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COMPUTING QUANTITIES OF INTEREST FOR RANDOM DOMAINS
WITH SECOND ORDER SHAPE SENSITIVITY ANALYSIS
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Abstract. We consider random perturbations of a given domain. The characteristic amplitude of
these perturbations is assumed to be small. We are interested in quantities of interest which depend
on the random domain through a boundary value problem. We derive asymptotic expansions of the
first moments of the distribution of this output function. A simple and efficient method is proposed
to compute the coefficients of these expansions provided that the random perturbation admits a low-
rank spectral representation. By numerical experiments, we compare our expansions with Monte–Carlo
simulations.
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1. Introduction

Many practical problems in engineering lead to boundary value problems for an unknown function which
needs to be computed to obtain a real quantity of interest. In structural mechanics, the equations of elasticity
are usually considered and solved to compute the leading mode of a structure or its compliance. Usually, the
input parameters of the model like the geometry or the physical coefficients (typically the value of the Young
modulus or Poisson ratio) are not perfectly known. It is therefore important to take these uncertainties into
account.

In this work, we consider uncertainties in the geometric definition of the domain. Such uncertainties are
motivated by tolerances in the fabrication process or by a damaged boundary during the life of a mechanical
device. Manufactured devices are close to a nominal geometry but differ of course from its mathematical defini-
tion. Since we are motivated by tolerances, we can make the crucial assumption of the smallness of the random
perturbations. This means that we assume that the non-dimensional ratio ε between the characteristic size of
the perturbation and the characteristic size of the domain is small. By identifying domains with their boundary,
domains close to the nominal domain D can be seen as a normal perturbation of the nominal boundary ∂D. In
that case, the random domain D(ω) can be defined thanks to a real valued random field X over ∂D according to

∂D(ω) = {x + X(x, ω)n(x); x ∈ ∂D},
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where n(x) denotes the outer unit normal field at a point x in ∂D. In order to take into account the uncertain
geometrical definition in the numerical simulation, we have to incorporate the randomness of the computational
domain into the underlying model equations. As a consequence, the quantities of engineering interest are also
random. We address thus the following problem: given a complete probabilistic description of the random per-
turbation of the nominal boundary, compute as much information as possible to the distribution of the quantity
of interest.

The most common approach to study boundary value problems with stochastic inputs is the Monte–Carlo
method. In many situations, this approach is easy to implement since it requires only a large number of samples.
However, for boundary values problems on random domains, each sample means a new domain and thus a new
mesh, the building of new mass and stiffness matrices, etc. All these steps are mandatory to compute the
quantity of interest. Therefore, the Monte–Carlo method is extremely costly and not so easy to implement in
our context. This work is a contribution to the development of cheap and deterministic numerical methods to
recover statistical information on the distribution of the output quantity of interest. The main advantage of the
approach we propose here is to use a single mesh and to build once for all the matrices.

The smallness assumption formalized in the sequel allows us to use a sensitivity analysis with respect to
geometrical perturbations of the boundary. We apply shape calculus to perform a second order sensitivity
analysis and compute asymptotic expansions of the moments of the output quantity’s distribution with respect
to the smallness parameter ε of the random perturbation. In particular, we obtain in this work a third order
expansion for the expectation and a fourth order expansion for the variance. It turns out that the leading
coefficients of these asymptotic expansions do only depend on the autocovariance of the random field which
defines the random perturbation. We therefore use the associated integral operator to compute a low-rank
approximation of the random field of the type

X(x, ω) =
N∑

i=1

αi(ω)fi(x).

For such a random field, we derive an analytic expression of the coefficients of the previous asymptotic expansions
that are very cheap to compute: only N+1 boundary values problems are to be solved on the nominal geometry D
in the examples we present in this work. Note that 2N+2 problems are needed when the derivatives are evaluated
thanks to an adjoint state.

We mention that random shape functionals have also been considered in [15] by means of a first order pertur-
bation analysis. A rather general framework of the first order perturbation analysis for functionals with random
input parameters, particularly random domains, has been presented [5]. To obtain more precise approxima-
tions, the present paper is based on a second order perturbation analysis of the random shape functional under
consideration. Thus, the shape Hessian will enter the asymptotic expansions which makes the computations
much harder. However, the shape Hessian is meanwhile well understood and has been considered for example
in [6, 8, 10, 13, 16, 22, 26]. In comparison to [15], we derive here a more precise expansion of the random shape
functional. This fact is also verified by our numerical experiments.

This work is organized as follows. In Section 2, we introduce our main theoretical tool: the shape calculus
of order two. We define the shape derivative of a general shape function and present the structure. In order
to illustrate the method, we choose two examples which we will focus on in this work: the first eigenvalue of
the Dirichlet–Laplace operator and the Dirichlet energy. We provide the expressions of the shape derivatives of
these two quantities. Then, in Section 3, we detail our random model and explain how one can in general obtain
asymptotic expansions of the moments of the quantity of interest’s distribution. In Section 4, we emphasize
the role of the autocovariance of the field X to compute the previously derived Taylor expansions and explain
how to obtain a low-rank approximation of the field X itself. In Section 5, we make explicit the expansions
of Section 3 and obtain expressions which are directly workable for computations. Finally, we validate our
theoretical findings in Section 6 by comparing our results with Monte–Carlo simulations.
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2. Second order shape calculus

2.1. Definitions and structure theorem

Shape calculus was founded by Hadamard a century ago but was really developed from the seventies on
with the works of Murat and Simon as well as Sokolowski and Zolesio. It’s objective is to provide a differential
calculus for functions which depend on the geometry of a domain D. It is achieved through the action of a
family of diffeomorphisms acting on a model domain. We refer readers interested in the precise definitions and
useful properties to modern books on the subject such as [9, 16].

It is well-known since Hadamard’s work that, in smooth situations, the shape gradient is a distribution
supported on the moving boundary and acting on the normal component of the deformation field that is a
vector field defined in R

d with values in R
d. In this work, we consider a smooth vector field in Ck,1(Rd, Rd), the

space of Ck-functions with Lipschitz continuous kth derivatives. The second order shape derivative has also a
specific structure as stated by Pierre and Novruzi in [22]. We quote their result from the book ([16], Thm. 5-9-2).

Theorem 2.1 (Structure theorem of first and second order shape derivatives). Let k ≥ 1 be an integer and J
a real valued shape function which is defined on Ok, the open bounded domains of R

d with a Ck-boundary. Let
us define the function J on Ck,1(Rd, Rd) by

J (θ) = J((I + θ)(D)).

(i) If D ∈ Ok+1 and J is differentiable at 0, then there exists a continuous linear form L on Ck(∂D) such that:

DJ (0)ξ = L(ξ · n) for all ξ ∈ Ck,1(Rd, Rd).

(ii) If D ∈ Ok+2 and J is twice differentiable at 0, then there exists a continuous symmetric bilinear form B
on Ck(∂D) × Ck(∂D) such that for all (ξ, ζ) ∈ Ck,1(Rd, Rd)2

D2J (0)(ξ, ζ) = B(ξ · n, ζ · n) + L((Dτnζτ ) · ξτ −∇τ (ζ · n) · ξτ −∇τ (ξ · n) · ζτ ),

where ∇τ is the tangential gradient and ξτ and ζτ stands for the tangential components of ξ and ζ. Finally,
Dτn is the differential of the Gauss map known as the shape operator or Weingarten map.

The so-called shape derivatives are then the shape gradient, usually noted DJ(D) := DJ (0), and the shape
Hessian, usually noted D2J(D) := D2J (0). With respect to this work, it is important to notice that the shape
Hessian is reduced to B for normal deformations fields.

Following the structure theorem, let us consider a C5-domain D0 and consider a C3-neighbourhood O of D
and a twice (locally) differentiable shape function J . If the size of the neighbourhood is small enough, the local
inversion theorem shows that the boundary ∂D of any domain D in O can be represented as a graph over ∂D0

of the form: there is a real valued function ϕ defined on ∂D0 such that

∂D = {x + ϕ(x)n(x); x ∈ ∂D0}. (2.1)

In particular, one can restrict oneself to normal perturbations of amplitude ϕ. Moreover, for a given function ϕ
defined on ∂D0, the interior of the set {x + ϕ(x)n(x); x ∈ ∂D0} determines a domain Dϕ. Thus, the Taylor
formula for the mapping J defined in Theorem 2.1 for θ = ϕn, where we still have denoted smooth extensions
to R

d by ϕ and n, reads as

J(Dϕ) = J(D0) + L[J ](D0)ϕ +
1
2
B[J ](D0)(ϕ, ϕ) + R2(ϕ). (2.2)

Here, the reminder R2 is uniformly in ϕ negligible with respect to ‖ϕ‖2. Note that, in many applications, the
shape functions are regular and in particular C3 (see the discussion in [7]). In that case, the remainder is of
order 3 in the amplitude ε of the considered random perturbations.
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2.2. Examples of shape derivatives

Shape gradients have been computed for many objectives covering many boundary value problems motivated
by applications in civil engineering, inverse problems, aeronautics, etc. A lot of examples can be found in the
book [29]. The shape gradient is widely used in level-set methods for shape optimization (see [2] among may
others). Due to their much higher complexity, shape Hessians are not so often applied and the literature about
computations with second order shape derivatives is restricted (see, e.g., [11,12,14,23]). Nevertheless, the shape
Hessian underlies the study of stability issues in shape optimization (see [1,3,4,6–8,13,21,25,28,31] for examples
in imaging, tomography, fluid mechanics, aircraft construction, etc.). For the sake of readability, we present two
academic but representative examples for which the expressions of the shape derivatives remains simple.

We need to precise some geometrical definitions. The mean curvature (understood as the sum of the principal
curvatures of ∂D) is denoted by H . For a domain D ⊂ R

d, we consider its Dirichlet energy E(D) defined as

E(D) = −1
2

∫
D

|∇uD|2,

where uD is the solution of −Δu = 1 in H1
0(D) and λ1 is the first eigenvalue of the Dirichlet–Laplace operator.

The shape derivatives of these functionals are well-known (see [16], Sects. 5.9.3 and 5.9.6).

Lemma 2.2 (Expressions of shape derivatives). If D is C2, one has

L[E](D).ϕ = −1
2

∫
∂D

(∂nu)2ϕ; (2.3a)

B[E](D).(ϕ, ϕ) = 〈−∂nu ϕ, Λ(−∂nu ϕ)〉H1/2×H−1/2 +
∫

∂D

[
∂nu +

1
2
H(∂nu)2

]
ϕ2; (2.3b)

L[λ1](D).ϕ = −
∫

∂D

(∂nv)2ϕ; (2.3c)

B[λ1](D).(ϕ, ϕ) =
∫

∂D

2w(ϕ) ∂nw(ϕ) + H(∂nv)2ϕ2; (2.3d)

where Λ : H1/2(∂D) → H−1/2(∂D) is the Dirichlet-to-Neumann map for the domain D defined as Λ(ϕ) =
−∂nV (ϕ) with V (ϕ) being the solution of

−ΔV (ϕ) = 0 in D, V (ϕ) = −ϕ on ∂D, (2.4)

and v is the associated normalized eigenfunction solution in H1
0(D) of −Δv = λ1v with v > 0 in D and w(ϕ) is

the solution of ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−Δw(ϕ) = λ1w(ϕ) − v

∫
∂D

(∂nv)2ϕ in D,

w(ϕ) = −ϕ∂nv on ∂D,∫
D

v w(ϕ) = 0.

(2.5)

As consequence of these examples and being the general case for smooth domains to the best of our knowledge,
there is a function , defined on ∂D, so that the shape gradient can be written as

L(D) · ϕ =
∫

∂D

ϕ. (2.6)

This property to be an integral operator with a nice kernel is not true in general for the second order derivative.
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3. Asymptotic expansions of the moments

3.1. The stochastic model: random graphs over ∂D

For modeling the stochastic perturbations D(.) of D0, we introduce a probability space (Ω,F , P) and consider
stochastic functions X : ∂D × Ω → R that define D(ω) as the interior of the graph x + X(x, ω)n∂D0(x). In
order to keep a pertinent geometrical description of sets, this of course requires that the domains D(ω) remain
close to D0 at least in the L

∞ sense. In fact, to use the expansion (2.2), we need closeness in the sense of C2.
Introducing a small parameter ε > 0 and plugging perturbations of the form x + εX(x, ω)n∂D0(x) into (2.2),
we obtain

J(D(ω)) = J(D0) + εL(X(ω)) +
ε2

2
B(X(ω), X(ω)) + R2(εX(ω)). (3.1)

We make the assumption that X is uniformly (in ω) bounded in the norm in the spatial variable where shape
differentiability holds at the second order (typically here the C2-norm), i.e., X is a member of the Bochner space
L
∞(Ω, C2(∂D)). Then, there exists C > 0 such that |R2(εX(ω))| = O(ε2).
In most applications, the quantity J(D(ω)) is defined through the solution uD(ω) of a boundary value problem

set in D(ω). Let B be a fixed large ball such that D(ω) ⊂ B for all ω ∈ Ω. To fix the idea, consider the Dirichlet
problem for a second order elliptic partial differential operator L: uD is the solution of Lu = f in H1

0(D). We
still denote uD for its extension by 0 to H1

0(B). Let us remark that the mapping ω 
→ uD(ω) is the composition of
the mappings ω 
→ X(ω) ∈ C2(∂D) and X 
→ uD(X) ∈ H1

0(B) defined through (2.1). Since the second mapping
X 
→ uD(X) ∈ H1

0(B) is continuous, it is measurable. Moreover, it is strongly measurable by the Orlicz–Pettis
theorem since both C2(∂D) and H1

0(B) are separable (we used the fact that D is bounded so that ∂D is compact).

3.2. General preliminary results

In view of (3.1), we derive the asymptotic expansions of the expectation and variance of J(D(ω)) as our first
result. From now, we consider a twice shape differentiable function J .

Proposition 3.1. The expectation and variance of J(D(ω)) admit the asymptotic expansions

E(J(D)) = J(D0) + εE(L(X)) +
ε2

2
E(B(X, X)) + O(ε2) (3.2)

and

var(J(D)) = ε2
E

(
[L(X)− E(L(X))]2

)
+ ε3

E ([L(X) − E(L(X))] [B(X, X) − E(B(X, X))]) + O(ε3). (3.3)

Proof of Proposition 3.1. It suffices to integrate the pointwise Taylor expansion (3.1) over the space of proba-
bility thanks to the uniform estimate of the remainder. One thus immediately obtains for the expectation

E(J(D)) = J(D0) + εE(L(X)) +
ε2

2
E(B(X, X)) + E(R2(εX))

= J(D0) + εE(L(X)) +
ε2

2
E(B(X, X)) + O(ε2).

Likewise, for the variance, one has

var(J(D)) = E

(
[J(D) − E(J(D))]2

)
= E

([
ε(L(X) − E(L(X))) +

ε2

2
(B(X, X) − E(B(X, X))) + O(ε2)

]2
)

= ε2
E

(
[L(X)− E(L(X))]2

)
+ ε3

E ([L(X)− E(L(X))] [B(X, X) − E(B(X, X))]) + O(ε3). �
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Remark 3.2. Let us notice that it follows E(L(X)) = L(E(X)) = 0 if X is centered, i.e., if E(X) = 0.

In the same spirit as above, we can also compute asymptotic expansions of higher moments. For example,
the centered, normalized moments (as skewness and kurtosis) could be obtained in the following way.

Proposition 3.3. For all k ≥ 2, the centered normalized moment of J(D(ω)) admits the asymptotic expansion

Mk(J(D)) := E

(
[J(D) − E(J(D))]k√

var(J(D))
k

)
= ak + bkε + O(ε), (3.4)

where the deterministic coefficients ak and bk are

ak = γkE
(
[L(X) − E(L(X))]k

)
E
(
[L(X) − E(L(X))]2

)
, (3.5)

bk = γk

k

2

{
E
(
[L(X) − E(L(X))]k−1[B(X, X) − E(B(X, X))]

)
E
(
[L(X) − E(L(X))]2

)
−E ([L(X)− E(L(X))][B(X, X) − E(B(X, X))]) E

(
[L(X) − E(L(X))]k

)}
,

(3.6)

and the normalization constant γk is

γk = E
(
[L(X) − E(L(X))]2

)−1−k/2
. (3.7)

Proof of Proposition 3.3. The second order Taylor expansion of the real function x 
→ x−k/2 around a real
number x is

1
√

x + h
k

=
1

√
x

k
− hk

2
√

x
k+2

+ O(h2).

Inserting the expansion of the variance (3.3), we find

1√
var(J(D))

k
=

1
εk

{
E
(
[L(X) − E(L(X))]2

)−k/2

− εk

2
E
(
[L(X) − E(L(X)]2

)−1−k/2
E ([L(X) − E(L(X))][B(X, X) − E(B(X, X))])

+ O(ε2)
}

.

On the other hand, using the expansion of the expectation (3.2), we have

E
(
[J(D) − E(J(D))]k

)
= εk

{
E
(
[L(X) − E(L(X))]k)

)
+

εk

2
E
(
[L(X) − E(L(X))]k−1[B(X, X) − E(B(X, X))]

)
+ O(ε2)

}
.

Then, a tedious but elementary calculus (the product of two asymptotic expansions) leads to the desired
result. �
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4. Efficient computation of the Taylor coefficients – The general case

4.1. Direct computation

For the sake of simplicity, we shall assume that the boundary perturbation field X is centered which induces
E(L(X)) = 0. We then can compute as in [15]

E

(
[L(X) − E(L(X))]2

)
= E

(
L(X)2

)
= E

[(∫
∂D

(x)X(x, ω)dσ(x)
)2
]

= E

[∫
∂D

∫
∂D

X(x, ω)X(y, ω)(x)(y)dσ(x)dσ(y)
]

=
∫

∂D

∫
∂D

E[X(x, .)X(y, .)](x)(y)dσ(x)dσ(y).

The crucial operator to be studied here is the (two-point) autocovariance function of X defined as

CovX(x, y) = E(X(x, .)X(y, .)).

In fact, the knowledge of the law of X is not needed for the computation we have in mind, we only need the
autocovariance function. Notice that various laws for X can provide the same function CovX .

We can proceed in two different ways to compute the expectation of the shape Hessian. The first approach
has already been pointed out in e.g. [20]. We shall explain the proceeding in case of the Dirichlet energy. In
that case, according to (2.3b), we have

E(B(X, X)) = E

(∫
∂D

[
∂nu +

1
2
H(∂nu)2

]
X2dσ

)
+ E

(〈−∂nu X, Λ(−∂nu X)〉H1/2×H−1/2

)
.

For the first term, one has easily by Fubini’s theorem that

E

(∫
∂D

[
∂nu +

1
2
H(∂nu)2

]
X2dσ

)
=
∫

∂D

E(X2)
[
∂nu +

1
2
H(∂nu)2

]
dσ

=
∫

∂D

V(X)
[
∂nu +

1
2
H(∂nu)2

]
dσ

since X is centered. To compute the second term, we shall define the following tensor product type boundary
value problem:

(id ⊗ (−Δ))V = 0 in ∂D × D,

V = (id ⊗ (−∂nu))CovX on ∂D × ∂D.
(4.1)

Here, −∂nu has to be understood in the sense of a multiplication operator H1/2(∂D) → H1/2(∂D). Note that
the differential operator which underlies this boundary value problem is id⊗Λ. Due to its linearity and Fubini’s
theorem, we get thus for the second term

E
(〈−∂nu X, Λ(−∂nu X)〉H1/2×H−1/2

)
=
∫

∂D

E (−∂nu(x)X(x, ·)(Λ(−∂nu X))(y, ·)) ∣∣
x=y

dσ(x)

=
∫

∂D

−∂nu(x)V (x, y)
∣∣
x=y

dσ(x).

Boundary value problems like that in (4.1) can be solved in essentially linear complexity (with respect to the
number of unknowns to discretize the state equation on the domain D) if a sparse tensor product discretization
is employed as proposed in e.g. [17, 19, 20]. However, the implementation of this approach would be highly
intrusive.
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4.2. Toward a low-rank approximation

The second way, which is much simpler to implement, consists in computing an expansion of the autocovari-
ance function of X of the form

CovX =
∑

k

κk ⊗ κk. (4.2)

For example, such a representation can be achieved by a spectral decomposition as an application of Mercer’s
theorem which ensures the representation of CovX in the form

CovX(x, y) =
∑

k

λkek(x)ek(y). (4.3)

Another way to obtain such a decomposition is an (possibly infinite) Cholesky decomposition of autocovariance
function. With the expansion (4.2) at hand, we will obtain in Section 5 the following expansion of the expectation
of the shape Hessian:

E
(
B[J ](D).(X, X)

)
=
∑

k

B[J ](D).(κk, κk).

We therefore need only to be able to evaluate the shape Hessian in certain directions {κi}.

4.3. Numerical realization

In general, the expansion (4.2) will be infinite and has to be appropriately truncated for numerical computa-
tions. Consider a suitable ansatz space Vn = span{ϕi : i = 1, 2, . . . , n} ⊂ C2,1(∂D). Then, we aim at a low-rank
approximation

CovX(x, y) ≈
m∑

k=1

(
n∑

i=1

k,iϕi(x)

)⎛⎝ n∑
j=1

k,jϕj(y)

⎞⎠ ∈ Vn ⊗ Vn (4.4)

to the two-point autocovariance CovX ∈ L2(∂D × ∂D) in the tensor product space Vn ⊗ Vn.
The unknown coefficient vectors in (4.4) can be computed as follows. Define the discrete autocovariance

matrix

C =
[ ∫

∂D

∫
∂D

CovX(x, y)ϕi(x)ϕj(y)dσ(x)dσ(y)
]

i,j

∈ R
n×n

and the mass matrix

G =
[ ∫

∂D

ϕi(x)ϕj(x)dσ(x)
]

i,j

∈ R
n×n

with respect to the ansatz space Vn. Then, (4.4) amounts to an approximation

C ≈ Cm =
m∑

k=1

�̃k�̃
T

k with �k = [k,i]i = G−1�̃k

such that the truncation error ‖C− Cm‖ is rigorously controllable.
The best low-rank approximation in L2(∂D × ∂D) is given by truncating the spectral decomposition (4.3).

The computation requires the knowledge of the eigenpairs (ϕi, λi) of the integral operator

(Cu)(x) :=
∫

∂D

CovX(x, y)u(y)dσ(y), x ∈ ∂D

which is a very demanding task. In particular, the decay of the eigenvalues {λk} and thus the rank m depend
heavily on the smoothness of the autocovariance function CovX . Related decay rates have been proven in [27].
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We suggest using the pivoted Cholesky decomposition to compute a low-rank approximation of CovX as
proposed in [18]. It is a purely algebraic approach which is quite simple to implement, see e.g. [18]. It produces
a low-rank approximation to C for any given precision ε > 0 where the approximation error is rigorously con-
trolled in the trace norm. A rank-m approximation is computed in O(m2n) operations. Exponential convergence
rates in m are proven under the assumption that the eigenvalues of C exhibit a sufficiently fast exponential
decay, see [18]. Nevertheless, numerical experiments show that, in general, the pivoted Cholesky decomposition
converges optimally in the sense that the rank m is uniformly bounded with respect to the truncation error ε
by the number of terms required for the spectral decomposition of CovX to get the same error ε.

5. Computing the coefficients for a low-rank approximation of X

Let us apply Proposition 3.1 which provides the Taylor expansion of shape functionals. To end the, let (fi)i∈N

be a sequence of smooth (at least C2,1) real valued functions which are defined on ∂D, possibly with compact
support on ∂D if needed, and such that the series

∑
i∈N

‖fi‖C2,1 is convergent. We consider the domains defined
by their boundary

∂Dε(ω) = {x + εX(x, ω)n(x); X ∈ ∂D}, (5.1)

with

X(x, ω) =
∞∑

i=1

αi(ω)fi(x) (5.2)

where the αi are either uncorrelated or independent and identically distributed following the same centered
distribution L of a random variable α with finite second order moment. Note that such a model can also be
provided by the Karhunen–Loève expansion, even though the fi, given by Mercer’s theorem, are only in L2(∂D)
and the additionally required regularity has to be checked, see e.g. [27].

Proposition 5.1. When the random graph has the form (5.1) with uncorrelated and centered random coeffi-
cients (αi), one has

E(J(D)) = J(D0) +
ε2

2
E(α2)

∞∑
i=1

B(fi, fi) + O(ε2). (5.3)

If the random coefficients are independent and if the distribution α has finite moments up to the order 3, then

var(J(D)) = ε2
E(α2)

∞∑
i=1

(L(fi))2 + ε3
E(α3)

∞∑
i=1

L(fi)B(fi, fi) + O(ε3). (5.4)

Moreover, if the random variable α is symmetric, it even holds

var(J(D)) = ε2
E(α2)

∞∑
i=1

(L(fi))2 + O(ε3). (5.5)

Proof of Proposition 5.1. We first notice that, for any integer k ≥ 1, the series
∑

i∈N
‖fi‖k

C2,1 is convergent.
1. Expansion of the expectation. By linearity, it comes directly

E(L(X)) = L (E(X)) = 0.

For any integer n, we introduce the truncated series Xn defined as:

Xn(x, ω) =
n∑

i=1

αi(ω)fi(x),
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so that

E(B(Xn, Xn)) = E

(
B

( n∑
i=1

αifi,

n∑
i=1

αifi

))
=

n∑
i,j=1

E(αiαj)B(fi, fj) =
n∑

i=1

E(α2)B(fi, fi)

since B is bilinear and the (αi) are uncorrelated and centered. Since B is continuous, we get |B(fi, fi)| ≤
‖B‖ ‖fi‖2

C2 and the series
∑∞

i=1 B(fi, fi) converges, so that by continuity and Lebesgue’s dominated convergence
theorem

E(B(X, X)) =
∞∑

i=1

E(α2)B(fi, fi).

2. Expansion of the variance. We proceed as before for the second order term:

E([L(Xn) − E(L(Xn))]2) = E

(
L

( n∑
i=1

αifi

)2
)

=
n∑

i,j=1

E(αiαj)L(fi)L(fj) =
n∑

i=1

E(α2)L(fi)2.

We conclude by using the continuity of the map L that

E([L(X) − E(L(X))]2) =
∞∑

i=1

E(α2)L(fi)2.

For the third order term, one thus has

E ([L(Xn) − E(L(Xn))] [B(Xn, Xn) − E(B(Xn, Xn)))]) = E

(
L

( n∑
i=1

αifi

)
B

( n∑
i=1

αifi,

n∑
i=1

αifi

))

=
n∑

i,j,k=1

E(αiαjαk)L(fi)B(fj , fk) =
n∑

i=1

E(α3) L(fi) B(fi, fi)

where we used that the distribution of the random variable α is centered. �
Remark 5.2. For all k ≥ 2, if the distribution α has finite moments up to the order k+1, then the normalized,
centered moment of J(D(ω)) admits the asymptotic expansion

Mk(J(D)) = ak + bkε + O(ε),

where the deterministic coefficients ak and bk could be obtained by a similar tedious but easy calculus. The
crucial point is the computation of E(Πk

j=1αij ) for ij ∈ {1, . . . , N} with the help of the multinomial formula.
Thanks to the independence of the αi and the fact that they follow a centered distribution, the previous
expression cancels as soon as there is an integer i ∈ {1, . . . , N} that is reached only once, i.e., if the equation
i = ij for 1 ≤ j ≤ k has only a single solution.

For instance, for k = 3, it holds
M3(J(D)) := a3 + b3ε + O(ε)

with

a3 =
E(α3)
γ3/2

∞∑
i=1

L(fi)3,

b3 =
3

2γ3/2

⎡⎣E(α2)2

⎛⎝∑
i�=j

L(fi)L(fj)B(fi, fj) −
∞∑

i=1

L(fi)2B(fi, fi)

⎞⎠+ E(α4)
∞∑

i=1

L(fi)2B(fi, fi)

⎤⎦
− 3

2γ5/2
E(α3)2

∞∑
i=1

L(fi)B(fi, fi)
∞∑

i=1

L(fi)3,
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where

γ = E(α2)
∞∑

i=1

L(fi)2.

With the help of the pivoted Cholesky decomposition, we can compute a low-rank approximation of the
random field X which corresponds to a finite sum of the type

X(x, ω) =
N∑

i=1

αi(ω)fi(x)

where the αi are either uncorrelated or independent and identically distributed following the same centered
distribution L of a random variable α. In that case, the Taylor coefficients can very easily be computed in
accordance with Proposition 5.1: the computational cost reduces to the solution of N + 1 boundary values
problems defined on the same domain so that a single mesh can be used. This amount is doubled to 2N + 2
resolutions in case of general shape functionals where also an adjoint state has to be computed to efficiently
evaluate the shape derivatives (see [16], Sects. 5–8 for an example of the adjoint state in shape optimization).

Finally, using the Bienaymé–Chebychev inequality, we obtain intervals in which the shape functional takes
its values with a fixed probability. For example, fixing a desired probability p, we get the bounds

P

(
|J(D) − E(J(D))| ≤

√
var(J(D))

1 − p

)
≥ p.

Thanks to the asymptotic expansions (5.3)–(5.4), we obtain then

P
(
J−

ε,p(D) ≤ J(D) ≤ J+
ε,p(D)

) ≥ p (5.6)

where we have set

J±
ε,p(D) = J(D0) ± ε√

1 − p

√√√√
E(α2)

N∑
i=1

(L(fi))2

+
ε2

2

⎛⎜⎜⎜⎜⎜⎜⎝E(α2)
N∑

i=1

B(fi, fi) ±
E(α3)√
1 − p

N∑
i=1

L(fi)B(fi, fi)√√√√E(α2)
N∑

i=1

(L(fi))2

⎞⎟⎟⎟⎟⎟⎟⎠+ O(ε2).

6. Numerical illustrations

We now present numerical validations of the proposed asymptotic expansions. We will consider the two-
dimensional case for the Dirichlet energy and the first eigenvalue of the Dirichlet–Laplace operator. Numerical
resolution of the boundary values problems is made either with the finite element method or with the bound-
ary element method. We will consider both, the uniform and the Beta distribution. During the Monte–Carlo
simulations, the random number generator has been reinitialized after at most 10 000 samples.

6.1. The Dirichlet energy around disk in dimension two

6.1.1. Random perturbations defined by a given spectral representation

We consider the unit disk in the plane and random perturbations of the type

Dε(ω) =

{
(r, θ) : 0 ≤ r < 1 + εf(θ, ω) and f(θ) =

N∑
i=1

αi(ω)fi(θ)

}
(6.1)



1296 M. DAMBRINE, H. HARBRECHT AND B. PUIG

  0.5

  1

  1.5

30

210

60

240

90

270

120

300

150

330

180 0

Four realisations of the random domain  − epsilon=1/8

(a) ε = 1/8.

  0.5

  1

  1.5

30

210

60

240

90

270

120

300

150

330

180 0

Four realisations of the random domain  − epsilon=1/4

(b) ε = 1/4.

Figure 1. Some realizations of domains according to (6.1) with the uniform distribution.

  0.5

  1

  1.5

30

210

60

240

90

270

120

300

150

330

180 0

Some realisations of the random domain − Beta law − epsilon=1/8

(a) ε = 1/8.
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(b) ε = 1/4.

Figure 2. Some realizations of domains according to (6.1) with the Beta distribution.

where the αi are i.i.d. In the following computations, we have taken N = 11 and the coefficient functions fi are
the first normalized functions in the Fourier basis, that is

f1 = 1, f2(θ) = cos(θ), f3(θ) = sin(θ), f4(θ) = cos(2θ)/4, f5(θ) = sin(2θ)/4, . . . , f11(θ) = sin(5θ)/25.

Let us present some realizations of such domains with various values of ε and various distributions. In Figure 1,
we present some realizations of such random domains for α following the uniform distribution on [−1/2, 1/2].
Note that the range of α is [−1/2, 1/2].

In Figure 2, α follows the centered and normalized Beta distribution of parameter (2, 5) in order to use a
non-symmetric distribution. Note that the range of this distribution is larger (it can take values greater than 4).
Hence, for the same value of the parameter ε, the perturbations can be wider for the Beta distribution than for
the uniform distribution. Therefore, we will consider a smaller range of values for the parameter ε.
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Figure 3. Convergence of Monte–Carlo simulations for perturbed disks defined in (6.1).

6.1.2. Monte–Carlo simulations

We shall proceed with the Monte–Carlo method. For each value of ε in the abscissa of the graphs, we
perform 4000 simulations using P1 finite elements over around 2000 triangles, each of which is made with the
FREEFEM++ code. The convergence is illustrated in Figure 3. It seems that a visually correct asymptotic
regime is reached for some thousands of simulations.

6.1.3. Comparison with the asymptotic expansions

Finally, we compare with the asymptotic expansions obtained in Proposition 5.1. Let us emphasize that
the coefficients appearing in Proposition 5.1 are computed numerically. The first step is to compute the state
equation in the reference domain, then the shape gradient is obtained via the computation of an integral over
the boundary. Finally, the computation of each term B(fi, fi) requires the solution of a boundary value problem
of the same type than the one solved for the state equation. Therefore, the computation of these coefficients is
cheap since it requires only N + 1 resolutions of a boundary value problem. The results for both, the uniform
distribution and the Beta distribution, are presented in Figure 4.
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Figure 4. Comparison of the Monte–Carlo simulation with the asymptotic expansions for
perturbed disks defined in (6.1).

We can also use (5.6) to obtain bounds of intervals of values taken by the Dirichlet energy. In Figure 5, we
have plot both, the graphs of the functions J±

ε,p and the empirical quantiles. Notice that the bounds obtained by
the asymptotic expansions of the expectation and the variance are better than expected. Such a nice behavior
may depend on the specific choice of the Fourier basis, since the shape gradient and the shape Hessian evaluated
at the fi decrease fast as shown by the following computed values:

L(f1) = −0.786069 B(f1, f1) = −2.35621
L(f2) = −1.74702× 10−6 B(f2, f2) = −0.392049
L(f4) = 4.71636× 10−6 B(f4, f4) = 0.0246288
L(f6) = 3.00416× 10−7 B(f6, f6) = 0.0145671
L(f8) = 4.24149× 10−8 B(f8, f8) = 0.00767894

L(f10) = −1.48682× 10−7 B(f10, f10) = 0.00440313.
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Figure 5. Comparison between asymptotic expansions’ bounds and empirical quantiles for
perturbed disks defined in (6.1).

6.1.4. Random perturbations known by their mean and covariance

In this second test, we change the type of random perturbations: instead of being decomposed with respect
to the Fourier basis, X(ω) is now described by its zero mean and its covariance function. We shall consider
models with standard covariance kernels, namely Mátern kernels of smoothness class ν. Specifically, we choose
ν = ∞ which yields the Gaussian kernel k∞(x, y) = exp(−|x − y|2/2), we choose ν = 1/2 which yields the
exponential kernel k1/2(x, y) = exp(−|x − y|), and we choose ν = 3/2 which yields the kernel k3/2(x, y) =
(1 − √

3|x − y|) exp(−√
3|x − y|). The covariance kernels are discretized by 100 periodic cubic B-splines on

an equidistant subdivision of [0, 2π] in accordance with Section 4.3. The pivoted Cholesky decomposition with
accuracy 10−6 yields a rank of m = 19 for k∞, a rank of 69 for k3/2, and a rank of m = 100 for k1/2.

We still compare a Monte–Carlo simulation with the asymptotic expansions derived in this work for different
values ε ≤ 0.2. For the Monte–Carlo simulation, the truncated Karhunen–Lóeve expansion is exploited:

X(ω, θ) =
m∑

i=0

αi(ω)
√

λiϕi(θ).

Herein, the same accuracy is used as for the pivoted Cholesky decomposition which yields nearly the same
ranks m. Moreover, the random variables are i.i.d. and modeled as uniformly distributed in [−2/

√
3, 2/

√
3].

The numerical computation of the shape functional, shape gradient and shape Hessian is now performed by a
fast boundary element method as outlined in [12]. The Monte–Carlo method uses 10 000 samples. As seen in
Figures 6–8, the asymptotic expansions fit well the behaviour of the expectation and variance of the stochastic
shape functional under consideration for all covariance kernels under consideration.

6.2. The first eigenvalue of the Dirichlet–Laplace operator in a perforated ellipse

To consider another output function, we present simulations for the first eigenvalue of the Dirichlet–Laplace
operator. Again, the related shape gradient and shape Hessian are obtained thanks to Lemma 2.2. Here, the
reference domain D is the ellipse of semi-axes 4 and 3 where the disk of radius 1 which is centered in the
center of the ellipse has been removed. Random perturbations are applied to the disk’s boundary. As in the first
example, we take

f(θ) =
N∑

i=1

αi(ω)fi(θ)
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Figure 6. Expectation and variance of the Dirichlet energy – Gaussian covariance kernel k∞.
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Figure 7. Expectation and variance of the Dirichlet energy – Mátern covariance kernel k3/2.
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Figure 8. Expectation and variance of the Dirichlet energy – Exponential covariance kernel k1/2.
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Figure 9. Comparison between asymptotic expansion and Monte–Carlo simulation for the
eigenvalue problem – Uniform distribution.

where the αi are i.i.d. In the following computations, we have taken N = 21 and the fi are the first normalized
functions in the Fourier basis. We emphasize the local character of the approximation which is clearly seen in
Figure 9.
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