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ANALYSIS OF A HIGH-ORDER SPACE AND TIME DISCONTINUOUS
GALERKIN METHOD FOR ELASTODYNAMIC EQUATIONS. APPLICATION

TO 3D WAVE PROPAGATION
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Abstract. In this paper, we introduce a high-order discontinuous Galerkin method, based on centered
fluxes and a family of high-order leap-frog time schemes, for the solution of the 3D elastodynamic
equations written in velocity-stress formulation. We prove that this explicit scheme is stable under a
CFL type condition obtained from a discrete energy which is preserved in domains with free surface
or decreasing in domains with absorbing boundary conditions. Moreover, we study the convergence of
the method for both the semi-discrete and the fully discrete schemes, and we illustrate the convergence
results by the propagation of an eigenmode. We also propose a series of absorbing conditions which
allow improving the convergence of the global scheme. Finally, several numerical applications of wave
propagation, using a 3D solver, help illustrating the various properties of the method.
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1. Introduction

In the last few decades, the computational seismology has become an essential tool to simulate realistic
wavefields of local, regional or even global wave propagation problems. The physics governing these phenomena
is now well-understood and many different accurate numerical methods have been developed and can deal with
three-dimensional realistic applications thanks to a continuous increase of the computational resources and the
use of parallel computational facilities.

Among all the numerical methods proposed for simulations in time domain, the most popular is undoubt-
edly the finite difference (FD) method and its many improvements from the initial FD schemes proposed by
Alterman and Karal [7] or Kelly et al. [41] such as, for instance, the introduction of the velocity-stress system
and the staggered-grids [47, 61], fourth-order schemes in space [9, 45] and rotated staggered-grids [57] allowing
strong fluctuations of the elastic parameters. If these techniques lead to simple and cheap algorithms, their
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major drawback is the restriction to cartesian grids not suited for geometrical internal or surfacic nonlinearities
(topography) but, the use of non uniform grids [54] or even discontinuous grids [6] enabled improving the ac-
curacy at the free surface and, more recently, an hybrid method coupling a finite-difference technique for the
most part of the domain and a finite-element method in subdomains containing the nonlinearities (topography,
faults) has been proposed [33,51]. Some other methods have been further developed such as finite element (FE)
methods which allow meshes adapted to complex geometries [8, 46, 48]. However, they are often very costly
because one needs to invert a global mass matrix at each time step which is not well adapted to the use of
high-order space approximations. This difficulty was overcome by the use of Gauss–Lobato Legendre quadra-
ture formulae at the root of the spectral element methods (SEM), usually applied to second-order system in
displacement (see, for instance [14, 42] amongst many contributions). However, except some applications to
triangular meshes [49, 50] and resulting in non-diagonal mass matrices, these methods are mostly developped
for quadrangular or hexahedral discretizations which may complicate the construction of meshes adapted to
heterogeneous media. As an attractive alternative for a better representation of complex geometries, non con-
forming discontinuous Galerkin spectral element methods have been recently developped and analysed for the
wave propagation in 2D quadrangular meshes [5] or 3D affine hexahedral meshes using a velocity-strain formula-
tion [13,63] for coupled elastic/acoustic media. When methods based on conforming meshes are used, simplicial
meshes permits a better approximation of complex geometries (topography, faults). For this reason, we study a
high-order Discontinuous Galerkin (DG) method applied to tetrahedral meshes.

The Discontinuous Galerkin (DG) method has been initially introduced by Reed and Hill [55] for the solution
of neutron transport problems. A first analysis of the method for hyperbolic equations has been presented
by Lesaint and Raviart [44]. Their result has been improved and broadened by Johnson et al. [36, 37]. The
method is now very popular for solving many problems of physics governed by hyperbolic partial differential
equations. Detailed reviews of methods and applications can be found in Cockburn et al. [22] or Hesthaven and
Warburton [31].

This method can be seen as a discontinuous finite element method with a great flexibility in the choice of
the local degree p of the polynomial interpolation while being adapted to most meshes such as unstructured or
non-conforming discretizations. Both aspects can be combined to build high-order hp-adaptive finite element
methods [24,59]. The major advantage of this method is an easy extension to high-order in space realized by local
basis functions defined in each element. The type of basis functions is not fixed and many families are available
with their own advantages/drawbacks that can impact the accuracy [23]. The inversion of a global mass matrix
is avoided when an explicit scheme in time is used since all calculations are done at the local level producing
block diagonal matrices. On the contrary, fluxes between neighboring elements must be accounted for and many
strategies have been studied in the literature (for instance, see [31]). More, it has a simple computational pattern
with elements which makes the method naturally suited for parallelization.

Among the pionering methods, Cockburn and Shu [18] introduced a class of high-order discontinuous Galerkin
finite element methods, based on upwind fluxes and a Runge−Kutta time scheme, for 1D scalar conservation
laws. The method was then extended to systems and multidimensional cases in [19–21] and the analysis proved
the good convergence properties of the method. Other properties are also important to define an accurate
scheme. The study of the dispersive and dissipative properties of a method provides information on its ability to
accurately propagate a wave, especially high frequency, along many wavelengths (as it is the case for simulation
of realistic problems). Hu et al. [32] studied dispersive and dissipative properties of a DG method for both
1D and 2D equations. They concluded that they depend on the type of fluxes: the error being dominated by
dissipation for upwind fluxes whereas the dissipation rate is zero for centered fluxes. Sherwin [58] compared the
dispersive properties of both continuous and discontinuous formulations. Ainsworth [3] and Ainsworth et al. [4]
analyzed these properties for high-order DG finite element methods, considering linear advection and second-
order wave equations respectively. One of the results of these studies is that it may be advantageous to increase
the order of the method instead of refining the mesh. An important issue is then to study how to choose the
order of polynomial basis function for each element in the computational mesh to obtain a predetermined error.
Lähivaara and Huttunen [43] studied such a criterion, connecting the polynomial order p to the mesh parameter
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h, for acoustic and elastic wave equation. Chevaugeon et al. [16] proposed a number of rules to choose an optimal
order for the spatial approximation and an optimal time-stepping scheme in order to obtain accurate solutions
of the linearized Euler equations in complex geometries and then reduce the size of the problem and the CPU
time.

An analysis of the spatial discretization error of a DG method associated with the solutions of 1D hyperbolic
conservation laws has been proposed by Adjerid et al. [1]. In particular, superconvergence results of the DG
method at Radau points is obtained. These results are completed by Cheng and Shu [15] who studied the
evolution of the space error with time and Zhong and Shu [64] who considered the fully discretized approximation.

In spite of its success in many domains of applications, the DG method has been applied relatively late to
seismic wave propagation problems in comparison to other domains of application. If we restrict ourselves to
methods designed for the velocity-stress first-order formulation, Käeser and Dumbser [38] presented the ADER-
DG method for 2D applications that has been widely developped and extended to 3D configurations [26],
viscoelastic media [39], applied to a quantitative accuracy analysis [40] or dynamic rupture simulations [52],
to mention only a few of the many developments related to this method. The ADER-DG method is based on
upwind fluxes and the Cauchy−Kowalewski procedure that automatically provides schemes with the same space
and time level accuracy which allow achieving very high levels of convergence. Other references are related to
a non-diffusive DG scheme based on centered fluxes and a leap-frog time scheme: Delcourte et al. [25] for the
introduction and some properties of the method, Etienne et al. [28] for 3D simulations in a realistic basin, Tago
et al. [60] for 3D rupture simulations or Peyrusse et al. [53] for 2D viscoelastic media.

In this paper, we study the P-SV seismic wave propagation considering an isotropic, linearly elastic medium by
solving the velocity-stress formulation of the elastodynamic equations. For the discretization of this system, we
apply the method described in Delcourte et al. [25], based on centered fluxes and a leap-frog time-discretization.
The extension to high-order in space is realized by Lagrange polynomial functions (of degree 0 to 4). Starting with
the conclusions of the previous paper [25], we wish to improve some particular points. A numerical convergence
study proved that the accuracy of the time scheme is crucial when global high-order accuracy is sought. Indeed,
unlike the ADER method that has the same level of accuracy in space and time, the standard leap-frog time
scheme, second-order accurate, reduces the global convergence order limiting the interest for high-order space
discretizations. Then, we propose an extension of the leap-frog scheme to higher (even) orders of accuracy,
following a method proposed for the Maxwell equations by Young [62] and applied in the DG context by
Fahs [29]. This method allows us to achieve temporal accuracy to any even order desired, when free surface
conditions are applied, by introducing an iterative procedure. Another technique, based on the modified equation
approach, has been applied by Agut et al. [2] to construct high-order time schemes for the second-order wave
equation. If our analysis is done for a general class of leap-frog schemes, we restrict the numerical application
to standard and fourth-order cases, since fourth degree polynomial functions have been considered at the most
for spatial discretization. This complete a first introduction of the method, in a two-dimensional context, done
by Glinsky et al. [35], especially by adding an analysis of the scheme.

A second limitation of the method found in [25] concerns the low-order absorbing boundary conditions. Indeed,
when considering the error evolution during the propagation of a wave in an artificially bounded domain, we
can notice a reduction in the convergence due to the absorbing boundary condition. The convergence studies
are generally done for problems involving free surface conditions or periodicity conditions, as it is the case for
the numerous convergence studies using the ADER method. Our objective here is not to study this point in
detail; as mentionned in the review done by Givoli [34], this complex topic is a study in itself. But some simple
improvements can be obtained by the evaluation of the absorbing boundary terms at some particular time levels
and we wish to study this particular point.

This article is organized as follows. In Section 2, we state the velocity-stress formulation in a symmetric
pseudo-conservative form. Then, in Section 3, we detail the discretization of the equations system by the
Discontinuous Galerkin method. The high-order leap-frog time scheme as well as the approximation of the
boundary conditions are also presented. After, we study, in Section 4, the preservation of a discrete elastodynamic
energy and the stability of the scheme, taking into account the free surface or the absorbing boundary conditions.
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Section 5 is devoted to the convergence analysis of the semi-discrete and fully discretized schemes. Finally, we
illustrate this study in Section 6 by some basic numerical applications in three dimensions of space, with the
aim of validating the 3D solver and studying, numerically, particular points of the method: the propagation
of an eigenmode for a convergence study and a comparison between standard and fourth-order leap-frog time-
schemes, the propagation of a pulse for a comparison of two different absorbing boundary conditions and the
propagation of an explosive source in a half-space. The main objective of this paper being the analysis of the
method, applications to 3D more complex configurations, especially in heterogeneous media requiring adapted
unstructured meshes, will be the object of a further publication.

2. Velocity-stress formulation in pseudo-conservative form

The P-SV wave propagation in an isotropic, linearly elastic medium is modelised by the elastodynamic
equations, which initially write in displacement-stress formulation; let be �U = (Uα)α∈{x,y,z} the displacement
vector and σ = (σα,β)α,β∈{x,y,z}, the stress tensor, then the system reads{

ρ ∂2
t
�U = ∇ · σ,

σ = λ (∇ · �U) I + μ (∇�U + (∇�U)t),
(2.1)

where I is the identity matrix, ρ is the density of the medium and λ and μ are the Lamé parameters related to
shear and compressional velocities (vs and vp) in the medium by vs =

√
μ
ρ and vp =

√
λ+2μ

ρ .

We introduce the velocity vector �V = ∂t
�U in the equation (2.1) and obtain the first-order velocity-stress

formulation [61]: {
ρ ∂t

�V = ∇ · σ,

∂tσ = λ (∇ · �V ) I + μ (∇�V + (∇�V )t).
(2.2)

Let �W =
(
�V , �σ

)t

be the vector composed of the velocity components �V = (Vx, Vy, Vz)t and the stress com-

ponents �σ = (σxx, σyy, σzz , σxy, σxz, σyz)t, since the stress tensor is symmetric, then, the system (2.2) can be
rewritten as

∂t
�W +

∑
α∈{x,y,z}

Aα (ρ, λ, μ) ∂α
�W = 0. (2.3)

We choose here not to detail the matrices Aα (ρ, λ, μ).
In order to express the system (2.3) in a pseudo conservative form, we introduce the following change of variables
on the stress components,

�̃σ = T�σ =
(
σxx + σyy + σzz

3
,
2σxx − σyy − σzz

3
,
−σxx + 2σyy − σzz

3
, σxy, σxz, σyz

)
· (2.4)

So, the system reads ⎧⎪⎪⎨⎪⎪⎩
ρ ∂t

�V =
∑

α∈{x,y,z}
Mα ∂α

�̃σ,

Λ0(λ, μ) ∂t
�̃σ =

∑
α∈{x,y,z}

Nα ∂α
�V ,

(2.5)

where Λ0(λ, μ) = diag

(
3

3λ+ 2μ
,

3
2μ
,

3
2μ
,
1
μ
,
1
μ
,
1
μ

)
is a diagonal matrix containing the characteristics of the

medium and

Mx =

⎛⎝1 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎞⎠ ,My =

⎛⎝0 0 0 1 0 0
1 0 1 0 0 0
0 0 0 0 0 1

⎞⎠ ,Mz =

⎛⎝0 0 0 0 1 0
0 0 0 0 0 1
1 −1 −1 0 0 0

⎞⎠ ,
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Nx =

⎛⎜⎜⎜⎜⎜⎝
1 0 0
2 0 0
−1 0 0
0 1 0
0 0 1
0 0 0

⎞⎟⎟⎟⎟⎟⎠ ,Ny =

⎛⎜⎜⎜⎜⎜⎝
0 1 0
0 −1 0
0 2 0
1 0 0
0 0 0
0 0 1

⎞⎟⎟⎟⎟⎟⎠ ,Nz =

⎛⎜⎜⎜⎜⎜⎝
0 0 1
0 0 −1
0 0 −1
0 0 0
1 0 0
0 1 0

⎞⎟⎟⎟⎟⎟⎠ .

We can notice that now the matrices Mα and Nα (α = x, y, z) are constant and do not depend anymore on the
material properties. So, the system (2.5) is a pseudo-conservative formulation of (2.3). At last, we multiply the
second equation of (2.5) by the following positive definite symmetric (PDS) matrix

S =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0
0 2

3
1
3 0 0 0

0 1
3

2
3 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠
in order to obtain a symmetric system. Therefore, we finally get the symmetric pseudo-conservative formulation:⎧⎪⎪⎨⎪⎪⎩

ρ ∂t
�V =

∑
α∈{x,y,z}

Mα ∂α
�̃σ,

Λ(λ, μ) ∂t
�̃σ =

∑
α∈{x,y,z}

Mt
α ∂α

�V ,
(2.6)

where Λ(λ, μ) = SΛ0(λ, μ) is a positive definite symmetric matrix whose spectrum is

Sp{Λ} =
{

1
2μ
,

3
2μ
,
1
μ
,
1
μ
,
1
μ
,

3
3λ+ 2μ

}
⊂ R∗

+

and we can notice that SNα = Mt
α (α = x, y, z). This formulation will be very useful to establish the energy

preservation. Then, we add:

(i) a physical boundary condition on the free surface

σ �n = �0, (2.7)

which will be rewritten by respect to �̃σ in Section 3.3.
(ii) absorbing boundary conditions

P�̃σ = −A�V and Pt�V = −B�̃σ, (2.8)

(where the matrices P, A and B will be specified in Sect. 3.3) to approximate an infinite domain.

At last, we need to impose initial data

�V (0) = �V0 and �̃σ(0) = �̃σ0, (2.9)

to ensure the existence and the uniqueness of the solution (�V , �̃σ) of the system (2.6)−(2.9).

3. A discontinuous Galerkin method combined with a leap-frog scheme

3.1. Integration on a simplex

We consider a bounded polyhedral domain Ω of R3, discretized in NT tetrahedra Ti, which form a partition of
the domain. We assume that the characteristics of the medium are constant over each element Ti and denoted by
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(ρi, λi, μi). We multiply, in the sense of the scalar product, the first (resp. the second) equation of the problem
(2.6) by a vector field �ϕi ∈ R3 (resp. �ψi ∈ R6) and we integrate them on each element Ti. Then, we apply the
Green formula to the right-hand sides:

ρi

∫
Ti

�ϕt
i∂t

�V dv =
∑

α∈{x,y,z}

[
−

∫
Ti

(∂α�ϕi)tMα
�̃σdv +

∫
∂Ti

�ϕt
iMα

�̃σnαids
]
, (3.1a)

∫
Ti

�ψt
iΛi∂t

�̃σdv =
∑

α∈{x,y,z}

[
−

∫
Ti

(∂α
�ψi)tMt

α
�V dv +

∫
∂Ti

�ψt
iM

t
α
�V nαids

]
, (3.1b)

where we set Λi = Λ(λi, μi) and �ni = (nxi , nyi , nzi)t represents the outwards unit normal vector to Ti.

3.2. Evaluation of volume integrals

The approximations of �V and �̃σ are denoted by the fields �Vh and �̃σh which are defined locally on each element
Ti and may be discontinuous through the interfaces, so that we set

∀i, �Vh|Ti
= �Vi and �̃σh|Ti

= �̃σi. (3.2)

Let us denote Pm(Ti) the set of polynomials over Ti with a degree m and consider the vector fields �ϕij ∈ P3
m(Ti)

and �ψij ∈ P6
m(Ti) whose each component is a Lagrange nodal interpolant, then we can write �Vi and �̃σi as linear

combinations of time-dependent fields:

�Vi(x, y, z, t) =
dof∑
j=1

V̂ij(t) �ϕij(x, y, z) and �̃σi(x, y, z, t) =
dof∑
j=1

σ̂ij(t) �ψij(x, y, z), (3.3)

where dof denotes the number of degrees of freedom on the element Ti. To approximate the volume integrals
on Ti, we just have to replace the fields �V and �̃σ in (3.1) by �Vh and �̃σh.

3.3. Approximation on faces

To calculate the integrals on ∂Ti of (3.1), we split this boundary in internal and boundary faces. We denote
by V(i) the set of indices of the neighboring elements of Ti and we note by Sik each internal face common to
both elements Ti and Tk, i.e. Sik = Ti ∩ Tk. Moreover, some elements Ti have one or more faces common to the
boundary of the domain. The set of the indices k of such faces Sik = Ti ∩ ∂Ω is denoted by E(i) for absorbing
boundaries and K(i) for free surface boundaries. Remark that, for most elements, E(i) and K(i) are empty sets.
Therefore, introducing Pik =

∑
α∈{x,y,z}

Mαnαik
, we have:

∑
α∈{x,y,z}

∫
∂Ti

�ϕt
iMα

�̃σnαids =
∑

k∈V(i)

∫
Sik

�ϕt
iPik

�̃σds+
∑

k∈E(i)

∫
Sik

�ϕt
iPik

�̃σds+
∑

k∈K(i)

∫
Sik

�ϕt
iPik

�̃σds, (3.4a)

∑
α∈{x,y,z}

∫
∂Ti

�ψt
iM

t
α
�V nαids =

∑
k∈V(i)

∫
Sik

�ψt
iP

t
ik
�V ds+

∑
k∈E(i)

∫
Sik

�ψt
iP

t
ik
�V ds+

∑
k∈K(i)

∫
Sik

�ψt
iP

t
ik
�V ds, (3.4b)

where �nik = (nxik
, nyik

, nzik
)t represents the unit normal vector of Sik, oriented from Ti towards Tk.

For the interior faces Sik of Ti (k ∈ V(i)), we choose to apply centered fluxes by introducing the mean-value
on this face:

�V|Sik
� 1

2

(
�Vi + �Vk

)
and �̃σ|Sik

� 1
2

(
�̃σi + �̃σk

)
. (3.5)
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For the boundary integrals, two types of boundary conditions have been considered: a free surface condition at
the physical interface between air and the medium, and an absorbing condition on the artificial boundaries of
an infinite domain.

Free surfaces: On these faces, we compute the fluxes by introducing weakly the physical condition (2.7) in the
third term of (3.4a) and the physical condition is rewritten in the new variable �̃σ via the change of variables (2.4).
No physical condition is applied to the velocity in the third term of (3.4b). So, for a boundary face Sik of Ti,
with k ∈ K(i), this condition reduces to:

�V|Sik
� �Vi and Pik

�̃σ|Sik
= �0. (3.6)

Absorbing surfaces: To simulate infinite domains, we introduce artificial boundaries, on which we impose
absorbing conditions. Therefore, for any k ∈ E(i) and any real unit vector �nik, we define the matrix

Anik
(ρi, λi, μi) =

∑
α∈{x,y,z}

Aα(ρi, λi, μi) nαik
= −

⎛⎝ 0R3×3
1
ρi

Pik

Λ−1
i Pt

ik 0R6×6

⎞⎠ , (3.7)

which is diagonalizable in R, i.e. all its eigenvalues ek(k = 1, . . . , 9) are real:

e1 = −vpi , e2 = e3 = −vsi , e4 = e5 = e6 = 0, e7 = e8 = vsi , e9 = vpi ,

with vpi = vp(ρi, λi, μi) =

√
λi + 2μi

ρi
and vsi = vs(ρi, λi, μi) =

√
μi

ρi
(3.8)

and we note by Pn(ρ, λ, μ) the matrix whose column k is the right eigenvector associated to the eigenvalue ek:
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3vpnx −vsnxny vsn0,1,−1 0 0 0 −vsn0,1,−1 vsnxny −3vpnx

3vpny vsn1,0,−1 −vsnxny 0 0 0 vsnxny −vsn1,0,−1 −3vpny

3vpnz vsnynz vsnxnz 0 0 0 −vsnxnz −vsnynz −3vpnz

3λ + 2μ 0 0 −nxn0,1,1 −nyn1,0,1 −nzn1,1,0 0 0 3λ + 2μ

2μn2,−1,−1 −2μn2
xny 2μnxn0,1,−1 nxn0,1,1 nyn1,0,−2 nzn1,−2,0 2μnxn0,1,−1 −2μn2

xny 2μn2,−1,−1

−2μn1,−2,1 2μnyn1,0,−1 −2μnxn2
y nxn0,1,−2 nyn1,0,1 nzn−2,1,0 −2μnxn2

y 2μnyn1,0,−1 −2μn1,−2,1

6μnxny μnxn1,−1,−1 μnyn−1,1,−1 0 0 3nxnynz μnyn−1,1,−1 μnxn1,−1,−1 6μnxny

6μnxnz 0 μnzn1,1,−1 0 3nxnynz 0 μnzn1,1,−1 0 6μnxnz

6μnynz μnzn1,1,−1 0 3nxnynz 0 0 0 μnzn1,1,−1 6μnynz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where, to simplify, we set na,b,c = an2

x + bn2
y + cn2

z. Then, the boundary absorbing conditions consist in an
upwind technique where we only take into account the outgoing waves neglecting the ingoing waves part. For
that, we approximate Anik

by the matrix A+
nik

where we set A+
nik

=
(
Pnik

D+P−1
nik

)
(ρi, λi, μi) with D+(ρi, λi, μi)

the diagonal matrix composed by the positive eigenvalues of Anik
. Therefore, according to (3.7), we have to

approximate (
Pik

�̃σ

Pt
ik
�V

)
= −

(
ρiI3 0R3×6

0R6×3 Λi

)
Anik

(ρi, λi, μi)
(
�V
�̃σ

)
, (3.9)

where I3 denotes the identity matrix, by(
Pik

�̃σ

Pt
ik
�V

)
� −

(
ρiI3 0R3×6

0R6×3 Λi

)
A+

nik
(ρi, λi, μi)

(
�Vi

�̃σi

)
. (3.10)
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After calculus, we obtain: (
ρiI3 0R3×6

0R6×3 Λi

)
A+

nik
(ρi, λi, μi) =

1
2

(
Aik −Pik

−Pt
ik Bik

)
(3.11)

where

Aik = ρi

⎛⎝ (vpi − vsi)n2
xik

+ vsi (vpi − vsi)nxik
nyik

(vpi − vsi)nxik
nzik

(vpi − vsi)nxik
nyik

(vpi − vsi)n
2
yik

+ vsi (vpi − vsi)nyik
nzik

(vpi − vsi)nxik
nzik

(vpi − vsi)nyik
nzik

(vpi − vsi)n2
zik

+ vsi

⎞⎠ (3.12)

and

Bik =
1

ρivsi

⎛⎜⎜⎜⎜⎜⎜⎝
1 n2

xik
− n2

zik
n2

yik
− n2

zik
2nxik

nyik
2nxik

nzik
2nyik

nzik

n2
xik

− n2
zik

n2
xik

+ n2
zik

n2
zik

nxik
nyik

0 −nyik
nzik

n2
yik

− n2
zik

n2
zik

n2
yik

+ n2
zik

nxik
nyik

−nxik
nzik

0
2nxik

nyik
nxik

nyik
nxik

nyik
n2

xik
+ n2

yik
nyik

nzik
nxik

nzik

2nxik
nzik

0 −nxik
nzik

nyik
nzik

n2
xik

+ n2
zik

nxik
nyik

2nyik
nzik

−nyik
nzik

0 nxik
nzik

nxik
nyik

n2
yik

+ n2
zik

⎞⎟⎟⎟⎟⎟⎟⎠

+
vsi − vpi

ρivpivsi

⎛⎜⎜⎜⎜⎜⎝
1

n2
xik

− n2
zik

n2
yik

− n2
zik

2nxik
nyik

2nxik
nzik

2nyik
nzik

⎞⎟⎟⎟⎟⎟⎠⊗

⎛⎜⎜⎜⎜⎜⎝
1

n2
xik

− n2
zik

n2
yik

− n2
zik

2nxik
nyik

2nxik
nzik

2nyik
nzik

⎞⎟⎟⎟⎟⎟⎠ . (3.13)

Finally, for a boundary face Sik of Ti with k ∈ E(i), the fluxes are approximated in (3.4) by:∫
Sik

�ϕt
iPik

�̃σ ds �
∫

Sik

�ϕt
i

2

[
−Aik

�Vi + Pik
�̃σi

]
ds, (3.14)∫

Sik

�ψt
iP

t
ik
�V ds �

∫
Sik

�ψt
i

2

[
Pt

ik
�Vi − Bik

�̃σi

]
ds . (3.15)

Remark 3.1. The absorbing boundary conditions (2.8) follow from (3.10)−(3.11). It is a first-order approx-
imation, efficient for waves with a normal incidence to the artificial boundaries but whose accuracy could be
improved especially to limit reflections in presence of grazing waves.

Remark 3.2. Aik is a symmetric positive definite matrix whose spectrum is

Sp(Aik) = {ρivpi , ρivsi , ρivsi} ,

whereas Bik is a symmetric semi-definite positive matrix. Indeed, we have

det(Bik − xI6) = x3(x3 + ax2 + bx+ c)

where

a = − 1
ρivpivsi

[
vpi(2 − 2n2

yik
+ n2

zik
− n4

zik
+ 2n4

yik
+ 2n2

yik
n2

zik
)

+ vsi(2 + n4
zik

− 2n4
yik

+ 2n2
yik

− 2n2
yik
n2

zik
)
]
,
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b =
1

ρ2
i vpiv

2
si

[
vpi(1 + 2n4

yik
− 2n2

yik
− n4

zik
+ n2

zik
− n2

yik
n2

zik
+ 3n2

yik
n4

zik
+ 3n4

yik
n2

zik
)

+ vsi(4 − n2
yik

+ n4
yik

+ 2n2
yik

+ 4n2
yik
n2

zik
− 3n2

yik
n4

zik
− 3n4

yik
n2

zik
+ 3n4

yik
n2

zik
)
]
,

c = − 1
ρ3

i vpiv
2
si

(
2 + 2n2

zik
− 3n2

yik
+ 3n4

yik
− n4

zik
− n2

yik
n2

zik
+ 4n4

yik
n2

zik
+ 4n2

yik
n4

zik

)
.

We can deduce that 0 is a third order eigenvalue of Bik, but the three other eigenvalues are not easily specified.
Then, we shall use the Sylvester’s criteria. For that, we denote by Bik = (bjl)1≤j,l≤6 the coefficients of the
matrix Bik and Bq = (bjl)1≤j,l≤q the submatrices of Bik, and we observe that

det(B1) =
1

ρivpi

> 0, det(B2) =
1

ρ2
i vpivsi

[
4n2

xik
n2

zik
+ n2

yik
(n2

xik
+ n2

zik
)
]
≥ 0,

det(B3) =
9

ρ3
i vpiv

2
si

n2
xik
n2

yik
n2

zik
≥ 0, det(B4) = det(B5) = det(B6) = 0,

so that the three other eigenvalues of Bik are necessarily positive.

3.4. Time-discretization

This subsection is devoted to the high-order leap-frog time-integration of the scheme in the same spirit as [29]
for the Maxwell equations.

3.4.1. The semi-discretized scheme

Taking into account of (3.2), (3.5), (3.6), (3.14) and (3.15) in the equations (3.1a) and (3.1b), we obtain the
following semi-discretized scheme for all Ti, with i = 1, . . . , NT :

ρi

∫
Ti

�ϕt
i∂t

�Vidv = −
∑

α∈{x,y,z}

∫
Ti

(∂α�ϕi)tMα
�̃σidv +

∑
k∈V(i)

∫
Sik

�ϕt
iPik

�̃σi + �̃σk

2
ds

+
∑

k∈E(i)

∫
Sik

�ϕt
i

[
1
2

Pik
�̃σi −

1
2

Aik
�Vi

]
ds, (3.16)

∫
Ti

�ψt
iΛi∂t

�̃σidv = −
∑

α∈{x,y,z}

∫
Ti

(∂α
�ψi)tMt

α
�Vidv +

∑
k∈V(i)

∫
Sik

�ψt
iP

t
ik

�Vi + �Vk

2
ds

+
∑

k∈E(i)

∫
Sik

�ψt
i

[
1
2

Pt
ik
�Vi −

1
2

Bik
�̃σi

]
ds+

∑
k∈K(i)

∫
Sik

�ψt
iP

t
ik
�Vids. (3.17)

According to (3.3), for each tetrahedron Ti, we denote by V̂i and σ̂i the column vectors (V̂ij)1≤j≤dof and
(σ̂ij)1≤j≤dof respectively. Replacing �ϕi by �ϕij in (3.16) and �ψi by �ψij in (3.17) for 1 ≤ j ≤ dof, we obtain the
following matricial form:

Mρi ∂tV̂i = −
∑

α∈{x,y,z}
Jα

i σ̂i +
∑

k∈V(i)

(Kik σ̂i +Gik σ̂k) +
∑

k∈E(i)

(Kik σ̂i − Aik V̂i), (3.18)

MΛi ∂tσ̂i =−
∑

α∈{x,y,z}
Lα

i V̂i+
∑

k∈V(i)

(Kt
ik V̂i −Gt

ki V̂k) +
∑

k∈E(i)

(Kt
ik V̂i − Bik σ̂i) + 2

∑
k∈K(i)

Kt
ik V̂i, (3.19)
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where for all 1 ≤ j, l ≤ dof, we have set(
Mρi

)
jl

= ρi

∫
Ti

�ϕt
ij �ϕil ds, (MΛi)jl =

∫
Ti

�ψt
ij Λi

�ψil ds,

(Jα
i )jl =

∫
Ti

(∂α�ϕij)t Mα
�ψil ds, (Lα

i )jl =
∫
Ti

(∂α
�ψij)t Mt

α �ϕil ds,

(Kik)jl =
1
2

∫
Sik

�ϕt
ij Pik

�ψil ds, (Gik)jl =
1
2

∫
Sik

�ϕt
ij Pik

�ψkl ds,

(Aik)jl =
1
2

∫
Sik

�ϕt
ij Aik �ϕil ds, (Bik)jl =

1
2

∫
Sik

�ψt
ij Bik

�ψil ds,

(3.20)

and used the equalities �ψt
jl Pt

ik �ϕik = �ϕt
ik Pik

�ψjl = −�ϕt
ik Pki

�ψjl, thanks to the orientation from Ti to Tk of
nαik, α ∈ {x, y, z}, contained in Pik. On the other hand, thanks to the Green formula, we have the following
matricial relation for all i ∈ [1, NT ]:

−
∑

α∈{x,y,z}

(
Jα

i + (Lα
i )t

)
+ 2

∑
k∈V(i)

Kik + 2
∑

k∈E(i)

Kik + 2
∑

k∈K(i)

Kik = 0. (3.21)

Setting the column vectors V̂ = (V̂i)1≤i≤NT and σ̂ = (σ̂i)1≤i≤NT whose sizes are NT ∗ dof, the system (3.18)
and (3.19) can be rewritten as: {

Mρ ∂tV̂ = Q σ̂ −R V̂,

MΛ ∂tσ̂ = X V̂ − Y σ̂,
(3.22)

where Mρ, MΛ, R and Y are (NT ∗ dof) ∗ (NT ∗ dof) block diagonal matrices such that for 1 ≤ i ≤ NT ,

(Mρ)ii = Mρi, (MΛ)ii = MΛi, Rii =
∑

k∈E(i)

Aik, Yii =
∑

k∈E(i)

Bik. (3.23)

More precisely, Mρ, MΛ and R are symmetric definite positive matrices, and Y is a symmetric semi-definite
positive matrix. On the other hand, Q and X are (NT ∗ dof) ∗ (NT ∗ dof) block sparse matrices such that for
1 ≤ i, j ≤ NT ,

Qij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−

∑
α∈{x,y,z}

Jα
i +

∑
k∈V(i)

Kik +
∑

k∈E(i)

Kik, if i = j,

Gij , if j ∈ V(i),
0, elsewhere,

(3.24)

and

Xij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−

∑
α∈{x,y,z}

Lα
i +

∑
k∈V(i)

Kt
ik +

∑
k∈E(i)

Kt
ik + 2

∑
k∈K(i)

Kt
ik, if i = j,

−Gt
ji, if j ∈ V(i),

0, elsewhere.

(3.25)

Applying (3.21), the following essential property holds:

Q+Xt = 0. (3.26)

3.4.2. High-order leap-frog scheme

Then, we apply a high-order leap-frog time-integration scheme. It is an explicit scheme which results, when
combined to the centered fluxes defined at (3.5), in a non-diffusive scheme (see Sect. 4.2). We note by Δt the
time-step and the superscripts refer to time stations. Thus, V̂n represents the velocity field at tn = nΔt and
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σ̂n+ 1
2 the stress tensor components at tn+ 1

2
= (n+ 1

2 )Δt. Note that linear combinations (3.3) are still valid with
superscripts. According to Young [62], the leap-frog integration scheme with an order N (even) is written:(

V̂ (tn+1)
σ̂
(
tn+ 3

2

)) =

(
V̂ (tn)

σ̂
(
tn+ 1

2

)) + 2
N−1∑

m=1 (odd)

1
m!

(
Δt

2

)m

∂m
t

(
V̂

(
tn+ 1

2

)
σ̂ (tn+1)

)
. (3.27)

As V̂ and σ̂ are not defined at tn+ 1
2

and tn+1 respectively, we introduce the linear combinations V̂[n+ 1
2 ] and

σ̂[n+1]: consider α ∈ N�, then we denote by

V̂[n+ 1
2 ] =

α∑
i=1

bi V̂n+1−i and σ̂[n+1] =
α∑

i=1

bi σ̂
n+ 3

2−i, (3.28)

where the coefficients bi satisfy the following linear Vandermonde system whose solution is unique:

α∑
i=1

bi = 1 and
α∑

i=1

bi

(
1
2
− i

)k

= 0, ∀k ∈ {1, . . . , α− 1} when α ≥ 2. (3.29)

For example, we obtain for α ∈ {1, 2, 3, 4}:

V̂[n+ 1
2 ] = V̂n, V̂[n+ 1

2 ] =
3 V̂n − V̂n−1

2
, V̂[n+ 1

2 ] =
15 V̂n − 10 V̂n−1 + 3 V̂n−2

8
,

V̂[n+ 1
2 ] =

35 V̂n − 35 V̂n−1 + 21 V̂n−2 − 5 V̂n−3

16
·

(3.30)

The interest of such a choice is that (see (5.54) and (5.55) for more details):

α∑
i=1

bi V̂(tn+1−i) = V̂(tn+ 1
2
) + O(Δtα) and

α∑
i=1

bi σ̂(tn+ 3
2−i) = σ̂(tn+1) + O(Δtα). (3.31)

On the other hand, using (3.22), for all m (odd), we denote by αm, βm, γm and δm the matrices computed in
the following way:

∂m
t

(
V̂

σ̂

)
=

(
−M−1

ρ R M−1
ρ Q

M−1
Λ X −M−1

Λ Y

)m (
V̂

σ̂

)
=

(
αm βm

γm δm

)(
V̂

σ̂

)
. (3.32)

Starting from initial values �V 0
i at t = 0 and �̃σ

1
2
i at t = Δt

2 , the final scheme is explicit and expresses:⎧⎪⎪⎨⎪⎪⎩
Mρ

V̂n+1 − V̂n

Δt
= QN σ̂n+ 1

2 −RN V̂[n+ 1
2 ],

MΛ
σ̂n+ 3

2 − σ̂n+ 1
2

Δt
= XN V̂n+1 − YN σ̂[n+1],

(3.33)

with the matrices (for N ∈ N� even):

RN = −2Mρ

Δt

N−1∑
m=1 (odd)

1
m!

(
Δt

2

)m

αm, QN =
2Mρ

Δt

N−1∑
m=1 (odd)

1
m!

(
Δt

2

)m

βm, (3.34)

XN =
2MΛ

Δt

N−1∑
m=1 (odd)

1
m!

(
Δt

2

)m

γm, YN = −2MΛ

Δt

N−1∑
m=1 (odd)

1
m!

(
Δt

2

)m

δm. (3.35)
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3.4.3. Properties

Lemma 3.3. For all N ∈ N� (even), the matrices QN , XN , RN and YN satisfy the following properties:

QN +Xt
N = 0, RN = Rt

N , YN = Y t
N . (3.36)

Proof. We recursively prove that for all m ∈ N�:

αt
m Mρ = Mρ αm, δt

m MΛ = MΛ δm, Mρ βm + γt
m MΛ = 0. (3.37)

For m = 1, as Mρ, MΛ, R, Y are symmetric, then (3.32) and (3.26) give:

αt
1Mρ = −R = Mρα1, δt

1MΛ = −Y = MΛδ1, Mρβ1 + γt
1MΛ = Q+Xt = 0. (3.38)

After, we remark that (
αm+1 βm+1

γm+1 δm+1

)
=

(
α1 β1

γ1 δ1

)(
αm βm

γm δm

)
=

(
αm βm

γm δm

)(
α1 β1

γ1 δ1

)
. (3.39)

Therefore, according to (3.37)–(3.39), we obtain

αt
m+1 Mρ = (α1 αm + β1 γm)t Mρ = αt

m αt
1 Mρ + γt

m βt
1 Mρ

= αt
m Mρ α1 − γt

m MΛ γ1 = Mρ (αm α1 + βm γ1)
= Mρ (α1 αm + β1 γm) = Mρ αm+1,

(3.40)

δt
m+1 MΛ = (γ1 βm + δ1 δm)t MΛ = βt

m γt
1 MΛ + δt

m δt
1 MΛ

= −βt
m Mρ β1 + δt

m MΛ δ1 = MΛ (γm β1 + δm δ1)
= MΛ (γ1 βm + δ1 δm) = MΛ δm+1,

(3.41)

Mρ βm+1 + γt
m+1 MΛ = Mρ (αm β1 + βm δ1) + (γ1 αm + δ1 γm)t MΛ

= (Mρ αm β1 + αt
m γt

1 MΛ) + (Mρ βm δ1 + γt
m δt

1 MΛ)
= αt

m (Mρ β1 + γt
1 MΛ) + (Mρ βm + γt

m MΛ) δ1
= 0.

(3.42)

�

Remark 3.4. In the particular case of free surface boundary conditions only (i.e. when R = 0 and Y = 0), for
m odd, we recursively show that:

αm = 0, βm = M−1
ρ Q

(
M−1

Λ XM−1
ρ Q

)m−1
2 , γm = M−1

Λ X
(
M−1

ρ QM−1
Λ X

)m−1
2 and δm = 0. (3.43)

Thus, with a change of variable, we find that RN = 0, YN = 0 and

QN =

N
2 −1∑
k=0

1
(2k + 1)!

(
Δt

2

)2k

Q
(
M−1

Λ XM−1
ρ Q

)k
, (3.44)

XN =

N
2 −1∑
k=0

1
(2k + 1)!

(
Δt

2

)2k

X
(
M−1

ρ QM−1
Λ X

)k
. (3.45)

Remark 3.5. As the matrix R2 = R is symmetric positive definite and Mρα3 is symmetric, then we always
can find a condition under the time step Δt such that

R4 = R− Δt2

24
Mρα3 (3.46)

is a symmetric positive definite matrix.
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Remark 3.6. As the matrix Y2 = Y is symmetric positive semi-definite, MΛδ3 is symmetric, and

Y4 = Y +
Δt2

24
[
XM−1

ρ RM−1
ρ Q+ YM−1

Λ XM−1
ρ Q+XM−1

ρ QM−1
Λ Y + YM−1

Λ YM−1
Λ Y

]
(3.47)

then by considering the eigenvector v �= 0 of Y such that Y v = 0, we find vtY4v < 0. Consequently, Y4 is only
symmetric (but not positive semi-definite).

4. Energy preservation and stability of the scheme

The discrete scheme (3.33) being explicit, it is conditionally stable. The aim of this section is to establish
a sufficient condition on the time step Δt for the L2-stability of the Discontinuous Galerkin scheme, taking
into account both free surface (3.6) and absorbing boundary conditions (3.14) and (3.15). Following [10,11,30],
we shall define a discrete energy and prove that it is a quadratic positive definite form playing the role of a
Lyapunov function of numerical unknowns.

4.1. A discrete elastodynamic energy

In the continuum, the total energy of the system is given by:

E(t) =
1
2

∫
Ω

ρ ‖�V (t)‖2 dv︸ ︷︷ ︸
Ek, kinetic energy

+
1
2

∫
Ω

σ(t) : ε(t) dv︸ ︷︷ ︸
Em, mechanical energy

,

where ε is the symmetric deformation tensor whose components are εi,j = 1
2

(
∂Ui

∂xj
+ ∂Uj

∂xi

)
. As for the stress,

we introduce the deformation vector �ε = (εxx, εyy, εzz, 2 εxy, 2 εxz, 2 εyz)
t. For an elastic medium, the generalized

Hooke’s law links deformations and stresses through the linear relationship �ε = C �σ, where the matrix C
expresses

C =
1
E

⎛⎜⎜⎜⎜⎜⎝
1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2 (1 + ν) 0 0
0 0 0 0 2 (1 + ν) 0
0 0 0 0 0 2 (1 + ν)

⎞⎟⎟⎟⎟⎟⎠ ,

E and ν being respectively the Young’s modulus and the Poisson’s ratio

E =
μ (3λ+ 2μ)
λ+ μ

and ν =
λ

2 (λ+ μ)
·

Thanks to this relationship, the mechanical energy becomes

Em =
1
2

∫
Ω

(�σ)t
�ε dv =

1
2

∫
Ω

(�σ)t
C �σ dv,

and introducing the change of variables (2.4), we obtain

Em =
1
2

∫
Ω

(
T−1�̃σ

)t

C
(
T−1�̃σ

)
dv =

1
2

∫
Ω

(
�̃σ
)t [(

T−1
)t
C T−1

]
�̃σ dv.

We can easily check that
(
T−1

)t
C T−1 = Λ so that, the total energy writes

E(t) =
1
2

∫
Ω

ρ‖�V (t)‖2 dv +
1
2

∫
Ω

(
�̃σ(t)

)t

Λ(λ, μ) �̃σ(t) dv.
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Definition 4.1. The discrete energy En in three dimensions of space at time nΔt is defined by:

En =
1
2

[(
V̂n

)t

Mρ V̂n +
(
σ̂n+ 1

2

)t

MΛ σ̂n− 1
2

]
. (4.1)

4.2. Energy preservation

Now, we study the evolution of the discrete elastodynamic energy through one time-step. More precisely, we
aim to establish that the combination between the centered approximation of the fluxes and the high-order leap-
frog time-integration leads to a non-dissipative scheme for unbounded domains or domains with free surfaces.

Lemma 4.2. For all N ≥ 2 (even), the variation of the total discrete energy during one time-step Δt is

En+1 − En = −Δt
(

V̂n+1 + V̂n

2

)t

RN V̂[n+ 1
2 ] −Δt

(
σ̂n+ 1

2

)t

YN
σ̂[n+1] + σ̂[n]

2
· (4.2)

Proof. We calculate the variation of the discrete energy during one time-step Δt:

En+1 − En =

(
V̂n+1 + V̂n

)t

2
Mρ

(
V̂n+1 − V̂n

)
+

(
σ̂n+ 1

2

)t

2
MΛ

(
σ̂n+ 3

2 − σ̂n− 1
2

)
. (4.3)

Using (3.33), we find

En+1 − En = Δt

(
V̂n+1 + V̂n

2

)t [(
QN +Xt

N

)
σ̂n+ 1

2 −RN V̂[n+ 1
2 ]
]
−Δt

(
σ̂n+ 1

2

)t

YN
σ̂[n+1] + σ̂[n]

2
· (4.4)

We conclude with (3.36). �

Corollary 4.3. Using the scheme (3.33), for an infinite domain or a domain including free surface boundaries
(3.6) only, the discrete elastodynamic energy is preserved through one time-step:

∀n ∈ N, En+1 = En.

Proof. In an infinite domain or a domain with free surface boundary conditions, E(i) is an empty set, so that
the matrices R = 0 and Y = 0. Therefore, following Remark 3.4 and (4.2), the discrete elastodynamic energy is
preserved. �

4.3. A corrected discrete elastodynamic energy for absorbing boundaries

Let be α ∈ N� and bi as in (3.28), ∀i ∈ {1, . . . , α}. In what follows, we define the signs of bi and bi + bi+1

respectively by:

∀i ∈ {1, . . . , α}, γi =
bi
|bi|

, (4.5)

∀i ∈ {1, . . . , α− 1}, si =
bi + bi+1

|bi + bi+1|
· (4.6)

When absorbing boundary conditions are applied at some faces of the domain (i.e. when E(i) is not empty), the
discrete variation of the energy through one time-step Δt is not necessarily negative according to Lemma 4.2,
because of the time-asymmetry on both V̂ and σ̂ in (4.2). In order to overcome this difficulty, we introduce
correction terms in the definition of the discrete energy (4.1) and prove that this corrected discrete elastodynamic
energy is not increased through each time step.
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Definition 4.4. For α = 1, we introduce a corrected discrete elastodynamic energy En at time nΔt by:

En = En − Δt

4

[(
V̂n

)t

RN V̂n −
(
σ̂n− 1

2

)t

YN σ̂n− 1
2

]
. (4.7)

Definition 4.5. For α ∈ {2, 3, 4}, we introduce a corrected discrete elastodynamic energy En at time nΔt by:

En =En − Δt

4

α∑
i=1

|bi|
[(

V̂n
)t

RN V̂n −
(
σ̂n+ 1

2−i
)t

YN σ̂n+ 1
2−i

]

+
Δt

4

α∑
i=2

|bi|
(

V̂n − γi V̂n+1−i
)t

RN

(
V̂n − γi V̂n+1−i

)
. (4.8)

These correction terms only concern the absorbing faces and have no particular physical meaning. However,
they match the loss of energy (which appears as a decreasing discrete energy) through these faces since we only
consider outgoing waves. Using (4.2), we easily prove the following lemma when α = 1.

Lemma 4.6. For α = 1, we have for all n ∈ N:

En+1 − En = −Δt
4

[(
V̂n+1 + V̂n

)t

RN

(
V̂n+1 + V̂n

)
+

(
σ̂n+ 1

2 + σ̂n− 1
2

)t

YN

(
σ̂n+ 1

2 + σ̂n− 1
2

)]
. (4.9)

Then, we can establish the following result when α ∈ {2, 3, 4}, but it is not valid for α ≥ 5.

Lemma 4.7. For α ∈ {2, 3, 4}, we have for all n ∈ N:

En+1 − En = −Δt
4

[
α−1∑
i=1

|bi + bi+1|
(
V̂n+1 + si V̂n+1−i

)t

RN

(
V̂n+1 + si V̂n+1−i

)
+|bα|

(
V̂n+1 + γα V̂n+1−α

)t

RN

(
V̂n+1 + γα V̂n+1−α

)
+

α−1∑
i=1

|bi + bi+1|
(
σ̂n+ 1

2 + si σ̂
n+ 1

2−i
)t

YN

(
σ̂n+ 1

2 + si σ̂
n+ 1

2−i
)

+ |bα|
(
σ̂n+ 1

2 + γα σ̂n+ 1
2−α

)t

YN

(
σ̂n+ 1

2 + γα σ̂n+ 1
2−α

)]
. (4.10)

Proof. We denote by En
V =

1
2

(
V̂n

)t

Mρ V̂n and En
σ =

1
2

(
σ̂n+ 1

2

)t

MΛ σ̂n− 1
2 . Thus, according to (4.1)−(4.2)

and the definitions (3.28) of V̂[n+ 1
2 ] and σ̂[n+1], we obtain

En+1
V − En

V = −Δt
2

[
α∑

i=1

bi

(
V̂n+1

)t

RN V̂n+1−i + b1

(
V̂n

)t

RN V̂n +
α∑

i=2

bi

(
V̂n

)t

RN V̂n+1−i

]
(4.11)

En+1
σ − En

σ = −Δt
2

(
σ̂n+ 1

2

)t

YN

(
b1 σ̂

n+ 1
2 +

α−1∑
i=1

(bi + bi+1) σ̂n+ 1
2−i + bα σ̂n+ 1

2−α

)
. (4.12)

Then, we set E = EV + Eσ, with

En
V = En

V − Δt

4

[
|b1|

(
V̂n

)t

RN V̂n −
α∑

i=2

|bi|
(

V̂n+1−i
)t

RN V̂n+1−i + 2
α∑

i=2

bi

(
V̂n

)t

RN V̂n+1−i

]
, (4.13)

En
σ = En

σ +
Δt

4

α∑
i=1

|bi|
(
σ̂n+ 1

2−i
)t

YN σ̂n+ 1
2−i, (4.14)
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so that, according to (4.11)−(4.13) and (4.12)−(4.14), we have

En+1
V − En

V = −Δt
4

[
|b1|

(
V̂n+1

)t

RN V̂n+1 + (2b1 − |b1| − |b2|)
(

V̂n
)t

RN V̂n

+
α−1∑
i=2

(|bi| − |bi+1|)
(
V̂n+1−i

)t

RN V̂n+1−i + |bα|
(

V̂n+1−α
)t

RN V̂n+1−α

+2
α−1∑
i=1

(bi + bi+1)
(

V̂n+1
)t

RN V̂n+1−i + 2bα
(
V̂n+1

)t

RN V̂n+1−α

]
, (4.15)

En+1
σ − En

σ = −Δt
4

[
−|b1|

(
σ̂n+ 1

2

)t

YN σ̂n+ 1
2 +

α−1∑
i=1

(|bi| − |bi+1|)
(
σ̂n+ 1

2−i
)t

YN σ̂n+ 1
2−i

+|bα|
(
σ̂n+ 1

2−α
)t

YN σ̂n+ 1
2−α

]
+ En+1

σ − En
σ . (4.16)

At last, we use the following identities in (4.12): for i ∈ {1, . . . , α− 1},

2(bi + bi+1)
(
σ̂n+ 1

2

)t

YN σ̂n+ 1
2−i = |bi + bi+1|

(
σ̂n+ 1

2 + si σ̂
n+ 1

2−i
)t

YN

(
σ̂n+ 1

2 + si σ̂
n+ 1

2−i
)

−|bi + bi+1|
[(
σ̂n+ 1

2

)t

YN σ̂n+ 1
2 +

(
σ̂n+ 1

2−i
)t

YN σ̂n+ 1
2−i

]
, (4.17)

and similar identities for the two last terms of (4.15). We finally obtain the variation of the total corrected
discrete elastodynamic energy:

En+1 − En = −Δt
4

[
2(b1 − |b1|)

(
V̂n

)t

RN V̂n +

(
|b1| −

α−1∑
i=1

|bi + bi+1| − |bα|
)(

V̂n+1
)t

RN V̂n+1

+

(
2b1 − |b1| −

α−1∑
i=1

|bi + bi+1| − |bα|
)(

σ̂n+ 1
2

)t

YN σ̂n+ 1
2

+
α−1∑
i=1

(|bi| − |bi + bi+1| − |bi+1|)
((

V̂n+1−i
)t

RN V̂n+1−i +
(
σ̂n+ 1

2−i
)t

YN σ̂n+ 1
2−i

)

+
α−1∑
i=1

|bi + bi+1|
(
V̂n+1 + si V̂n+1−i

)t

RN

(
V̂n+1 + si V̂n+1−i

)
+|bα|

(
V̂n+1 + γα V̂n+1−α

)t

RN

(
V̂n+1 + γα V̂n+1−α

)
+

α−1∑
i=1

|bi + bi+1|
(
σ̂n+ 1

2 + si σ̂
n+ 1

2−i
)t

YN

(
σ̂n+ 1

2 + si σ̂
n+ 1

2−i
)

+ |bα|
(
σ̂n+ 1

2 + γα σ̂n+ 1
2−α

)t

YN

(
σ̂n+ 1

2 + γα σ̂n+ 1
2−α

)]
. (4.18)

When α ∈ {2, 3, 4}, we can verify according to (3.30) that b1 ≥ 0, then b1 −
α−1∑
i=1

|bi + bi+1| − |bα| = 0 and

∀i ∈ {1, . . . , α− 1}, |bi| − |bi + bi+1| − |bi+1| = 0. On the contrary, these two last equalities are not satisfied for
α ∈ {5, 6}. �
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Corollary 4.8. For α ∈ {1, 2, 3, 4} and N = 2, the sequel (En)n∈N
is not increasing.

Proof. We use Lemmae 4.6 and 4.7. If N = 2, then En+1 − En is a negative quantity, because the matrices
R and Y are positive definite symmetric and semi-positive definite symmetric respectively. On the contrary, if
N ≥ 4, we are unable to conclude according to Remarks 3.5 and 3.6. �

4.4. Stability of the scheme

We aim at proving that the discrete corrected elastodynamic energy En is a positive definite quadratic form
of the unknowns V̂n and σ̂n−1/2 under some stability condition on the time step Δt. For that, we need to
introduce another formulation of En, independently of the unknowns σ̂n+1/2.

Theorem 4.9. Considering the scheme (3.33), the corrected total discrete elastodynamic energy En is non-
increasing through iterations and is a positive definite quadratic form of numerical unknowns under the condition:

(1) for domains with free surface boundary conditions only, the discrete scheme (3.33) is L2-stable for all N
(even) if

Δt ≤ 2∥∥∥M−1/2
Λ XNM

−1/2
ρ

∥∥∥ , (4.19)

(2) elsewhere, the discrete scheme (3.33) is L2-stable for N = 2 and α ∈ {1, 2, 3, 4} if

Δt ≤ 2∥∥∥M−1/2
Λ XM−1/2

ρ

∥∥∥ +

(
α∑

i=1

|bi|
)

max
(∥∥∥M−1/2

ρ RM−1/2
ρ

∥∥∥ , ∥∥∥M−1/2
Λ YM

−1/2
Λ

∥∥∥) , (4.20)

where ‖.‖ denotes a matricial norm.

Proof. With (3.33) in (4.1), it holds

2En =
(
V̂n

)t

Mρ V̂n +
(
σ̂n− 1

2

)t [
MΛ σ̂n− 1

2 +Δt XN V̂n −Δt YN σ̂[n]
]
. (4.21)

As Mρ and MΛ are symmetric definite positive matrices, we can bound down the discrete energy in the following
way by using (3.28):

2En ≥
∥∥∥M1/2

ρ V̂n
∥∥∥2

+
∥∥∥M1/2

Λ σ̂n− 1
2

∥∥∥2

−Δt
∥∥∥M1/2

Λ σ̂n− 1
2

∥∥∥∥∥∥M−1/2
Λ XNM

−1/2
ρ

∥∥∥∥∥∥M1/2
ρ V̂n

∥∥∥ (4.22)

−Δt
α∑

i=1

bi

(
σ̂n− 1

2

)t

YN σ̂n+ 1
2−i, (4.23)

which gives the following estimate

2En ≥
∥∥∥M1/2

ρ V̂n
∥∥∥2

(
1 − Δt

2

∥∥∥M−1/2
Λ XNM

−1/2
ρ

∥∥∥) +
∥∥∥M1/2

Λ σ̂n− 1
2

∥∥∥2
(

1 − Δt

2

∥∥∥M−1/2
Λ XNM

−1/2
ρ

∥∥∥)
+
Δt

2

α∑
i=1

|bi|
(
σ̂n− 1

2 − γi σ̂
n+ 1

2−i
)t

YN

(
σ̂n− 1

2 − γi σ̂
n+ 1

2−i
)

−Δt
2

α∑
i=1

|bi|
(
σ̂n− 1

2

)t

YN σ̂n− 1
2 − Δt

2

α∑
i=1

|bi|
(
σ̂n+ 1

2−i
)t

YN σ̂n+ 1
2−i. (4.24)
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Then, we can bound down the discrete corrected energy from (4.8)

En ≥ 1
2

∥∥∥M1/2
ρ V̂n

∥∥∥2
(

1 − Δt

2

∥∥∥M−1/2
Λ XNM

−1/2
ρ

∥∥∥− Δt

2

(
α∑

i=1

|bi|
)∥∥∥M−1/2

ρ RNM
−1/2
ρ

∥∥∥)

+
1
2

∥∥∥M1/2
Λ σ̂n− 1

2

∥∥∥2
(

1 − Δt

2

∥∥∥M−1/2
Λ XNM

−1/2
ρ

∥∥∥− Δt

2

(
α∑

i=1

|bi|
)∥∥∥M−1/2

Λ YNM
−1/2
Λ

∥∥∥)

+
Δt

4

α∑
i=1

|bi|
(
V̂n − γi V̂n+1−i

)t

RN

(
V̂n − γi V̂n+1−i

)
+
Δt

4

α∑
i=1

|bi|
(
σ̂n− 1

2 − γi σ̂
n+ 1

2−i
)t

YN

(
σ̂n− 1

2 − γi σ̂
n+ 1

2−i
)
. (4.25)

Finally, we conclude with Remarks 3.4−3.6 and Corollaries 4.3 and 4.8. �

5. Convergence analysis

The objective of this section is to prove the convergence of the totally discretized scheme (3.33) following the
method in [30, 56]. We consider a family of unstructured tetrahedral meshes Th, where h = max

i∈[1,NT ]
hi, which

forms a partition of the domain Ω, i.e. Ω = ∪Ti∈Th
Ti. We assume that the unstructured meshes Th are uniformly

shape regular in the sense that there exists a constant ξ > 0 such that

∀h > 0, ∀Ti ∈ Th :
hi

di
≤ ξ, (5.1)

where di is the diameter of the biggest ball included in Ti. Moreover, we assume that there exists η > 0
(independent of h) such that

∀h > 0, ∀Ti ∈ Th, ∀k ∈ V(i) :
hk

hi
≤ η. (5.2)

In what follows, we denote by

X1
h = {�ϕh ∈ L2(Ω)3 : ∀i, �ϕh|Ti

∈ Pk(Ti)3}, (5.3)

X2
h = {�ψh ∈ L2(Ω)6 : ∀i, �ψh|Ti

∈ Pk(Ti)6}, (5.4)

the sets of discontinuous piecewise polynomial fields of degree at most k on each Ti. We next introduce the
broken Sobolev spaces

PHs(Ω) =
{
v : ∀i, v|Ti

∈ Hs(Ti)
}

(5.5)

equipped with the norm ‖v‖PHs(Ω) =

(
NT∑
i=1

‖v|Ti
‖2
Hs(Ti)

)1/2

, where ‖ · ‖Hs(Ti) denotes the standard Hs-norm

on Ti.

5.1. Definition and properties of the semi-discretized scheme

First, we are interested in the study of consistency and stability of the spatially semi-discretized problem
below. In what follows, we set �ϕi (resp. �ψi) the restriction of �ϕ ∈ Hs(Th)3 (resp. �ψ ∈ Hs(Th)6) to the element
Ti with s > 1

2 . The semi-discrete solution (�Vh, �̃σh) defined in C1([0, T ], X1
h × X2

h) is the solution of the weak
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formulation (3.16) and (3.17), for any test field (�ϕh, �ψh) ∈ X1
h × X2

h, for 0 ≤ t ≤ T and all i, with the initial
values

�Vh(0) = P 1
h (�V0) and �̃σh(0) = P 2

h (�̃σ0), (5.6)

where P 1
h : L2(Ω)3 → X1

h and P 2
h : L2(Ω)6 → X2

h denote respectively the orthogonal projection onto X1
h and

X2
h.

Definition 5.1. For given vector fields �W = (�V , �̃σ) and �W ′ = (�V ′, �̃σ
′
), we introduce the following bilinear

forms which are well defined on X1
h ×X2

h:

m( �W, �W ′) =
NT∑
i=1

∫
Ti

[
ρi(�V ′

i )t�Vi + (�̃σ
′
i)

tΛi
�̃σi

]
dv (5.7)

a( �W, �W ′) =
NT∑
i=1

∫
Ti

∑
α∈{x,y,z}

[(
∂α
�V ′

i

)t

Mα
�̃σi +

(
∂α
�̃σ
′
i

)t

Mt
α
�Vi

]
dv (5.8)

b( �W, �W ′) = −
NT∑
i=1

∑
k∈V(i)

∫
Sik

[
(�V ′

i )tPik

�̃σi + �̃σk

2
+ (�̃σ

′
i)

tPt
ik

�Vi + �Vk

2

]
ds

−1
2

NT∑
i=1

∑
k∈E(i)

∫
Sik

[
(�V ′

i )t
(

Pik
�̃σi − Aik

�Vi

)
+ (�̃σ

′
i)

t
(
Pt

ik
�Vi − Bik

�̃σi

)]
ds

−
NT∑
i=1

∑
k∈K(i)

∫
Sik

(�̃σ
′
i)

tPt
ik
�Vi ds. (5.9)

Thanks to (3.16) and (3.17), we remark the following result:

Proposition 5.2. The semi-discrete solution �Wh = (�Vh, �̃σh) of (3.16), (3.17) and (5.6) satisfies

m(∂t
�Wh, �W

′
h) + a( �Wh, �W

′
h) + b( �Wh, �W

′
h) = 0, ∀ �W ′

h ∈ X1
h ×X2

h. (5.10)

Proposition 5.3. The exact solution �W = (�V , �̃σ) of (2.6)−(2.9) satisfies the following property

m(∂t
�W, �W ′

h) + a( �W, �W ′
h) + b( �W, �W ′

h) = 0, ∀ �W ′
h ∈ X1

h ×X2
h. (5.11)

Proof. According to (3.1a)−(3.1b), we have to verify that the quantity b( �W, �W ′
h) is equal to

−
NT∑
i=1

∑
α∈{x,y,z}

∫
∂Ti

[(
�V ′

i

)t

Mα
�̃σnαi +

(
�̃σ
′
i

)t

Mt
α
�V nαi

]
ds. (5.12)

The free surface boundary condition (2.7) results in
NT∑
i=1

∑
k∈K(i)

∫
Sik

(�V ′
i )tPik

�̃σ ds = 0. On the other hand, thanks

to the absorbing boundary conditions (2.8), we also have:

1
2

NT∑
i=1

∑
k∈E(i)

∫
Sik

[
(�V ′

i )t
(

Pik
�̃σ − Aik

�V
)

+ (�̃σ
′
i)

t
(

Pt
ik
�V − Bik

�̃σ
)]

ds =
NT∑
i=1

∑
k∈E(i)

∫
Sik

[
(�V ′

i )tPik
�̃σ + (�̃σ

′
i)

tPt
ik
�V
]
ds,

which closes the proof. �
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Lemma 5.4. For any �Wh = (�ϕh, �ψh) ∈ X1
h ×X2

h, the following quantity is positive:

a( �Wh, �Wh) + b( �Wh, �Wh) =
1
2

NT∑
i=1

∑
k∈E(i)

∫
Sik

[
�ϕt

iAik �ϕi + �ψt
iBik

�ψi

]
ds ≥ 0. (5.13)

Proof. Let be �Wh = (�ϕh, �ψh) ∈ X1
h ×X2

h a given vector field. Then, we get

a( �Wh, �Wh) + b( �Wh, �Wh) =

⎡⎣NT∑
i=1

∑
α∈{x,y,z}

∫
Ti

[
(∂α�ϕi)

t
Mα

�ψi +
(
∂α
�ψi

)t

Mt
α�ϕi

]
dv

−1
2

NT∑
i=1

∑
k∈V(i)

∫
Sik

[
�ϕt

iPik
�ψi + �ψt

iP
t
ik �ϕi

]
ds−

NT∑
i=1

∑
k∈K(i)

∫
Sik

�ψt
iP

t
ik �ϕids

− 1
2

NT∑
i=1

∑
k∈E(i)

∫
Sik

[
�ϕt

iPik
�ψi + �ψt

iP
t
ik �ϕi

]
ds

⎤⎦
−1

2

NT∑
i=1

∑
k∈V(i)

∫
Sik

[
�ϕt

iPik
�ψk + �ψt

iP
t
ik �ϕk

]
ds

+
1
2

NT∑
i=1

∑
k∈E(i)

∫
Sik

[
�ϕt

iAik �ϕi + �ψt
iBik

�ψi

]
ds.

The first term (between brackets) vanishes by the Green Formula:∫
Ti

[
(∂α�ϕi)

t
Mα

�ψi +
(
∂α
�ψi

)t

Mt
α�ϕi

]
dv =

∫
∂Ti

�ϕt
iMαnαi

�ψi ds, (5.14)

combined to the equality �ψt
iP

t
ik �ϕi = �ϕt

iPik
�ψi. Moreover, since Pik =

∑
α∈{x,y,z}

Mαnαik
and thanks to the orien-

tation of �nik from Ti to Tk, we remark that:

NT∑
i=1

∑
k∈V(i)

∫
Sik

�ψt
iP

t
ik �ϕk ds = −

NT∑
i=1

∑
k∈V(i)

∫
Sik

�ϕt
iPik

�ψk ds,

which implies that the second term is also equal to zero. Therefore, it remains only the third term depending on
Aik and Bik, which are respectively a real symmetric definite positive matrix and a real symmetric semi-definite
positive matrix. �

Consequently, if we define the semi-discrete energy by

Eh(t) =
1
2
m( �Wh(t), �Wh(t)), (5.15)

where �Wh(t) = (�Vh(t), �̃σh(t)) is the semi-discrete solution of (3.16), (3.17) and (5.6), we deduce from Proposi-
tion 5.2 and Lemma 5.4 that

∂tEh(t) ≤ 0, ∀t ∈ [0, T ], (5.16)

which implies that Eh(t) is decreasing on [0, T ] and we have

Eh(t) ≤ Eh(0) ≤ E(0), ∀t ∈ [0, T ]. (5.17)
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5.2. Convergence of the semi-discretized problem

We shall at first give a convergence result for the spatially semi-discretized scheme (3.16), (3.17) and (5.6).
We recall the two following lemmae, well-known in the framework of the finite elements (see [17]):

Lemma 5.5. Let Ti ∈ Th, we assume that u belongs to the space Hs+1(Ti) for s ≥ 0. Let Π be a linear
continuous operator from Hs+1(Ti) onto Pk(Ti) such that Π(u) = u for all u ∈ Pk(Ti). Then we have

‖u−Π(u)‖L2(Ti) ≤ C1 h
min {s,k}+1
i ‖u‖Hs+1(Ti), (5.18)

‖u−Π(u)‖L2(∂Ti) ≤ C1 h
min {s,k}+1/2
i ‖u‖Hs+1(Ti), (5.19)

where C1 is a positive constant only depending on k, s and the regularity parameter ξ of the mesh.

Lemma 5.6. For all p ∈ Pk(Ti), we have

‖p‖L2(∂Ti) ≤ C2 h
−1/2
i ‖p‖L2(Ti), (5.20)

where C2 is a positive constant only depending on k and the regularity parameter ξ of the mesh.

Thus, we can state the following Lemma:

Lemma 5.7. Let be �W = (�V , �̃σ) the exact solution of (2.6)−(2.9) supposed to belong to C0([0, T ], PHs+1(Ω)9)
and (�Vh, �̃σh) ∈ C1([0, T ], X1

h×X2
h) be the solution of the semi-discrete problem (3.16), (3.17) and (5.6). For any

t ∈ [0, T ], we have

b( �W − P 0
h ( �W ), �Wh − P 0

h ( �W ))(t)

≤ Khmin{s,k}
[
‖(�Vh − P 1

h (�V ))(t)‖2
L2(Ω)3 + ‖(�̃σh − P 2

h (�̃σ))(t)‖2
L2(Ω)6

]1/2

‖(�V , �̃σ)(t)‖PHs+1(Ω)9 . (5.21)

Proof. The two previous Lemmae 5.5 and 5.6 imply together the following estimates:∫
Sil

(�Vh − P 1
h (�V ))|Ti

Pil(�̃σ − P 2
h (�̃σ))|Ti

ds ≤ C ‖Pil‖ hmin {s,k}
i ‖�Vh − P 1

h (�V )‖L2(Ti)3 ‖�̃σ‖Hs+1(Ti)6 , (5.22)∫
Sil

(�̃σh − P 2
h (�̃σ))|Ti

Pt
il(�V − P 1

h (�V ))|Ti
ds ≤ C ‖Pil‖ hmin {s,k}

i ‖�̃σh − P 2
h (�̃σ)‖L2(Ti)6 ‖�V ‖Hs+1(Ti)3 , (5.23)∫

Sil

(�Vh − P 1
h (�V ))|Ti

Ail(�V − P 1
h (�V ))|Ti

ds ≤ C r+(Ail) h
min {s,k}
i ‖�Vh − P 1

h (�V )‖L2(Ti)3 ‖�V ‖Hs+1(Ti)3 , (5.24)∫
Sil

(�̃σh − P 2
h (�̃σ))|Ti

Bil(�̃σ − P 2
h (�̃σ))|Ti

ds ≤ C r+(Bil) h
min {s,k}
i ‖�̃σh − P 2

h (�̃σ)‖L2(Ti)6 ‖�̃σ‖Hs+1(Ti)6 , (5.25)

where C = C1C2, l ∈ V(i) ∪ E(i) in (5.22), l ∈ V(i) ∪ K(i) ∪ E(i) in (5.23), l ∈ E(i) in (5.24) and (5.25). In
addition, applying (5.2), we have in the same way, for all l ∈ V(i):∫

Sil

(�Vh − P 1
h (�V ))|Ti

Pil(�̃σ − P 2
h (�̃σ))|Tl

ds

≤ C ‖Pil‖ ηmin{s,k}+1/2 h
min {s,k}
i ‖�Vh − P 1

h (�V )‖L2(Ti)3 ‖�̃σ‖Hs+1(Tl)6 ,

∫
Sil

(�̃σh − P 2
h (�̃σ))|Ti

Pt
il(�V − P 1

h (�V ))|Tl
ds

≤ C ‖Pil‖ ηmin{s,k}+1/2 h
min {s,k}
i ‖�̃σh − P 2

h (�̃σ)‖L2(Ti)6 ‖�V ‖Hs+1(Tl)3 . �
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Theorem 5.8. Let (Th)h be a family of unstructured meshes satisfying (5.1) and (5.2).
Let (�V , �̃σ) be the exact solution of the symmetric pseudo-conservative problem (2.6)−(2.9) supposed to belong

to C0([0, T ];PHs+1(Ω)9) for s ≥ 0, and let (�Vh, �̃σh) ∈ C1([0, T ], X1
h ×X2

h) be the solution of the semi-discrete
problem (3.16), (3.17) and (5.6). Then, there exists a constant K > 0 independent of h such that

max
t∈[0,T ]

[
‖(�V − �Vh)(t)‖2

L2(Ω)3 + ‖(�̃σ − �̃σh)(t)‖2
L2(Ω)6

]1/2

≤ KThmin{s,k}‖(�V , �̃σ)‖C0([0,T ],PHs+1(Ω)9). (5.26)

Proof. First, applying Lemma 5.4 to the vector �Wh − P 0
h ( �W ) = (�Vh − P 1

h (�V ), �̃σh − P 2
h (�̃σ)) ∈ X1

h ×X2
h, we get

a( �Wh − P 0
h ( �W ), �Wh − P 0

h ( �W )) + b( �Wh − P 0
h ( �W ), �Wh − P 0

h ( �W )) ≥ 0,

and, then

m(∂t( �Wh − P 0
h ( �W )), �Wh − P 0

h ( �W )) ≤ m(∂t( �Wh − P 0
h ( �W )), �Wh − P 0

h ( �W ))
+ a( �Wh − P 0

h ( �W ), �Wh − P 0
h ( �W ))

+ b( �Wh − P 0
h ( �W ), �Wh − P 0

h ( �W )). (5.27)

Thus, since �Wh − P 0
h ( �W ) ∈ X1

h ×X2
h, the difference between (5.10) and (5.11) gives us

m(∂t( �Wh − �W ), �Wh − P 0
h ( �W )) + a( �Wh − �W, �Wh − P 0

h ( �W )) + b( �Wh − �W, �Wh − P 0
h ( �W )) = 0.

After, we substract the previous equality in the right-hand side of (5.27) and we obtain

m(∂t( �Wh − P 0
h ( �W )), �Wh − P 0

h ( �W )) ≤ m(∂t( �W − P 0
h ( �W )), �Wh − P 0

h ( �W ))
+ a( �W − P 0

h ( �W ), �Wh − P 0
h ( �W ))

+ b( �W − P 0
h ( �W ), �Wh − P 0

h ( �W )). (5.28)

As P 1
h (�V ) (resp. P 2

h (�̃σ)) is the orthogonal projection of �V (resp. �̃σ) onto X1
h (resp. X2

h) and �Wh − P 0
h ( �W ) ∈

X1
h ×X2

h, we necessarily have
a( �W − P 0

h ( �W ), �Wh − P 0
h ( �W )) = 0 (5.29)

and
m(∂t( �W − P 0

h ( �W )), �Wh − P 0
h ( �W )) =

1
2

d
dt
m(( �W − P 0

h ( �W )), �Wh − P 0
h ( �W )) = 0. (5.30)

On the other hand, we can check that

m(∂t( �Wh − P 0
h ( �W )), �Wh − P 0

h ( �W ))

=
1
2

NT∑
i=1

d
dt

∫
Ti

[
ρi

∣∣∣�Vh − P 1
h (�V )

∣∣∣2 (t) +
((
�̃σh − P 2

h (�̃σ)
)
Λi

(
�̃σh − P 2

h (�̃σ)
))

(t)
]

dv (5.31)

so, by taking also into account (5.29) and (5.30) in (5.28), we obtain

d
dt

[
‖(�Vh − P 1

h (�V ))(t)‖2
L2(Ω)3 + ‖(�̃σh − P 2

h (�̃σ))(t)‖2
L2(Ω)6

]
dv

≤ 2
(

min
1≤i≤NT

{ρi, r−(Λi)}
)−1

b( �W − P 0
h ( �W ), �Wh − P 0

h ( �W ))(t). (5.32)

Then, we integrate (5.32) from 0 to t ∈ [0, T ] and, since (2.9) and (5.6) hold, we have

‖(�Vh − P 1
h (�V ))(t)‖2

L2(Ω)3 + ‖(�̃σh − P 2
h (�̃σ))(t)‖2

L2(Ω)6

≤ 2
(

min
1≤i≤NT

{ρi, r−(Λi)}
)−1 ∫ T

0

b( �W − P 0
h ( �W ), �Wh − P 0

h ( �W ))(t)dt. (5.33)
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Therefore, the last inequality becomes

max
t∈[0,T ]

[
‖(�Vh − P 1

h (�V ))(t)‖2
L2(Ω)3 + ‖(�̃σh − P 2

h (�̃σ))(t)‖2
L2(Ω)6

]
(5.34)

≤ 2
(

min
1≤i≤NT

{ρi, r−(Λi)}
)−1 ∫ T

0

b( �W − P 0
h ( �W ), �Wh − P 0

h ( �W ))(t)dt (5.35)

which implies, by Lemma 5.7, that there exists K > 0 such that

max
t∈[0,T ]

[
‖(�Vh−P 1

h(�V ))(t)‖2
L2(Ω)3 +‖(�̃σh−P 2

h (�̃σ))(t)‖2
L2(Ω)6

]1/2

≤KThmin{s,k}‖(�V , �̃σ)‖C0([0,T ],PHs+1(Ω)9).(5.36)

On the other hand, we also have by Lemma 5.5 the existence of C > 0 such that: ∀t ∈ [0, T ],[
‖(�V − P 1

h (�V ))(t)‖2
L2(Ω)3 + ‖(�̃σ − P 2

h (�̃σ))(t)‖2
L2(Ω)6

]1/2

≤ Chmin{s,k}+1
(
‖�V (t)‖2

PHs+1(Ω)3 + ‖�̃σ(t)‖2
PHs+1(Ω)6

)1/2

,

(5.37)
which combined to (5.36) concludes the proof. �

5.3. Convergence of the totally discretized problem

In this section, we prove the convergence of the totally discretized scheme (3.33), following the method
proposed in [56] for the second order leap-frog scheme.

Theorem 5.9. Let (�V n
h ,
�̃σ

n+1/2

h ) be the solution associated with (3.33) according to (3.2) and (3.3).

(1) Let (�Vh, �̃σh) ∈ CN+1([0, T ], X1
h ×X2

h) be the solution of the semi-discrete problem (3.16), (3.17) and (5.6),
and let (�V , �̃σ) ∈ CN+1([0, T ],L2(Ω)9) ∩ C0([0, T ], PHs+1(Ω)9) be the exact solution of (2.6)−(2.9). Under
a condition on the time step Δt of the same type as (4.19), there exists a constant C > 0 such that the
following error estimate holds:

max
n=0,...,N

(
‖�V (tn) − �V n

h ‖2
C0([0,T ],L2(Ω)3) + ‖�̃σ(tn+ 1

2
) − �̃σ

n+ 1
2

h ‖2
C0([0,T ],L2(Ω)6)

)1/2

≤ CΔtN‖(�V , �̃σ)‖CN+1([0,T ],L2(Ω)9) + Chmin(s,k)‖(�V , �̃σ)‖C0([0,T ],PHs+1(Ω)9). (5.38)

(2) Let (�Vh, �̃σh) ∈ Cmax (α,3)([0, T ], X1
h × X2

h) be the solution of the semi-discrete problem (3.16) and (3.17)
and (5.6), where α ∈ {1, 2, 3, 4} is the coefficient defined at (3.28). Let (�V , �̃σ) ∈ Cmax (α,3)([0, T ],L2(Ω)9) ∩
C0([0, T ], PHs+1(Ω)9) be the exact solution of (2.6)−(2.9). Under a condition on the time step Δt of the
same type as (4.20), there exists a constant C > 0 such that the following error estimate holds:

max
n=0,...,N

(
‖�V (tn) − �V n

h ‖2
C0([0,T ],L2(Ω)3) + ‖�̃σ(tn+ 1

2
) − �̃σ

n+ 1
2

h ‖2
C0([0,T ],L2(Ω)6)

)1/2

(5.39)

≤ CΔtmin (α,2)‖(�V , �̃σ)‖Cmax (α,3)([0,T ],L2(Ω)9) + Chmin(s,k)‖(�V , �̃σ)‖C0([0,T ],PHs+1(Ω)9). (5.40)

Proof. Let be �vn
h and �s

n+ 1
2

h similarly defined as in (3.2) and (3.3). Then, for each tetrahedron Ti, we set

v̂n
i =

(
v̂n

ij

)
1≤j≤dof

and ŝn
i =

(
ŝ

n+ 1
2

ij

)
1≤j≤dof

, and we note the column vectors v̂n = (v̂n
i )1≤i≤NT

and ŝn =(
ŝ

n+ 1
2

i

)
1≤i≤dof

. We are interested in the estimation of the following local consistency error:

εnh =
(
‖�vn

h − �Vh(tn)‖2
L2(Ω)3 + ‖�sn+ 1

2
h − �̃σh(tn+ 1

2
)‖2

L2(Ω)6

)1/2

, (5.41)
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where (�Vh, �̃σh) ∈ CN+1([0, T ], X1
h×X2

h) is the semi-discrete solution of (3.16), (3.17) and (5.6) and (v̂n+1, ŝn+ 3
2 )

has been computed as follows for all N (even):⎧⎪⎪⎨⎪⎪⎩
Mρ

v̂n+1 − V̂(tn)
Δt

= QN σ̂(tn+ 1
2
) −RN V̂(tn+ 1

2
),

MΛ

ŝn+ 3
2 − σ̂(tn+ 1

2
)

Δt
= XN V̂(tn+1) − YN σ̂(tn+1).

(5.42)

Using Taylor formulae, there exist cn+ 1
2
∈]tn+ 1

2
, tn+1[ and dn+ 1

2
∈]tn, tn+ 1

2
[ such that

V̂(tn+1) =
N∑

k=0

1
k!

(
Δt

2

)k

∂k
t V̂(tn+ 1

2
) +

1
(N + 1)!

(
Δt

2

)N+1

∂N+1
t V̂(cn+ 1

2
), (5.43)

V̂(tn) =
N∑

k=0

(−1)k

k!

(
Δt

2

)k

∂k
t V̂(tn+ 1

2
) − 1

(N + 1)!

(
Δt

2

)N+1

∂N+1
t V̂(dn+ 1

2
). (5.44)

On the other hand, applying (5.42)–(5.44) in the following equality

Mρ

(
V̂(tn+1) − v̂n+1

)
= Mρ

(
V̂(tn+1) − V̂(tn)

)
+Mρ

(
V̂(tn) − v̂n+1

)
= 2Mρ

N−1∑
k=1,odd

1
k!

(
Δt

2

)k

∂k
t V̂(tn+ 1

2
) −Δt QN σ̂(tn+ 1

2
) +Δt RN V̂(tn+ 1

2
)

+
1

(N + 1)!

(
Δt

2

)N+1

Mρ

(
∂N+1

t V̂(cn+ 1
2
) + ∂N+1

t V̂(dn+ 1
2
)
)
. (5.45)

Using the identities (3.32) and (3.34), we deduce that the three first terms vanish. Then for each tetrahedron
Ti, it holds

�Vi(tn+1) − v̂n+1
i =

dof∑
j=1

(
V̂ij(tn+1) − v̂n+1

ij

)
�ϕij =

1
(N + 1)!

(
Δt

2

)N+1 (
∂N+1

t
�Vi(cn+ 1

2
) + ∂N+1

t
�Vi(dn+ 1

2
)
)
.

(5.46)
Therefore, there exists a constant C > 0 such that:

‖�Vh(tn+1) − v̂n+1
h ‖L2(Ω)3 ≤ CΔtN+1‖�Vh‖CN+1([0,T ],L2(Ω)3). (5.47)

In the very same way, we obtain analogous estimates for ‖�̃σh(tn+ 3
2
) − ̂

s
n+ 3

2
h ‖L2(Ω)6 . Finally, as (�Vh, �̃σh) is a

discrete approximation of (�V , �̃σ) by Theorem 5.8, the estimation of the local consistency error is bounded in
the following way:

εn
h ≤ CΔtN+1‖(�V , �̃σ)‖CN+1([0,T ],L2(Ω)9). (5.48)

On the other hand, according to (5.42), we also have⎧⎪⎪⎨⎪⎪⎩
Mρ

V̂(tn+1) − V̂(tn)
Δt

= Mρ
V̂(tn+1) − v̂n+1

Δt
+QN σ̂(tn+ 1

2
) −RN V̂(tn+ 1

2
),

MΛ

σ̂(tn+ 3
2
) − σ̂(tn+ 1

2
)

Δt
= MΛ

σ̂(tn+ 3
2
) − ŝn+ 3

2

Δt
+XN V̂(tn+1) − YN σ̂(tn+1).

(5.49)
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Then, using (3.33) and (5.49), the field
(
V̂ n, Ŝ n+ 1

2

)
=

(
V̂(tn) − V̂n, σ̂(tn+ 1

2
) − σ̂n+ 1

2

)
satisfies the following

set of equations:⎧⎪⎪⎨⎪⎪⎩
Mρ

V̂ n+1 − V̂ n

Δt
= Mρ

V̂(tn+1) − v̂n+1

Δt
+QN Ŝ n+ 1

2 −RN

[
V̂(tn+ 1

2
) − V̂[n+ 1

2 ]
]
,

MΛ
Ŝ n+ 3

2 − Ŝ n+ 1
2

Δt
= MΛ

σ̂(tn+ 3
2
) − ŝn+ 3

2

Δt
+XN V̂ n+1 − YN

[
σ̂(tn+1) − σ̂[n+1]

]
.

(5.50)

(1) Firstly, we consider the case where N is even and the domain Ω with free surface boundary conditions only.
Then, RN = 0 and YN = 0 in (5.50) by Remark 3.4, and we introduce the error energy E n at time nΔt by:

E n =
1
2

[(
V̂ n

)t

MρV̂
n +

(
Ŝ n+ 1

2

)t

MΛ Ŝ n− 1
2

]
. (5.51)

Reasoning similarly as for the discrete energy En at (4.1), we can prove the following estimate under a
condition of the same type as (4.19) and thanks to (5.48): there exists C > 0 such that(

‖V n
h ‖2

L2(Ω)3 + ‖S n+ 1
2

h ‖2
L2(Ω)6

)1/2

≤ CΔtN‖(�V , �̃σ)‖CN+1([0,T ],L2(Ω)9). (5.52)

Finally, we can conclude that the order of convergence of the scheme is O(ΔtN + hmin(s,k)) by using the
triangular inequality and results already established in the semi-discrete case (see Thm. 5.8).

(2) Then, for domains with absorbing boundary conditions (or mixed boundary conditions), we set N = 2.
Therefore, it remains to evaluate the following term in (5.50) with (3.28) and α ∈ {1, 2, 3, 4}:

V̂(tn+ 1
2
) − V̂[n+ 1

2 ] =

(
V̂(tn+ 1

2
) −

α∑
i=1

biV̂(tn+1−i)

)
+ V̂ [n+ 1

2 ]. (5.53)

For (�Vh, �̃σh) ∈ Cmax (α,3)([0, T ], X1
h × X2

h), we know by a Taylor formula that there exists ξi,n+ 1
2

∈
]tn+1−i, tn+ 1

2
[, with i ∈ [1, . . . , α], such that

V̂(tn+1−i) =
α−1∑
k=0

1
k!

(
1
2
− i

)k

∂k
t V̂(tn+ 1

2
) +

1
α!

(
1
2
− i

)α

Δtα ∂α
t V̂(ξi,n+ 1

2
), (5.54)

which implies according to (3.29) that:

α∑
i=1

biV̂(tn+1−i) = V̂(tn+ 1
2
) +

Δtα

α!

[
α∑

i=1

bi

(
1
2
− i

)α

∂α
t V̂(ξi,n+ 1

2
)

]
. (5.55)

And, finally, in a similar way for the term σ̂(tn+1) − σ̂[n+1], the system (5.50) can be rewritten as

Mρ
V̂ n+1 − V̂ n

Δt
= Q Ŝ n+ 1

2 −R V̂ [n+ 1
2 ] +Mρ

V̂(tn+1) − v̂n+1

Δt

+
Δtα

α!
R

[
α∑

i=1

bi

(
1
2
− i

)α

∂α
t V̂(ξi,n+ 1

2
)

]
, (5.56)

MΛ
Ŝ n+ 3

2 − Ŝ n+ 1
2

Δt
= X V̂ n+1 − Y Ŝ n+ 1

2 +MΛ

σ̂(tn+ 3
2
) − ŝn+ 3

2

Δt

+
Δtα

α!
Y

[
α∑

i=1

bi

(
1
2
− i

)α

∂α
t σ̂(ξi,n+1)

]
. (5.57)
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Now, when α = 1, we introduce the error energy E n at time nΔt by:

E n =
1
2

[(
V̂ n

)t

MρV̂
n +

(
Ŝ n+ 1

2

)t

MΛ Ŝ n− 1
2

]
− Δt

4

[(
V̂ n

)t

R V̂ n −
(
Ŝ n− 1

2

)t

Y Ŝ n− 1
2

]
, (5.58)

elsewhere, for α ∈ {2, 3, 4}, E n is defined by:

E n =
1
2

[(
V̂ n

)t

MρV̂
n +

(
Ŝ n+ 1

2

)t

MΛ Ŝ n− 1
2

]
−Δt

4

α∑
i=1

|bi|
[(

V̂ n
)t

R V̂ n −
(
Ŝ n+ 1

2−i
)t

Y Ŝ n+ 1
2−i

]

+
Δt

4

α∑
i=2

|bi|
(
V̂ n − γi V̂ n+1−i

)t

R
(
V̂ n − γi V̂ n+1−i

)
. (5.59)

Reasoning similarly as for the discrete corrected energy En at (4.7) or (4.8), we can prove the following
estimate under a condition of the same type as (4.20) and thanks to (5.48): there exists C > 0 such that(

‖V n
h ‖2

L2(Ω)3 + ‖S n+ 1
2

h ‖2
L2(Ω)6

)1/2

≤ C
(
Δtα‖(�V , �̃σ)‖Cα([0,T ],L2(Ω)9) +Δt2‖(�V , �̃σ)‖C3([0,T ],L2(Ω)9)

)
.

(5.60)
Finally, we can conclude that the order of convergence of the scheme is O(Δtmin (α,2) + hmin(s,k)) by using
the triangular inequality and results already established in the semi-discrete case (see Thm. 5.8). �

6. Numerical results

The DG method has been applied to several numerical problems, each to illustrate a specific property. First,
the propagation of an eigenmode aims to realise a convergence study of the schemes and a comparison with
the theoretical analysis. Moreover, it allows validating the free surface conditions and comparing the properties
of the standard and fourth-order leap-frog schemes. The second study concerns the propagation of a pulse
and focuses on the absorbing boundary conditions. The last application concerns the propagation of the wave
produced by an explosive source in a half space which enables, firstly, validating the source introduction and
apply the method in a more realistic context.

6.1. Convergence study. Propagation of an eigenmode in 3D

The first problem concerns the propagation of an eigenmode in three dimensions of space. The domain of
computation is the unit cubic cavity on which we apply free surface boundary conditions. We are interested in
the (1, 1, 1) mode whose exact solution at time t and in X = (x, y, z) is given by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vx(t,X) = cos(πx) [sin(πy) − sin(πz)] cos(Ωt),
Vy(t,X) = cos(πy) [sin(πz) − sin(πx)] cos(Ωt),
Vz(t,X) = cos(πz) [sin(πx) − sin(πy)] cos(Ωt),
σxx(t,X) = −A sin(πx) [sin(πy) − sin(πz)] sin(Ωt),
σyy(t,X) = −A sin(πy) [sin(πz) − sin(πx)] sin(Ωt),
σzz(t,X) = −A sin(πz) [sin(πx) − sin(πy)] sin(Ωt),
σxy(t,X) = σxz(t,X) = σyz(t,X) = 0,

(6.1)

with A =
√

2 ρ μ and Ω = π
√

2μ/ρ. We set dimensionless values for the medium properties, ρ = 1.0, λ = 0.5
and μ = 0.25, which implies that vp = 1. and vs = 0.5. The initialisation of the leap-frog scheme is realized



ANALYSIS OF A HIGH-ORDER DG METHOD 1111

Table 1. Characteristics of the uniform meshes used for the convergence study; NN and NT

are respectively the total number of nodes and tetraedra of the meshes.

M1 M2 M3 M4 M5 M6 M7

hmin 0.5 0.25 0.125 8.33 × 10−2 6.25 × 10−2 5.0 × 10−2 3.12 × 10−2

h = hmax 0.866 0.433 0.216 0.144 0.108 8.66 × 10−2 5.41 × 10−2

NN 27 125 729 2 197 4 913 9 261 35 937

NT 48 84 3 072 10 368 24 576 48 000 196 60

by deducing, from the analytical expressions (6.1), values for the velocity components at t = 0 and for stress
components at t = Δt

2 . We introduce a L2-error, at step n, between the exact value and the solution of the
numerical scheme in the unit cube which depends on velocity components Vα (α = x, y, z) at nΔt and stress
components σαβ (α, β = x, y, z) at (n+ 1

2 )Δt and writes

errn
L2 =

√√√√√NT∑
i=1

∫
Ti

⎡⎣ ∑
α∈{x,y,z}

(Vα(nΔt, xi) − (Vα)n
i )2 +

∑
α,β∈{x,y,z}

(
σαβ ((n+ 1/2)Δt, xi) − (σαβ)n+1/2

i

)2

⎤⎦.
Series of different uniform meshes are constructed by dividing the domain in cubic cells which are split in six

tetraedra. The mesh spacing h is the length of the longest edge of the mesh. The characteristics of all meshes
can be found in Table 1. Different methods have been used, the notation Pp refering to a discretization based
on polynomials of degree p. Two leap-frog schemes are also compared: the standard one, second-order accurate
(refered as LF2), and a fourth-order extension (named LF4 in the following). Simulations are performed until
tmax = 142 s which corresponds to 50 periods in the cube and is a sufficiently long time to distinguish the results
from different time and space discretizations.

For all the applications, the time-step of the simulation is the minimum of all local time-steps calculated in
each tetraedron using the following formula

ΔtLF2 = min
Ti

Δti with Δti =
1

2 p+ 1
h̄i

vp|i
and ΔtLF4 = 2.5 ×ΔtLF2,

which depends on the space approximation p, h̄, the smallest height in the tetraedron and the local value of vp.
The ratio between ΔtLF4 and ΔtLF2 has been deduced experimentally in [35].

We present in Figure 1 the results of the convergence study. First, Figures 1a and 1b display the maximum
value of the numerical error errL2 , at time tmax, and in logarithmic scale by respect to the mesh spacing h for
LF2 and LF4 leap-frog schemes respectively. The corresponding results of efficiency, i.e. the error as a function of
the CPU time, are presented in Figures 1c and 1d. The values of the error, the corresponding convergence orders
and the CPU times are specified in Table 2 and complete these figures. As can be noticed, some simulations
are missing, those corresponding to the highest-degree space approximations and the finest meshes, simply for
reason of CPU cost (these calculations have been done on a standard PC). In contrast, the solutions of the P1

method show significant dispersion errors for the coarsest meshes in long time (the solution can be shifted more
than over a period) and have been excluded for this reason.

When examining Figures 1a and 1b, we notice that the results are in accordance with the theoretical analysis.
For a method Pp-LFi, in presence of free-surface conditions only, the error is O(hp +Δti). Then, for p ≤ 2, the
global convergence rate is about p and dominated by the one in space, regardless of the leap-frog scheme; this
is what is observed in both figures and confirmed by the values in Table 2. For the standard leap-frog scheme
(LF2) and higher values of p, the convergence rate is still equal to 2 because dominated by the one in time.
The improvement brought by the LF4 leap-frog extension is clear since, for p ≥ 3, the convergence rate is no
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Figure 1. Convergence study for the propagation of an eigenmode. Error as a function of the
mesh size h (a and b) and CPU time (c and d) for different Pp-LFi methods (p = 1, . . . , 4, i =
2, 4) and leap-frog time schemes (left column for LF2 and right column for LF4, respectively).
Errors at tmax = 142 s using uniform meshes.

more constrained by the time scheme and is also equal to p, as noticeable in Figure 1b as well as in convergence
orders of Table 2. Note that this study also validates the implementation of the free surface condition.

We are now interested in the efficiency of the different methods presented in Figures 1c and 1d. We remark
that, to reach a given error level, methods based on high order polynomials generally need lower CPU times, for
both types of leap-frog schemes. However, when using the standard leap-frog scheme, the P4 method becomes
too expensive compared to the P3 scheme, especially for fine meshes, mainly because of the limitation in
convergence due to the time scheme and to a larger number of degrees of freedom. The improvement brought
by the high-order leap-frog (LF4) extension is obvious and can be explained by better convergence rates for
p ≥ 3 and, also, by the use of greater time-steps. So, even if it is based on a multi-step algorithm, the additional
iterations are counterbalanced by a greater time-step which makes the LF4 method more efficient. This is
confirmed by the CPU times given in Table 2 proving a reduction of about 25% of the CPU time between
results corresponding to LF2 and LF4 methods, even for p = 1, 2 for which error levels are comparable for LF2
and LF4 time discretizations.

In order to complete the comparison between both LF2 and LF4 leap-frog schemes, we plot in Figure 2
the error until tmax, obtained using the mesh M4, for various Pp methods (2 ≤ p ≤ 4). Figures 2a and 2b
corresponding to p = 2 and 3, justify the choice of a long time for simulations. For p = 2, the difference due to
the time approximation is very low and only visible after 30 s. The difference between time methods is more
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Table 2. Errors in L2-norm, CPU times and convergence orders corresponding to the conver-
gence study, Pp-LFi methods (p = 1, . . . , 4, i = 2, 4).

P1-LF2 P2-LF2 P3-LF2 P4-LF2

errL2 OL2 CPU (s) errL2 OL2 CPU (s) errL2 OL2 CPU (s) errL2 OL2 CPU (s)

M1 – – – 1.98 × 10−2 – 14.

M2 – 2.39 × 10−1 – 30. 9.40 × 10−3 – 64. 3.45 × 10−3 2.52 232.

M3 – 1.70 × 10−2 3.80 507. 1.50 × 10−3 2.64 1 090. 8.53 × 10−4 2.01 3 829.

M4 – 4.36 × 10−3 3.35 2 637. 6.38 × 10−4 2.10 5 716. 3.78 × 10−4 2.00 38 300.

M5 7.65 × 10−1 – 736. 1.90 × 10−3 2.88 8 251. 3.54 × 10−4 2.04 17 894. –

M6 5.32 × 10−1 1.62 1 821. 1.07 × 10−3 2.57 25 392. – –

M7 2.20 × 10−1 1.80 19 923. – – –

P1-LF4 P2-LF4 P3-LF4 P4-LF4

errL2 OL2 CPU (s) errL2 OL2 CPU (s) errL2 OL2 CPU (s) errL2 OL2 CPU (s)

M1 – – – 6.98 × 10−3 – 10.

M2 – 2.28 × 10−1 – 22. 4.35 × 10−3 – 47. 2.27 × 10−4 4.94 177.

M3 – 1.45 × 10−2 3.97 371. 3.30 × 10−4 3.72 838. 1.30 × 10−5 4.12 3 038.

M4 – 3.38 × 10−3 3.59 2 002. 9.59 × 10−5 3.04 4 303. 2.65 × 10−6 3.92 15 192.

M5 7.64 × 10−1 – 560. 1.44 × 10−3 2.96 6 255. 4.03 × 10−5 3.01 13 637. –

M6 5.32 × 10−1 1.62 1 360. 8.29 × 10−4 2.47 8 122. – –

M7 2.20 × 10−1 1.80 9 375. – – –

visible for the P3 method, in Figure 2b; for times greater than 10 s, the error associated to the standard leap-frog
scheme increases continuously since it remains quite constant with the LF4 extension. The improvement due
to the LF4 leap-frog scheme is clear in Figures 2c and 2d, corresponding to the P4 method. The high-order
leap-frog extension allows a reduction of the error by a factor of about 100 and proves the interest of using
high-order space approximations.

Finally, to conclude this study, we plot in Figure 3, the value of the velocity Vx recorded inside the domain, at
location (0.25, 0.5, 0.25), over a long time, corresponding to 200 and 400 periods approximately. We compare the
exact solution (series of dots) to the results obtained using the LF2 and LF4 leap-frog schemes, with the coarse
mesh M2 and the P4 method. For the first interval, Figure 3a, the results are very close. We can notice a slight
delay of the LF2 solution compared to the two others. For the second interval, Figure 3b, which corresponds to a
very long time, the difference between the solutions is clear. The dispersion error of the LF2 time scheme results
in a much larger delay. Note that the amplitude is correct for both solutions and that the solution corresponding
to the LF4 method is in perfect accordance with the exact one.

6.2. Propagation of a pulse. Comparison between two types of absorbing boundary
conditions

The second problem we have studied is the propagation of a pulse in a homogeneous medium. Although
this is a one-dimensional problem, it is possible to solve it in two or three dimensions of space. This is done
here, in 3D, simply to apply the solver proposed in this paper. This study follows previous results presented
by Delcourte et al. [25], using a two-dimensional method, that highlighted some limitations of the standard
absorbing boundary conditions and aims to focus on the improvement proposed in Section 3.4.2. More precisely,
we compare two absorbing boundary conditions among those defined by equations (3.30): one corresponding to
α = 1 and refered as “standard absorbing condition” and a second one (α = 2), based on two levels in time and
called “modified absorbing condition” in the following.
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Figure 2. Errors in L2-norm as a function of time for LF2 and LF4 leap-frog schemes. (a)
P2 methods, (b) P3 methods, (c) P4 methods and (d) detail of (c) for t ∈ [0; 40]. All results
correspond to mesh M4.
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Figure 3. Velocity Vx recorded at location (0.25, 0.5, 0.25) as a function of time, for time
intervals [563.5; 566.5] (a) and [1132.; 1135.] (b). P4 method, mesh M2 and comparison between
LF2 (dashed lines) and LF4 (solid lines) leap-frog schemes.
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Figure 4. Exact solution for the pulse. Velocity Vx at times t = 0.0, 0.5, 1.0 and 1.5 s.

The domain of computation is [0; 2] × [0; l]2; the length l being variable in y- and z-directions since uniform
meshes are constructed always considering 5 nodes in these two directions, whatever the discretization chosen in
the x-direction. As previously, dimensionless values are set for ρ = 1, λ = 0.5 and μ = 0.25 resulting in vp = 1.
and vs = 0.5. The compression pulse is placed in x0 = 1.5 and is defined by

Vx(x, t0 = 0) = exp−50(x−x0)
2
, σxx(x, t0 = 0) = − exp−50(x−x0)

2
, (6.2)

and, for all t, the other components of velocity or stress are equal to 0. The analytical solution is calculated
using the characteristic method according to the initial condition at t0 and expresses⎧⎪⎪⎨⎪⎪⎩

Vx(x, t) =
1
2

[
Vx(x− vp t, 0) − σxx(x − vp t, 0)

ρ vp

]
+

1
2

[
Vx(x + vp t, 0) +

σxx(x+ vp t, 0)
ρ vp

]
,

σxx(x, t) =
1
2
ρ vp

[
Vx(x+ vp t, 0) +

σxx(x+ vp t, 0)
ρ vp

]
− 1

2
ρ vp

[
Vx(x− vp t, 0) − σxx(x− vp t, 0)

ρ vp

]
·

(6.3)

The pulse propagates at vp and the exact solution for velocity Vx at different times is shown in Figure 4.
We compare the solutions obtained using different Pp methods (p = 1, . . . , 4) and both standard and modified

absorbing boundary conditions. In this study, we use the standard leap-frog time scheme in order to focus on
the absorbing boundary conditions. We present, in Figure 5, the L2-error as a function of time for the various
methods. These results correspond to a uniform mesh containing 2025 nodes and 7680 tetraedra (hmin =
2.5 × 10−2, hmax = 4.33 × 10−2 and l = 1.0 × 10−1). When examining the different figures, we first notice that
all results have the same behavior that can be related to the evolution of the pulse during time, as shown in
Figure 4. The error increases rapidly and stabilizes around the value t = 1 s that corresponds to times for which
the pulse propagates inside the computational domain. Note the vertical scale of each figure which indicates a
global reduction of the error for higher values of p. For t > 1 s, the error decreases as the pulse begins to go
out of the domain. Until t = 1.5 s, the error only depends on the accuracy of the method (i.e. the value of p)
and not on the absorbing boundary condition. For times greater than 1.5 s, the results corresponding to the
two boundary conditions can be distinguished; the improvement brought by the modified absorbing condition is
clearly visible. For p ≥ 2, the error at t = 2 s is significantly lower with the modified absorbing condition which
proves less spurious reflections than with the standard absorbing condition. It should also be noted that, when
using the standard condition, the levels of error at t = 2 s corresponding to 2 ≤ p ≤ 4 are very close which
proves that this condition tends to reduce the convergence.

For a detailed comparison of the solutions of the two absorbing methods, we plot in Figure 6 the value of Vx

at t = 2 s, as a function of x in the middle of the domain, i.e. in y = z = l/2. We compare the exact solution
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Figure 5. Errors in L2-norm as a function of time for (a) P1, (b) P2, (c) P3 and (d) P4

methods. All results correspond to a uniform mesh of 2 025 nodes and 7 680 tetraedra. Dashed
(respectively solid) lines for the standard (respectively modified) absorbing boundary condition.

(a series of dots) with the results of various Pp methods (p = 1, . . . , 4) using the standard (dashed lines) and the
modified (solid lines) absorbing conditions. At this time, the pulse is out of the computational domain and the
various curves are a way to measure the level of accuracy of the boundary conditions. We present, in Figure 6a,
the results of the P1 method: many spurious oscillations are visible and the two absorbing conditions lead to
comparable error levels (maxx |Vx| � 4.4×10−4). Better results are obtained using the P2 method, in Figure 6b:
the use of the modified absorbing condition reduces the amplitude of the oscillations (maxx |Vx| � 2.5 × 10−4

with the standard and maxx |Vx| � 9.1 × 10−5 with the modified absorbing condition) but a distinct reflection
is visible at about x = 0.15 for both types of conditions. Figures 6c and 6d compare the solutions for P3 and
P4 methods. In both cases, reflections are visible with the standard absorbing condition even if the amplitude
is slightly reduced for the P4 method (maxx |Vx| � 2.0 × 10−4 for P3 method and maxx |Vx| � 1.4 × 10−4 for
P4 method). The improvement brought by the modified absorbing condition is obvious and, at this scale, it is
not possible to distinguish them from the exact solution. We plot in Figure 6e the results obtained using the P3

and P4 methods and the modified absorbing condition. Some spurious reflections remain but with amplitudes
clearly lower (maxx |Vx| � 6.8×10−6 for P3 method and maxx |Vx| � 3.8×10−6 for P4 method). This illustrates
the improvement brought by for the absorbing boundary conditions proposed in Section 3.4.2. The comparison
of the two formulations, corresponding to α = 1 and α = 2, shows a clear reduction of the spurious reflections
at the boundary in a simple case where the wave propagates perpendiculary to the boundary. This condition
has to be studied in a more complex configuration, in particular involving razing waves. However, note that the
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Figure 6. Velocity Vx as a function of x at the middle of the domain (y = z = l/2), at time
t = 2 s. Comparison between exact solution (dots), standard (dashed lines) and modified (solid
lines) absorbing conditions for (a) P1, (b) P2, (c) P3 and (d) P4 methods. (e) Comparison
between P3 and P4 methods using the modified absorbing boundary condition.

modified absorbing boundary condition is very simple to implement as it requires the storage of some unknowns
of the previous time level, only at the boundary.

6.3. Explosive source in a half space

The method has been applied to a last test case i.e. the propagation of the wave produced by an explosive
source in a homogeneous half-space, as illustrated in Figure 7. This case, which is really 3D, allows a validation
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Figure 7. Explosive source in a half space. Position of the source S and the four surface stations.

of the source implementation and an additional study of the absorbing boundary conditions. The medium is
homogeneous of density ρ = 2800 kg/m3 and P- and S-waves velocities are respectively vp = 6400 m/s and
vs = 3700 m/s. We apply a free surface condition on the upper boundary of the domain and absorbing conditions
on the other boundaries. The source is located at the center of the domain at 1000 m depth (at the coordinates
(0; 0; 1000)) and four surface stations are placed at 6000 m from the epicenter, symmetrically on the x- and
y-axis as described in Figure 7. The source signal is a Ricker wavelet whose moment-rate is given by

s(t) =
3.1016

α
√
π

exp
[
− (t− 1)2

α2

]
(6.4)

with α = 0.25; it corresponds to a central frequency equal to fc = 1.0 Hz and a maximum frequency of
fmax = 3.0 Hz. Thus, the wavelength L = vs/fmax is approximatively equal to 1233 m. The explosive source is
introduced as a right hand side on the diagonal components of the stress tensor i.e. for σxx, σyy and σzz . In
order to compare the results obtained using several methods Pp, especially the finite volume method (P0), this
right hand side writes s(t) g(x, y, z) where g is defined by

g(x, y, z) =
1
M

exp
[
− (x− xS)2 + (y − yS)2 + (z − zS)2

h2

]
with M =

∫
Ω

g(x, y, z) dv,

where (xS , yS , zS) is the source coordinates. Note that the support of g is taken sufficiently small, compared to
the element size, for an accurate approximation of a point source, a right hand side based on a Dirac function
s(t) δ(xS , ys, zS) being only accurate for high degree approximation based methods. Initial conditions for the
system are �V = �0 and �σ = �0 and the solutions are calculated until t = 6.0 s. We also point out that the
finite-volume method presented in this study is a very standard one where the unknowns are set constant in the
mesh elements and cannot be compared to high-order finite-volume methods, in particular the one presented
by Dumbser et al. [27].

The calculation domain is 36 km× 36 km× 12km. Solutions have been obtained using several uniform tetrae-
dral meshes obtained, as previously, by dividing the domain in cubic cells of edge h which are split in six
tetraedra. The mesh spacing h, i.e. here the smallest edge of the mesh, can be expressed as a function of the
wavelength L as summarized in Table 3.

Calculations have been performed on 64 processors using message passing interface (MPI), whatever the mesh
spacing, for a better comparison of the CPU times between the different methods. The characteristics of the
different meshes are also listed in Table 3.

For this test, we have proposed some criteria in order to estimate the accuracy of the solution. Firstly, we
check two particular properties, consequences of an explosive source, which are (i) Vx = 0 at stations C1 and
C3 (on y-axis) and Vy = 0 at stations C2 and C4 (on x-axis) and (ii) the evolution at the surface of the vertical
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Table 3. Correspondance between the mesh spacing h and the wavelength L of the source
function. Characteristics of the different meshes (NT total number of tetraedra, NT /proc.,
number of tetraedra for each processor).

h (m) 500 400 300 200 150 100 75
� L/n L/2.5 L/3 L/4 L/6 L/8 L/12 L/16

NT 746 496 1 458 000 3 456 000 11 664 000 27 648 000 93 312 000 221 184 000
NT /proc. 11 664 22 781 54 000 182 250 432 000 1 458 000 3 456 000
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Figure 8. Velocity Vz (m/s) as a function of time (s); reference solution at station C1. Extrema
and corresponding times for the evaluation of errors err2 and err3.

velocity component Vz only depends on the distance to the epicenter, thus the Vz profiles obtained at the four
stations are superimpose. Moreover, for a validation of the source introduction, the amplitudes and the arrival
times of the profiles are compared to a reference solution computed at these four stations (and not everywhere
in the computational domain) using the Discrete Wave Number method [12]. Then, three different errors are
defined. First, err1 is concerned with the components which should ideally be equal to zero and expresses

err1 = max
t∈[0.;6.]

[
|Vx|C1

, |Vy|C2
, |Vx|C3

, |Vy |C4

]
.

The two other errors depend on the values at the extrema, as illustrated in Figure 8. For each non null velocity
profile (for instance, here, Vz for the reference solution at station C1), we identify three extrema and note their
values (Vz(extri), i = 1, 2, 3) and the corresponding times (ti, i = 1, 2, 3). From these data, we define a relative
error, in the amplitude or in time, between two profiles (for instance profiles at stations Cj and Ck), for a given
velocity component Vα and a given extremum extri by the following formulae, for amplitudes and times

errrel (Vα, Cj/Ck, extri)ampl =
∣∣∣∣Vα(extri)Cj − Vα(extri)Ck

Vα(extri)ref

∣∣∣∣ , errrel (Vα, Cj/Ck, extri)t =
∣∣∣∣ ti/Cj

− ti/Ck

ti/ref

∣∣∣∣ ,
where the subscript Vref stands for the corresponding value of the reference solution. Thus, error err2 measures
the asymmetries of the computed solution (i.e. the mean maximum error of the amplitude and the travel time
between solutions computed at two stations) of the vertical velocity component Vz which writes

err2/ampl =
1
3

3∑
i=1

max
1≤j,k≤4

errrel (Vz , Cj/Ck, extri)ampl , err2/t =
1
3

3∑
i=1

max
1≤j,k≤4

errrel (Vz , Cj/Ck, extri)t .
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Table 4. CPU times of the calculations for the Pp methods and the different meshes on 64
processors.

CPU time
Pp/h 500 400 300 200 150 100 75
P0 – – 26 s 2 min 10 s 6 min 18 s 29 min 34 s 1 h 30 min
P1 – – 5 min 44 s 24 min 56 s 1 h 13 min 6 h 7 min 21 h 51 min
P2 – 10 min 10 s 27 min 19 s 2 h 15 min 7 h – –
P3 – 26 min 26 s 1 h 14 min 6 h – – –
P4 26 min 33 s 1 h 11 min 3 h 20 min – – – –

Finally, err3 is the mean error between the computed and the reference solutions at all stations, for all non null
velocity components and for all extrema. This error writes, for instance for amplitudes

err3/ampl =
1
24

3∑
i=1

⎡⎣ ∑
j∈{2,4}

errrel
(
Vx, Cj/Cj/ref , extri

)
ampl

+
∑

j∈{1,3}
errrel

(
Vy, Cj/Cj/ref , extri

)
ampl

+
4∑

j=1

errrel
(
Vz , Cj/Cj/ref , extri

)⎤⎦,
an equivalent definition being applied to define err3/t.

Calculations have been done using methods based on different degrees of interpolation (0 ≤ p ≤ 4) in
combination with the meshes defined in Table 3 in order to study the convergence and CPU time corresponding
to the three types of errors; the results of these calculations are gathered in Figure 9 and the CPU times of each
calculation are given in Table 4. Note that, as previously, Pp refers to a method based on polynomials of degree
p and the standard leap-frog time method. This first series of results is obtained using the standard absorbing
boundary condition.

The first line of the figure presents the values of err1 as a function of the mesh spacing h (Fig. 9a) and
by respect to the corresponding CPU time (Fig. 9b). When examining these results, we notice (Fig. 9a) that
err1 corresponding to P0 method remains nearly constant, whatever the mesh spacing, at about 10% of the
maximum value of the velocity. Results are clearly improved by the use of higher degree methods since, in
comparison with the P0 results, the value of err1 of the P2 method is reduced by a factor 103. Moreover, higher
degree methods P3 and P4 are also more efficient since a given error level of accuracy is obtained for lower CPU
times.

Now, we study the second line of figures corresponding to err2, which is a relative error traducing the
asymmetry of the Vz profiles by respect to h (Fig. 9c) and the CPU time (Fig. 9d). As previously, we notice
that the results of the P0 method are not accurate enough even using the finest meshes. The improvement on
the symmetry is obvious when using the other methods, especially the methods with p ≥ 2 resulting in err2
values lower than 0.1%. As previously for err1, P3 and P4 are the two most efficient methods.

Finally, we analyze the results obtained for err3 (Figs. 9e and 9f) which is a relative error between the
computed and the reference solutions at the extrema. As previously, the lowest error levels correspond to the
P2 to P4 methods whereas the P0 method produces relative errors in the order of 10% and this independently
on h. The other methods allow errors lower than 5% when using the finest meshes. Note that, for this last
error, if the improvement between P0 and P1 is obvious, it is more limited for the highest degree methods.
Furthermore, these methods lead to comparable levels of error. This fact is also visible when err3 is plotted as a
function of the CPU time (Fig. 9f). The reduction of the error levels for the highest values of p is not sufficient
to compensate their overcost; thus, for this last criterion, the P1 method appears to be most efficient.

We also present, in Figure 10, the errors err2/t (Fig. 10a) and err3/t (Fig. 10b) on arrival times as a function
of the mesh spacing. This error is plotted only for P0 and P1 methods because it is equal to zero for 2 ≤ p ≤ 4,
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Figure 9. Convergence and CPU time for errors on amplitude, err1 (a and b), err2 (c and
d) and err3 (e and f). Explosive source in a half space, solutions at t = 6. s, uniform meshes,
computations on 64 processors.

whatever the value of h. Even for fine meshes, the arrival times are not exactly the same for p = 0 and p = 1.
On Figure 10b, which corresponds to err3/t, we clearly distinguish the P0 method for which the relative error
is greater than 1%. This error is reduced using the P1 method and very low for p ≥ 2. In first conclusion of
this study, we have to distinguish results obtained with the P0 method from those of the other methods. First
of all, the P0 method leads to solutions that do not verify the symmetry condition, for amplitudes and arrival
times, and the use of fine meshes do not allow improving these results. Better solutions are obtained with the P1

method but the use of higher-degree space interpolations clearly helps improving the different types of errors.
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Figure 11. Comparison between computed solution and reference at station C1. Vx and Vy

(left picture) and Vz (right picture). Computed solution corresponds to P2 method for a mesh
spacing equal to 200 m.

When combining the different criteria on the solution, the P2 method seems to be a good compromise between
accuracy and efficiency. We notice that the error err3 on amplitude between our solutions and the reference
seems to converge towards a value equal to 4−5 %. It would be interesting to compare these results with those
corresponding to a source introduced by a Dirac function, perhaps more suitable with high-order methods.

The results obtained, at station C1, with the method P2 and a mesh spacing h = 200 m are presented
in Figure 11. They are also compared to the reference solution. This constitutes a validation of the source
implementation and of the absorbing boundary conditions since no spurious reflections from the boundaries
appear in the profiles.

In a second step, we realize some additional simulations in order to compare the two types of absorbing
boundary conditions (α = 1 and 2), already studied in the previous test case. For this study, we choose the P4

method and set the mesh size to h = 300 m. Solutions are calculated until time 10.0 s using two computational
domains: the initial one, which is 36 km× 36 km× 12km, and a reduced one, 24 km× 24 km× 12 km. For this
second domain, the boundary is 6 km closer to the stations than for the initial one. We compare in Figure 12 the
solutions for velocities Vx and Vz at station C1, on both domains and using both types of boundary conditions.
When we examine the solutions for Vx (Figs. 12a and 12b), we notice that reducing the domain produces some
reflections, especially for times greater than 6.0 s. The effect of the modified absorbing condition is noticeable
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Figure 12. Comparison of the solutions of the P4 method with h = 300 m, using the initial
and a reduced domain. Vx at station C1, comparison between absorbing boundary conditions
using the large domain (a) and the reduced domain (b). Same results for Vz at station C1 for
initial (c) and reduced domain (d).

on both figures, but only in the time interval [3.; 5.] s. Comparing now the results for Vz, Figures 12c and 12d,
we find no difference due to the boundary conditions. Reflections are clearly visible and only explained by the
distance to the boundary. If the modified absorbing condition allowed a clear improvement in the previous case,
for a wave propagating perpendicular to the boundary, it does not reduce the reflections in this case, in presence
of grazing waves, especially for the reduced domain.

7. Conclusion

We proposed a discontinuous Galerkin finite element method to solve the first-order hyperbolic system of the
elastodynamic equations, written in velocity-stress formulation. This method is applied to tetraedral meshes
allowing an accurate approximation of the medium or mesh refinement in particular areas of the domain. The
spatial approximation is based on high-degree polynomials defined locally on each element of the mesh. The
scheme combines centered fluxes and a leap-frog scheme in time which leads to a non diffusive method. We also
detailed a simple absorbing boundary condition, derived from an upwind scheme. In this paper, the properties
of the method have been analysed in detail. First, we have proved that this explicit scheme is stable under a
condition on the time-step resulting from a discrete energy which is preserved in domains with free surfaces
and decreasing in presence of absorbing boundary conditions. Moreover, the convergence of the method for the
semi-discrete and the fully discrete schemes has been studied. More precisely, for solutions regular enough, the
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scheme is convergent with an order O(ΔtN + hk) for domains with only free surface boundary conditions, or
O(Δtmin (α,2) + hk) when the absorbing boundary conditions are included in the scheme, where k is the degree
of the polynomial approximation, N is the order of the leap-frog scheme and α ∈ {1, 2, 3, 4} is defined by (3.28).

Three-dimensional numerical results have been obtained with a parallel implementation of the DG method.
The first one refers to the propagation of an eigenmode in a cubic cavity for which an exact solution is known
and a numerical study of the convergence has been realised for series of uniform meshes, comparing the standard
and the fourth-order leap-frog time scheme. In a second application, we study the propagation of a pulse which
allows comparing two types of boundary conditions. Finally, The last test-case concerns the propagation of the
waves due to an explosive source in a half-space which enables a validation of the source implementation and
the absorbing boundary conditions. The main conclusions of this study are the accuracy and the efficiency of
the method particularly for higher-degree polynomial interpolations. These results highlight the gain obtained
with these methods, especially when compared to the standard finite volumes method (P0) for which mesh
refinement did not enable improving both errors on amplitudes and arrival time. The good compromise between
accuracy and CPU time seems obtained using the P2 method (based on polynomials of degree 2). Moreover,
the free surface condition is accurately approximated. These results are encouraging and could be developed
in several interesting directions. First, the treatment at absorbing boundaries could be improved using more
accurate boundary conditions. Many techniques have been proposed to reduce spurious reflections, including
additional absorbing layers which may be costly in 3D. Then, high-order non reflecting boundary conditions [34]
or an implicit treatment of our simple absorbing condition could be interesting ways of improvement, especially
for grazing waves.

Finally, we are interested in simulations of more realistic three dimensional problems including topography
and realistic media.
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[39] M. Käser, M. Dumbser, J. de la Puente and H. Igel, An arbitrary high-order discontinuous Galerkin method for elastic waves
on unstructured meshes III: viscoelastic attenuation. Geophys. J. Int. 168 (2007) 224–242.
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[51] P. Moczo, E. Bystrický, J. Kristek, J.M. Carcione and M. Bouchon, Hybrid modeling of P-SV seismic motion at inhomogeneous
viscoelastic topographic structures. Bull. Seism. Soc. Am. 87 (1997) 1305–1323.

[52] C. Pelties, J. de la Puente, J.P. Ampuero, G. Brietzke and M. Käser, Three-dimensional dynamic rupture simulations with a
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