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GALERKIN METHODS FOR A SCHRÖDINGER-TYPE EQUATION
WITH A DYNAMICAL BOUNDARY CONDITION IN TWO DIMENSIONS ∗

D.C. Antonopoulou

Abstract. In this paper, we consider a two-dimensional Schrödinger-type equation with a dynamical
boundary condition. This model describes the long-range sound propagation in naval environments
of variable rigid bottom topography. Our choice for a regular enough finite element approximation
is motivated by the dynamical condition and therefore, consists of a cubic splines implicit Galerkin
method in space. Furthermore, we apply a Crank–Nicolson time stepping for the evolutionary variable.
We prove existence and stability of the semidiscrete and fully discrete solution. Due to the complexity
of the analyzed problem, we use very refined technics in order to derive estimates of the numerical error
in the H1-norm.
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1. Introduction

1.1. The ‘Parabolic’ equation with Neumann bottom boundary condition

The Helmholtz equation is a model for the long-range sound propagation in the sea that observes the acoustic
pressure as a function of depth, range - which is the horizontal distance from the acoustic source, and azimuth.
In cylindrical coordinates, this equation takes the form

prr +
1
r
pr +

1
r2

pϑϑ + pxx + k2
0n

2
refp = 0,

where p is the acoustic pressure. The variable r in [R0, R] is the horizontal distance from a harmonic point source
which is placed on the x axis emitting at a frequency f0. The depth variable x ≥ 0 is increasing downwards and
ϑ is the azimuth varying in the interval [ϑ1, ϑ2] with 0 ≤ ϑ1 < ϑ2 ≤ 2π. Furthermore,

k0 :=
2 π f0

c0
,
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is a reference wave number where the constant c0 is a reference sound speed, and

nref(r, x, ϑ) :=
c0

c(r, x, ϑ)
,

is the refraction index, where c (r, x, ϑ) is the sound speed in the water. The medium is inhomogeneous, therefore,
the refraction index depends on all variables.

The application of an envelop transformation and a paraxial far-field approximation lead to the standard
narrow-angle 2D ‘Parabolic’ Equation (PE), where ‘2D’ refers to the space variables, [15, 17, 18]. (PE) is the
following Schrödinger-type equation

Ψr =
i

2 k0

(
Ψxx +

1
r2

Ψϑϑ

)
+ i

k0

2
(n2

ref − 1)Ψ. (1.1)

The unknown function Ψ stands as a measure for the acoustic pressure in inhomogeneous, weakly range-
dependent marine environments.

More specifically, the envelop transformation is

p(r, x, ϑ) =
Ψ(r, x, ϑ)eik0r

√
k0r

.

Then, the equation (1.1) is derived under the assumptions of a paraxial approximation, i.e. that

|2ik0Ψr| >> |Ψrr|,
and of the far field approximation

k0r >> 1,

which means that (PE), as an approximate model, describes the sound transmission very far from the acoustic
source.

This approximation is motivated by the fact that Helmholtz equation is very difficult to be analyzed math-
ematically while its numerical analysis is highly nontrivial, since it is of elliptic type and is posed on a
3-dimensional domain. Simulations for realistic marine environments of range R equal to some kilometers and
of medium depth, easily result in linear systems where the number of unknowns is of order O(106); this nu-
merical cost restricts significantly the use of this equation in practice. (PE), being an evolutionary equation of
Schrödinger type, is much more accessible.

We assume that the variable bottom topography in cylindrical coordinates is given by a positive surface
x = s(r, ϑ). The equation (1.1) is posed on the noncylindrical domain (cf. Fig. 1),

S := {(r, x, ϑ) : r ∈ [R0, R], ϑ ∈ [ϑ1, ϑ2], x ∈ [0, s(r, ϑ)]} ,

where, of course, the boundary values of space variables depend on the evolutionary variable r. At a given

distance r, these values generate a union of 4 curves which are embedded in R3 given as
4∪

i=1
Si(r), for:

S1(r) := {(r, 0, ϑ) : ϑ ∈ [ϑ1, ϑ2]} ,

S2(r) := {(r, x, ϑ1) : x ∈ [0, s(r, ϑ1)]} ,

S3(r) := {(r, s(r, ϑ), ϑ) : ϑ ∈ [ϑ1, ϑ2]} (the variable boundary),

and
S4(r) := {(r, x, ϑ2) : x ∈ [0, s(r, ϑ2)]} ,

cf. Figure 2.
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Figure 1. The naval environment.
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Figure 2. The boundary at a fixed distance r.

The initial condition for the equation (1.1) is given by

Ψ(R0, x, ϑ) = Ψ0(x, ϑ) ∀ϑ ∈ [ϑ1, ϑ2], ∀x ∈ [0, s(R0, ϑ)], (1.2)

where Ψ0 represents a harmonic point source and is usually defined as a smooth function with compact support,
for example as a linear combination of Gaussian starters, cf. [18]. The horizontal surface of the domain which,
for given r, refers to S1(r) (sea surface) and the lateral boundaries S2(r) and S4(r) are assumed to be per-
fectly absorbing which is mathematically modeled by imposing the following homogeneous Dirichlet boundary
condition

Ψ(r, x, ϑ) = 0 on S1(r) ∪ S2(r) ∪ S4(r). (1.3)

In addition, a Neumann condition modeling the acoustically rigid bottom is posed along the variable boundary
S3(r), i.e.

∂Ψ

∂n
(r, ·) = 0 on S3(r),

which yields, since the domain is noncylindrical

Ψx(r, x, ϑ) − 1
r2

sϑ(r, ϑ)Ψϑ(r, x, ϑ) = sr(r, ϑ)Ψr(r, x, ϑ) on S3(r). (1.4)
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Figure 3. Bottom profile at a fixed azimuth ϑ.

This boundary condition is a nonstandard dynamical one because it includes the term Ψr and r is the time-like
evolutionary variable; note that r corresponds to time in the usual Schrödinger equation of quantum mechanics.

The equation so-obtained is of Schrödinger type, with Dirichlet condition for the free surface on the top and
Neumann condition along the bottom. The mathematical analysis of this problem is intricate when the profile
of the bottom varies with the distance r. Depending on the sign of term sr which is introduced in the leading
term of the Neumann condition, certain difficulties may be encountered.

In the axial symmetric case, which translates to an one-dimensional problem where the bottom s is only
a function of range r, Abrahamsson and Kreiss proved well-posedness when s is strictly monotone, cf. [1, 2].
Further, they observed the development of a significant amplitude increase in the long range propagation for
certain downsloping bottom profiles (sr ≥ 0). The analogous results were presented in [8], by means of numerical
simulations with finite element methods, for various cases of downsloping bottoms; in fact, numerical blow-up
was observed for such bottoms in the presence of inflection points. Remind that sr is the coefficient of the
dynamical term Ψr, the sign of which seems to be important for the Heat equation with dynamical conditions
also, cf. [13,19] for the theoretical p.d.e. problem and [8] for the optimal order error analysis of the constructed
numerical scheme.

In this paper we will apply Galerkin finite element methods to the initial and boundary problem (1.1)–(1.4),
when s is smooth, and decreasing in range (upsloping bottom), more specifically under the following assumptions
holding on the domain of definition of s (cf. Fig. 3):

sr(r, ϑ) ≤ 0 for any r, ϑ, where if sr(r0, ϑ0) = 0 for some r0, ϑ0, then sϑ(r0, ϑ0) = 0 also. (1.5)

Obviously, a strictly monotone topography (sr < 0) satisfies (1.5). In addition, this relation is in general valid
for monotone bottom profiles (sr ≤ 0) where critical points in distance may appear, under the restriction though
that any of these points must be a critical point in azimuth also.

The problem analyzed, posed in a single layer of water over a bottom of variable topography, is an idealized
one. More realistic environments consist of a layer of water above several layers of fluid sediments, cf. [11] for
a review considering the problem with interfaces. Furthermore, one has to take into account the shear stress
yielding the so-called elastic (TBC) conditions, [12].

Considering the one-dimensional problem posed on a variable domain there exists an intensive rigorous
numerical investigation. In [3, 6], the authors applied finite difference schemes to the Dirichlet problem; for an
optimal error analysis of finite difference and finite element schemes in the case of Neumann- or a Robin-type
bottom boundary condition cf. [4,8]. More recently, space-time discontinuous in time Galerkin methods for the
Dirichlet problem in Rn have been analyzed in [7]; cf. also in [6], for finite element methods of optimal accuracy
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in the multi-dimensional case with Dirichlet conditions. In [1], the Neumann boundary condition was modified
in a Robin-type one to ensure well-posedness of the (PE) problem posed on a rigid bottom; this model extended
in two dimensions has been analyzed in [9], where by proving a global elliptic regularity result the authors
derived optimal error estimates for the proposed finite element scheme.

Without restrictions on the bottom profile s, the well posedness of the (PE) with a Neumann condition (as
an initial and boundary value problem) remains open, while as we shall see in the sequel, there appear certain
technical obstacles even when we treat the numerical scheme.

1.2. The transformed problem

In order to derive an equivalent problem posed on a rectangle as in [4, 6, 7, 9, 17], we apply the horizontal
bottom transformation

z :=
x

s(r, ϑ)
. (1.6)

Furthermore, we define

q(r, ϑ) := − ln s

2
, Ψ(r, x, ϑ) = eq(r,ϑ)U(r, z, ϑ). (1.7)

After this change of variables the ibvp (1.1)–(1.4) takes the equivalent formulation for D := [0, 1] × [ϑ1, ϑ2],

Ur = AUzz + BUzϑ + CUϑϑ + DUz + EUϑ + iβU + f in [R0, R] ×D,

U = 0 at z = 0, and at ϑ = ϑ1, ϑ2,

[AUz +
B
2

Uϑ] + a1Uz + a2U + a3Ur = 0 at z = 1,

U = U0(z, ϑ) at r = R0, (1.8)

where a1, a2, a3 are functions of r, ϑ, and A = A(r, z, ϑ), B = B(r, z, ϑ), C = C(r), D = D(r, z, ϑ), E = E(r, ϑ),
f = f(r, z, ϑ). Also, cf. [5], for ã �= 0, then A, B, C, D, E, β, a1, a2, a3, are given by

A(z, r, ϑ) := iã
{ 1

s2
+

z2s2
ϑ

r2s2

}
, B(z, r, ϑ) := −2iã

r2
z
sϑ

s
, C(r) :=

iã
r2

,

D(z, r, ϑ) := z
sr

s
− iã

r2

z

s2
(sϑϑs − 2s2

ϑ) − 2
iã
r2

z
sϑ

s
qϑ, E(r, ϑ) := 2qϑ

iã
r2

,

β := βR + iβI ,

a1(r, ϑ) =
iãs2

r

s2
, a2(r, ϑ) =

iã
s

γ for γ(r, ϑ) :=
s2

r

2s
+

s2
ϑ

2r2s
, a3(r, ϑ) = −sr

iã
s

. (1.9)

Remark 1.1. The first change of variables, (1.6), transforms the noncylindrical domain into a cylindrical one
fact that somehow simplifies the application of numerical schemes, since range and space discretizations can
be independent; remind that range is a time-like variable. Of course, the resulting equation becomes more
complicated.

The second exponential transformation (1.7) together with the specific definition of q has been introduced
in [17]. From a mathematical point of view, it is related to the variable bottom boundary condition, which is
for this problem a Neumann one. It provides a simpler weak formulation for the continuous problem, while it is
crucial for the stability of the constructed numerical scheme (see also the Rems. 2.1, and 3.4 in Sects. 2 and 3
respectively).

Remark 1.2. Note that f = 0 for the specific transformed problem but for generalization purposes we shall
define f as an arbitrary complex function. In order to treat the (PE) problem (1.1) in a more general setting,
we introduce the complex function βΨ := ReβΨ + i ImβΨ as the coefficient of the zero order term; usually
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the imaginary part of βΨ refers to the absorption of the sound signal in the ocean (attenuation), [15], while
k0
2 (n2

ref − 1) may define ReβΨ .
The formulae of ã, β and U0 will not be used in this paper, we present them though for completeness; these

are given as follows:

ã :=
1

2k0
,

βR := ReβΨ +
ã

r2
Re(q2

ϑ + qϑϑ) − Imqr,

βI := ImβΨ +
ã

r2
Im(q2

ϑ + qϑϑ) + Reqr

U0(z, ϑ) := e−q(R0,ϑ)Ψ0(zs(R0, ϑ), ϑ).

1.3. Main results

The problem analyzed although being linear is very difficult due to the Neumann boundary condition posed
on a noncylindrical domain. More specifically in this condition appears a dynamical term together with first
order terms in space variables and the same holds after the horizontal bottom transformation in[

AUz + B
2 Uϑ

]
+ a1Uz + a2U + a3Ur = 0 at z = 1.

When the problem is written in weak formulation, this leads to trace integrals of space derivatives that are of
lower regularity and thus hardly estimated; in fact only those coming from [AUz + B

2 Uϑ] are eliminated. In
addition, the resulting p.d.e. has complex coefficients depending on all variables.

We formulate implicit finite element schemes for the ibvp (1.8). The treatment of the dynamical boundary
condition needs very refined estimates that are proven under the assumption of higher regularity for the finite
element space. More specifically, we use a cubic splines approximation in space variables; this was not the case
for the one-dimensional problem analyzed in [8], where a piece-wise linear approximation gave a second order
optimal error in the L2 norm. Furthermore, we apply a Crank–Nicolson discretization for the time-like variable r
and estimate the semidiscrete and fully discrete error in the H1 norm.

For a general upsloping bottom topography, where s is a function of the range r and azimuth ϑ and satis-
fies (1.5), we prove an H1 error of order O(h3− 1

2 + k2), for h and k the discretization parameters in space and
range respectively. Thus even though the scheme loses 1

2 from being optimal, it is a high order scheme in space,
while for h = O(k) the error in the L2 norm is of second order of accuracy. In other words, the dynamical
Neumann condition penalizes only slightly the order of accuracy.

In addition, if s depends only on azimuth we derive an optimal H1 error of order O(h3 + k2).
The rest of this paper is as follows: In Section 2 we express the ibvp (1.8) in a weak formulation for which

we prove uniqueness of solution. Here, we define an H1-type hermitian sesquilinear form. Further, we analyze
the form’s properties, mainly in regard to the higher regularity of the input data, to observe that more regular
inputs (H2) lead to better estimates. The next Section, 3, contains the analysis of a semidiscrete scheme in
space variables, and presents the detailed proof of H1-estimates of the error. Finally, in Section 4 we apply
a Crank–Nicolson method in range. By deriving an H1-stability result, we prove uniqueness of solution and
estimate the fully discrete error.

2. Weak formulation

Let (·, ·) denote the usual L2(D) inner product, and ‖ · ‖, ‖ · ‖m, m ∈ N∗ the norms in L2(D) and Hm(D)
respectively.

For r fixed, we define

H̃1
0 (D) :=

{
u ∈ H1(D) : u = 0 at z = 0, and at ϑ = ϑ1, ϑ2

}
,
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where H1(D) is the usual complex Sobolev space. Multiplying the p.d.e of (1.8) with φ̄ ∈ H̃1
0 (D), integrating

and using the boundary conditions we get the following weak formulation:

(Ur, φ) = − (AUz, φz) − (CUϑ, φϑ) − 1
2
{(BUz, φϑ) + (BUϑ, φz)}

+
(
{D− Az − Bϑ

2
}Uz, φ

)
+ i(βU, φ) + (f, φ) +

∫
z=1

[
AUz +

B
2

Uϑ

]
φ̄dϑ.

Note that for z = 1 we have

AUz + B
2 Uϑ = iã sr

s (Ur − sr

s Uz) − iã
s γ(r, ϑ)U. (2.1)

Thus, since

D − Az − Bϑ

2
= z

sr

s
, (2.2)

the weak formulation becomes(
Ur − z

sr

s
Uz − iβU, φ

)
= − (AUz, φz) − (CUϑ, φϑ) − 1

2
{(BUz, φϑ) + (BUϑ, φz)}

+ iã
∫

z=1

[
sr

s
(Ur − sr

s
Uz) − 1

s
γ(r, ϑ)U

]
φ̄dϑ + (f, φ), (2.3)

for any φ ∈ H̃1
0 (D).

We shall prove that (2.3) admits at most one solution in H̃1
0 (D)∩H2(D), under the assumptions (1.5) for s.

Remark 2.1. Note that the right-hand side of (2.2) admits this formula, which coincides with a specific term
of the Neumann condition at z = 1, due to the exponential transformation (1.7). Furthermore, the presence of z

is important since then Ur − z sr

s Uz − iβU ∈ H̃1
0 (D) and can be used as a test function in the weak formulation

when proving uniqueness in Theorem 2.6; this will result in an imaginary trace integral for the first order terms.

For any r in [R0, R], let B(r; v, w) : [R0, R] × H1(D) × H1(D) → C be the following sesquilinear form, for s,
sϑ defined on r:

B(r; v, w) :=
(

1
s2

(
1 +

s2
ϑ

r2
z2

)
vz , wz

)
+

1
r2

(vϑ, wϑ) − 1
r2

{(
z
sϑ

s
vz, wϑ

)
+

(
z
sϑ

s
vϑ, wz

)}
. (2.4)

Since all the appearing functions of z, r, ϑ are real, it follows that B is hermitian, i.e.

B(r; v, w) = B(r; w, v).

Using the definition of B, the weak problem (2.3) is equivalently written as(
Ur − z

sr

s
Uz − iβU, φ

)
= − iãB(r; U, φ)

+ iã
∫

z=1

[
sr

s
(Ur − sr

s
Uz) − 1

s
γ(r, ϑ)U

]
φ̄dϑ + (f, φ), (2.5)

for any φ ∈ H̃1
0 (D) with U ∈ H̃1

0 (D) ∩ H2(D) and U = U0(z, ϑ) at r = R0.
Throughout the rest of this paper the letter C will denote generic constants independent of the discretization

parameters.
Due to the definitions of A, B, and C, the stationary problem is elliptic and the sesquilinear form is coercive.

Furthermore, we obtain the next important lemma proven analytically in [5, 9].
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Lemma 2.2. If v ∈ H1(D), then there exist constants C1, C2 > 0 such that

C1‖v‖2
1 ≤ B(r; v, v) ≤ C2‖v‖2

1, for any r ∈ [R0, R]. (2.6)

In addition, by straightforward calculations the next lemma follows, cf. [5, 9].

Lemma 2.3. If v, vr ∈ H1(D) then there exists a constant C0 > 0 such that

1
2
∂rB(r; v, v) ≤ ReB(r; v, vr) + C0‖v‖2

1. (2.7)

We remind that if Ω is a bounded domain of Lipschitz boundary and 1 ≤ p ≤ ∞ then

‖v‖Lp(∂Ω) ≤ C‖v‖1−1/p
Lp(Ω)‖v‖1/p

W 1
p (Ω),

for any v ∈ W 1
p (Ω), cf. [10]. So, for p = 2 and since W 1

2 (D) := H1(D) we have∫
z=1

|v|2dϑ ≤ C‖v‖‖v‖1, (2.8)

for any v ∈ H1(D). This inequality will be frequently used when we estimate the appearing trace integral terms.
Assuming higher regularity for the variables of the form B we prove the next lemma. In view of relation (2.8),

H2(D) regularity is sufficient.

Lemma 2.4. If φ ∈ H̃1
0 (D) ∩ H2(D) then there exists a constant C > 0 such that

ReB
(
r; φ, z

sr

s
φz

)
≤C‖φ‖2

1 +
1
2

∫
z=1

sr

s3

{
1 +

s2
ϑ

r2

}
|φz |2dϑ

+
1
2

1
r2

∫
z=1

sr

s
|φϑ|2dϑ − 1

r2
Re

∫
z=1

sϑsr

s2
φzφ̄ϑdϑ.

Proof. The function z sr

s φz ∈ H̃1
0 (D) since it is zero at z = 0, ϑ = ϑ1, ϑ = ϑ2; hence, the quantity B(r; φ, z sr

s φz)
is well defined. We use the definition of B, and take real parts to obtain

ReB
(
r; φ, z

sr

s
φz

)
≤C‖φ‖2

1 + Re
(

1
s2

{1 + z2 s2
ϑ

r2 }φz, z
sr

s φzz

)
+

1
r2

Re
(
φϑ, z

sr

s
φzϑ

)
− 1

r2
Re

{
(z

sϑ

s
φz, z

sr

s φzϑ) + (z sϑ

s φϑ, z sr

s φzz)
}

.

Further, we compute every real part at the right-hand side of the above inequality by applying integration by
parts to each of these terms and using the boundary conditions, to get the result. �

Remark 2.5. It holds that if a, b, c are real and |a||b| > |c|2
4 then

|a||x|2 + |b||y|2 + cRe{xȳ} ≥ |a||x|2 + |b||y|2 − |c||x||y| ≥ 0,

for any complex x, y. Hence, since

1
2

1
s3

{
1 +

s2
ϑ

r2

}
1
2

1
r2

1
s

>
1
4

1
r4

s2
ϑ

s2s2
,

then under the assumptions (1.5) for s (upsloping bottom), Lemma 2.4 gives

ReB
(
r; φ, z

sr

s
φz

)
≤ C‖φ‖2

1, (2.9)

for any φ ∈ H̃1
0 (D) ∩ H2(D).
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Note that without (1.5) the estimate would only be

ReB
(
r; φ, z

sr

s
φz

)
≤ C‖φ‖1‖φ‖2.

The estimate (2.9) which is true for the upsloping case is used to establish uniqueness of weak solution. In
addition, it motivates in the sequel the choice of higher regularity (H2) for the finite element space and permits
us to estimate the numerical error.

For the sake of a simpler notation and for the rest of this paper, the symbol B(v, w), whenever is used, will
denote B(r; v, w).

The next theorem establishes uniqueness of solution for the weak formulation (2.5) in the upsloping bottom
case.

Theorem 2.6. Under the assumptions (1.5) for s (upsloping bottom) the problem (2.5) admits at most one
solution U in H̃1

0 (D) ∩ H2(D).

Proof. Obviously, since the non-homogeneous problem with general f is linear, it is sufficient to prove uniqueness
for f = 0.

In (2.5) we set f := 0 and define

φ := Ur − z
sr

s
Uz − iβU ∈ H̃1

0 (D).

Furthermore, we take imaginary parts and obtain

Im{ã−1‖φ‖2} = 0 = − ReB(U, Ur) + ReB
(
U, z

sr

s
Uz

)
+ ReB(U, iβU)

+
∫

z=1

sr

s
|φ + iβU |2dϑ + Re

∫
z=1

sr

s
[φ + iβU ][−iβU ]dϑ

− Re
∫

z=1

1
s
γ(r, ϑ)U [φ + iβU ]dϑ − Re

∫
z=1

1
s
γ(r, ϑ)U [−iβU ]dϑ.

Therefore,

ReB(U, Ur) =ReB
(
U, z

sr

s
Uz

)
+ ReB(U, iβU)

+
∫

z=1

sr

s
|φ + iβU |2dϑ + Re

∫
z=1

sr

s
[φ + iβU ][−iβU ]dϑ

− Re
∫

z=1

1
s
γ(r, ϑ)U [φ + iβU ]dϑ − Re

∫
z=1

1
s
γ(r, ϑ)U [−iβU ]dϑ

≤C‖U‖2
1 + ReB(U, iβU) + C‖U‖‖U‖1, (2.10)

where we used Remark 2.5 since U ∈ H̃1
0 (D)∩H2(D), together with the trace inequality (2.8) and the upsloping

bottom condition (1.5). Here, the non-positive trace term is∫
z=1

sr

s
|φ + iβU |2dϑ,

and is used to bound all the other trace integrals. Note that even when sr = 0 and this term vanishes the same
happens for all traces also since by (1.5) sϑ = 0 and thus γ = 0; this is the reason for assuming that when
sr(r, ϑ) is zero for some r, ϑ then sϑ(r, ϑ) is zero also.
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We use now Lemma 2.3 for v := U ∈ H1(D) and obtain

1
2
∂rB(U, U)− C0‖U‖2

1 ≤ ReB(U, Ur).

Hence, the above relation combined with (2.10) gives

1
2
∂rB(U, U)− C0‖U‖2

1 ≤ ReB(U, Ur) ≤ C‖U‖2
1 + ReB(U, iβU) + C‖U‖‖U‖1, (2.11)

for some C0 > 0.
Evidently, since U ∈ H1(D) then by (2.4), (2.11) and Lemma 2.2 we obtain

1
2
∂rB(U, U) ≤ CB(U, U). (2.12)

We integrate (2.12) and get
B(U, U) ≤ CB(U0, U0).

Applying again Lemma 2.2 in both sides, we have

‖U‖1 ≤ C‖U0‖1,

and so,
‖U‖ ≤ C‖U0‖1,

i.e. uniqueness of weak solution in H̃1
0 (D) ∩ H2(D). �

Remark 2.7. Usually in evolutionary equations, cf. [14] for parabolic initial and boundary value problems,
a weak solution and its evolutionary derivative, if they exist, are considered in evolutionary spaces. In the
same spirit, for the problem presented here, a weak solution U as a function of r, z, ϑ, if exists, should be in
L2(R0, R;H) for H := H̃1

0 (D) ∩ H2(D) and Ur in L2(R0, R;H−1) where H−1 is the dual space of H.
When proving uniqueness of weak solution, we considered something stronger for U : for any r ∈ (R0, R)

fixed, U(r, ·) in the Sobolev space H which gives that U ∈ L2(R0, R;H) since the range interval is bounded.
Of course, we only treated the uniqueness question. A proof of existence of weak solution for the continuous

problem, is not in the aims of this paper. When the bottom is only a function of range the problem is well-
posed, [1,2]. We refer also to the existing bibliography for the Heat equation with dynamical boundary conditions
conditions, [13, 19], and to the book of Evans [14].

3. Semidiscretization in depth and azimuth

Let Sh be a finite dimensional subspace of H̃1
0 (D) ∩ H2(D) consisting of complex-valued functions that are

polynomials of degree at most τ −1 ≥ 3 (for example cubic splines for τ = 4) in each element of a quasi-uniform
partition of D with maximum diameter h ∈ (0, h�]. Then, [10], the following approximation property holds for
s = 1, . . . , τ, ∀ v ∈ Hs(D), ∀h ∈ (0, h�]:

inf
χ∈Sh

{
‖v − χ‖ + h‖v − χ‖1

}
≤ C hs ‖v‖s. (3.1)

Also, we assume that the following inverse inequality holds

‖χ‖1 ≤ C h−1 ‖χ‖ ∀χ ∈ Sh, ∀h ∈ (0, h�], (3.2)

which is true since the partition of D is quasi-uniform [10].
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We seek Uh : [R0, R] → Sh such that(
∂rUh − Rh

(
z
sr

s
Uhz + iβUh

)
, φ

)
= −iãB(Uh, φ)

+ iã
∫

z=1

[
sr

s
Rh(∂rUh − z

sr

s
Uhz) − 1

s
γ(r, ϑ)Uh

]
φ̄dϑ + (f, φ), (3.3)

for any φ ∈ Sh, R0 < r ≤ R, with Uh(R0) a suitable approximation of U0 in Sh. Here, Rh : H̃1
0 (D) → Sh is

defined to satisfy for any v ∈ H̃1
0 (D)

B(Rhv, φ) = B(v, φ) for any φ ∈ Sh. (3.4)

Remark 3.1. The proposed semidiscrete scheme is implicit because it uses the projection induced by B. As
we shall see in the sequel, it mimics well the weak formulation of the continuous problem where when proving
H1 stability of solution we used Ur − z sr

s Uz + iβU as test function. Here, the analogous element in Sh is
∂rUh − Rh(z sr

s Uhz + iβUh) ∈ H2(D).

Remark 3.2. Observe that |B(v, w)| ≤ C‖v‖1‖w‖1 for any v, w ∈ H̃1
0 (D). Lemma 2.2, since v ∈ H̃1

0 (D) ⊂
H1(D), gives that B(v, v) ≥ C‖v‖2

1. Hence, by Lax–Milgram Lemma the projection operator Rh is well defined.

The next result establishes the existence of a unique solution for the scheme (3.3).

Proposition 3.3. Under the assumptions (1.5) (upsloping bottom), there exists a unique solution Uh ∈ Sh for
the semidiscrete scheme (3.3), which satisfies if f = 0

‖Uh‖1 ≤ C‖Uh(R0)‖1.

Proof. Since the problem is linear, in order to prove uniqueness it is sufficient to consider f = 0. So, in (3.3),
we set f = 0 and

φ := ∂rUh − Rh

(
z
sr

s
Uhz + iβUh

)
;

φ ∈ Sh because z sr

s Uhz ∈ H̃1
0 (D) and Uh ∈ Sh ⊂ H̃1

0 (D) ∩ H2(D). So, we have

‖φ‖2 =‖∂rUh − Rh

(
z
sr

s
Uhz + iβUh

)
‖2

= − iãB(Uh, ∂rUh) + iãB
(
Uh, Rh

(
z
sr

s
Uhz

))
+ iãB(Uh, Rh(iβUh))

+ iã
∫

z=1

{
sr

s

[
∂rUh − Rh

(
z
sr

s
Uhz

)]
− 1

s
γ(r, ϑ)Uh

}[
∂rUh − Rh

(
z
sr

s
Uhz + iβUh

)]
dϑ. (3.5)

But by the projection operator definition, it holds that

B
(
Uh, Rh

(
z
sr

s
Uhz

))
= B

(
Rh

(
z
sr

s
Uhz

)
, Uh

)
= B

(
z
sr

s
Uhz, Uh

)
= B

(
Uh, z

sr

s
Uhz

)
, (3.6)

while
B(Uh, Rh(iβUh)) = B(Rh(iβUh), Uh) = B(iβUh, Uh) = B(Uh, iβUh). (3.7)

Replacing (3.6) and (3.7) in (3.5), and using

∂rUh − Rh

(
z
sr

s
Uhz

)
= φ + Rh(iβUh),
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at the right-hand side, we have

‖φ‖2 =‖∂rUh − Rh

(
z
sr

s
Uhz + iβUh

)
‖2

= − iãB(Uh, ∂rUh) + iãB
(
Uh, z

sr

s
Uhz

)
+ iãB(Uh, iβUh)

+ iã
∫

z=1

{
sr

s

[
∂rUh − Rh

(
z
sr

s
Uhz

)]
− 1

s
γ(r, ϑ)Uh

}[
∂rUh − Rh

(
z
sr

s
Uhz + iβUh

)]
dϑ

=iã
[
− B(Uh, ∂rUh) + B

(
Uh, z

sr

s
Uhz

)
+ B(Uh, iβUh)

]
+ iã

∫
z=1

{sr

s
[φ + Rh(iβUh)] − 1

sγ(r, ϑ)Uh

}
φdϑ. (3.8)

In the above, we take imaginary parts and use (1.5) to obtain

ReB(Uh, ∂rUh) ≤ ReB
(
Uh, z

sr

s
Uhz

)
+ ReB(Uh, iβUh)

+ C

∫
z=1

[
|Uh|2 + |Rh(iβUh)|2

]
dϑ. (3.9)

But for v ∈ H̃1
0 (D), it follows that

C1‖Rhv‖2
1 ≤ C2‖Rhv‖1‖v‖1,

for some positive constants C1, C2. So, we have

‖Rhv‖2
1 ≤ C‖v‖1 for any v ∈ H̃1

0 (D). (3.10)

Using (3.10) in (3.9) and applying the trace inequality, we obtain

ReB(Uh, ∂rUh) ≤ ReB
(
Uh, z

sr

s
Uhz

)
+ C‖Uh‖2

1. (3.11)

Relation (3.11) together with Lemma 2.3 for Uh ∈ H1(D) and Remark 2.5 (since Uh ∈ H̃1
0 (D) ∩ H2(D)), give

for some C0 > 0

1
2

d
dr

B(Uh, Uh) − C0‖Uh‖2
1 ≤ ReB(Uh, ∂rUh) ≤ ReB

(
Uh, z

sr

s
Uhz

)
+ C‖Uh‖2

1

≤ C‖Uh‖2
1.

We integrate the above, use Lemma 2.2 and get for f = 0

‖Uh‖1 ≤ C‖Uh(R0)‖1 (uniqueness, stability).

Finally, we shall prove that the semidiscrete scheme (3.3) for f = 0, which is written in implicit form, is a
linear first order ordinary differential system, where the matrix consisting of the coefficients of the derivatives
is invertible. So, it has a solution which by stability is unique. As a result the non-homogeneous linear scheme
has also a unique solution.

Indeed, for the homogeneous differential system we obtain

(∂rUh, φ) =
(
Rh

(sr

s
zUhz − iβUh

)
, φ

)
− iãB(Uh, φ)

+ iã
∫

z=1

{
sr

s

[
∂rUh − Rh

(
z
sr

s
Uhz

)]
− 1

s
γ(r, ϑ)Uh

}
φ̄dϑ. (3.12)
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Observe first that the projection operator Rh is a linear operator taking values in a finite-dimensional space.

Let Uh =
N∑

i=1

ci(r)φi, then (3.12) gives that

B
−→̇
c (r) = C−→c (r),

with
Bij = (φi, φj) − iã

∫
z=1

sr

s
φiφ̄jdϑ.

Hence, B has the form
B = A1 − iãA2,

where φi, φj ∈ R, and A1 is a real, symmetric and positive definite matrix, while A2 is a real symmetric matrix.
Therefore, cf. [5, 8], the matrix B is invertible, and (3.12) admits a unique solution. �

Remark 3.4. In order to prove stability we used the test function φ = ∂rUh − Rh(z sr

s Uhz + iβUh) ∈ Sh.
This choice was possible and convenient for the same reasons explained in Remark 2.1, related to the specific
exponential transformation (1.7). Uniqueness of weak solution for the initial continuous problem is in fact inde-
pendent from (1.7), which just made the proof easier for the equivalent transformed one. The numerical scheme
is of course defined after the implementation of (1.7), so its stability certainly depends on this transformation.

3.1. Error estimates for the semidiscrete scheme

Let ε := Uh − U be the error of the semidiscrete scheme, where Uh ∈ Sh is the solution of (3.3) and U is the
solution of the weak problem (2.3).

For any u ∈ H1(D) we define
ω(u) := Rhu − u.

We write
ε = θ + ω(U),

with
θ := Uh − RhU ∈ Sh,

and ω(U) := RhU − U, where Rh is the projection operator given by (3.4).
Considering the projection error ω and its derivatives in r, the next important lemma holds true; cf. [5,9] for

the analytical and very technical proof which is based on a global elliptic regularity result for complex elliptic
problems with mixed Dirichlet and Robin conditions proven in [5, 9].

Lemma 3.5. If v ∈ H̃1
0 (D) ∩ Hs(D) then for ω := ω(v) we have

‖ω‖1 ≤ Chs−1‖v‖s and ‖ω‖ ≤ Chs‖v‖s,

‖ωr‖1 ≤ Chs−1{‖v‖s + ‖vr‖s} and ‖ωr‖ ≤ Chs{‖v‖s + ‖vr‖s},
‖ωrr‖ ≤ ‖ωrr‖1 ≤ Chs−1{‖v‖s + ‖vr‖s + ‖vrr‖s}, (3.13)

for any 1 ≤ s ≤ τ , where ω = Rhv − v and C > 0 is a constant independent of v, h.

Due to the fact that we seek an H2(D) semidiscrete solution we shall need estimates for the H2 norm of ω,
presented at the following lemma.

Lemma 3.6. If v ∈ H̃1
0 (D) ∩ Hs(D), 2 ≤ s ≤ 4, then for ω := ω(v) we have

‖ω‖2 ≤ Chs−2‖v‖s and ‖ωr‖2 ≤ Chs−2{‖v‖s + ‖vr‖s}, (3.14)

where C > 0 is a constant independent of v, h.
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Proof. We assumed that Sh ⊆ H̃1
0 (D) ∩ H2(D). Therefore, the interpolant Ih : H̃1

0 (D) ∩ H2(D) → Sh satisfies

‖Ihv − v‖ + h‖Ihv − v‖1 + h2‖Ihv − v‖2 ≤ Chs‖v‖s,

for 2 ≤ s ≤ τ and v ∈ H̃1
0 (D) ∩ Hs(D).

We have that τ = 4 (cubic splines [16]). Then for v ∈ H̃1
0 (D)∩Hs(D), using the inverse inequality in Sh and

the approximation property of the interpolant, together with Lemma 3.5, we obtain

‖Rhv − v‖2 ≤‖Rhv − Ihv‖2 + ‖Ihv − v‖2 ≤ Ch−2‖Rhv − Ihv‖ + chs−2‖v‖s

≤ Ch−2‖Rhv − v‖ + ch−2‖v − Ihv‖ + Chs−2‖v‖s

≤ Ch−2hs‖v‖s + ch−2hs‖v‖s + Chs−2‖v‖s ≤ Chs−2‖v‖s,

and

‖(Rhv − v)r‖2 =‖(Rhv)r − vr‖2 ≤ ‖(Rhv)r − Rh(vr)‖2 + ‖Rh(vr) − vr‖2

≤Ch−2‖(Rhv)r − Rh(vr)‖ + Chs−2‖vr‖s

≤Ch−2‖(Rhv)r − vr‖ + Ch−2‖Rh(vr) − vr‖ + Chs−2‖vr‖s

≤Ch−2hs{‖vr‖s + ‖v‖s} + Ch−2hs‖vr‖s + Chs−2‖vr‖s

≤Chs−2{‖vr‖s + ‖v‖s}. �

The next theorem estimates the numerical error of the semidiscrete scheme in the H1(D) norm.

Theorem 3.7. Let U be the solution of (1.8), τ = 4 (for example cubic splines approximation), U ∈ Hs(D)
and Uh be the solution of the semidiscrete scheme (3.3). Under the assumptions (1.5) the next estimate holds,
for 2 ≤ s ≤ τ

‖Uh − U‖1 ≤ ‖Uh(R0) − U(R0)‖1 + Chs− 3
2 + Chs−1‖U(R0)‖s. (3.15)

Proof. Obviously since
‖Uh − U‖1 = ‖ε‖1 = ‖θ + ω(U)‖1 ≤ ‖θ‖1 + ‖ω(U)‖1,

in order to estimate the error in the H1-norm, we must provide a bound for ‖θ‖1.
We subtract the weak formulation (2.5) and the semidiscrete scheme (3.3) to obtain for any φ ∈ Sh ⊂

H̃1
0 (D) ∩ H2(D) (

εr − Rh

(
z
sr

s
Uhz + iβUh

)
+ z

sr

s
Uz + iβU, φ

)
= −iãB(ε, φ)

+ iã
∫

z=1

{
sr

s

[
εr − Rh

(
z
sr

s
Uhz

)
+

sr

s
Uz

]
− 1

s
γ(r, ϑ)ε

}
φ̄dϑ. (3.16)

Recall the definition (2.4) of the form B.
Here, and for the rest of this paper, the symbol ω whenever appears without input denotes ω(U) = Rh(U)−U .
We choose now

φ := θr − Rh

(
z
sr

s
θz + iβθ

)
∈ Sh

and so, denoting
σ := Rh

(
z
sr

s
θz + iβθ

)
,

we have
φ = θr − σ.
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Remind that ω(u) := Rh(u) − u is well defined if u ∈ H1(D). The quantity

ω
(
z
sr

s
ωz + iβω

)
≡ ω

(
z
sr

s
ωz(U) + iβω(U)

)
(i.e. ω on z sr

s ωz(U) + iβω(U)) is well defined also since RhU ∈ Sh ⊆ H̃1
0 (D) ∩ H2(D), and furthermore

z sr

s ωz ∈ H̃1
0 (D).

In (3.16) we replace ε by θ + ω. By the definition of Rh, we have B(ω, φ) = 0. So, we replace

φ = θr − σ,

we take imaginary parts and obtain after straightforward but extensive calculations, cf. [5],

ReB(θ, θr) − ReB
(
θ, z

sr

s
θz + iβθ

)
−

[
Ã + CB̃‖θ‖ + CC̃‖σ‖

]
≤ C

∫
z=1

{
|Rh(iβθ)|2 + |Rh

(
z
sr

s
ωz

)
|2 + |ω

(
z
sr

s
Uz

)
|2 + |ωr − 1

s
γ(r, ϑ)ω|2 + |γ(r, ϑ)θ|2

}
dϑ, (3.17)

for

Ã :=
d
dr

1
ã
Im

(
{ω

(
z
sr

s
ωz + iβω

)
+ z

sr

s
ωz + iβω + ω

(
z
sr

s
Uz

)
+ ω(iβU) − ωr}, θ

)
,

B̃ :=
∥∥∥ωr

(
z
sr

s
ωz + iβω

)
+

d
dr

[
z
sr

s
ωz + iβω

]
+ ωr

(
z
sr

s
Uz

)
+ ωr(iβU) − ωrr

∥∥∥,

C̃ :=
∥∥∥ω

(
z
sr

s
ωz + iβω

)
+ z

sr

s
ωz + iβω + ω

(
z
sr

s
Uz

)
+ ω(iβU) − ωr

∥∥∥ .

Lemmas 2.2–2.4, yield

ReB(θ, θr) ≥ 1
2

d
dr

B(θ, θ) − C‖θ‖2
1,

and
ReB

(
θ, z

sr

s
θz + iβθ

)
≤ C‖θ‖2

1.

Hence, (3.17) becomes the following main inequality

1
2

d
dr

B(θ, θ) ≤
[
Ã + CB̃‖θ‖ + CC̃‖σ‖

]
+ C‖θ‖2

1

+ C

∫
z=1

{
|Rh(iβθ)|2 + |Rh

(
z
sr

s
ωz

)
|2 + |ω

(
z
sr

s
Uz

)
|2 + |ωr − 1

s
γ(r, ϑ)ω|2 + |γ(r, ϑ)θ|2

}
dϑ.

(3.18)

The inequality (3.18) is crucial for the proof, but as it contains many terms, we shall estimate each one of
them in successive steps.

Step 1:

We shall proceed by estimating B̃.
Considering B̃, we will show that is bounded under the regularity assumption for Sh. Indeed, since

z sr

s ωz, iβω ∈ H̃1
0 (D) then by Lemmas 3.6 and 3.5, we get

‖ωr

(
z
sr

s
ωz + iβω

)
‖ ≤ Ch{‖ωz‖1 + ‖ωzr‖1 + ‖ω‖1} ≤ Ch{‖ω‖2 + ‖ωr‖2}
≤ Chhs−2{‖U‖s + ‖vr‖s} = Chs−1{‖U‖s + ‖Ur‖s}.
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Also, we have ∥∥∥∥ d
dr

[
z
sr

s
ωz + iβω

]∥∥∥∥ ≤ C{‖ωz‖ + ‖ωrz‖ + ‖ω‖ + ‖ωr‖}
≤ C{‖ω‖1 + ‖ωr‖1 + ‖ω‖ + ‖ωr‖}
≤ Chs−1{‖U‖s + ‖Ur‖s},

and

‖ωr

(
z
sr

s
Uz

)
+ ωr(iβU) + ωrr‖ ≤ C{‖ωr(Uz)‖ + ‖ωr‖ + ‖ωrr‖}

≤ Chs−1{‖U‖s + ‖Ur‖s + ‖Urr‖s}.

Thus, we obtain
B̃ ≤ Chs−1{‖U‖s + ‖Ur‖s + ‖Urr‖s}. (3.19)

Step 2:

Considering C̃ we have

∥∥∥ω
(
z
sr

s
ωz + iβω

)∥∥∥ ≤ C‖ω(ωz) + ω(ω)‖ ≤ Ch{‖ωz‖1 + ‖ω‖1}
≤ Ch‖ω‖2 ≤ Chs−1‖U‖s,

while the next inequality holds true∥∥∥z
sr

s
ωz + iβω + ω

(
z
sr

s
Uz

)
+ ω(iβU) − ωr

∥∥∥
≤ C{‖ω‖1 + ‖ω‖ + ‖ω(Uz)‖ + ‖ω(U)‖ + ‖ωr‖}
≤ Chs−1‖U‖s + Chs‖Uz‖s + Chs{‖U‖s + ‖Ur‖s}
≤ Chs−1{‖U‖s + ‖Ur‖s}.

So, we get
C̃ ≤ Chs−1{‖U‖s + ‖Ur‖s}. (3.20)

Step 3:

We replace the estimates of B̃ and C̃ in main inequality (3.17).
Indeed, using (3.19), (3.20), relation (3.17) is written as

1
2

d
dr

B(θ, θ) ≤ Ã + C‖θ‖2
1

+ Chs−1{‖U‖s + ‖Ur‖s + ‖Urr‖s}‖θ‖ + Chs−1{‖U‖s + ‖Ur‖s}‖σ‖

+ C

∫
z=1

{
|Rh(iβθ)|2 +

∣∣∣Rh

(
z
sr

s
ωz

)∣∣∣2 +
∣∣∣ω (

z
sr

s
Uz

)∣∣∣2 +
∣∣∣∣ωr − 1

s
γ(r, ϑ)ω

∣∣∣∣2 + |γ(r, ϑ)θ|2
}

dϑ. (3.21)

Let us comment how we shall treat relation (3.21). The trace term and ‖σ‖ will be suitably bounded.
Furthermore, we shall integrate the resulting inequality.
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Step 4:

Considering the terms of the trace integral we first obtain∫
z=1

|Rh(iβθ)|2dϑ ≤ C

∫
z=1

{|ω(iβθ)|2 + |θ|2}dϑ

≤ C‖ω(θ)‖2
1 + C‖θ‖2

1 ≤ C‖θ‖2
1 + C‖θ‖2

1 ≤ C‖θ‖2
1. (3.22)

The following term gives the lowest order in our estimates. In fact, using the inverse and trace inequalities, we
arrive at ∫

z=1

|Rh

(
z
sr

s
ωz

)
|2dϑ ≤ C‖Rh

(
z
sr

s
ωz

)
‖.‖Rh

(
z
sr

s
ωz

)
‖1

≤ Ch−1‖Rh

(
z
sr

s
ωz

)
‖2

≤ Ch−1{‖ω
(
z
sr

s
ωz

)
‖2 + ‖ωz‖2}

≤ Ch−1(h2‖ωz‖2
1 + h2s−2‖U‖2

s)

≤ Ch−1(h2h2s−4‖U‖2
s + h2s−2‖U‖2

s)
≤ Ch2s−3‖U‖2

s. (3.23)

Furthermore, the next relations hold true∫
z=1

∣∣∣ω (
z
sr

s
Uz

)∣∣∣2 dϑ ≤ C‖ω(Uz)‖1‖ω(Uz)‖ ≤ Ch2s−3‖U‖2
s,∫

z=1

∣∣∣∣ωr − 1
s
γ(r, ϑ)ω

∣∣∣∣2 dϑ ≤ Ch2s−1{‖U‖2
s + ‖Ur‖2

s},∫
z=1

|γ(r, ϑ)θ|2dϑ ≤ C‖θ‖2
1. (3.24)

Step 5:

We replace the estimates of trace integrals.
Indeed, using (3.22)–(3.24), relation (3.21) becomes

1
2

d
dr

B(θ, θ) ≤Ã + Chs−1{‖U‖s + ‖Ur‖s + ‖Urr‖s}‖θ‖ + Chs−1{‖U‖s + ‖Ur‖s}‖σ‖
+ Ch2s−3‖U‖2

s + Ch2s−1{‖U‖2
s + ‖Ur‖2

s} + C‖θ‖2
1. (3.25)

Step 6:

We estimate ‖σ‖ and replace in (3.25).
The inverse inequality gives

‖σ‖ = ‖Rh

(
z
sr

s
θz + iβθ

)
‖

≤
∥∥∥ω

(
z
sr

s
θz + iβθ

)∥∥∥ + c‖θz‖ + C‖θ‖
≤ Ch‖θz‖1 + Ch‖θ‖1 + C‖θ‖1

≤ Ch‖θ‖2 ≤ C‖θ‖1.
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Thus, (3.25) takes the form

d
dr

B(θ, θ) ≤2Ã + chs−1{‖U‖s + ‖Ur‖s + ‖Urr‖s}‖θ‖1

+ C‖θ‖2
1 + Ch2s−3(‖U‖2

s + ‖Ur‖2
s)

≤2Ã + ch2s−2{‖U‖2
s + ‖Ur‖2

s + ‖Urr‖2
s}

+ C‖θ‖2
1 + Ch2s−3(‖U‖2

s + ‖Ur‖2
s)

≤2Ã + C‖θ‖2
1 + Ch2s−3(‖U‖2

s + ‖Ur‖2
s + ‖Urr‖2

s). (3.26)

We integrate (3.26) and obtain

B(θ, θ) ≤ 2
∫ r

R0

Ãds + Ch2s−3

∫ r

R0

[‖U‖2
s + ‖Ur‖2

s + ‖Urr‖2
s]ds

+ C

∫ r

R0

‖θ‖2
1ds + B(R0; θ, θ). (3.27)

Step 7:

We estimate the integral of Ã.
Easily, it follows that∫ r

R0

Ãds ≤C{‖ω(ωz)‖ + ‖ω(ω)‖ + ‖ωz‖ + ‖ω‖ + ‖ω(Uz)‖ + ‖ωr‖}‖θ‖1

+ C{‖ω(ωz)‖ + ‖ω(ω)‖ + ‖ωz‖ + ‖ω‖ + ‖ω(Uz)‖ + ‖ωr‖}(R0)‖θ(R0)‖1, (3.28)

where the notation {· · · }(R0) denotes the quantities in these brackets computed at r = R0. In addition, we
have

‖ω(ωz)‖ ≤ Ch‖ωz‖1 ≤ Chhs−2‖U‖s ≤ Chs−1‖U‖s,

‖ω(ω)‖ ≤ Ch‖ω‖1 ≤ Chhs−1‖U‖s ≤ Chs‖U‖s,

‖ω(Uz)‖ ≤ Chs‖Uz‖s ≤ Chs−1‖U‖s. (3.29)

In (3.28), we use the estimates for ‖ω‖, ‖ωr‖, ‖ω‖1 and (3.29). So, we obtain∫ r

R0

Ãds ≤ Chs−1(‖U‖s + ‖Ur‖s)‖θ‖1 + Chs−1(‖U(R0)‖s + ‖Ur(R0)‖s)‖θ(R0)‖1. (3.30)

Final Step:

Relations (3.27), (3.30) and Lemma 2.2 yield

C‖θ‖2
1 ≤B(θ, θ)

≤Ch2s−2(‖U‖s + ‖Ur‖s)2 + Ch2s−3

∫ r

R0

[‖U‖2
s + ‖Ur‖2

s + ‖Urr‖2
s]ds

+ C

∫ r

R0

‖θ‖2
1ds + Ch2s−2(‖U(R0)‖s + ‖Ur(R0)‖s)2 + C‖θ(R0)‖2

1. (3.31)

We must estimate first

δ(r) :=
∫ r

R0

‖θ‖2
1ds.
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Using this notation, (3.31) is written as
d
dr

δ(r) ≤ E + Cδ(r), (3.32)

for

E := Ch2s−2(‖U‖s + ‖Ur‖s)2 + Ch2s−3

∫ r

R0

[‖U‖2
s + ‖Ur‖2

s + ‖Urr‖2
s]ds

+ Ch2s−2(‖U(R0)‖s + ‖Ur(R0)‖s)2 + C‖θ(R0)‖2
1.

Integrating (3.32) yields
δ(r) ≤ Cδ(R0) + CE = CE ,

i.e. ∫ r

R0

‖θ‖2
1ds ≤ CE .

We replace in (3.31) this estimate, and we arrive at

‖θ‖2
1 ≤ Ch2s−3 + C‖θ(R0)‖2

1. (3.33)

By (3.33) and (3.14) the H1 error estimate follows. �

Observing the proof of Theorem 3.7 we easily see that when s is only depending on the azimuth ϑ (sr = 0 for
any r, ϑ) then the suboptimal term

∫
z=1

|Rh(z sr

s ωz)|2dϑ vanishes. Furthermore, the results of all the presented
lemmas and theorems hold true in this case also, cf. [5]. So, we obtain the next theorem that gives an optimal
error in the H1(D) norm.

Theorem 3.8. Let U be the solution of (1.8), τ = 4 (for example cubic splines approximation), U ∈ Hs(D)
and Uh be the solution of the semidiscrete scheme (3.3). Under the assumptions (1.5), the next estimate holds
true, for 2 ≤ s ≤ τ and r ∈ [R0, R]

‖Uh − U‖1 ≤ ‖Uh(R0) − U(R0)‖1 + Chs−1 + Chs−1‖U(R0)‖s. (3.34)

4. Crank–Nicolson fully discrete schemes in range

We consider a uniform partition in the range interval [R0, R]. More specifically, for N ∈ N∗ we define
k := (R − R0)/N and rn := R0 + nk for any n = 0, . . . , N . Further, let rn+1/2 := (rn + rn+1)/2 for any
n = 0, . . . , N − 1.

For Un given, we seek Un+1 ∈ Sh such that(
Un+1 − Un

k
− Rh

(
z
sr(rn+1/2)
s(rn+1/2)

(
Un+1 + Un

2

)
z

+ iβ(rn+1/2)
Un+1 + Un

2

)
, φ

)
=

− iãB
(

rn+1/2;
Un+1 + Un

2
, φ

)
+

(
f

(
rn+1/2

)
, φ

)
+ iã

∫
z=1

[
sr(rn+1/2)
s(rn+1/2)

Rh

(
Un+1 − Un

k
− z

sr(rn+1/2)
s(rn+1/2)

(
Un+1 + Un

2

)
z

)
− 1

s(rn+1/2)
γ(rn+1/2)

Un+1 + Un

2

]
φ̄dϑ,

(4.1)

for any φ ∈ Sh, 0 ≤ n ≤ N − 1.
Here, U0 is an appropriate projection of U0 in Sh. Moreover, the projection operator Rh used is induced by

B(rn+1/2; u, v).



1146 D.C. ANTONOPOULOU

Remark 4.1. Obviously the fully discrete scheme is linear and is written in implicit form. In every step it
demands the successive solution of 3 linear systems. More specifically, for Un given, (4.1) is implemented as
follows:

1. Compute Rh(z sr(rn+1/2)
s(rn+1/2)

(Un)z) by solving the linear system

B
(

rn+1/2; Rh

(
z
sr(rn+1/2)
s(rn+1/2)

(Un)z

)
, φ

)
= B

(
rn+1/2; z

sr(rn+1/2)
s(rn+1/2)

(Un)z , φ

)
,

for any φ in the basis of Sh (N ×N 1st linear system which has a unique solution since B is well defined).
2. Compute Rh(β(rn+1/2)Un) by solving the linear system

B(rn+1/2; Rh(β(rn+1/2)Un), φ) = B(rn+1/2; β(rn+1/2)Un, φ),

for any φ in the basis of Sh (N ×N 2nd linear system which has a unique solution since B is well defined).
3. Solve the following 3N × 3N 3rd linear system for any φ in the basis of Sh

(4.1) (where the computed Rh

(
z
sr(rn+1/2)
s(rn+1/2)

(Un)z

)
, Rh(β(rn+1/2)Un)

are replaced)

B(rn+1/2; Rh

(
z
sr(rn+1/2)
s(rn+1/2)

(Un+1)z

)
, φ) = B

(
rn+1/2; z

sr(rn+1/2)
s(rn+1/2)

(Un+1)z , φ

)
B(rn+1/2; Rh(β(rn+1/2)Un+1), φ) = B(rn+1/2; β(rn+1/2)Un+1, φ).

Thus, the 3N unknowns are:
Un+1, Rh

(
z sr(rn+1/2)

s(rn+1/2)
(Un+1)z

)
and Rh

(
β(rn+1/2)Un+1

)
.

Remark 4.2. The numerical solution of these three systems which are solved successively results in an algo-
rithm of numerical cost equivalent to solving a 5N × 5N linear multi-diagonal system. Therefore, the fact that
our scheme is implicit does not affect the numerical complexity of the algorithm.

On the other hand, the numerical implementation of the scheme is highly non-trivial. The complexity of
simulations is due mainly to the following reasons: a) the spatial domain is 2-dimensional, b) the presence of
a Neumann dynamical condition in 2 dimensions results in a cubic splines approximation which is of third
polynomial order, (c) the Neumann condition involves a dynamical term which changes in every step in r. A
forthcoming paper will be devoted to the numerical experiments and the discussion on the implementation
issues.

Considering the 1-dimensional case with Neumann condition and for the 2-dimensional case with the modified
Robin condition in place of the Neumann one, numerical simulations in piece-wise linear finite element spaces
have been constructed by Antonopoulou in her Ph.D. thesis in [5]; cf. also in Ph.D. thesis of Sturm [17], and
in [8, 9].

Now, by H1 stability, we shall prove that the fully discrete scheme is well posed.

Proposition 4.3. Under the assumptions (1.5), the fully discrete scheme (4.1) is H1-stable and admits a unique
solution in Sh.

Proof. In (4.1) we take f = 0.
We note that the non-homogeneous discrete problem which is given in implicit form is linear, so uniqueness

which is equivalent to existence it is sufficient to be proven for f = 0, i.e. for the homogeneous case. In addition,
the stability argument in fact refers to the difference of two possible solutions that each of them satisfy the
same fully discrete scheme (4.1) with different initial conditions. So, due to linearity, this difference satisfy the
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problem (4.1) with f = 0 (homogeneous) and U0 the resulting difference of initial conditions of the discrete
problems.

We set

φ :=
Un+1 − Un

k
− Rh

(
z
sr(rn+1/2)
s(rn+1/2)

(
Un+1 + Un

2

)
z

+ iβ(rn+1/2)
Un+1 + Un

2

)
,

and get

‖φ‖2 = −iãB(rn+1/2;
Un+1 + Un

2
, φ)

+ iã
∫

z=1

[
sr(rn+1/2)
s(rn+1/2)

Rh

(
Un+1 − Un

k
−z

sr(rn+1/2)
s(rn+1/2)

(
Un+1 + Un

2

)
z

)
− 1

s(rn+1/2)
γ(rn+1/2)

Un+1 + Un

2

]
φ̄dϑ.

(4.2)

Observe now that

−ReB
(

rn+1/2;
Un+1 + Un

2
, φ

)
= − ReB

(
rn+1/2;

Un+1 + Un

2
,
Un+1 − Un

k

)
+ ReB

(
rn+1/2;

Un+1 + Un

2
, z

sr(rn+1/2)
s(rn+1/2)

(
Un+1 + Un

2

)
z

)
+ ReB

(
rn+1/2;

Un+1 + Un

2
, iβ(rn+1/2)

Un+1 + Un

2

)
. (4.3)

We proceed by estimating the trace integral. The specific choice of φ is crucial, since the non-positive trace
integral

Re
∫

z=1

sr

s

∣∣∣∣Un+1 − Un

k
− Rh(z

sr

s

(
Un+1 + Un

2

)
z

)
∣∣∣∣2 dϑ,

will appear. Indeed, as sr ≤ 0 it follows

Re
∫

z=1

[
sr

s
Rh

(
Un+1 − Un

k
− z

sr

s

(
Un+1 + Un

2

)
z

)
− 1

s
γ

Un+1 + Un

2

]
φ̄dϑ

=Re
∫

z=1

[
sr

s

Un+1 − Un

k
− Rh

(
z
sr

s

(
Un+1 + Un

2

)
z

)]
φ̄dϑ

− Re
∫

z=1

sr

s

(
1
s
γ

Un+1 + Un

2

)
φ̄dϑ

=Re
∫

z=1

sr

s

∣∣∣∣Un+1 − Un

k
− Rh

(
z
sr

s

(
Un+1 + Un

2

)
z

)∣∣∣∣2 dϑ

− Re
∫

z=1

sr

s

(
Un+1 − Un

k
− Rh

(
z
sr

s

(
Un+1 + Un

2

)
z

))
Rh(iβ

Un+1 + Un

2
)dϑ

− Re
∫

z=1

sr

s

(
1
s
γ

Un+1 + Un

2

) (
Un+1 − Un

k
− Rh

(
z
sr

s

(
Un+1 + Un

2

)
z

))
dϑ

+ Re
∫

z=1

sr

s

(
1
s
γ

Un+1 + Un

2

)
Rh

(
iβ

Un+1 + Un

2

)
dϑ

≤C

∫
z=1

{∣∣∣∣Un+1 + Un

2

∣∣∣∣2 +
∣∣∣∣Rh

(
iβ

Un+1 + Un

2

)∣∣∣∣2
}

dϑ

≤C

∥∥∥∥Un+1 + Un

2

∥∥∥∥2

1

+ C

∥∥∥∥Rh

(
Un+1 + Un

2

)∥∥∥∥2

1

≤ C

∥∥∥∥Un+1 + Un

2

∥∥∥∥2

1

. (4.4)
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Note that for the above we used also the trace inequality together with relation (3.10).
Furthermore, in (4.2) we take imaginary parts and divide by ã. Then we use relations (4.3), (4.4). So, we

obtain

ReB
(

rn+1/2;
Un+1 + Un

2
,
Un+1 − Un

k

)
≤ReB

(
rn+1/2;

Un+1 + Un

2
, z

sr

s

(
Un+1 + Un

2

)
z

)
+ C

∥∥∥∥Un+1 + Un

2

∥∥∥∥2

1

≤C

∥∥∥∥Un+1 + Un

2

∥∥∥∥2

1

, (4.5)

where for the last inequality we used Lemma 2.4.
In addition, it holds that

ReB
(

rn+1/2;
Un+1 + Un

2
,
Un+1 − Un

k

)
=

1
2k

{B(rn+1/2; Un+1, Un+1) − B(rn+1/2; Un, Un)}.

So, we have by (4.5)

B(rn+1/2; Un+1, Un+1) ≤ B(rn+1/2; Un, Un) + Ck‖Un+1‖2
1 + Ck‖Un‖2

1,

which yields

B(rn+1; Un+1, Un+1) ≤B(rn; Un, Un) + [B(rn+1/2; Un, Un) − B(rn; Un, Un)]

− [B(rn+1/2; Un+1, Un+1) − B(rn+1; Un+1, Un+1)]
+ Ck‖Un+1‖2

1 + Ck‖Un‖2
1

≤B(rn; Un, Un) + Ck‖Un+1‖2
1 + Ck‖Un‖2

1.

Here, we used the definition of B(r; u, w) which is related to an H1-type projection operator containing only
terms of the form (g(r)ua, wb) for a, b = z, ϑ and so

|B(r1; u, w) − B(r2; u, w)| ≤ C|r1 − r2|‖u‖1‖w‖1.

Thus, we obtain

B(rn+1; Un+1, Un+1) ≤B(rn; Un, Un) + Ck‖Un+1‖2
1 + Ck‖Un‖2

1

≤B(rn; Un, Un) + CkB(rn+1; Un+1, Un+1) + CkB(rn; Un, Un),

where we used relation (2.6). So, for k small we arrive at

B(Un+1, Un+1) ≤
(

1 + ck

1 − ck

)
B(Un, Un). (4.6)

By (4.6) and (2.6) and since k is small we get

C1‖Un+1‖1 ≤ B(Un+1, Un+1) ≤ CB(U0, U0) ≤ C‖U0‖1 (stability-uniqueness),

and therefore,
‖Un+1‖ ≤ C‖U0‖1.

Hence, by uniqueness of solution we obtain existence. �
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4.1. Error estimates

We define the error εn := Un − U(rn). We set

εn = θn + ωn,

with

θn = Un − Rn
h(U(rn)), and ωn := Rn

h(U(rn)) − U(rn).

Let

Ωn := Rn
h(U(rn)), and Ωn+1/2 = (Ωn+1 + Ωn)/2,

then

Un = θn + Ωn.

Here, Rn
h is induced by B(rn; u, v) so that

B(rn; Rn
h(U(rn)), φ) = B(rn; U(rn), φ),

for any φ ∈ Sh. We also define

θn+1/2 := (θn+1 + θn)/2.

4.1.1. Preliminaries

The scheme (4.1) gives that for any φ ∈ Sh(
θn+1 − θn + Ωn+1 − Ωn

k
− Rh

(
z
sr

s

(
θn+1/2

z + Ωn+1/2
z

)
+ iβ

(
θn+1/2 + Ωn+1/2

))
, φ

)
=

− iãB(rn+1/2; θn+1/2 + Ωn+1/2, φ) + (f, φ)

+ iã
∫

z=1

{
sr

s
Rh

(
θn+1 − θn + Ωn+1 − Ωn

k
− z

sr

s

(
θn+1/2

z + Ωn+1/2
z

))
−1

s
γ

(
θn+1/2 + Ωn+1/2

)}
φ̄dϑ,

where s, sr, β, γ and f are computed at r := rn+1/2. In the above, we use the identity

B(rn+1/2; Ωn+1/2, φ) = B
(

rn+1/2;
U(rn+1) + U(rn)

2
, φ

)
+ B(rn+1/2, En

0 , φ),

for

En
0 :=

1
2

(
[Rn

h(U(rn)) − U(rn)] + [Rn+1
h (U(rn+1)) − U(rn+1)]

− [Rn+1/2
h (U(rn) + U(rn+1)) − (U(rn) + U(rn+1))]

)
, (4.7)
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where R
n+1/2
h is induced by B(rn+1/2; u, v). So, we obtain(

θn+1 − θn

k
− Rh

(
z
sr

s
θn+1/2

z + iβθn+1/2
)

, φ

)
= −iãB(rn+1/2; θn+1/2, φ)

+ iã
∫

z=1

sr

s

[
θn+1 − θn

k
− Rh

(
z
sr

s
θn+1/2

z

)]
φ̄dϑ − iã

∫
z=1

1
s
γθn+1/2φ̄dϑ

+
(
Rh

(
z
sr

s
Ωn+1/2

z

)
, φ

)
+

(
Rh

(
iβΩn+1/2

)
, φ

)
− iãB

(
rn+1/2;

U(rn+1) + U(rn)
2

, φ

)
+ iã

∫
z=1

sr

s

Ωn+1 − Ωn

k
φ̄dϑ

− iã
∫

z=1

sr

s
Rh

(
z
sr

s
Ωn+1/2

z

)
φ̄dϑ − iã

∫
z=1

1
s
γΩn+1/2φ̄dϑ

−
(

Ωn+1 − Ωn

k
, φ

)
+ (f, φ) − iãB(rn+1/2; En

0 , φ). (4.8)

Observe that for the continuous problem it holds that

(f, φ) =
(
Ur − z

sr

s
Uz − iβU, φ

)
+ iãB(rn+1/2; U, φ)

− iã
∫

z=1

{
sr

s

[
Ur − sr

s
Uz

]
− 1

s
γU

}
φ̄dϑ,

for f , s, sr, β, γ and U , Ur, Uz defined on r := rn+1/2 and φ is in Sh. In (4.8) we replace (f, φ) given by the
previous formula and obtain(

θn+1 − θn

k
− Rh

(
z
sr

s
θn+1/2

z + iβθn+1/2
)

, φ

)
=

− iãB(rn+1/2; θn+1/2, φ) + iã
∫

z=1

sr

s

[
θn+1 − θn

k
− Rh

(
z
sr

s
θn+1/2

z

)]
φ̄dϑ

− iã
∫

z=1

1
s
γθn+1/2φ̄dϑ + (En

1 , φ) + (En
2 , φ) + (En

3 , φ)

+ iãB(rn+1/2; En
4 , φ) − iã

∫
z=1

sr

s
En

1 φ̄dϑ

− iã
∫

z=1

sr

s
En

2 φ̄dϑ + iã
∫

z=1

1
s
γEn

5 φ̄dϑ − iãB(rn+1/2; En
0 , φ), (4.9)

where

En
1 := Ur(rn+1/2) − Ωn+1 − Ωn

k
,

En
2 := Rh

(
z
sr

s
Ωn+1/2

z

)
− z

sr

s
Uz(rn+1/2),

En
3 := Rh(iβΩn+1/2) − iβU(rn+1/2),

En
4 := U(rn+1/2) − U(rn+1) + U(rn)

2
,

En
5 := U(rn+1/2) − Ωn+1/2. (4.10)

4.1.2. Derivation of the fully discrete error estimate

Analogously to the semidiscrete scheme, we choose

φ =
θn+1 − θn

k
− Rh

(
z
sr(rn+1/2)
s(rn+1/2)

θn+1/2
z + iβ(rn+1/2)θn+1/2

)
.
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Then, we define

σn := Rh

(
z
sr(rn+1/2)
s(rn+1/2)

θn+1/2
z + iβ(rn+1/2)θn+1/2

)
,

and we write

φ =
θn+1 − θn

k
− σn. (4.11)

In (4.9) we take imaginary parts and obtain

0 = − ãReB(rn+1/2; θn+1/2, φ) + ã

∫
z=1

sr

s
|φ|2dϑ − ãRe

∫
z=1

1
s
γθn+1/2φ̄dϑ

+ Im[(En
1 , φ) + (En

2 , φ) + (En
3 , φ)] + ãReB(rn+1/2; En

4 , φ)

− ãRe
∫

z=1

[
sr

s
En

1 +
sr

s
En

2 − 1
s
γEn

5

]
φ̄dϑ + Re

∫
z=1

sr

s
Rh(iβθn+1/2)φ̄dϑ

− ãReB(rn+1/2; En
0 , φ).

In the above, we replace φ by (4.11) in the first sesquilinear form and in the inner products. Since sr ≤ 0 we
use

∫
z=1

sr

s |φ|2dϑ to bound the trace integrals and then apply the trace inequality to obtain

ReB(rn+1/2; θn+1/2,
θn+1 − θn

k
) ≤ ReB(rn+1/2; θn+1/2, σn)

+
∫

z=1

|C0|2 sr

s
|φ|2dϑ + C‖θn+1/2‖2

1

+
1
ã

[
‖En

1 ‖ + ‖En
2 ‖ + ‖En

3 ‖
]
‖σn‖ + ReB(rn+1/2; En

4 , φ)

+
1
ãk

Im
[
(En

1 , θn+1 − θn) + (En
2 , θn+1 − θn) + (En

3 , θn+1 − θn)
]

+ C

∫
z=1

(
|En

1 |2 + |En
2 |2 + |En

5 |2
)
dϑ − ReB(rn+1/2; En

0 , φ), (4.12)

where we used the relation (3.10).
The trace inequality applied on the trace integral of (4.12), gives

ReB(rn+1/2; θn+1/2, θn+1 − θn) ≤ kReB(rn+1/2; θn+1/2, σn)

+ k

∫
z=1

|C0|2 sr

s
|φ|2dϑ + Ck‖θn+1/2‖2

1 + Ck
{
‖En

1 ‖ + ‖En
2 ‖ + ‖En

3 ‖
}
‖σn‖

+ kReB(rn+1/2; En
4 − En

0 , φ)

+ Ck
{
‖En

1 ‖1‖En
1 ‖ + ‖En

2 ‖1‖En
2 ‖ + ‖En

5 ‖1‖En
5 ‖

}
+ Hn, (4.13)

where

Hn :=
1
ã
Im(En

1 + En
2 + En

3 , θn+1 − θn).
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We observe that if φ ∈ Sh then

B(rn+1/2; En
4 − En

0 , φ) = −
([

1
s2

{
1 + z2 s2

ϑ

r2

}
(En

4z − En
0z)

]
z

, φ

)
+

∫
z=1

1
s2

{
1 + z2 s2

ϑ

r2

}
(En

4z − En
0z)φ̄dϑ

− 1
r2

(En
4ϑϑ − En

0ϑϑ, φ) +
1
r2

([
z
sr

s
(En

4z − En
0z)

]
ϑ

, φ
)

− 1
r2

([
z
sr

s
(En

4ϑ − En
0ϑ)

]
z
, φ

)
+

∫
z=1

z
sr

s
(En

4ϑ − En
0ϑ)φ̄dϑ. (4.14)

In (4.14) we take real parts. Then for C̃0 > 0 a constant as small as needed, and since

En
4 := U(rn+1/2) − U(rn+1) + U(rn)

2
, En

4z ≤ Ck2, En
4ϑ ≤ Ck2,

we have, for Λ|z=1 of the form [(Rm
h − I)(g)]a|z=1 with a = z, ϑ

kReB(rn+1/2; En
4 − En

0 , φ) ≤ k(An, φ) + Ck[‖En
4z‖∞ + ‖En

4ϑ‖∞]
∫

z=1

|φ|dϑ

+ Ck

∫
z=1

|Λ||φ|dϑ

≤ k(An, φ) + Ckk2

∫
z=1

|φ|dϑ + C

∫
z=1

k1/2|Λ|k1/2|φ|dϑ

≤ k(An, φ) + C

∫
z=1

k5/2k1/2|φ|dϑ + C

∫
z=1

k1/2|Λ|k1/2|φ|dϑ

≤ k(An, φ) + Ck5 + C̃0k

∫
z=1

|φ|2dϑ + Ck

∫
z=1

|Λ|2dϑ

≤ Ck‖En
4 − En

0 ‖2‖σn‖ + (An, θn+1 − θn) + Ck5 + C̃0k

∫
z=1

|φ|2dϑ + Ck‖Λ‖‖Λ‖1

≤ Ck‖En
4 − En

0 ‖2‖σn‖ + (An, θn+1 − θn) + Ck5 + C̃0k

∫
z=1

|φ|2dϑ + Ckhs−1hs−2. (4.15)

Here, An are of the form:

CnEn,

Cn = g(rn+1/2, z, ϑ),
En = En

z , En
ϑ , En

zz , En
zϑ, En

ϑϑ, for En = En
4 − En

0 . (4.16)

In (4.13) we use the definition of Rh, relation (4.15), and the identity

ReB(rn+1/2; θn+1/2, θn+1 − θn) =
1
2
[B(rn+1/2; θn+1, θn+1) − B(rn+1/2; θn, θn)].

So, under the assumptions on sr relation (4.13) gives finally

ReB(rn+1/2; θn+1, θn+1) ≤ ReB(rn+1/2; θn, θn)

+ 2kB
(
rn+1/2; θn+1/2, z

sr

s
θn+1/2

z + iβθn+1/2
)

+ Ck‖θn+1/2‖2
1

+ Ck
{
‖En

1 ‖ + ‖En
2 ‖ + ‖En

3 ‖
}
‖σn‖ + Ck‖En

4 − En
0 ‖2‖σn‖

+ (An, θn+1 − θn) + Ck5 + Ckh2s−3

+ k
{
‖En

1 ‖1‖En
1 ‖ + ‖En

2 ‖1‖En
2 ‖ + ‖En

5 ‖1‖En
5 ‖

}
+ Hn. (4.17)
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We set

Zn :=Ck{‖En
1 ‖ + ‖En

2 ‖ + ‖En
3 ‖}‖σn‖ + Ck‖En

4 − En
0 ‖2‖σn‖

+ |(An, θn+1 − θn)| + Ck5 + Ckh2s−3

+ k
{
‖En

1 ‖1‖En
1 ‖ + ‖En

2 ‖1‖En
2 ‖ + ‖En

5 ‖1‖En
5 ‖

}
+ Hn,

then, using Lemma 2.4, relation (4.17) yields

ReB(rn+1/2; θn+1, θn+1) ≤ ReB(rn+1/2; θn, θn) + Ck‖θn+1‖2
1 + Ck‖θn‖2

1 + Zn. (4.18)

This is the main inequality that we shall use to derive the error estimate.

Step 1:

Observe that (4.18), for k sufficiently small, gives

ReB(rn+1; θn+1, θn+1) ≤ 1 + Ck

1 − Ck
ReB(rn; θn, θn) +

1
1 − Ck

Zn. (4.19)

We apply now (4.19) for i = 1, . . . , n and get

ReB(rn+1; θn+1, θn+1) ≤ CReB(θ0, θ0) + C

n∑
i=0

Zn−i. (4.20)

So, by relation (4.20) we arrive at

‖θn+1‖2
1 ≤ C‖θ0‖2

1 + C

n∑
i=0

Zi. (4.21)

Step 2:

Our aim will be to estimate
n∑

i=0

Zi.

For this, we will provide bounds for sums involving: |(An, θn+1 − θn)|, ‖En
4 − En

0 ‖2, ‖σn‖, Hn, and En
i ,

i = 1, . . . , 5 in various norms.
For general An, it holds that

|
n∑

i=0

(Ai, θi+1 − θi)| ≤ |(A0, θ0)| +
n∑

i=0

‖Ai −Ai−1‖‖θi‖ + |(An, θn+1)|.

Further by the definition of Ei
4, Ei

0 we have that

‖Ei
4 − Ei

0‖2 ≤ Ck2 + Chs−2, (4.22)

while by Taylor expansion easily we have that

‖[Ei
4 − Ei

0] − [Ei−1
4 − Ei−1

0 ]‖2 = ‖[Ei
4 − Ei−1

4 ] − [Ei
0 − Ei−1

0 ]‖2 ≤ Ck3 + Ckhs−2,

and
‖Ci − Ci−1‖ ≤ Ck.

So, for the specific An given by (4.16), we get

‖Ai −Ai−1‖ = ‖CiEi − Ci−1Ei−1‖ ≤ ‖Ci(Ei − Ei−1)‖ + ‖Ei−1(Ci − Ci−1)‖
≤ Ck3 + Ckhs−2 + C(k2 + hs−2)k ≤ Ck3 + Ckhs−2.
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Therefore, we have finally∣∣∣∣∣
n∑

i=0

(Ai, θi+1 − θi)

∣∣∣∣∣ ≤ C(k2 + hs−2)‖θ0‖ + C(k3 + khs−2)
n∑

i=0

‖θi‖ + C(k2 + hs−2)‖θn+1‖. (4.23)

We proceed by proving the next lemma.

Lemma 4.4. For any σi it holds that

‖σi‖ ≤ C‖θi+1‖1 + C‖θi‖1.

Proof. By the inverse inequality in Sh we arrive at

‖σi‖ ≤
∥∥∥(Rh − I)

(
z
sr

s
θi+1/2

z + iβθi+1/2
) ∥∥∥ + C‖θi+1/2‖1

≤ C‖θi+1‖1 + C‖θi‖1. �

Let us estimate now the sum of Hi.

Lemma 4.5. It holds that

n∑
i=0

Hi ≤C‖θ0‖1

3∑
ρ=1

‖E0
ρ‖ + C‖θn+1‖1

3∑
ρ=1

‖En
ρ ‖

+
3∑

ρ=1

n∑
i=1

‖Ei
ρ − Ei−1

ρ ‖‖θi‖.

Proof. For any sequence di of smooth complex functions, easily it follows that∣∣∣∣∣
n∑

i=0

(di, θi+1 − θi)

∣∣∣∣∣ ≤ |(d0, θ0)| +
n∑

i=0

‖di − di−1‖‖θi‖ + |(dn, θn+1)|,

while ∣∣∣∣∣
n∑

i=0

B(di, θi+1 − θi)

∣∣∣∣∣ ≤ |B(d0, θ0)| +
n∑

i=0

|B(di − di−1, θi)| + |B(dn, θn+1)|.

Applying the above estimates for di := Ei
1, di := Ei

2 and di := Ei
3, we obtain the result. �

By the definitions of Zi and Hi and the previous lemma it is obvious that we must estimate the terms Ei
ρ

and Ei
ρ − Ei−1

ρ . This is done at the next lemma which follows from standard calculations.

Lemma 4.6. The next estimates hold true

‖Ei
ρ − Ei−1

ρ ‖ ≤ Ck{hs−1 + k2}, ρ = 1, 2, 3,

‖En
1 ‖ ≤ C{hs + k2}, ‖En

1 ‖1 ≤ C{hs−1 + k2},
‖En

2 ‖ ≤ C{hs−1 + k2}, ‖En
2 ‖1 ≤ C{hs−2 + k2},

‖En
3 ‖ ≤ C{hs + k2},

‖En
4 ‖1 ≤ Ck2, ‖En

4 ‖2 ≤ Ck2

‖En
5 ‖ ≤ C{hs + k2}, ‖En

5 ‖1 ≤ C{hs−1 + k2}.
Note that the worst order term is ‖En

2 ‖1.
A bound for the sum of Zi is given at the next lemma.
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Lemma 4.7. For M :=
{

hs−3/2 + k2
}2

, it holds that

n∑
i=0

Zi ≤ C
[
{hs−2 + k2}‖θ0‖1 + {hs−2 + k2}‖θn+1‖1 + k{hs−2 + k2}

n+1∑
i=0

‖θi‖1 + M
]
. (4.24)

Proof. Lemma 4.6 gives

‖Ei
1‖ + ‖Ei

2‖ + ‖Ei
3‖ + ‖Ei

4 − Ei
0‖2 ≤ C{hs−2 + k2},

‖Ei
1‖1‖Ei

1‖ + ‖Ei
2‖1‖Ei

2‖ + ‖Ei
5‖1‖Ei

5‖ ≤ C{h2s−3 + k4}. (4.25)

By Lemmas 4.5, 4.6, we obtain

n∑
i=0

Hi ≤ C{hs−1 + k2}‖θ0‖1 + C{hs−1 + k2}‖θn+1‖1 + C

n∑
i−1

k{hs−1 + k2}‖θi‖1. (4.26)

Relations (4.25), (4.23), (4.26) and the estimate of ‖σi‖ of Lemma 4.4 yield the result. �

Final Step:

We replace the estimate (4.24) in (4.21).
Furthermore, we consider h ≤ Ck. This assumption is reasonable since we are in the far field of sound

propagation in range (r >> 0, which is the evolutionary variable), while the transformed problem in space is
posed on the small rectangle D = [0, 1] × [ϑ1, ϑ2]. So, for s = 4 we have

‖θn+1‖2
1 ≤ C‖θ0‖2

1 +
1
2
‖θn+1‖2

1 +
1
4

max
0≤i≤n+1

‖θi‖2
1 + G2, (4.27)

where G := C{hs−3/2 + k2}. Taking the maximum in n, relation (4.27) finally gives

‖θn‖1 ≤ C‖θ0‖1 + C{hs−3/2 + k2}. (4.28)

Now we can prove the next theorem that estimates the error εn = Un − U(rn) in the H1 norm.

Theorem 4.8. Under the assumptions (1.5) (upsloping bottom), if U the solution of (1.8) with U ∈ Hs(D) the
next inequalities hold true:

1. If h ≤ Ck, then
‖εn‖1 ≤ C‖U0 − U(R0)‖1 + C{hs−3/2 + k2},

for s = τ = 4.
2. If the bottom topography depends only on azimuth ϑ, then

‖εn‖1 ≤ C‖U0 − U(R0)‖1 + C{hs−1 + k2},
for any 2 ≤ s ≤ τ = 4.

Proof. By (4.28) and the estimates of ω we get the first inequality.
Easily (as in the semidiscrete estimate), when sr = 0 then the suboptimal term ‖En

2 ‖1 vanishes and we obtain
the second optimal error estimate. �
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