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FAST AND ACCURATE FINITE ELEMENT APPROXIMATION
OF WAVE MAPS INTO SPHERES

Sören Bartels
1

Abstract. A constraint preserving numerical method for the approximation of wave maps into spheres
is presented. The scheme has a second order consistency property and is energy preserving and re-
versible. Its unconditional convergence to an exact solution is proved. A fixed point iteration allows for
a solution of the nonlinear system of equations in each time step under a moderate step size restriction.
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1. Introduction

Wave maps into spheres are weak solutions u : (0, T )×Ω → R
3 of the nonlinear partial differential equation

∂2
t u−Δu =

(
|∇u|2 − |∂tu|2

)
u

subject to initial and homogeneous Neumann boundary conditions and the pointwise constraint

|u(t, x)| = 1

for almost every (t, x) ∈ (0, T )×Ω. The difficulty in their numerical approximation is an appropriate treatment of
the constraint and various numerical schemes have recently been proposed. Penalty and projection methods are
discussed in [7] and a Lagrange multiplier method is investigated in [8]. Numerical schemes for general pointwise
constraints are devised and analyzed in [4]. The methods discussed in those articles satisfy the constraint at
the nodes of an underlying triangulation and either require the solution of a nonlinear system of equations
in every time step or involve a projection step whose stability leads to restrictive conditions on step sizes or
underlying triangulations. An unconditionally stable, linear method has been analyzed in [6] which leads to a
violation of the constraint at the order of the step size. A recent development in [10] employs an equivalent
first order system that has a symplectic structure which can be preserved by appropriate discretizations. The
corresponding spatial finite difference discretization considered therein leads to nonlinear systems of equations
in every time step which can be efficiently solved with a fixed-point iteration under a moderate condition on
the step size. We show in this article that a similar strategy can be applied for finite element discretizations and
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provide a simpler proof for the convergence of the iterative scheme. For related numerical methods we refer the
reader to [1–3,5, 12] and for analytical aspects of wave maps to [9, 11, 13, 14].

For the special case of the unit sphere considered here an equivalent formulation of the wave map problem
can be based on the introduction of the angular momentum w = ∂tu× u and the identities

∂tu = u× w, ∂tw = Δu× u.

Testing the first equation with u shows that this evolution is constraint preserving. Taking the cross product
of the first equation with u then yields that w = ∂tu×u. This leads to the identity (∂2

t u−Δu)×u = 0 which is
a well-known equivalent formulation of the partial differential equation, see [7,13]. In [10] it has been proposed
to discretize this first-order system in time according to

dtu
k+1 = uk+1/2 × wk+1/2, dtw

k+1 = Δuk+1/2 × uk+1/2,

where dt denotes the backward difference quotient for a step size τ > 0 and the fractional superscript indicates
the average of two successive approximations, i.e.,

dtu
k+1 =

1
τ

(
uk+1 − uk

)
, uk+1/2 =

1
2
(
uk + uk+1

)
with analogous expressions for wk. We also apply the backward difference quotient to sequences of real numbers.
Testing the discrete system with uk+1/2 proves the preservation of the constraint, i.e., that

1
2
dt|uk+1|2 = dtu

k+1 · uk+1/2 = 0.

Testing the discrete system with Δuk+1/2 and wk+1/2 yields that
1
2
dt

(
‖∇uk+1‖2 + ‖wk+1‖2

)
= 0,

where ‖ · ‖ denotes the L2 norm, i.e., that the total energy is preserved. A corresponding argumentation in a
fully discrete setting requires a careful definition of a discrete Laplacian and an appropriate choice of an inner
product. With the nodal interpolation operator Ih related to the P1 finite element space S1(Th) on a regular
triangulation Th of Ω into triangles or tetrahedra we employ the discrete L2 inner product (·, ·)h defined on
C(Ω; R�) by

(φ, ψ)h =
∫

Ω

Ih[φ · ψ] dx =
∑

z∈Nh

βzφ(z) · ψ(z),

where Nh denotes the set of vertices in Th with associated nodal basis functions (ϕz : z ∈ Nh) and βz =
‖ϕz‖L1(Ω) > 0. The discrete Laplacian Δh : S1(Th) → S1(Th) related to homogeneous Neumann boundary
conditions on ∂Ω is for vh ∈ S1(Th) defined by

(Δhvh, φh)h = −(∇vh,∇φh)

for all φh ∈ S1(Th)3 with (·, ·) denoting the L2 inner product. Given (u0
h, w

0
h) ∈ Vh with Vh = S1(Th)3×S1(Th)3

the approximation scheme then consists in computing for k = 1, 2, . . . ,K approximations (uk
h, w

k
h) ∈ Vh such

that (
dtu

k+1
h , φh

)
h

=
(
u

k+1/2
h × w

k+1/2
h , φh

)
h
,(

dtw
k+1
h , ψh

)
h

=
(
Δhu

k+1/2
h × u

k+1/2
h , ψh

)
h

for all (φh, ψh) ∈ Vh and k = 0, 1, . . . ,K − 1. This discretization allows us to carry out similar calculations as
above which then prove the constraint preservation at the nodes of the triangulation and an energy conservation
property, i.e., no discrete dissipation effects occur. Moreover, the discretization has a temporal consistency error
of order O(τ2) and is reversible. What remains to be addressed is that discrete solutions exist, that these converge
to exact solutions, and that they can be computed reliably and efficiently.
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2. Constraint and energy preservation

We restate the proposed numerical scheme of the introduction.
Algorithm 1. Given (u0

h, w
0
h) ∈ Vh with |u0

h(z)| = 1 for all z ∈ Nh and τ > 0 compute a sequence
(uk

h, w
k
h)k=0,...,K ⊂ Vh such that (

dtu
k+1
h , φh

)
h

=
(
u

k+1/2
h × w

k+1/2
h , φh

)
h
,(

dtw
k+1
h , ψh

)
h

=
(
Δhu

k+1/2
h × u

k+1/2
h , ψh

)
h

for k = 0, 1, . . . ,K− 1 and all (φh, ψh) ∈ Vh. The unconditonial existence and boundedness of discrete solutions
follows from a fixed-point argument.

Proposition 2.1. Algorithm 1 is feasible and any solution (uk
h, w

k
h)k=0,...,K satisfies |uk

h(z)| = 1 for all k =
0, 1, . . . ,K and z ∈ Nh and

1
2

∥∥∇uk+1
h

∥∥2
+

1
2

∥∥wk+1
h

∥∥2

h
=

1
2

∥∥∇u0
h

∥∥2
+

1
2

∥∥w0
h

∥∥2

h

for k = 0, 1, . . . ,K − 1. Moreover, we have ‖dtu
k+1
h ‖h ≤ ‖wk+1/2

h ‖h for k = 0, 1, . . . ,K − 1.

Proof. (i) Given (uk
h, w

k
h) ∈ Vh we let F k

h : Vh → Vh be defined by F k
h (uh, wh) = (rh, sh) with (rh, sh) ∈ Vh such

that

(rh, φh) =
2
τ

(uh − uk
h, φh)h − 1

4
(uh × wh, φh)h,

(sh, ψh) =
2
τ

(wh − wk
h, ψh)h − 1

4
(Δhuh × uh, ψh)h

for all (φh, ψh) ∈ Vh. On Vh we employ the inner product

〈(αh, βh), (φh, ψh)〉h = (αh, φh)h + (∇αh,∇φh) + (βh, ψh)h.

With this it follows that

〈Fh(uh, wh), (uh, wh)〉h = (rh, uh)h − (rh, Δhuh)h + (sh, wh)h

=
2
τ

(
‖uh‖2

h −
(
uk

h, uh

)
h

+ ‖∇uh‖2 −
(
∇uk

h,∇uh

)
+ ‖wh‖2

h −
(
wk

h, wh

))
.

Hence, we have 〈F k
h (uh, wh), (uh, wh)〉h ≥ 0 for all (uh, wh) ∈ Vh such that

‖uh‖2
h + ‖∇uh‖2 + ‖wh‖2

h ≥ ‖uk
h‖2

h + ‖∇uk
h‖2 + ‖wk

h‖2
h.

Brouwer’s fixed point theorem implies the existence of a pair (uh, wh) ∈ Vh with F k
h (uh, wh) = 0. Defining

uk+1
h = 2uh − uk

h and wk+1
h = 2wh − wk

h we find that the equations of Algorithm 1 are satisfied.
(ii) Given z ∈ Nh the choice φh = uk+1

h (z)ϕz ∈ S1(Th)3 in the first equation of Algorithm 1 implies

βz

2
dt

∣∣uk+1
h (z)

∣∣2 = 0,

i.e., |uk+1
h (z)|2 = 1 provided that |u0

h(z)|2 = 1. For the choices φh = −Δhu
k+1/2
h and ψh = wk+1

h we obtain the
identities

1
2
dt

∥∥∇uk+1
h

∥∥2
= −

(
u

k+1/2
h × w

k+1/2
h , Δhu

k+1/2
h

)
h
,

1
2
dt

∥∥wk+1
h

∥∥2

h
=

(
Δhu

k+1/2
h × u

k+1/2
h , w

k+1/2
h

)
h
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and their sum leads to the asserted energy identity. We choose φh = dtu
k+1
h and employ |uk+1/2

h (z)| ≤ 1 for all
z ∈ Nh to estimate ∥∥dtu

k+1
h

∥∥2

h
≤

∥∥∥uk+1/2
h

∥∥∥
L∞(Ω)

∥∥∥wk+1/2
h

∥∥∥
h

∥∥dtu
k+1
h

∥∥
h

which yields the bound for ‖dtu
k+1
h ‖h. �

Remark 2.2.
(i) For smooth solutions the temporal consistency of the numerical scheme of Algorithm 1 is of second order.
(ii) The scheme is reversible in the sense that the pairs (ũk

h, w̃
k
h) = (uk

h,−wk
h) satisfy

−
(
dtũ

k+1
h , φh

)
h

=
(
ũ

k+1/2
h × w̃

k+1/2
h , φh

)
h
,

−
(
dtw̃

k+1
h , ψh

)
h

=
(
Δhũ

k+1/2
h × ũ

k+1/2
h , ψh

)
h

for k = 0, 1, . . . ,K − 1 and all (φh, ψh) ∈ Vh. In case of the CFL condition τ ≤ ch the iterates are uniquely
defined (cf. Rem. 4.3 below).

3. Convergence

The energy equality of Proposition 2.1 provides a priori bounds on the approximations and implies the
existence of accumulation points as the discretization parameters tend to zero. These points define exact solutions
of the wave map problem. To prove this we notice the norm equivalence

‖vh‖h ≤ ‖vh‖ ≤ (d+ 2)1/2‖vh‖h

for all vh ∈ S1(Th) and the nodal interpolation estimate∣∣(vh, φ)h − (vh, φ)
∣∣ ≤ ch‖vh‖‖φ‖H2(Ω)

for all vh ∈ S1(Th) and φ ∈ H2(Ω) with h > 0 denoting the maximal diameter of elements in Th. We also note
that for φ ∈ C(Ω) we have

(vh, φ)h = (vh, Ihφ)h

for all vh ∈ S1(Th). We define piecewise affine and constant interpolants of a sequence (vk
h)k=0,...,K by

vh(t, x) = v
k+1/2
h (x), v̂h(t, x) =

t− tk
τ

vk+1
h (x) +

tk+1 − t

τ
vk

h(x),

for t ∈ (tk, tk+1] with tk = kτ and for x ∈ Ω. With these definitions we have for every solution of Algorithm 1
that

(∂tûh, φ)h = (uh × wh, φ)h, (∂tŵh, ψ)h = (Δhuh × uh, ψ)

for almost every t ∈ (0, T ) and all φ, ψ ∈ C∞([0, T ];C∞(Ω; R3)). With the bounds of Proposition 2.1 we deduce
that the inclusions

ûh ∈ W 1,∞(0, T ;L2(Ω; R3)),
ûh, uh ∈ L∞(0, T ;H1(Ω; R3)),
ŵh, wh ∈ L∞(0, T ;L2(Ω; R3))

hold boundedly as (h, τ) → 0 and hence there exist accumulation points of appropriate subsequences. These lim-
its are weak solutions of the wave map problem in the sense of the following proposition. For ease of presentation
subsequences are not relabeled.
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Proposition 3.1. Assume that (u0
h, w

0
h) → (u0, w0) in H1(Ω; R3) × L2(Ω; R3) as h → 0 and that (u,w) ∈

L∞(0, T ;H1(Ω; R3)) × L∞(0, T ;L2(Ω; R3)) is such that u ∈W 1,∞(0, T ;L2(Ω; R3)) and

ûh ⇀
∗ u in W 1,∞(0, T ;L2(Ω; R3)),

ûh, uh ⇀
∗ u in L∞(0, T ;H1(Ω; R3)),

ŵh, wh ⇀
∗ w in L∞(0, T ;L2(Ω; R3)).

Then |u(t, x)| = 1 for almost every (t, x) ∈ (0, T )×Ω and∫ T

0

{(u, ∂tφ) + (u× w, φ)} dt = (u0, φ(0)),

∫ T

0

⎧⎨⎩(w, ∂tψ) +
d∑

j=1

(u× ∂ju, ∂jψ)

⎫⎬⎭ dt = (w0, ψ(0))

for all φ, ψ ∈ C∞
c ([0, T );C∞(Ω; R3)) and

1
2
(
‖∇u(t)‖2 + ‖w(t)‖2

)
≤ 1

2
(
‖∇u0‖2 + ‖w0‖2

)
for almost every t ∈ (0, T ).

Proof. Owing to the Aubin–Lions lemma we have that ûh → u in L2(0, T ;L2(Ω; R3)) and in particular, that a
subsequence converges pointwise almost everywhere to u in (0, T ) × Ω. Let φ, ψ ∈ C∞

c ([0, T );C∞(Ω; R3)). An
integration by parts and the interpolation estimate for the discrete inner product imply that∫ T

0

{
(ûh, ∂tφ) + (uh × wh, φ)

}
dt = (ûh(0), φ(0)) + O(h)

and a limit passage (h, τ) → 0 proves the first identity. For the proof of the second identity we notice that

(Δhuh × uh, ψ)h = (Δhuh, Ih[uh × ψ])h = −(∇uh,∇[uh × ψ]) + O(h)

= −
d∑

j=1

(∂juh, uh × ∂jψ) + O(h) =
d∑

j=1

(uh × ∂juh, ∂jψ) + O(h).

This identity allows us to pass to the limit in the equation∫ T

0

{
(ŵh, ∂tψ) + (Δhuh × uh, ψ)

}
dt = (ŵh(0), ψ(0)) + O(h)

and to deduce the asserted equation for w. Finally, the energy inequality and the validity of the constraint follow
from the available convergence properties. �

Remark 3.2.
(i) The proof shows that we have u(0) = u0 continuously in L2(Ω; R3). Stronger results about the attainment
of initial data can be found in [13].
(ii) The employed weak formulation is in fact equivalent to the one used in [5,7,8]. This follows from noting that
w = ∂tu × u holds almost everywhere in (0, T ) × Ω and employing test functions ψ = u × ξ with appropriate
vector fields ξ.

4. Iterative solution

We next show that a simple fixed-point iteration allows us to iteratively solve the nonlinear system of equations
of Algorithm 1 in every time step. The iterates satisfy the unit-length constraint.
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Algorithm 2. Given εstop > 0, (uk
h, w

k
h) ∈ Vh with |uk

h(z)| = 1 for all z ∈ Nh set (uk+1,0
h , wk+1,0

h ) = (uk
h, w

k
h)

and compute (uk+1,�+1
h , wk+1,�+1

h ) for � = 0, 1, . . . such that

(uk+1,�+1
h , φh)h = (uk

h, φh)h +
τ

4

([
uk+1,�+1

h + uk
h

]
×

[
wk+1,�

h + wk
h

]
, φh

)
h
,

(wk+1,�+1
h , φh)h = (wk

h, φh)h +
τ

4

(
Δh

[
uk+1,�+1

h + uk
h

]
×

[
uk+1,�+1

h + uk
h

]
, ψh

)
h

for all (φh, ψh) ∈ Vh. Stop the iteration if

‖wk+1,�+1
h − wk+1,�

h ‖h ≤ εstop

and set uk+1
h = uk+1,�+1

h and wk+1
h = wk+1,�+1

h .

Remark 4.1.
(i) The equations of the algorithm are linear, admit unique solutions, and can be solved successively.
(ii) Any output (uk+1

h , wk+1
h ) ∈ Vh of the algorithm satisfies(
dtu

k+1
h , φh

)
h

=
(
u

k+1/2
h × w

k+1/2
h , φh

)
h

+
(
u

k+1/2
h × rk

h, φh

)
h
,(

dtw
k+1
h , ψh

)
h

=
(
Δhu

k+1/2
h × u

k+1/2
h , ψh

)
h

for all (φh, ψh) ∈ Vh and with rk
h = wk+1,�

h − wk+1,�+1
h such that ‖rk

h‖h ≤ εstop.
(iii) Assuming that Algorithm 2 terminates in every time step, unconditional convergence of the corresponding
approximations can be proved as (h, τ, εstop) → 0.

To analyze the convergence of Algorithm 2 we notice that with cinv > 0 and the minimal mesh-size hmin > 0
such that the inverse estimate

‖∇vh‖ ≤ cinvh
−1
min‖vh‖h

holds for all vh ∈ S1(Th) we also have

‖Δhvh‖h ≤ c2invh
−2
min‖vh‖h, ‖Δhvh‖L∞(Ω) ≤ c2invh

−2
min‖vh‖L∞(Ω)

for all vh ∈ S1(Th).

Proposition 4.2. Assume that uk
h ∈ S1(Th)3 satisfies |uk

h(z)| = 1 for all z ∈ Nh. Then, the iterates of Algo-
rithm 2 satisfy |uk+1,�

h (z)|2 = 1 for all � ≥ 0 and z ∈ Nh. If cinvτ ≤ hmin then the iteration is a contraction in
the sense that for � = 1, 2, . . . we have∥∥∥wk+1,�+1

h − wk+1,�
h

∥∥∥
h
≤ q

∥∥∥wk+1,�
h − wk+1,�−1

h

∥∥∥
h

with a number 0 ≤ q ≤ 1/2.

Proof. We abbreviate (u�
h, w

�
h) = (uk+1,�

h , wk+1,�
h ) and (ûh, ŵh) = (uk

h, w
k
h) in this proof. Given z ∈ Nh the choice

φh = [u�+1
h (z) + ûh(z)]ϕz yields that

βz

(
u�+1

h (z) − ûh(z)
)
·
(
u�+1

h (z) + ûh(z)
)

= 0

from which we deduce that |u�+1
h (z)|2 = |ûh(z)|2 = 1. Subtracting the equations that define u�+1

h and u�
h leads to

(u�+1
h − u�

h, φh)h =
τ

4
([
u�+1

h + ûh

]
×

[
w�

h + ŵh

]
, φh

)
h
− τ

4
([
u�

h + ûh

]
×

[
w�−1

h + ŵh

]
, φh

)
h

=
τ

4
([
u�+1

h − u�
h

]
×

[
w�

h + ŵh

]
, φh

)
h

+
τ

4
([
u�

h + ûh

]
×

[
w�

h − w�−1
h

]
, φh

)
h
.
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Analogously, we subtract the equations that define w�+1
h and w�

h to deduce that

(w�+1
h − w�

h, ψh)h =
τ

4
(Δh[u�+1

h + ûh] × [u�+1
h + ûh], ψh)h − τ

4
(Δh[u�

h + ûh] × [u�
h + ûh], ψh)h

=
τ

4
(Δh[u�+1

h − u�
h] × [u�+1

h + ûh], ψh)h +
τ

4
(Δh[u�

h + ûh] × [u�+1
h − u�

h], ψh)h.

The choice φh = u�+1
h − u�

h and the fact that ‖u�
h + ûh‖L∞(Ω) ≤ 2 allow us to estimate∥∥u�+1

h − u�
h

∥∥
h
≤ τ

2

∥∥w�
h − w�−1

h

∥∥
h
.

Similarly, upon choosing ψh = w�+1
h − w�

h we find∥∥w�+1
h − w�

h

∥∥
h
≤ τ

2

∥∥Δh[u�+1
h − u�

h]
∥∥

h
+
τ

4

∥∥Δh[u�
h + ûh]

∥∥
L∞(Ω)

∥∥u�+1
h − u�

h

∥∥
h

≤ c2invτh
−2
min

∥∥u�+1
h − u�

h

∥∥
h
.

The combination of the last two estimates yields∥∥w�+1
h − w�

h

∥∥
h
≤ 1

2
c2invτ

2h−2
min

∥∥w�
h − w�−1

h

∥∥
h

which proves that the iteration is a contraction provided that cinvτ ≤ h. �

Remark 4.3.
(i) If cinvτ ≤ h and εstop = hα then N ≥ α log(h)/ log(q) steps of Algorithm 2 are required to meet the stopping
criterion.
(ii) Proposition 4.2 implies that the iterates of Algorithm 1 are uniquely defined if cinvτ ≤ h.

5. Numerical experiment

We test the performance of our numerical scheme for initial data from [7] that lead to the formation of a
singularity.

Example 5.1. Let Ω = (−1/2, 1/2)2, T = 1,

u0(x) =

{
1

a2+|x|2 (2ax1, 2ax2, a
2 − |x|2) for |x| ≤ 1/2,

(0, 0,−1) for |x| ≥ 1/2,

with a = (1 − 2|x|)4 and w0(x) = 0 for x = (x1, x2) ∈ Ω.

Table 1. Maximal iteration number N� needed in the fixed-point iterations with stopping
criterion εstop = τ� for the discrete time-stepping on a triangulation with mesh-size h� = 2−�

and step-size τ� = h�/4 for � = 3, 4, . . . , 7 in Example 5.1.

h� 2−3 2−4 2−5 2−6 2−7

N� 2 2 2 3 3

Our triangulations consist of halved squares with edge-lengths h� = 2−�, � = 3, 4, . . . , 7, and we use the
time-step sizes τ� = h�/4. The stopping criterion for the fixed-point iteration is chosen as εstop = τ . Table 1
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displays the maximal iteration number needed to achieve the stopping criterion in the fixed-point iteration of
Algorithm 2 over all time steps for different refinement levels. We see that this number grows very slowly with
the decreasing mesh size h� which is in good agreement with our theoretical findings that predict a logarithmic
dependence.

Acknowledgements. The author acknowledges the kind hospitality and support from the Isaac Newton Institute for
Mathematical Sciences during the research programme Free Boundary Problems and Related Topics.
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