann [70]. Full Monge solution and
uniqueness results for this cost were then proven by Gangbo and Swiech [36], while the extension to general
strictly concave h is due to Heinich [41]. All of this took place long before the general condition (MMA1) had
been developed, but, from our perspective, one can view the Gangbo−Swiech proof as verifying the twist on
splitting sets condition for this cost, and also serving as a pioneering, general prototype this type of argument.

Remark 2.13 (High dimensional solutions for convex costs). On the other hand, if h is uniformly convex, so
D2h > 0, then the twist on splitting sets condition fails. In addition, the calculation in [61] shows that ḡ has
signature (n, (m − 1)n, 0), and so Theorem 2.2 guarantees only that the solution is concentrated on a set of
dimension at most (m − 1)n. In fact, this estimate is sharp; as is shown in [63], any measure concentrated on
the set {∑m

i=1 xi = a}, for some constant a ∈ R
n is optimal for its marginals; furthermore, as is shown in [61]

in these high dimensional cases, the solution may also be non unique, as on a higher dimensional surface there
can be enough wiggle room to construct more than one measure with common marginals. This represents a
significant divergence from the two marginal theory, where uniqueness and n-dimensional solutions are much
more generic; note, for example, that when m = 2, the cost h(x1 +x2) for uniformly convex h satisfies both (A1)
and (A2).

2.3.3. Radially symmetric problems

An interesting class of examples is those for which Mi ⊂ R
n for each i and the cost function is radially

symmetric; that is, c(Ax1, Ax2, . . . ., Axm) = c(x1, x2, . . . xm) for all rotations A ∈ SO(n). This class includes
the Gangbo−Swiech cost

∑m
i=1 |xi−xj |2 [36], the determinant cost of Carlier and Nazaret [14], −det(x1x2 . . . xm)

(when m = n, so that the matrix (x1x2 . . . xm) is square) and the Coulomb cost
∑
i�=j

1
|xi−xj | [9, 21].

A measure μ is called radially symmetric if A#μ = μ for all A ∈ SO(n). The theorem below was first proven
for the determinant cost function in[14] and a proof of the general case can be found in [65]; both of these
arguments yield explicit constructions of the optimal γ. Interesting, similar results can be proven using ergodic
theory [57].

Theorem 2.14. Assume c and each μi is radially symmetric. Then there is an optimal measure γ in (1.2) such
that:

(1) γ is radially symmetric; that is, (A,A, . . . , A)#γ = γ for all A ∈ SO(n).
(2) For each (x1, x2, . . . xm) ∈ spt(γ), we have

(x1, x2, . . . xm) ∈ argmin|yi|=ri;i=1,2,...mc(y1, y2, . . . , ym), (2.3)

where ri = |xi|.
The reader will probably not find this surprising, and the first part is in fact an immediate corollary of the

uniqueness in Theorem 2.7, when it applies (for example, for the Gangbo−Swiech cost). What is perhaps more
interesting is that for other costs, for which that theorem fails, we can use the construction to exhibit examples
where the solution concentrates on a higher dimensional set and fails to be unique.

We will call a cost non-attractive if for any radii (r1, . . . rm) the minimizers (x1, x2, . . . xm) ∈
argmin|yi|=ri;i=1,2,...mc(y1, y2, . . . , ym) are not all co-linear; that is, xi �= ± ri

r1
x1 for some i. Note that this
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condition is not satisfied for the Gangbo−Swiech cost, but is satisfied for the Coulomb and determinant costs.
Under this condition, the solution in Theorem 2.14 above is not of Monge type for n ≥ 3.

Corollary 2.15. Suppose c is radially symmetric and non-attractive and the marginals μi are radially symmet-
ric and absolutely continuous with respect to Lebesgue measure. Then there exists solutions γ whose support is
at least 2n− 2-dimensional.

Proof. The proof is given in [65]; we sketch it here to bring out the main idea. By Theorem 2.14 and the non-
attractive condition, we can find (x1, . . . , xm) ∈ spt(γ) such that x1 and xi are not co-linear for some i. Now
note that there is an entire family of rotations A that fix x1 but not xi and the points (Ax1, Ax2 . . . Axm) =
(x1, Ax2 . . . Axm) are in the support of γ for each such A. Indeed, this family has dimension n− 2, and so the
support of γ has dimension at least n+ n− 2 = 2n− 2 (as we can choose freely the n-dimensional variable x1

and the n− 2 dimensional variable A). �

Note that his corollary, combined with Theorems 2.7 and 2.2 implicitly yields that non-attractive, radially
symmetric costs can satisfy neither (MMA1) nor (MMA2) when n ≥ 3. Finally, we remark that one can in fact
often show that these higher dimensional solutions are non unique as well; see, for example [14] and [65].

2.3.4. Infimal convolution costs

Here we focus on costs of the form

c(x1, x2, . . . , xm) = min
y∈Y

m∑
i=1

ci(xi, y), (2.4)

where Y is an additional smooth n-dimensional manifold. As we will see in the next section, these types of costs
arise naturally in applications in economics. Costs of this form generally tend to be quite well behaved; the
following result from [63] yields quite generic conditions under which c satisfies (MMA2).

Proposition 2.16. Assume:

(1) For all i, ci is C2 and non-degenerate; that is, D2
xiyci is everywhere non-singular.

(2) For each (x1, x2, . . . , xm) the minimum is attained by a unique ỹ(x1, x2, . . . , xm) ∈ Y and
(3)

∑m
i=1D

2
yyci(xi, ỹ(x1, x2, . . . , xm)) is non-singular.

Then the signature of ḡ is ((m− 1)n, n, 0), and so c satisfies (MMA2).

We now turn to the twist on splitting sets condition. Let us note that Monge solution results for costs of this
form were proved (under successively weaker conditions on the ci) in [47, 62, 66]; the following is a special case
of an example in [47], where costs with a more general infimal convolution form were considered.

Proposition 2.17. Assume c1 is (x1, y)-twisted (i.e., y �→ Dx1c1(x1, y) is injective), and ci is (y, xi)-twisted
(i.e., xi �→ Dyci(xi, y) is injective) for i = 2, . . . ,m. Then c given by (2.4) satisfies (MMA1).

Proof. A more general result is proved in [47]. Here, we feel it is instructive to outline the proof in this special
case.

Fix x1 and a splitting set S at x1. We need to show that if Dx1c(x1, . . . , xm) = Dx1c(x1, x̄2, . . . x̄m), for
(x2, . . . , xm), (x̄2, . . . , x̄m) ∈ S then (x2, . . . , xm) = (x̄2, . . . , x̄m). We will show that x2 = x̄2; the argument that
xj = x̄j for j �= 2 is identical.

Choose ỹ ∈ argminy
∑m
i=1 ci(xi, y) attaining the minimum in (2.4). The semi-concave function, y �→∑m

i=1 ci(xi, y) is differentiable at its minimum ỹ, and

m∑
i=1

Dyci(xi, ỹ) = 0. (2.5)
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By semi-concavity, the existence of Dx1c(x1, x2, . . . , xm) implies the existence of Dx1c1(x1, ỹ), (as c1(x1, ỹ) is a
supporting function for c(x1, x2, . . . , xm)), and we have the equality

Dx1c(x1, x2, . . . , xm) = Dx1c(x1, ỹ).

Similarly, for ¯̃y ∈ argminy[
∑m
i=2 ci(x̄i, y) + c1(x1, y)], we have

Dx1c(x1, x̄2, . . . , x̄m) = Dx1c(x1, ¯̃y).

But then, by our assumption Dx1c(x1, . . . , xm) = Dx1c(x1, x̄2, . . . x̄m), we have Dx1c(x1, ỹ) = Dx1c(x1, ¯̃y).
(x1, y) -twistedness then implies

ỹ = ¯̃y. (2.6)

Now, it is well known that splitting sets are c-monotone [47], which implies:

c(x1, x2, x3 . . . , xm) + c(x1, x̄2, x̄3, . . . x̄m) ≤ c(x1, x̄2, x3, . . . , xm)
+c(x1, x2, x̄3, . . . , x̄m).

Using (2.6) and minimizing property of ỹ = ¯̃y, this becomes
m∑
i=1

ci(xi, ỹ) + c1(x1, ỹ) +
m∑
i=2

ci(x̄i, ỹ) ≤ c(x1, x̄2, x3, . . . , xm)

+ c(x1, x2, x̄3, . . . , x̄m)

≤
m∑
i�=2

ci(xi, ỹ) + c2(x̄2, ỹ)

+
m∑
i=3

ci(x̄i, ỹ) + c1(x1, ỹ) + c2(x2, ỹ)

But the first and last terms in the preceding string of inequalities are identical, and so we must have
equality throughout. In particular, we must have c(x1, x̄2, x3, . . . , xm) =

∑m
i�=2 ci(xi, ỹ) + c2(x̄2, ỹ), so that

ỹ ∈ argminy
∑m

i�=2[ci(xi, y) + c2(x̄2, y)]. Thus,

m∑
i�=2

Dyci(xi, ỹ) +Dyc2(x̄2, ỹ) = 0,

or

Dyc2(x̄2, ỹ) = −
m∑
i�=2

Dyci(xi, ỹ) = Dyc2(x2, ỹ),

where the last equality follows from (2.5). Therefore, by the (y, xi)-twist assumption, we have x̄2 = x2 as
desired. �

Let us note that there is significant overlap between the class of costs of form (2.4) and functions satisfying
the differential conditions from Proposition 2.10; both classes include, for example, the concave functions of the
sum in Section 2.3.2. However, neither class contains the other; in [66], an example was exhibited that satisfies
the differential conditions but is not of form (2.4), as well as one which is of form (2.4), but does not satisfy the
differential conditions. This was, in fact, part of the motivation behind the development of the twist on splitting
sets condition; it is desirable to have a general condition encompassing all known examples.

However, we note that conditions on the ci (significantly stronger than those assumed in Prop. 2.17) are
known under which costs of form (2.4) do satisfy the differential conditions [62].
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2.3.5. Vector fields costs

We consider now the cost

c(x1, x2, x3) = −(Ax1 · x2 +Bx1 · x3 +Ax3 · x3 +Bx3 · x2 +Ax2 · x3 +Bx2 · x1)

for n×nmatrices A,B. This cost shows up in a special case of a representation result in [37], for the linear vector
fields Ax1, Bx1; the condition (MMA1) is relevant there as it implies uniqueness of the measure preserving 3 -
involution used to represent the vector fields. The differential conditions for (MMA1) boil down to

(A+BT )[B +AT ]−1(A+BT ) > 0.

This holds if, for example, M = B + AT is symmetric positive definite, or if M is unitary, M−1 = MT , with
M3 > 0 (for example, a rotation through an angle of less than π

6 , or a rotation through an angle between π/2
and 5π/6).

2.4. Extensions and variants of the multi-marginal problem

Recently, several variants of (1.2) have been introduced. These include the optimal partial transport problem,
where only a prescribed fraction of the mass is to be coupled, and the martingale optimal transport problem,
where the minimization is restricted to martingale measures. In the former variant, uniqueness of solutions for
infimal convolution type costs has been established with Kitagawa [48], under a natural and necessary condition
on the marginals, extending work in the two marginal case of Caffarelli–McCann [11] and Figalli [30]. In the later
variant, for one dimensional marginals, explicit solutions for the two marginal case have been found [5,43] under
natural conditions on the cost. Here, the martingale constraint precludes the possibility of Monge solutions, but
uniqueness persists. The extension to several marginals has received a lot of attention due to applications in
model independent bounds on derivative prices in mathematical finance.

Another extension is obtained when the number m of marginals is allowed to be infinite. In this case, the
dichotomy described in the earlier examples becomes even more pronounced; for Gangbo−Swiech type costs,
the solution again concentrates on graphs over the first marginal [64, 67], but for a class of costs including the
Coulomb cost (see Sect. 3.2) the optimizer turns out to be product measure [23]!

In another variant, the minimization is restricted to measures with certain symmetry properties. This has
striking applications in the representation theory of vector fields [32,37,40], as well as potential applications in
roommate type matching problems in economics [17].

3. Applications

In this section, we describe in detail two applications of multi-marginal optimal transport; hedonic matching
for teams in economics, and density functional theory in physics. In both cases, we first describe the application in
some detail, and explain how multi-marginal optimal transport arises. After this, we discuss what is known about
the structure of the solution(s). In a third subsection, we will briefly describe a variety of other applications.

3.1. Economics: matching for teams

A model to study hedonic pricing was developed by Ekeland [27], and extended to multi-agent hedonic
pricing, or matching for teams, by Carlier and Ekeland [13]. They originally formulated the problem as a convex
optimization problem in the space of measures; an equivalent formulation of the same problem as a minimization
of type (1.2) can be found in both [13, 18].

As description is as follows. Consider a population of buyers, looking to buy some good. Production of that
good requires input from several types of agents. As a concrete example, suppose the population consists of
buyers looking to purchase custom made houses. To have a house built, a buyer must hire several subcontractors,
say a carpenter, an electrician and a plumber. We will assume that the population of buyers is parameterized by
a set M1 and their relative frequency by a probability measure μ1 on M1. For i = 2, . . . .m, (where m− 1 is the
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number of types of tradespeople), we will assume the population of the ith type of tradespeople is parameterized
by a probability measure μi on a set Mi.

We will assume that Y represents a set of goods that could feasibly be constructed. For example, Y could be
a subset of R

n, and the different components yi of (y1, y2, . . . , ym) ∈ Y could measure different characteristics
of the house, such as location, house size, lot size, etc. Now, each buyer type x1 has a preference for a house of
type y ∈ Y , p1(x1, y) (which can be interpreted as the amount he feels house y is worth) and each subcontractor
has a cost, ci(xi, y), representing what it would cost him, in, say, labour and supplies, to do his share of the
work on a house of type y.

As is demonstrated by Carlier and Ekeland, setting c1(x1, y) = −p1(x1, y), an equilibrium in this model turns
out to be equivalent to solving the following variational problem:

inf
ν∈P (Y )

m∑
i=1

Tci(μi, ν), (3.1)

where P (Y ) represents the set of probability measures on Y and

Tci(μi, ν) := inf
λi∈Π(μi,ν)

∫
Mi×Y

ci(xi, y)dλi (3.2)

is the optimal cost in the two marginal problem between μi and ν. Carlier and Ekeland also showed that this
is equivalent to the multi-marginal problem (1.2) with cost function given by

c(x1, . . . , xm) = inf
y∈Y

m∑
i=1

ci(xi, y). (3.3)

Intuitively, for a given distribution ν of houses (or contracts), (3.2) finds the matching of the ith category of
workers to these contracts minimizing the total cost. The problem (3.1) then looks for a ν that minimizes the
sum of these costs over all categories. Workers are then assigned to teams based on the contract y ∈ Y that the
optimal coupling λi in (3.2) matches them to.

On the other hand, for a potential team (x1, x2, . . . , xm), the minimization in (3.3) identifies which feasible
contract y would minimize the total cost for that particular team. Problem (1.2) then asks how to form teams
to minimize the overall total cost, assuming that each team will sign the overall best feasible contract for its
purposes. Precisely, the equivalence between these problems is captured by the following result (Prop. 3 in [13]).

Proposition 3.1. Assume the infimum in (3.3) is uniquely attained for each (x1, x2, . . . , xm), at some point
ȳ(x1, x2, . . . , xm). Then

(1) The infimums (1.2) (with cost (3.3)) and (3.1) have the same value.
(2) If γ is a solution to (1.2), then ȳ#γ is a solution to (3.1).
(3) If ν solves (3.1), then there is a solution γ to (1.2) such that ν = ȳ#γ.

Remark 3.2. When Y is an open domain in a smooth manifold, the uniqueness assumption on ȳ can be relaxed
somewhat, under other structural conditions on the ci; in this case, if each ci is twisted, it suffices to assume the
existence of a minimizer. In fact, in this setting, if γ solves (1.2) and μ1 is absolutely continuous with respect
to local coordinates, uniqueness for γ almost all (x1, . . . , xm) actually follows as a consequence [47].

Remark 3.3. Interestingly, problem (3.1) has another natural interpretation, in terms of the factory and mine
description of the classical optimal transport problem. Suppose that a company is building a good whose
production requires several resources, say iron, aluminum and nickel. Imagine that the company has not yet
built its factories where the goods will be constructed, but for each i there is a probability measure μi on a set
Mi representing a distribution of mines producing the ith resource. The cost of shipping the ith resources from
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a mine at point xi to a (potential) factory at point y is given by ci(xi, y). Imagine that the set Y represents a
set of locations where factories could conceivably be built; if the company built a distribution of factories on Y
according to a measure ν, its transport cost to send resource i from mines to factories would be Tci(μi, ν). The
company’s goal is then to decide where to build the factories (that is, choose ν), and decide which mine of each
type should supply each factory, in such a way as to minimize the total transportation cost. This corresponds
precisely to problem (3.1).

When eachMi = Y = M , where M is a Riemannian manifold, and ci = tid
2(xi, y) is a positive multiple of the

Riemannian distance squared, then Tci(ν, μi) = tiW
2(ν, μi) is proportional the squared Wasserstein distance,

and solutions to (3.1) are barycenters of the measures μi with weights ti, with respect to the Wasserstein
metric on P (M). This was investigated by Agueh–Carlier when M = R

n, and they were able to use the
equivalence with the multi-marginal problem (with Gangbo−Swiech cost in this case) to establish a regularity
result on the barycenter [1] (the present author later extended this technique to more general costs ci(xi, y)
on R

n, establishing absolute continuity of the solution ν to (3.1), [66]). The Riemannian case was studied with
Kim [46], and the uniqueness and Monge solution results obtained there can be viewed as an extension of the
Gangbo−Swiech theorem [36] to curved geometries, analogous to McCann’s extension [53] of Brenier’s polar
factorization theorem [7]. Barycenters are interesting in their own right, and also have applications arising in
texture mixing in image processing [69] as well as statistics [6].

The twist condition on c1 and regularity of the first marginal is sufficient to ensure uniqueness of the so-
lution to (3.1) [13]. Turning to the multi-marginal problem, provided the minimum in (3.3) is attained for
all (x1, . . . , xm), then (3.3) is identical to (2.4), and so Theorem 2.7 and Proposition 2.17 provide conditions
ensuring uniqueness and Monge structure of the solution to (1.2).

In this context, the Monge solution structure is equivalent to a version of the economic notion of purity;
it means that, in equilibrium, buyers of the same type x1 almost surely match with workers xi = Fi(x1) of
the same type in category i, for each i. When m = 2, this notion of purity was introduced in this context by
Chiappori, McCann and Nesheim [18]. A different notion of purity, essentially that workers of the same type x1

always buy goods of the same type y ∈ Y was discussed by Carlier and Ekeland, and requires only twistedness
of the first cost c1 [13].

3.2. Physics: density functional theory

A natural and fundamental problem in quantum physics is to determine or estimate the ground state energy
of a system of interacting electrons. Quantum mechanically, such a system in modeled by an m-particle wave
function. Neglecting the role of spin, this amounts to a complex valued, square integrable function ψ(x1, . . . ., xm)
of the respective positions x1, . . . , xm ∈ R

n of the electrons, with n = 3 being the most physically rele-
vant case. The wave function is required to be anti-symmetric: for any permutation σ on m letters, we have
ψ(x1, x2, . . . , xm) = sgn(σ)ψ(xσ(1), xσ(2), . . . , xσ(m)).

Physically, |ψ(x1, . . . ., xm)|2 represents the probability that the electrons will be found at positions
(x1, . . . , xm) respectively; note that the anti-symmetry of ψ implies the symmetry of this probability; we can
interpret this as expressing indistinguishability of the electrons.

The total energy of the system is given by

E[ψ] = T [ψ] + Vext[ψ] + Vee[ψ], (3.4)

where T [ψ] = �

2me

∫
Rnm

∑m
i=1 |∇xiψ|2|ψ|2dx1 . . . dxm is the kinetic energy (� is Planck’s constant and me the

mass of an electron), Vext[ψ] = m
∫

Rn V (x)dμ(x) is the external energy arising from a potential function V (μ is
the single particle density of the wavefunction ψ, or equivalently, the marginal on each copy of R

n of the sym-
metric measure on R

nm with density |ψ(x1, x2, . . . , xm)|2) and Vee[ψ] =
(
m
2

) ∫
Rnm

∑m
i�=j

1
|xi−xj| |ψ|2dx1 . . . dxm

is the electronic interaction energy. We are interested in minimizing E over all wave functions ψ. In this form,
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the problem is numerically unwieldy, as we must minimize over all wave functions ψ on R
nm, and m can be

quite large for many systems. The problem can, however, be rewritten as an iterated minimization:

min
μ
Vext[μ] + FHK [μ].

where FHK [μ] := minψ→μ T [ψ]+Vee[ψ] is the Hohenberg-Kohn functional, and the notation ψ → μ means that
μ is the single particle density of the wavefunction ψ. This represents a substantial complexity reduction, as we
are minimizing over single particle densities μ rather than m-particle wave functions ψ, if the functional FHK [μ]
is well understood (note that FHK [μ] contains in its definition a minimization over wave functions ψ, and so the
complexity is reduced only if we have an analytic way to determine, or at least approximate, FHK [μ]). Density
functional theory is the study of this functional and is a hugely popular area of research among physicists and
chemists. The main goal is to find good approximations of FHK [μ]; for a detailed introduction, see [60].

Although it had in some sense been implicit in the physics literature for quite some time [71,72], the formu-
lation of density functional theory as a multi-marginal optimal transport problem was only recently introduced,
independently by Cotar, Friesecke and Kluppelberg [21] and Buttazzo, De Pascale and Gori-Giorgi [9]. In par-
ticular, the precise link comes when we consider the semi-classical limit, � → 0, as is shown by the following
theorem of Cotar, Friesecke and Kluppelberg [21, 22].

Theorem 3.4. In the limit as � tends to 0, FHK [μ] is equal to the infimal value in (1.2) with the Coulomb cost
c(x1, x2, . . . , xm) :=

∑m
i�=j

1
|xi−xj| and each marginal μi = μ; that is:

lim
�→0

FHK [μ] =
(
m

2

)
inf

μ∈Π(μ,μ,...,μ)
C(γ),

where C(γ) :=
∫

Rnm

∑m
i�=j

1
|xi−xj |dγ.

Remark 3.5. The minimization above may be restricted to measures which are symmetric under permutations;
that is, measures for which γ = σ#γ for any permutation σ of the arguments (x1, x2, . . . , xm). This follow easily
by noting that C(γ) = C(γ̄), where γ̄ = 1

m!

∑
σ∈Sm

σ#γ is the symmetrization of γ (the sum is over the
permutation group Sm on m letters), and that if γ ∈ Π(μ, . . . , μ) then so does γ̄.

Physically, we can think of symmetric measures as representing semi-classical m-particle densities, with
symmetry reflecting the indistinguishable of the electrons. Mathematically, the observation above raises subtle
uniqueness questions, as it is possible for the solution γ to be non-unique, but for there to be a unique minimizer
in the smaller class of symmetric minimizers (see Thm. 3.7 below).

The study of optimal transport problems with symmetry constraints was initiated (with a different cost
function, and very different motivations) in the two marginal setting by Ghoussoub and Moameni [38], and
continued in the multi-marginal context in a recent series of papers [32, 37, 40].

The following theorem from [9, 21] is similar in spirit to Theorem 2.6, as the two marginal Coulomb cost
satisfies the twist condition off the diagonal, although the proof must overcome some additional technical
obstacles due to the singularity on the diagonal.

Theorem 3.6. Let m = 2, assume that μ is absolutely continuous with a density in L1 ∩L3. Then the optimal
measure γ induces a Monge solution and is unique.

Note that the uniqueness immediately implies symmetry under permutations of the optimizer γ. When the
marginal μ is radially symmetric, one can use Theorem 2.14 to deduce an explicit formula for the optimal map,
arriving at F (x) = −xf(|x|), where f is the monotone decreasing rearrangement of the radial density function.
This was originally proven in [9, 21]; the proof based on the Theorem 2.14 can be found in [65].

As we will see below, the graphical structure and uniqueness break down as soon as there are at least three
marginals. In one dimension, however, there is still a unique symmetric minimizer, as the following result of
Colombo, De Pascale and Di Marino shows [20].



1786 B. PASS

Theorem 3.7. Let μ be a non atomic probability measure on R. Choose points −∞ = d0 < d1 . . . < dm = ∞
such that μ[di, di+1] = 1

m . Then define T : R → R by letting its restriction to the interval [di, di+1] be the unique
monotone increasing map pushing μ|[di,di+1] forward to μ|[di+1,di+2] for i = 0, . . .m − 1, using the convention
m+ 1 = 0.

Then (T, T 2, T 3, . . . Tm−1) is a solution to (1.1) with Coulomb cost, where T k denotes composition of T with
itself k times. Furthermore, the symmetrization of γ = (T, T 2, T 3, . . . Tm−1)#μ is the unique symmetric solution
to (1.2)

Remark 3.8. On any open set where c is non-singular, (for instance, the set where x1 < x2 < . . . < xm) we
have ∂2c

∂xi∂xj
< 0, and so c is compatible when restricted to this set, and the local structure of the solution in the

preceding theorem is consistent with Theorem 2.11. But clearly the cost is not (globally) twisted on splitting
sets, as solutions can be found which are not concentrated on graphs.

In contrast to the n = 1 case, in higher dimensions Corollary 2.15 immediately implies the solution may
concentrate on sets with dimension at least 2n− 2 (= 4 in the physically relevant m = 3 case). Uniqueness of
the solution fails and in fact, under additional, somewhat technical hypotheses, we can also conclude that there
is more than one symmetric minimizer, a distinction from the 1-dimensional case [65].

Remark 3.9. Consider replacing the Coulomb cost with the repulsive harmonic oscillator cost −∑
i�=j |xi−xj |2,

representing a milder, but still repulsive interaction. Though clearly not as physically relevant as the Coulomb
cost, this interaction has received considerable attention in the physics literature, partially because it is easier
to deal with analytically [9, 72].

Noting that this cost is equivalent to the convex function |∑m
i=1 xi|2 of the sum, Remark 2.13 implies that

the solution can be concentrated on manifolds of dimension (m− 1)n; see [31, 63] for details.
For the Coulomb cost, we strongly suspect that solutions cannot concentrate on (m−1)n-dimensional surfaces.

It remains an open question to estimate the dimension more precisely, and in particular, determine whether
2n− 2 is the worst possible case.

Monge solutions are often called strictly correlated electrons in the physics literature. The natural physical
interpretation is that the position of the first electron determines the positions of the others. The above dis-
cussion indicates that there are certain examples when the electrons are not strictly correlated; we note here
that we can never have symmetric Monge solutions when m ≥ 3. We illustrate the reason for this in the
m = 3 case; symmetry under the permutation (x1, x2, x3) → (x1, x3, x2) of the measure concentrated on the
graph {(x, T2(x), T3(x))} easily implies T2 = T3 := T almost everywhere. Symmetry under the permutation
(x1, x2, x3) → (x2, x1, x3) then yields that points of the form (T (x), x, T (x)) are in the support of γ, which
means that T (T (x)) = x and T (T (x) = T (x). This means that T (x) = x almost everywhere; the only graphical
symmetric measure is induced by the identity mapping γ = (Id, Id, . . . , Id)#μ, which yields infinite energy,
C(γ) = ∞, and cannot be optimal. This immediately implies that Monge solutions and uniqueness cannot
coexist, as uniqueness immediately implies permutation symmetry. All of this holds for any other permutation
symmetric cost when the marginals are equal (unless γ = (Id, Id, . . . , Id)#μ is in fact optimal, as is the case
with, for example, the Gangbo−Swiech cost).

On the other hand, it remains an interesting open question to determine whether there exists a Monge
type solution to (1.2) for the Coulomb cost when m ≥ 3 and n ≥ 2. In this direction, one can at least
approximate optimal measures by measures concentrated on graphs {(x1, F2(x1), . . . , Fm(x1))}, and one can
even take Fi = T i−1, for some measuring preserving T with Tm+1 = Id [19]. These approximating measures
are then symmetric under the cyclic permutation (x1, x2, . . . , x3) → (xm, x2, . . . , xm−1), but not under more
general permutations.

In another direction, one can notice that as the Coulomb cost is a sum of two body interactions, one can
rewrite (1.2) (with a symmetry constraint) as a minimization over measures μ2 on R

2n, with an additional
representability restriction (essentially that μ2 must be the two body marginal of some measure γ on R

nm) [31].



MULTI-MARGINAL OPTIMAL TRANSPORT: THEORY AND APPLICATIONS 1787

This approach is useful in considering the limit m → ∞, where it turns out that product measure (known as
the mean-field functional in physics) is optimal [23].

3.3. Other applications

While our focus here has been on applications in economics and physics, we would be remiss if we neglected
to at least briefly mention a wide variety of other interesting applications for multi-marginal problems. These
include texture mixing in image processing, where the aim is to interpolate among several textures (encoded as
measures) in order to synthesize a new one [69], and statistics, where the basic goal is to find an average among
several distributions while preserving relevant features of them [6]. These first two areas lead to costs of the
same form as in the economic matching problem (3.1) – and in fact the barycenter of the measures is actually
the fundamental object of interest here.

Other applications arise in financial mathematics. Recent work in this direction has actually focused on a
variant of (1.2), where we restrict the minimization to the set of martingale measure. This problem arises in
the derivation of model independent price bounds. Here, the measures μi represent (risk neutral) distributions
of the price of an asset at a sequence of future times. Given this information, one wishes to determine the price
of an exotic derivative, whose payoff c(x1, x2, . . . , xm) depends on the values xi of the underling asset at each
of the times ti; one can use a variety of models in mathematical finance to derive measures γ, representing a
coupling of the distributions μi, and the integral in (1.2) then represents price of the derivative. This of course
depends on the measure γ, which in turn depends on the financial model used to derive it. Arbitrage free models
always yield discrete time martingale measures, and so the minimization (1.2) with the additional constraint
that γ should be a martingale measure, tells us the minimal arbitrage free price of the derivative, among all
possible models. This has quickly become a very active area; see for example [3, 4, 25, 26, 33, 42, 43].

In a related financial application, a derivative’s payoff c may depend on the prices xi of several different assets
at the same time, whose distributions μi are known. Here, to find the minimal possible value, we minimize∫
c(x1, . . . xm)dγ(x1, . . . , xm) over Π(μ1, . . . , μm). This is exactly (1.2); there is no reason in this case to restrict

to the smaller class of martingale measures; see, for example, [28, 68].
We also mention that problem (1.2) arises in the time discretization of the least action principle for incompress-

ible fluids; see, for example, [8]. The cost function arising there takes the form
∑m−1

i=1 |xi−xi+1|2+|xm−F (x1)|2,
where F is a prescribed measure preserving diffeomorphism. To the best of our knowledge, very little is known
about the structure of solutions with this type of cost.

Finally, let us mention some applications of (1.2) in pure mathematics., These include a recent series of repre-
sentation theorems for families of vector fields [32,37,40]; for example, given any (m−1)-tuple (u2(x), . . . , um(x))
of measurable vector fields on Ω ⊂ R

n, a symmetric variant of (1.2) can be exploited to establish the existence of
an m-cyclically anti-symmetric, concave-convex Hamiltonian H and a measure preserving m-involution S such
that (u2(x), . . . , um(x)) ∈ ∂x2,....,xmH(x1, S(x), S2(x), . . . , Sm−1(x)). In addition, (1.2) has proven useful in
resolving variational problems on Wasserstein space [24], and in the decoupling of systems of elliptic PDEs [39].

3.4. Numerics

Numerics for multi-marginal problems have so far not been extensively developed (and even for two marginal
problems, where numerical schemes have received more attention, there remain many important and challenging
open issues). Discretizing the multi-marginal problem leads to a linear program where the number of constraints
grows exponentially in m, the number of marginals. Very recently, however, a paper of Carlier, Oberman and
Oudet studied the matching for teams problem (3.1) [15]. Among their findings, they were able to reformulate
the problem as a linear program whose number of constraints grows only linearly in m, which is much more
amenable to numerics than naive linear programming techniques for the multi-marginal problem (1.2). Using
Proposition 3.1, these techniques yields equally tractable numerical schemes for (1.2) when the cost is of the
form (2.4). Performance is improved even further when each ci is quadratic, as special features of the cost can
then be used to solve the barycenter problem (3.1). It is interesting to note that early numerical success reflects
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the dichotomy described in the introduction, and further exposed in the rest of this manuscript; matching type
costs have low dimensional solutions, and so can be expected to be reasonably well behaved from a numerical
point of view, whereas costs such as the Coulomb cost, or the repulsive harmonic oscillator cost, can yield high
dimensional solutions, and so developing widely applicable numerical algorithms for these costs is likely to pose
additional challenges.

Let us mention, however, that the Coulomb cost is tackled in [56], and in several examples quite accurate
solutions can be computed using parameterized functional forms of the Kantorovich potential. In the two
marginal case, a linear programming approach for the Coulomb cost is implemented in [16]. In [69], barycenter
problems are addressed by replacing the Wasserstein distance with the sliced Wasserstein distance, which is
much easier to compute than the true Wasserstein distance.
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[70] L. Rüschendorf and L. Uckelmann, On Optimal Multivariate Couplings. In Proc. of Prague 1996 Conference on Marginal
Problems. Kluwer Acad. Publ. (1997) 261–274.

[71] Michael Seidl, Strong-interaction limit of density-functional theory. Phys. Rev. A 60 (1999) 4387–4395.

[72] Michael Seidl, Paola Gori-Giorgi and Andreas Savin, Strictly correlated electrons in density-functional theory: A general
formulation with applications to spherical densities. Phys. Rev. A 75 (2007) 042511.

[73] C. Villani, Topics in Optimal Transportation. In vol. 58 of Grad. Stud. Math. American Mathematical Society, Providence
(2003).

[74] C. Villani, Optimal Transport: Old and New. In vol. 338 of Grundlehren Math. Wiss. Springer, New York (2009).


	Introduction
	Theory
	Local structure of the optimizer: dimension of the support
	Uniqueness and graphical structure of optimal measures
	Local differential conditions for twistedness on splitting sets

	Examples
	Marginals with one dimensional support
	Functions on the sum
	Radially symmetric problems
	Infimal convolution costs
	Vector fields costs

	Extensions and variants of the multi-marginal problem

	Applications
	Economics: matching for teams
	Physics: density functional theory
	Other applications
	Numerics

	References

