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CONVERGENCE OF THE CELL AVERAGE TECHNIQUE
FOR SMOLUCHOWSKI COAGULATION EQUATION
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Abstract. We present the convergence analysis of the cell average technique, introduced in [J. Kumar
et al., Powder Technol. 179 (2007) 205–228.], to solve the nonlinear continuous Smoluchowski coagula-
tion equation. It is shown that the technique is second order accurate on uniform grids and first order
accurate on non-uniform smooth (geometric) grids. As an essential ingredient, the consistency of the
technique is thoroughly discussed.
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1. Introduction

In this article we study some mathematical issues related to the convergence of the cell average technique
(CAT) [19] for solving the continuous Smoluchowski coagulation equation (SCE) which describes the dynamic
evolution of particle growth. This model has many applications in biology, polymer science, astrophysics and
oil industry etc. The nonlinear continuous SCE reads as

∂f(t, x)
∂t

=
1
2

∫ x

0

β(x − y, y)f(t, x − y)f(t, y)dy −
∫ ∞

0

β(x, y)f(t, x)f(t, y)dy, (1.1)

with

f(x, 0) = f in(x) ≥ 0, x ∈]0,∞[.

Here the number density of particles of volume x > 0 at time t ≥ 0 is denoted by f(x, t) ≥ 0. The coagulation
kernel β(x, y) ≥ 0 represents the rate at which particles of volume x coalesce with particles of volume y. It will
be assumed throughout the article that β(x, y) = β(y, x) for all x, y > 0, i.e. symmetric and β(x, y) = 0 for
either x = 0 or y = 0. The integrals on the right-hand side of (1.1) represent, respectively,

• birth of particles of volume x as a result of coagulation events of particles with volumes y and x − y
(0 ≤ y ≤ x)
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• death of particles of volume x due to the coagulation events with particles of volume y (0 ≤ y < ∞).

There are several results available on the existence and uniqueness of solutions to (1.1), see
e.g. [2, 4, 7, 15–17,25–27,30, 31, 35]. To show all these results, one always needs certain growth conditions on
coagulation kernels. The SCE (1.1) is analytically solvable only for some specific examples of coagulation ker-
nels, see [3, 11, 12]. Because of these restrictions, several researchers are always interested to solve such models
by applying different numerical techniques with a detailed study of their mathematical analysis.

A large variety of numerical methods have been applied for solving SCE: finite element methods [8, 32, 33],
finite volume methods [1,9,10], stochastic methods [5, 6, 28], moment methods [34] and scetional methods [19–22].
Stochastic methods are very powerful to solve such problems. Otherwise, most of these methods may give a
good approximation of number density but a poor approximation of moments. However, the moment methods
approximate very accurately the moments of the number density but are unable to give a precise information
about the number density. Among all these methods for solving SCE (1.1), the sectional methods have become
very popular because they not only approximate accurately some selected moments but also give satisfactory
results for the number density.

Among all sectional methods, the fixed pivot technique (FPT) [21] is most widely used method in the
literature. In the FPT, each new born particle, which is not positioned at a pivot point of any cell has to be
assigned onto the neighboring pivot points. A step to improve the existing sectional methods has been made
in [19, 20] as the cell average technique (CAT). Unlike the FPT, here in the CAT, the average of all new born
particles in a cell is assigned to the neighboring pivot points. In both of the methods, the reassignment is done
in such a way that the total number and mass remain conserved. For solving the linear breakage/fragmentation
equation, both FPT and CAT, in [23,24], are shown second order accurate on uniform and non-uniform smooth
meshes. Recently, in [14], it is shown that the FPT is second order accurate on uniform and non-uniform smooth
grids for solving the nonlinear SCE.

The purpose of this work is to demonstrate the convergence analysis of CAT for solving SCE (1.2) on uniform
and non-uniform smooth geometric grids. To the best of our knowledge, this is the first attempt to show the
convergence of CAT for solving nonlinear continuous SCE. The work presented here is motivated from [14,24].

To apply a numerical method, first we need to consider the following truncated form of the problem (1.1) by
taking a finite computational domain ]0, R] where 0 < R < ∞.

∂n(t, x)
∂t

=
1
2

∫ x

0

β(x − y, y)n(t, x − y)n(t, y)dy −
∫ R

0

β(x, y)n(t, x)n(t, y)dy, (1.2)

with

n(x, 0) = nin(x) ≥ 0, x ∈ Ω :=]0, R],

where n(t, x) represents the solution to the truncated equation (1.2). The existence and uniqueness of non-
negative solutions for the truncated SCE (1.2) has been shown in [4,35]. In [4,7,15,16,26,35], it is proven that
the sequence of solutions to the truncated problems converge weakly to the solution of the original problem in
a weighted L1 space as R → ∞ for certain classes of kernels.

The plan of this paper is as follows. The mathematical formulation of CAT is recalled in the next section. The
main convergence result is stated as Theorem 2.6 at the end of Section 2. In order to prove the main result, the
consistency of the method and Lipschitz conditions are investigated in Sections 3 and 4, respectively. Finally,
some conclusions are made in Section 5.

2. The cell average technique

The cell average technique approximates the total number of particles in finite number of cells. As a first
step, the continuous interval Ω :=]0, R] is divided into a small number of cells defining size classes

Λi :=]xi−1/2, xi+1/2], i = 1, . . . , I,
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with
x1/2 = 0, xI+1/2 = R.

The representative of each size class, usually the center point of each cell xi = (xi−1/2 + xi+1/2)/2, is called
pivot or grid point. We introduce Δxmin and Δx ∈]0, 1[ to satisfy

Δxmin ≤ Δxi = xi+1/2 − xi−1/2 ≤ Δx.

For the purpose of later analysis, we assume that there exists a positive constant K (independent of grid)
such that

Δx

Δxmin
≤ K (quasi uniformity). (2.1)

The total number of particles in the ith cell is given as

Ni(t) =
∫ xi+1/2

xi−1/2

n(t, x)dx. (2.2)

Integrating the continuous equation (1.2) over the ith cell we obtain

dNi(t)
dt

= Bi − Di, i = 1, . . . , I.

The total birth rate Bi and the death rate Di are given as

Bi =
1
2

∫ xi+1/2

xi−1/2

∫ x

0

β(x − y, y)n(t, x − y)n(t, y)dydx, (2.3)

and

Di =
∫ xi+1/2

xi−1/2

∫ xI+1/2

0

β(x, y)n(t, y)n(t, x)dydx. (2.4)

The above equations yield a semi-discrete system in R
I

dN
dt

= B− D, with N(0) = Nin, (2.5)

where N,B,D ∈ R
I . The ith component of vectors N,B, and D are respectively defined in (2.2)–(2.4). The

vector N is formed by the vector of values of the step function obtained by L2 projection of the exact solution
n into the space of step functions, which are constant on each cell. Note that this projection error can easily be
shown of second order, see [13]. The total discrete birth and death rates of particles are evaluated by substituting
the number density approximation

n(t, x) ≈
I∑

i=1

Ni(t)δ(x − xi)

into equations (2.3) and (2.4) as

B̂i =
j≥k∑

xi−1/2≤xj+xk<xi+1/2

(
1 − 1

2
δj,k

)
β(xk, xj)Nj(t)Nk(t), (2.6)
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and

D̂i = Ni(t)
I∑

j=1

β(xi, xj)Nj(t). (2.7)

Here B̂i and D̂i denote the discrete birth and death rates, respectively, in the ith cell. The total volume flux
Vi into cell i as a result of aggregation is given by

Vi =
1
2

∫ xi+1/2

xi−1/2

∫ x

0

xβ(x − y, y)n(t, x − y)n(t, y)dydx. (2.8)

Similarly to the discrete birth rate the discrete volume flux can be obtained as

V̂i =
j≥k∑

xi−1/2≤xj+xk<xi+1/2

(
1 − 1

2
δj,k

)
β(xk, xj)Nj(t)Nk(t)(xj + xk). (2.9)

Consequently, the average volume vi ∈ [xi−1/2, xi+1/2] of all new born particles in the ith cell can be evalu-
ated as

vi =
V̂i

B̂i

, B̂i > 0. (2.10)

We do not need volume average vi in case of B̂i = 0. However, for B̂i = 0, we can fix vi = xi. The main
idea of the scheme is to assign temporarily all new born particles in the ith cell to the average volume vi. If
the average volume vi is same as the pivot point xi then the total birth B̂i of the new born particles can be
assigned to the pivot xi only. But this is rarely possible, and hence, the total birth B̂i has to be assigned to the
neighboring pivots in such a way that the total number and mass remain conserved during this reassignment.
Finally, the resultant set of ODEs takes the following form

dN̂i

dt
= B̂CA

i − D̂CA
i . (2.11)

The above discretized system can also be written in the following vector form

dN̂
dt

= B̂(N̂) − D̂(N̂) =: F̂(t, N̂), with N̂(0) = Nin, (2.12)

where N̂, B̂, D̂ ∈ R
I . The numerical approximation of total number of particles in ith cell, Ni(t), is defined by

N̂i(t) which is the ith component of the vector N̂. The discretized birth term, B̂CA
i , and death term, D̂CA

i ,
obtained from the cell average technique are defined below. These are the ith components of the vectors B̂
and D̂ respectively. Let us consider the Heaviside function

H(x) :=

⎧⎪⎨
⎪⎩

1 if x > 0,
1
2 if x = 0,

0 if x < 0.

(2.13)

and

λ±
i (x) =

x − xi±1

xi − xi±1
· (2.14)
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Then the birth and death terms are given as

B̂CA
i : = B̂i−1λ

−
i (vi−1)H(vi−1 − xi−1) + B̂iλ

+
i (vi)H(vi − xi)

+ B̂iλ
−
i (vi)H(xi − vi) + B̂i+1λ

+
i (vi+1)H(xi+1 − vi+1), (2.15)

and

D̂CA
i := D̂i = Ni(t)

I∑
j=1

β(xi, xj)Nj(t). (2.16)

The first and the fourth terms on the right hand side of equation (2.15) can be set to zero for i = 1 and i = I,
respectively. The detailed formulation can be found in [19].

By using (2.6) and (2.7) the cell average technique (2.11) can be written as

dN̂i(t)
dt

= λ−
i (vi−1)H(vi−1 − xi−1)

×
j≥k∑

xi−3/2≤xj+xk<xi−1/2

(
1 − 1

2
δj,k

)
β(xk, xj)N̂j(t)N̂k(t)

+ [λ+
i (vi)H(vi − xi) + λ−

i (vi)H(xi − vi)]

×
j≥k∑

xi−1/2≤xj+xk<xi+1/2

(
1 − 1

2
δj,k

)
β(xk, xj)N̂j(t)N̂k(t)

+ λ+
i (vi+1)H(xi+1 − vi+1)

×
j≥k∑

xi+1/2≤xj+xk<xi+3/2

(
1 − 1

2
δj,k

)
β(xk, xj)N̂j(t)N̂k(t)

− N̂i(t)
I∑

j=1

β(xi, xj)N̂j(t). (2.17)

It should be pointed out here that in this work we consider the following discrete norm

‖N‖ =
I∑

i=1

|Ni|.

The following lemma is required to show the convergence of the scheme to solve (1.2):

Lemma 2.1. Assume that the coagulation kernel and the initial datum satisfy

β ∈ W 2,∞((0, R) × (0, R)) and nin ∈ W 2,∞(0, R). (2.18)

Then there exists a constant L(T, R) > 0 such that

‖n(t)‖W 2,∞(0,R) ≤ L(T, R). (2.19)
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Proof. In [16], it is shown that there exists a weak solution n ∈ L∞((0, T ); L1(0, R)) to (1.2) with the suitable
initial datum nin. Let ‖ · ‖∞,1 denotes the norm in L∞((0, T ); L1(0, R)). From (2.18), we can also say that

β ∈ W 1,∞((0, R) × (0, R)) and nin ∈ W 1,∞(0, R).

Hence, by Proposition 3.6 in [1], there exists a C(T, R) > 0 such that

‖n(t)‖W 1,∞(0,R) ≤ C(T, R). (2.20)

In order to prove (2.19), we use (2.20) and (2.18).
First, we integrate equation (1.2) with respect to t and then differentiate it twice with respect to x to obtain

∂2n(t, x)
∂x2

=
∂2n0(x)

∂x2
+

∫ t

0

[
1
2

∫ x

0

(
∂2β(x − y, y)

∂x2
n(x − y, s)n(y, s)

+ 2
∂β(x − y, y)

∂x

∂n(x − y, s)
∂x

n(y, s) + β(x − y, y)
∂2n(x − y, s)

∂x2
n(y, s)

)
dy

+
1
2

∂β(x − y, y)
∂x

∣∣∣∣
y=x

n(x, s)n(0, s) −
∫ R

0

(
∂2β(x, y)

∂x2
n(x, s)n(y, s)

+ 2
∂β(x, y)

∂x

∂n(x, s)
∂x

n(y, s) + β(x, y)
∂2n(x, s)

∂x2
n(y, s)

)
dy

]
ds.

Taking the maximum value over all possible values of x, we find∥∥∥∥∂2n(t, x)
∂x2

∥∥∥∥
L∞

≤
∥∥∥∥∂2n0(x)

∂x2

∥∥∥∥
L∞

+
{

3
2
‖β‖W 2,∞‖n‖L∞‖n‖∞,1 +

1
2
‖β‖W 1,∞‖n‖2

L∞

}
t

+ 3‖β‖W 1,∞‖n‖∞,1

∫ t

0

∥∥∥∥∂n

∂x

∥∥∥∥
L∞

ds

+
3
2
‖β‖L∞‖n‖∞,1

∫ t

0

∥∥∥∥∂2n

∂x2

∥∥∥∥
L∞

ds. (2.21)

Owing to (2.20), we thank Gronwall’s lemma which gives us (2.19). �

Before moving to the main result, let us recall some definitions and a result taken from [18].

Definition 2.2. The local discretization error is defined by the residual left by substituting the exact solution
N(t) into equation (2.12) as

σ(t) =
dN(t)

dt
−

(
B̂ (N(t)) − D̂ (N(t))

)
. (2.22)

The scheme (2.12) is called consistent of order p if, for Δx → 0,

‖σ(t)‖ = O(Δxp), uniformly for all t, 0 ≤ t ≤ T.

Definition 2.3. The global discretization error is defined by

ε(t) = N(t) − N̂(t). (2.23)

The scheme (2.12) is called convergent of order p if, for Δx → 0,

‖ε(t)‖ = O(Δxp), uniformly for all t, 0 ≤ t ≤ T.
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It is important that the solution obtained by CAT remains non-negative for all times. This can be easily
shown by using the next well known theorem. In the following theorem we write M̂ ≥ 0 for a vector M̂ ∈ R

I if
all of its components are non-negative.

Theorem 2.4. Suppose that F̂(t, M̂) defined in (2.12) is continuous and satisfies the Lipschitz condition as

‖F̂(t, P̂) − F̂(t, M̂)‖ ≤ L‖P̂− M̂‖ for all P̂, M̂ ∈ R
I .

Then the solution of the semi-discrete system (2.12) is non-negative if and only if for any vector M̂ ∈ R
I with

M̂ ≥ 0, the condition M̂i = 0 implies F̂i(t, M̂) ≥ 0 for any i = 1, . . . , I and all t ≥ 0.

Proof. The proof can be found in ([18], Chap. 1, Thm. 7.1). �

The following theorem is required to show the convergence of the CAT.

Theorem 2.5. Let us assume that the Lipschitz conditions on B̂(N(t)) and D̂(N(t)) are satisfied for 0 ≤ t ≤ T
and for all N, N̂ ∈ R

I where N and N̂ are the projected exact and numerical solutions defined in (2.5) and (2.12)
respectively. Then a consistent discretization method is also convergent and the convergence is of the same order
as the consistency.

Proof. The proof is similar to Theorem 2.4 in [14]. �

Now we shall state the main result of the paper.

Theorem 2.6. Under the assumptions of Lemma 2.1, the CAT for solving (1.2) is second order convergent on
a uniform and first order convergent on a non-uniform smooth (geometric) grid.

Proof. This result can easily be proved by applying Theorem 2.5. In order to fulfill the requirements of Theo-
rem 2.5, for the convergence of the CAT, it is shown in Section 3 that the scheme is second order consistent on
a uniform grid and first order consistent on a non-uniform smooth (geometric) grid. Moreover, in Section 4, the
birth B̂(N(t)) and death D̂(N(t)) terms satisfy the Lipschitz conditions. �

3. Consistency

Let us describe the four main sections to study the consistency of the CAT for solving SCE (1.2). First,
we evaluate the discretization error of the integrated birth and death terms in Sections 3.1 and 3.2, respec-
tively. Then all error terms are summarized, in Section 3.3, to obtain the local discretization error. Finally, in
Section 3.4, the two different types of grids are considered to evaluate the order of consistency of the CAT.

3.1. Discretization error in the birth term

The integrated birth term of SCE (1.2) over ith cell is given by

Bi =
1
2

∫ xi+1/2

xi−1/2

∫ x

0

β(x − y, y)n(t, x − y)n(t, y)dydx.

By changing the order of integration we get

Bi =
1
2

i−1∑
j=1

∫ xj+1/2

xj−1/2

∫ xi+1/2

xi−1/2

β(x − y, y)n(t, x − y)n(t, y)dxdy

+
1
2

∫ xi+1/2

xi−1/2

∫ xi+1/2

y

β(x − y, y)n(t, x − y)n(t, y)dxdy.
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Now we apply the midpoint rule to the outer integrals in both terms on the right-hand side and use the
relationship Ni = n(t, xi)Δxi + O(Δx3) for the midpoint rule to obtain

Bi =
1
2

i−1∑
j=1

Nj(t)
∫ xi+1/2

xi−1/2

β(x − xj , xj)n(t, x − xj)dx

+
1
2
Ni(t)

∫ xi+1/2

xi

β(x − xi, xi)n(t, x − xi)dx + O(Δx3),

=: B̃i + O (
Δx3

)
. (3.1)

Let us denote the integral terms in B̃i by I1 and I2, respectively, and evaluate them separately.

Integral term I1: We consider the first integral term on the right-hand side in (3.1) and use the substitution
x − xj = x′ to get

I1 =
1
2

i−1∑
j=1

Nj(t)
∫ xi+1/2−xj

xi−1/2−xj

β(x′, xj)n(t, x′)dx′. (3.2)

We now define li,j and γi,j to be those indices such that the following hold

xi−1/2 − xj ∈ Λli,j and γi,j := sgn[(xi−1/2 − xj) − xli,j ], (3.3)

where

sgn(x) :=

⎧⎪⎪⎨
⎪⎪⎩

1 if x > 0,

0 if x = 0,

-1 if x < 0.

By the definition of the indices li,j and γi,j in (3.3), equation (3.2) can be rewritten as

I1 =
1
2

i−1∑
j=1

Nj(t)
∫ x

li,j+ 1
2 γi,j

xi−1/2−xj

β(x′, xj)n(t, x′)dx′

+
1
2

i−1∑
j=1

Nj(t)
li+1,j+

1
2 (γi+1,j−1)∑

k=li,j+ 1
2 (γi,j+1)

∫ xk+1/2

xk−1/2

β(x′, xj)n(t, x′)dx′

+
1
2

i−1∑
j=1

Nj(t)
∫ xi+1/2−xj

x
li+1,j+ 1

2 γi+1,j

β(x′, xj)n(t, x′)dx′. (3.4)

Let p be the total number of terms in the following sum

li+1,j+
1
2 (γi+1,j−1)∑

k=li,j+ 1
2 (γi,j+1)

∫ xk+1/2

xk−1/2

β(x′, xj)n(t, x′)dx′.

In particular, let p := #{n : li,j + 1
2 (γi,j + 1) ≤ n ≤ li+1,j + 1

2 (γi+1,j − 1)} and set

k1 := li,j +
1
2
(γi,j + 1), k2 := k1 + 1, . . . , kp−1 := k1 + (p − 2).



CONVERGENCE OF CAT FOR SMOLUCHOWSKI COAGULATION EQUATION 357

Next, we shall show that p is finite and can be estimated by a constant which is independent of the grid size.
By using the definition of the indices li,j and γi,j in (3.3), we can estimate

(p − 2)Δxmin ≤ Δxk2 + Δxk3 + . . . + Δxkp−1 ≤ 1
2
(Δxi + Δxi+1) ≤ Δx

which implies using the assumption of quasi uniformity (2.1) that

(p − 2) ≤ Δx

Δxmin
≤ K ⇒ p ≤ K + 2.

This means the above sum has uniformly bounded finite number of terms. So we can apply the midpoint rule
to the integral in second term on the right hand side and use Nk(t) = n(t, xk)Δxk + O(Δx3) to get

I1 =
1
2

i−1∑
j=1

Nj(t)
∫ x

li,j+ 1
2 γi,j

xi−1/2−xj

β(x′, xj)n(t, x′)dx′

+
1
2

i−1∑
j=1

Nj(t)
∑

xi−1/2≤(xj+xk)<xi+1/2

β(xk, xj)Nk(t)

+
1
2

i−1∑
j=1

Nj(t)
∫ xi+1/2−xj

x
li+1,j+1

2 γi+1,j

β(x′, xj)n(t, x′)dx′ + O(Δx3). (3.5)

Integral term I2: Let us consider the second integral term in (3.1) and use the substitution x − xi = x′ to
estimate

I2 =
1
2
Ni(t)

∫ xi+1/2−xi

0

β(x′, xi)n(t, x′)dx.

Again by the definition of the indices li,j and γi,j in (3.3) we split the above integral as

I2 =
1
2
Ni(t)

li+1,i+
1
2 (γi+1,i−1)∑
k=1

∫ xk+1/2

xk−1/2

β(x′, xi)n(t, x′)dx′

+
1
2
Ni(t)

∫ xi+1/2−xi

x
li+1,i+

1
2 γi+1,i

β(x′, xi)n(t, x′)dx′.

By applying the midpoint rule in the first term and using the definition of the indices li,j and γi,j , we get

I2 =
1
2
Ni(t)

∑
xi+xk<xi+1/2

β(xk, xi)Nk(t)

+
1
2
Ni(t)

∫ xi+1/2−xi

x
li+1,i+

1
2 γi+1,i

β(x′, xi)n(t, x′)dx′ + O(Δx3). (3.6)

By substituting (3.5), (3.6) into (3.1) and using (2.6), we estimate

Bi = B̂i +
1
2

i−1∑
j=1

Nj(t)
∫ x

li,j+ 1
2 γi,j

xi−1/2−xj

β(x′, xj)n(t, x′)dx′

+
1
2

i∑
j=1

Nj(t)
∫ xi+1/2−xj

x
li+1,j+ 1

2 γi+1,j

β(x′, xj)n(t, x′)dx′ + O(Δx3). (3.7)
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Let us denote the sum of the remaining two integrals on the right hand side in (3.7) by the error E1 which
will be discussed later.

Now we concentrate to evaluate the integrated term Vi − xiBi by using (2.3) and (2.8) as follows

Vi − xiBi =
1
2

∫ xi+1/2

xi−1/2

∫ x

0

(x − xi)β(x − y, y)n(t, x − y)n(t, y)dydx.

By changing the order of integration we get

Vi − xiBi =
1
2

i−1∑
j=1

∫ xj+1/2

xj−1/2

∫ xi+1/2

xi−1/2

(x − xi)β(x − y, y)n(t, x − y)n(t, y)dxdy

+
1
2

∫ xi+1/2

xi−1/2

∫ xi+1/2

y

(x − xi)β(x − y, y)n(t, x − y)n(t, y)dxdy.

Now applying the midpoint rule to the outer integrals in both the terms on the right hand side and using
the relationship Ni = n(t, xi)Δxi + O(Δx3) with β(0, ·) = 0, we obtain

Vi − xiBi =
1
2

i−1∑
j=1

Nj(t)
∫ xi+1/2

xi−1/2

(x − xi)β(x − xj , xj)n(t, x − xj)dx

+
1
2
Ni(t)

∫ xi+1/2

xi

(x − xi)β(x − xi, xi)n(t, x − xi)dx + O (
Δx5

)
,

=: Ṽi − xiB̃i + O (
Δx5

)
. (3.8)

We denote the integral terms involving in Ṽi−xiB̃i by P1 and P2, respectively, and calculate them separately.

Integral term P1: Let us consider the first integral term in (3.8) and insert x − xj = x′ to estimate

P1 =
1
2

i−1∑
j=1

Nj(t)
∫ xi+1/2−xj

xi−1/2−xj

(x′ − xi + xj)β(x′, xj)n(t, x′)dx′. (3.9)

By the definition of the indices li,j and γi,j in (3.3), (3.9) can be rewritten as

P1 =
1
2

i−1∑
j=1

Nj(t)
∫ x

li,j+1
2 γi,j

xi−1/2−xj

(x′ − xi + xj)β(x′, xj)n(t, x′)dx′

+
1
2

i−1∑
j=1

Nj(t)
li+1,j+ 1

2 (γi+1,j−1)∑
k=li,j+ 1

2 (γi,j+1)

∫ xk+1/2

xk−1/2

(x′ − xi + xj)β(x′, xj)n(t, x′)dx′

+
1
2

i−1∑
j=1

Nj(t)
∫ xi+1/2−xj

x
li+1,j+ 1

2 γi+1,j

(x′ − xi + xj)β(x′, xj)n(t, x′)dx′.

Since the number of terms in the inner summation of second term on the right hand side is finite as be-
fore, therefore we can use the midpoint rule to the integral in second term on the right hand side and use



CONVERGENCE OF CAT FOR SMOLUCHOWSKI COAGULATION EQUATION 359

Nk(t) = n(t, xk)Δxk + O(Δx3) to obtain

P1 =
1
2

i−1∑
j=1

Nj(t)
∫ x

li,j+ 1
2 γi,j

xi−1/2−xj

(x′ − xi + xj)β(x′, xj)n(t, x′)dx′

+
1
2

i−1∑
j=1

Nj(t)
∑

xi−1/2≤(xj+xk)<xi+1/2

(xk − xi + xj)β(xk , xj)Nk(t)

+
1
2

i−1∑
j=1

Nj(t)
∫ xi+1/2−xj

x
li+1,j+ 1

2 γi+1,j

(x′ − xi + xj)β(x′, xj)n(t, x′)dx′

+
1
24

i−1∑
j=1

Nj(t)
li+1,j+

1
2 (γi+1,j−1)∑

k=li,j+
1
2 (γi,j+1)

Δxk
3 ∂

∂x′ {β(xk, xj)n(t, xk)}

+ O(Δx4). (3.10)

Integral term P2: Let us consider the second integral term in (3.8) and use the substitution x − xi = x′ to
estimate

P2 =
1
2
Ni(t)

∫ xi+1/2−xi

0

x′β(x′, xi)n(t, x′)dx.

By the definition of the indices li,j and γi,j in (3.3) we split the above integral as

P2 =
1
2
Ni(t)

li+1,i+
1
2 (γi+1,i−1)∑
k=1

∫ xk+1/2

xk−1/2

x′β(x′, xi)n(t, x′)dx′

+
1
2
Ni(t)

∫ xi+1/2−xi

x
li+1,i+

1
2 γi+1,i

x′β(x′, xi)n(t, x′)dx′.

We apply the midpoint rule in the first term on the right hand side to obtain

P2 =
1
2
Ni(t)

∑
xi+xk<xi+1/2

(xi + xk − xi)β(xk, xi)Nk(t)

+
1
2
Ni(t)

∫ xi+1/2−xi

x
li+1,i+

1
2 γi+1,i

x′β(x′, xi)n(t, x′)dx′ + O (
Δx4

)
. (3.11)

By substituting (3.10), (3.11) into (3.8), and using (2.9) and (2.6), we have

Vi − xiBi = V̂i − xiB̂i

+
1
2

i−1∑
j=1

Nj(t)
∫ x

li,j+ 1
2 γi,j

xi−1/2−xj

(x′ − xi + xj)β(x′, xj)n(t, x′)dx′

× 1
2

i∑
j=1

Nj(t)
∫ xi+1/2−xj

x
li+1,j+ 1

2 γi+1,j

(x′ − xi + xj)β(x′, xj)n(t, x′)dx′

+
1
24

i−1∑
j=1

Nj(t)
li+1,j+ 1

2 (γi+1,j−1)∑
k=li,j+ 1

2 (γi,j+1)

Δxk
3 ∂

∂x′ {β(xk, xj)n(t, xk)}

+ O (
Δx4

)
. (3.12)
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Now we evaluate the each term in (2.15) separately. We begin with the first term without Heaviside func-
tion H(x) and insert the value of λ from (2.14) to get

λ−
i (vi−1)B̂i−1 =

vi−1 − xi−1

xi − xi−1
B̂i−1 =

2
Δxi + Δxi−1

[V̂i−1 − xi−1B̂i−1].

Using the equation (3.8) and (3.12), we obtain

λ−
i (vi−1)B̂i−1 =

2
Δxi + Δxi−1

[
Ṽi−1 − xi−1B̃i−1

− 1
2

i−2∑
j=1

Nj(t)
∫ x

li−1,j+1
2 γi−1,j

xi−3/2−xj

(x′ − xi−1 + xj)β(x′, xj)n(t, x′)dx′

− 1
2

i−1∑
j=1

Nj(t)
∫ xi−1/2−xj

x
li,j+1

2 γi,j

(x′ − xi−1 + xj)β(x′, xj)n(t, x′)dx′

− 1
24

i−2∑
j=1

Nj(t)
li,j+

1
2 (γi,j−1)∑

k=li−1,j+ 1
2 (γi−1,j+1)

Δxk
3 ∂

∂x′ {β(xk, xj)n(t, xk)}

+ O(Δx4)

]
. (3.13)

In order to solve equation (3.13), we estimate Ṽi−1 − xi−1B̃i−1 defined in (3.8) as follows

Ṽi−1 − xi−1B̃i−1 =
1
2

[
i−2∑
j=1

Nj

∫ xi−1/2

xi−3/2

(x − xi−1)f(x − xj , xj)dx

+
∫ xi−1/2

xi−1

(x − xi−1)f(x − xi−1, xi−1)n(t, xi−1)Δxi−1dx

]
, (3.14)

where f(·, y) := β(·, y)n(t, ·). Next, we use Taylor series expansions of each integrand about xi−1 in equa-
tion (3.14) as

(x − xi−1)f(x − xj , xj) = 0 + f(xi−1 − xj , xj)(x − xi−1)
+ fx(xi−1 − xj , xj)(x − xi−1)2 + O(Δx3),

(x − xi−1)f(x − xi−1, xi−1) = 0 + f(xi−1 − xi−1, xi−1)(x − xi−1) + O(Δx2).

The substitution of the above Taylor series expansion in equation (3.14) gives

Ṽi−1 − xi−1B̃i−1 =
1
2

⎡
⎣ 1

12

i−2∑
j=1

Njfx(xi−1 − xj , xj)Δx3
i−1 +

1
8
f(xi−1 − xi−1, xi−1)n(t, xi−1)Δx3

i−1 + O (
Δx4

)⎤⎦ .

Since β(xi−1 − xi−1, xi−1) = β(0, xi−1) = 0, therefore we have f(xi−1 − xi−1, xi−1) = 0. This implies that

Ṽi−1 − xi−1B̃i−1 =
1
24

i−2∑
j=1

Njfx(xi−1 − xj , xj)Δx3
i−1 + O (

Δx4
)
.

Again the application of Taylor series expansion gives us

Ṽi−1 − xi−1B̃i−1 =
1
24

i−2∑
j=1

Njfx(xi − xj , xj)Δx3
i−1 + O (

Δx4
)
. (3.15)
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Finally, substituting (3.15) into (3.13), we obtain

λ−
i (vi−1)B̂i−1 =

1
12

i−2∑
j=1

Njfx(xi − xj , xj)
Δx3

i−1

Δxi + Δxi−1

−
i−2∑
j=1

Nj(t)
∫ x

li−1,j+1
2 γi−1,j

xi−3/2−xj

(x′ − xi−1 + xj)
Δxi + Δxi−1

f(x′, xj)dx′

−
i−1∑
j=1

Nj(t)
∫ xi−1/2−xj

x
li,j+1

2 γi,j

(x′ − xi−1 + xj)
Δxi + Δxi−1

f(x′, xj)dx′

− 1
12

i−2∑
j=1

Nj(t)
li,j+

1
2 (γi,j−1)∑

k=li−1,j+ 1
2 (γi−1,j+1)

Δxk
3

Δxi + Δxi−1
fx′(xk, xj)

+ O (
Δx3

)
. (3.16)

Next, the second term in (2.15) is evaluated as

λ+
i (vi)B̂i =

vi − xi+1

xi − xi+1
B̂i =

(
1 − vi − xi

xi+1 − xi

)
B̂i

= B̂i − 2
Δxi+1 + Δxi

(
V̂i − xiB̂i

)
.

Calculating as before, we estimate the above expression in the following form

λ+
i (vi)B̂i = B̂i − 1

12

i−1∑
j=1

Njfx(xi − xj , xj)
Δx3

i

Δxi + Δxi+1

+
i−1∑
j=1

Nj(t)
∫ x

li,j+1
2 γi,j

xi−1/2−xj

(x′ − xi + xj)
Δxi + Δxi+1

f(x′, xj)dx′

+
i∑

j=1

Nj(t)
∫ xi+1/2−xj

x
li+1,j+ 1

2 γi+1,j

(x′ − xi + xj)
Δxi + Δxi+1

f(x′, xj)dx′

+
1
12

i−1∑
j=1

Nj(t)
li+1,j+ 1

2 (γi+1,j−1)∑
k=li,j+ 1

2 (γi,j+1)

Δxk
3

Δxi + Δxi+1
fx′(xk, xj) + O (

Δx3
)
. (3.17)

Similar to the second term we obtain

λ−
i (vi)B̂i = B̂i +

1
12

i−1∑
j=1

Njfx(xi − xj , xj)
Δx3

i

Δxi + Δxi−1

−
i−1∑
j=1

Nj(t)
∫ x

li,j+1
2 γi,j

xi−1/2−xj

(x′ − xi + xj)
Δxi + Δxi−1

f(x′, xj)dx′

−
i∑

j=1

Nj(t)
∫ xi+1/2−xj

x
li+1,j+ 1

2 γi+1,j

(x′ − xi + xj)
Δxi + Δxi−1

f(x′, xj)dx′

− 1
12

i−1∑
j=1

Nj(t)
li+1,j+ 1

2 (γi+1,j−1)∑
k=li,j+ 1

2 (γi,j+1)

Δxk
3

Δxi + Δxi−1
fx′(xk, xj) + O (

Δx3
)
. (3.18)
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Finally, similar to the first term we can easily estimate

λ+
i (vi+1)B̂i+1 =

1
12

i∑
j=1

Njfx(xi − xj , xj)
Δx3

i+1

Δxi + Δxi+1

+
i∑

j=1

Nj(t)
∫ x

li+1,j+ 1
2 γi+1,j

xi+1/2−xj

(x′ − xi+1 + xj)
Δxi + Δxi+1

f(x′, xj)dx′

+
i+1∑
j=1

Nj(t)
∫ xi+3/2−xj

x
li+2,j+1

2 γi+2,j

(x′ − xi+1 + xj)
Δxi + Δxi+1

f(x′, xj)dx′

+
1
12

i∑
j=1

Nj(t)
li+2,j+

1
2 (γi+2,j−1)∑

k=li+1,j+ 1
2 (γi+1,j+1)

Δxk
3

Δxi + Δxi+1
fx′(xk, xj) + O (

Δx3
)
. (3.19)

By substituting (3.16)–(3.19) into (2.15) and using (3.7), the local discretization error can be evaluated as
follows:
Case I: vi−1 > xi−1, vi > xi and vi+1 ≥ xi+1:

B̂CA
i = Bi

−1
2

i−1∑
j=1

Nj(t)
∫ x

li,j+ 1
2 γi,j

xi−1/2−xj

f(x′, xj)dx′

−1
2

i∑
j=1

Nj(t)
∫ xi+1/2−xj

x
li+1,j+ 1

2 γi+1,j

f(x′, xj)dx′

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=: E1

+
1
12

(
Δxi−1

3

Δxi + Δxi−1
− Δxi

3

Δxi + Δxi+1

) i∑
j=1

Njfx′(xi − xj , xj)

}
=: E2

+
i−1∑
j=1

Nj(t)
∫ x

li,j+1
2 γi,j

xi−1/2−xj

(x′ − xi + xj)
Δxi + Δxi+1

f(x′, xj)dx′

+
i∑

j=1

Nj(t)
∫ xi+1/2−xj

x
li+1,j+ 1

2 γi+1,j

(x′ − xi + xj)
Δxi + Δxi+1

f(x′, xj)dx′

−
i−2∑
j=1

Nj(t)
∫ x

li−1,j+1
2 γi−1,j

xi−3/2−xj

(x′ − xi−1 + xj)
Δxi + Δxi−1

f(x′, xj)dx′

−
i−1∑
j=1

Nj(t)
∫ xi−1/2−xj

x
li,j+1

2 γi,j

(x′ − xi−1 + xj)
Δxi + Δxi−1

f(x′, xj)dx′

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=: E3

+
1
12

i−1∑
j=1

Nj(t)
li+1,j+ 1

2 (γi+1,j−1)∑
k=li,j+ 1

2 (γi,j+1)

Δxk
3

Δxi + Δxi+1
fx′(xk, xj)

− 1
12

i−2∑
j=1

Nj(t)
li,j+ 1

2 (γi,j−1)∑
k=li−1,j+ 1

2 (γi−1,j+1)

Δxk
3

Δxi + Δxi−1
fx′(xk, xj)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=: E4

+O (
Δx3

)
, (3.20)

where E1, E2, E3, and E4 are the error terms.
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Case II: vi−1 ≤ xi−1, vi < xi and vi+1 < xi+1: Similar to the previous case, we have

B̂CA
i = Bi + E1 + E′

2 + E′
3 + E′

4 + O (
Δx3

)
, (3.21)

where the error E′
2 will have the same expression as E2, defined in (3.20), except only two terms Δxi−1

3

and Δxi
3 which are, respectively, replaced by Δxi

3 and Δxi+1
3. The expressions for E′

3 and E′
4 can easily be

written as E3 and E4, respectively, just with the replacement of i by i + 1 except in the denominators involved
in E3 and E4.
Case III: vi−1 ≤ xi−1, vi = xi and vi+1 ≥ xi+1

B̂CA
i = Bi + E1 + O (

Δx3
)
. (3.22)

3.2. Discretization error in the death term

Next, the discretization error for death term is calculated in the ith cell. From equation (2.4), the integrated
death term can be written as follows

Di =
∫ xi+1/2

xi−1/2

I∑
j=1

∫ xj+1/2

xj−1/2

K(x, y)n(t, y)n(t, x)dydx.

The application of the midpoint rule to the outer and inner integrals gives us

Di = Ni(t)
I∑

j=1

K(xi, xj)Nj(t) + O(Δx3) = D̂i + O(Δx3). (3.23)

3.3. Summary of all terms

From equations (3.20)–(3.22) and (3.23), we can estimate the local discretization error σi(t) = (Bi − Di) −
(B̂CA

i − B̂CA
i ) as

σi(t) =

⎧⎪⎪⎨
⎪⎪⎩

E1 + E2 + E3 + E4 + O (
Δx3

)
if i ∈ A1,

E1 + E′
2 + E′

3 + E′
4 + O (

Δx3
)

if i ∈ A2,
E1 + O (

Δx3
)

if i ∈ A3.
(3.24)

where

A1 = {i ∈ N | v̄i−1 > xi−1, v̄i > xi, v̄i+1 ≥ xi+1},
A2 = {i ∈ N | v̄i−1 ≤ xi−1, v̄i < xi, v̄i+1 < xi+1},
A3 = {i ∈ N | v̄i−1 ≤ xi−1, v̄i = xi, v̄i+1 ≥ xi+1}.

Here we consider three different cases to find the order of consistency. Then, the order of consistency is
given by

‖σ(t)‖ =
∑
i∈A1

|σi(t)| +
∑
i∈A2

|σi(t)| +
∑
i∈A3

|σi(t)|. (3.25)

3.4. Grids

The following two different types of grids will be considered to find the order of consistency of CAT.
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3.4.1. Uniform grids

Let us begin with the case of uniform grids i.e. Δxi = Δx and xi = (i − 1/2)Δx for any i = 1, . . . , I.
Here, E2 and E′

2 defined in (3.20) and (3.21), respectively, are obviously zero. In case of such uniform grids, we
have

xi−1/2 − xj = xi−j , xi+1/2 − xj = xi−j+1, and xi−3/2 − xj = xi−j−1.

By using the definition of indices li,j and γi,j in (3.3), we calculate

xi−1/2 − xj = xi−j ∈ Λli,j ,

which gives
xi−1/2 − xj = xi−j = xli,j .

Similarly, we obtain
xi+1/2 − xj = xi−j+1 = xli+1,j ,

and
xi−3/2 − xj = xi−j−1 = xli−1,j .

This shows that γi−1,j = γi,j = γi+1,j = 0. Therefore, in (3.20)–(3.21), the error terms E1, E3 and E′
3 become

zero. It can also be easily realized that xi−3/2 − xj , xi−1/2 − xj , and xi+1/2 − xj are the pivot points of the
adjacent cells, i.e. li−1,j = (i − j − 1)th, li,j = (i − j)th and li+1,j = (i − j + 1)th cells, respectively. Thus, by
substituting the values of all these indices in E4 and E′

4 defined in (3.20) and (3.21), respectively, and applying
the Taylor series expansion, we obtain E4 = O(Δx3) and E′

4 = O(Δx3). Then, from (3.24), we obtain

σi(t) = O(Δx3) if i ∈ A1, A2, A3.

By using (3.25), the order of consistency is thus given by

‖σ(t)‖ = O (
Δx2

)
.

Therefore, the cell average technique is second order consistent on uniform grids.

3.4.2. Non-uniform smooth grids

Non-uniform smooth grids can be obtained by applying some smooth transformation to uniform grids. Assume
a variable ξ with uniform grids and a smooth transformation x = g(ξ) such that xi± 1

2
= g(ξi± 1

2
) for any

i = 1, . . . , I to get non-uniform smooth grids. In this case, we show that the scheme is first order consistent.
Let h be the uniform mesh width in the variable ξ. For such type of smooth grids, Taylor series expansions in
smooth transformations give

Δxi = xi+ 1
2
− xi− 1

2
= g

(
ξi +

h

2

)
− g

(
ξi − h

2

)
= hg′(ξi) + O (

h3
)
.

Hence, by calculating Δxi−1 and Δxi+1 similar to Δxi, we obtain

Δxi − Δxi−1 = O (
h2

)
,

Δxi + Δxi+1 = h[g′(ξi) + g′(ξi+1)] + O(h3) = 2hg′(ξi) + O (
h2

)
,

and similarly, we have

Δxi + Δxi−1 = h[g′(ξi) + g′(ξi−1)] + O(h3) = 2hg′(ξi) + O (
h2

)
.

In particular, we deal with a special type of non-uniform smooth grids which is known as geometric grids.
Such type of grids can be defined as xi+ 1

2
= rxi− 1

2
, r > 1, i = 1, . . . , I. An exponential function can be applied
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on uniform grids as a smooth transformation to construct such type of geometric grids. Mathematically, we
write

xi+1/2 = exp(ξi+1/2) = exp(h + ξi−1/2)
= exp(h) exp(ξi−1/2)
= exp(h)xi−1/2 =: rxi−1/2, r > 1.

To solve the error terms appearing in (3.24), let us further assume that ξ11, ξ12, ξ21, ξ22, ξ31 and ξ32 are corre-
sponding points on uniform mesh for xli+1,j+1+ 1

2γi+1,j+1
, xi+1/2−xj+1, xli,j+ 1

2γi,j
, xi−1/2−xj , xli−1,j−1+ 1

2 γi−1,j−1

and xi−3/2 − xj−1, respectively. Due to an application of exponential smooth transformation, these points can
be defined as

ξ11 = ln
(
xli+1,j+1+ 1

2 γi+1,j+1

)
, . . . , ξ32 = ln(xi−3/2 − xj−1).

By the definition of the indices in (3.3), we know

xi+1/2 − xj+1 ∈ Λli+1,j+1 , xi−1/2 − xj ∈ Λli,j and xi−3/2 − xj−1 ∈ Λli−1,j−1 .

For geometric grids, we have

xi+1/2 − xj+1 = r(xi−1/2 − xj) = r2(xi−3/2 − xj−1).

Therefore, we have
li+1,j+1 = li,j + 1 = li−1,j−1 + 2.

Further, in case of geometric grids, we have

γi+1,j+1 = γi,j = γi−1,j−1.

Let us consider

h1 = ξ11 − ξ12 = ln
(
xli+1,j+1+ 1

2γi+1,j+1

)
− ln(xi+1/2 − xj+1)

= ln
(

xli+1,j+1+ 1
2γi+1,j+1

xi+1/2 − xj+1

)
= ln

(
xli,j+ 1

2γi,j

xi−1/2 − xj

)
= ξ21 − ξ22

= ln
(

xli−1,j−1+ 1
2γi−1,j−1

xi−3/2 − xj−1

)
= ξ31 − ξ32.

Similarly, we estimate

ξ12 − ξ22 = ln
(

xi+1/2 − xj+1

xi−1/2 − xj

)
= ln(r) = h,

and

ξ22 − ξ32 = ln
(

xi−1/2 − xj

xi−3/2 − xj−1

)
= ln(r) = h.

Again, by application of smooth transformation, we can easily obtain

xli+1,j+1+ 1
2γi+1,j+1

− (xi+1/2 − xj+1) = g(ξ11) − g(ξ12) = h1g
′(ξ12) + O (

h2
)
, (3.26)

xli,j+ 1
2γi,j

− (xi−1/2 − xj) = g(ξ21) − g(ξ22) = h1g
′(ξ22) + O (

h2
)
, (3.27)
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and

xli−1,j−1+ 1
2γi−1,j−1

− (xi−3/2 − xj−1) = g(ξ31) − g(ξ32) = h1g
′(ξ32) + O (

h2
)
. (3.28)

All these identities will play an important role to solve the error terms involved in (3.24), which helps us to
calculate the order of local discretization error σi.

We first evaluate E1 defined in (3.20) as follows

E1 =
1
2

i−1∑
j=1

Nj(t)
∫ x

li,j+1
2 γi,j

xi−1/2−xj

f(x, xj)dx +
1
2

i∑
j=1

Nj(t)
∫ xi+1/2−xj

x
li+1,j+1

2 γi+1,j

f(x, xj)dx.

Applying the left and right rectangle rules in the integrals involved in the first and second terms, respectively,
on the right-hand side, we estimate

E1 =
1
2

i−1∑
j=1

Nj(t)f(xi−1/2 − xj , xj)(xli,j+ 1
2γi,j

− xi−1/2 + xj)

+
1
2

i∑
j=1

Nj(t)f(xi+1/2 − xj , xj)(xi+1/2 − xj − xli+1,j+ 1
2 γi+1,j

) + O(Δx2).

Then an application of Taylor’s series expansion about xi−1/2 = xi+1/2 in f(xi−1/2 − xj) gives

E1 =
1
2

i−1∑
j=1

Nj(t)f(xi+1/2 − xj , xj)(xli,j+ 1
2γi,j

− xi−1/2 + xj)

− 1
2

i∑
j=1

Nj(t)f(xi+1/2 − xj , xj)(xli+1,j+ 1
2γi+1,j

− xi+1/2 + xj) + O (
Δx2

)
.

We replace j by j+1 in the second term on the right-hand side and use the relationship Nj(t) = n(t, xj)Δxj +
O(Δx3) for the midpoint rule. Also, we drop the term which is of second order, and obtain

E1 =
1
2

i−1∑
j=1

n(t, xj)Δxjf(xi+1/2 − xj , xj)(xli,j+ 1
2 γi,j

− xi−1/2 + xj)

− 1
2

i−1∑
j=1

n(t, xj+1)Δxj+1f(xi+1/2 − xj+1, xj+1)(xli+1,j+1+ 1
2γi+1,j+1

− xi+1/2 + xj+1)

+ O (
Δx2

)
.

Approximating the function x 
→ n(t, x)f(xi±1/2−x, x) at xj by n(t, x)f(xi±1/2−x, x) evaluated at x = xj+1

in the first term, we evaluate

E1 =
1
2

i−1∑
j=1

{
Δxj(xli,j+ 1

2γi,j
− xi−1/2 + xj) − Δxj+1

(
xli+1,j+1+ 1

2γi+1,j+1
− xi+1/2 + xj+1

)}
× n(t, xj+1)f(xi+1/2 − xj+1, xj+1) + O (

Δx2
)
. (3.29)
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By using the identities in the beginning of this section, we calculate

Δxj

(
xli,j+ 1

2γi,j
− xi−1/2 + xj

)
− Δxj+1

(
xli+1,j+1+ 1

2 γi+1,j+1
− xi+1/2 + xj+1

)
= (Δxj − Δxj+1)

(
xli,j+ 1

2γi,j
− xi−1/2 + xj

)
− Δxj+1

[(
xli+1,j+1+ 1

2γi+1,j+1
− xi+1/2 + xj+1

)
−

(
xli,j+

1
2γi,j

− xi−1/2 + xj

)]
= O (

h2
) {

h1g
′(ξ22) + O (

h2
)}− {

hg′(ξj+1) + O (
h3

)} [
h1{g′(ξ12) − g′(ξ22)} + O (

h2
)]

= O (
h3

)−O(h)
[
h1hg′(ξ22) + O (

h2
)]

= O (
h3

)
. (3.30)

Therefore, substituting (3.30) in (3.29), we obtain

E1 = O (
Δx2

)
. (3.31)

Next, let us calculate E3 defined in (3.20) as follows

E3 =
i−1∑
j=1

Nj(t)
∫ x

li,j+ 1
2 γi,j

xi−1/2−xj

(x − xi + xj)
Δxi + Δxi+1

f(x, xj)dx

+
i∑

j=1

Nj(t)
∫ xi+1/2−xj

x
li+1,j+ 1

2 γi+1,j

(x − xi + xj)
Δxi + Δxi+1

f(x, xj)dx

−
i−2∑
j=1

Nj(t)
∫ x

li−1,j+ 1
2 γi−1,j

xi−3/2−xj

(x − xi−1 + xj)
Δxi + Δxi−1

f(x, xj)dx

−
i−1∑
j=1

Nj(t)
∫ xi−1/2−xj

x
li,j+ 1

2 γi,j

(x − xi−1 + xj)
Δxi + Δxi−1

f(x, xj)dx.

Applying the left rectangle rule to the integrals appearing in first and third terms, and the right rectangle
rule to the integrals in second and fourth terms, we estimate

E3 = −1
2

i−1∑
j=1

Nj(t)f(xi−1/2 − xj , xj)
Δxi

Δxi + Δxi+1

(
xli,j+

1
2γi,j

− xi−1/2 + xj

)

− 1
2

i−1∑
j=1

Nj(t)f(xi+1/2 − xj , xj)
Δxi

Δxi + Δxi+1

(
xli+1,j+

1
2 γi+1,j

− xi+1/2 + xj

)

+
1
2

i−2∑
j=1

Nj(t)f(xi−3/2 − xj , xj)
Δxi−1

Δxi + Δxi−1

(
xli−1,j+ 1

2 γi−1,j
− xi−3/2 + xj

)

+
1
2

i−1∑
j=1

Nj(t)f(xi−1/2 − xj , xj)
Δxi−1

Δxi + xi−1

(
xli,j+ 1

2γi,j
− xi−1/2 + xj

)
+ O (

Δx2
)
.

Let us approximate f at (xi−3/2 − xj , xj) by f expanded around (xi−1/2 − xj , xj) in the third term and f at
(xi−1/2 − xj , xj) by f expanded around (xi+1/2 − xj , xj) in the fourth term. Further, we replace j by j + 1 and
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j − 1 respectively in second and third terms. Also, the relationship Nj(t) = n(t, xj)Δxj +O(Δx3) is used to get

E3 = −1
2

i−1∑
j=1

n(t, xj)Δxjf(xi−1/2 − xj , xj)
Δxi

Δxi + Δxi+1

(
xli,j+

1
2 γi,j

− xi−1/2 + xj

)

− 1
2

i−2∑
j=0

n(t, xj+1)Δxj+1f(xi+1/2 − xj+1, xj+1)

× Δxi

Δxi + Δxi+1

(
xli+1,j+1+ 1

2γi+1,j+1
− xi+1/2 + xj+1

)

+
1
2

i−1∑
j=2

n(t, xj−1)Δxj−1f(xi−1/2 − xj−1, xj−1)

× Δxi−1

Δxi + Δxi−1

(
xli−1,j−1+ 1

2γi−1,j−1
− xi−3/2 + xj−1

)

+
1
2

i−2∑
j=1

n(t, xj)Δxjf(xi+1/2 − xj , xj)
Δxi−1

Δxi + xi−1

(
xli,j+ 1

2 γi,j
− xi−1/2 + xj

)
+ O (

Δx2
)
.

Without loss of generality, we can drop the terms which are second order accurate. Moreover, we approximate
the functions x 
→ n(t, x)f(xi∓1/2 − x, x) at point xj by n(t, x)f(xi∓1/2 − x, x) evaluated at points x = xj∓1 of
the first and fourth terms, respectively, to obtain

E3 = −1
2

i−1∑
j=2

n(t, xj−1)f(xi−1/2 − xj−1, xj−1)
ΔxiΔxj

Δxi + Δxi+1

(
xli,j+ 1

2γi,j
− xi−1/2 + xj

)

− 1
2

i−2∑
j=1

n(t, xj+1)f(xi+1/2 − xj+1, xj+1)

× ΔxiΔxj+1

Δxi + Δxi+1

(
xli+1,j+1+ 1

2γi+1,j+1
− xi+1/2 + xj+1

)

+
1
2

i−1∑
j=2

n(t, xj−1)f(xi−1/2 − xj−1, xj−1)

× Δxi−1Δxj−1

Δxi + Δxi−1

(
xli−1,j−1+ 1

2 γi−1,j−1
− xi−3/2 + xj−1

)

+
1
2

i−2∑
j=1

n(t, xj+1)f(xi+1/2 − xj+1, xj+1)
Δxi−1Δxj

Δxi + xi−1

(
xli,j+

1
2 γi,j

− xi−1/2 + xj

)
+ O (

Δx2
)
.

Let us denote each summation with the factor 1
2 on the right-hand side by E11, . . . , E14 respectively. Therefore,

we can write

E3 = (E33 − E31) + (E34 − E32) + O (
Δx2

)
. (3.32)
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To simplify (3.32), we first calculate E33 − E31 as follows

E33 − E31 =
1
2

i−1∑
j=2

n(t, xj−1)f(xi−1/2 − xj−1, xj−1)

×
{

Δxi−1Δxj−1

Δxi + Δxi−1

(
xli−1,j−1+ 1

2γi−1,j−1
− xi−3/2 + xj−1

)

− ΔxiΔxj

Δxi + Δxi+1

(
xli,j+ 1

2γi,j
− xi−1/2 + xj

)}
. (3.33)

Again by using the identities mentioned in the beginning of this section, we need to estimate the following
term for solving (3.33).

Δxi−1Δxj−1(Δxi + Δxi+1)
(
xli−1,j−1+ 1

2γi−1,j−1
− xi−3/2 + xj−1

)
− ΔxiΔxj(Δxi + Δxi−1)

(
xli,j+ 1

2γi,j
− xi−1/2 + xj

)
= Δxi−1(Δxj−1 − Δxj)︸ ︷︷ ︸

=O(h2)

(Δxi + Δxi+1)
(
xli−1,j−1+ 1

2 γi−1,j−1
− xi−3/2 + xj−1

)

+ Δxj

[
Δxi−1(Δxi + Δxi+1)

(
xli−1,j−1+ 1

2γi−1,j−1
− xi−3/2 + xj−1

)

− Δxi(Δxi + Δxi−1)
(
xli,j+

1
2 γi,j

− xi−1/2 + xj

)]

= O (
h5

)
+

(
hg′(ξj) + O (

h3
))⎡⎢⎣

⎛
⎜⎝ hg′(ξi−1)︸ ︷︷ ︸

=hg′(ξi)+O(h2)

+ O (
h3

)⎞⎟⎠(
2hg′(ξi) + O (

h2
))

× (
h1g

′(ξ32) + O (
h2

))− (
hg′(ξi) + O (

h3
)) (

2hg′(ξi) + O (
h2

)) (
h1g

′(ξ22) + O (
h2

))⎤⎥⎦
= O(h)

[
2h2(g′(ξi))2h1 {g′(ξ32) − g′(ξ22)}

]
+ O (

h5
)

= O(h) · 2h3h1(g′(ξi))2g′(ξ32) + O (
h5

)
= O (

h5
)
.

Inserting this estimate in (3.33), we obtain

E33 − E31 = O (
h2

)
. (3.34)

Analogous to (3.34), we can easily show that

E34 − E32 = O (
h2

)
. (3.35)

Finally, substituting (3.34) and (3.35) into (3.32), we have

E3 = O (
Δx2

)
. (3.36)

In a similar way, we can prove that

E′
3 = O (

Δx2
)
. (3.37)
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Next, it can be easily observed from (3.20) and (3.21) that the error terms E2, E′
2, E4 and E′

4 are second
order accurate independent of meshes. Therefore, by substituting (3.31), (3.36) and (3.37) into (3.24), we have

σi(t) = O(Δx2) if i ∈ A1, A2, A3.

Thus, using (3.25), we obtain

‖σ(t)‖ = O(Δx).

This shows that the cell average technique is first order consistent on such type of non-uniform smooth grids.

Remark 3.1. It should be pointed out that, due to the cancellation of second order terms, the error terms
E2, E′

2, E3, E′
3, E4 and E′

4 can be shown third order accurate on geometric grids. However, since this will not
improve the order of consistency (because E1 is only second order accurate for such grids), we do not include
further calculations.

4. Lipschitz conditions on B̂(N(t)) and D̂(N(t))

Let us consider the birth term for 0 ≤ t ≤ T and for all N, N̂ ∈ R
I . We get from (2.15)

‖B̂(N) − B̂(N̂)‖ ≤
I∑

i=1

λ−
i (vi−1)H(vi−1 − xi−1)|B̂i−1(N) − B̂i−1(N̂)|

+
I∑

i=1

[λ+
i (vi)H(vi − xi) + λ−

i (vi)H(xi − vi)]|B̂i(N) − B̂i(N̂)|

+
I∑

i=1

λ+
i (vi+1)H(xi+1 − vi+1)|B̂i+1(N) − B̂i+1(N̂)|.

The definitions of λ±
i (x) and H(x) in (2.14) and (2.13), respectively, guarantee that 0 ≤ λ±

i (x)H(x) ≤ 1.
Thus, by using this upper bound, the above inequality becomes

‖B̂(N) − B̂(N̂)‖ ≤
I∑

i=1

|B̂i−1(N) − B̂i−1(N̂)| +
I∑

i=1

|B̂i(N) − B̂i(N̂)|

+
I∑

i=1

|B̂i+1(N) − B̂i+1(N̂)|. (4.1)

Substituting (2.6) into (4.1) and using the assumpution on β defined in (2.18), we have

‖B̂(N) − B̂(N̂)‖ ≤ 1
2
‖β‖L∞

I∑
i=1

i−1∑
j=1

∑
xi−3/2≤xj+xk<xi−1/2

|Nj(t)Nk(t) − N̂j(t)N̂k(t)|

+
1
2
‖β‖L∞

I∑
i=1

i∑
j=1

∑
xi−1/2≤xj+xk<xi+1/2

|Nj(t)Nk(t) − N̂j(t)N̂k(t)|

+
1
2
‖β‖L∞

I∑
i=1

i+1∑
j=1

∑
xi+1/2≤xj+xk<xi+3/2

|Nj(t)Nk(t) − N̂j(t)N̂k(t)|

≤ 3
2
‖β‖L∞

I∑
j=1

I∑
k=1

|Nj(t)Nk(t) − N̂j(t)N̂k(t)|.
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Now we apply the following useful equality Nj(t)Nk(t) − N̂j(t)N̂k(t) = 1
2 [(Nj(t) + N̂j(t))(Nk(t) − N̂k(t)) +

(Nj(t) − N̂j(t))(Nk(t) + N̂k(t))] to get

‖B̂(N) − B̂(N̂)‖ ≤ 3
4
‖β‖L∞

×
I∑

j=1

I∑
k=1

[
|(Nj(t) + N̂j(t))||(Nk(t) − N̂k(t))| + |(Nj(t) − N̂j(t))||(Nk(t) + N̂k(t))|

]
. (4.2)

It can be easily shown that the total number of particles decreases in a coagulation process, i.e.

I∑
j=1

Nj(t) ≤ N0
T := Total number of particles which are taken initially.

The equation (4.2) can be rewritten as

‖B̂(N) − B̂(N̂)‖ ≤ 3
2
N0

T ‖β‖L∞

⎡
⎣ I∑

k=1

|(Nk(t) − N̂k(t))| +
I∑

j=1

|(Nj(t) − N̂j(t))|
⎤
⎦

≤ C‖N− N̂‖, (4.3)

where C := 3N0
T‖β‖L∞ . Similarly as before we can easily show the Lipschitz condition for death term as

‖D̂(N) − D̂(N̂)‖ ≤ C‖N− N̂‖. (4.4)

Thus, Theorem 2.5 completes the proof of Theorem 2.6.

5. Conclusions

We have presented a detailed convergence analysis of the cell average technique for nonlinear continuous
Smoluchowski coagulation equation. It is proved that the cell average technique is second order convergent on
uniform grids. However, it gives only a first order convergence on non-uniform smooth geometric grids. In order
to obtain a second order convergence on geometric grids, either one needs to adapt a different approach than
the one presented here, or modify the error term E1 which may lead to some improvements in the CAT. It is
also interesting to analyze CAT for nonlinear continuous SCE on more general grids, which we intend to study
in future.
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