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ON THE NUMERICAL INTEGRATION
OF SCALAR NONLOCAL CONSERVATION LAWS
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Abstract. We study a rather general class of 1D nonlocal conservation laws from a numerical point of
view. First, following [F. Betancourt, R. Bürger, K.H. Karlsen and E.M. Tory, On nonlocal conservation
laws modelling sedimentation. Nonlinearity 24 (2011) 855–885], we define an algorithm to numerically
integrate them and prove its convergence. Then, we use this algorithm to investigate various analytical
properties, obtaining evidence that usual properties of standard conservation laws fail in the nonlocal
setting. Moreover, on the basis of our numerical integrations, we are led to conjecture the convergence
of the nonlocal equation to the local ones, although no analytical results are, to our knowledge, available
in this context.
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1. Introduction

Conservation laws with nonlocal fluxes have appeared recently in the literature, arising naturally in many
fields of application, such as in crowd dynamics (see [6–8, 22] and the references therein), in models inspired
from biology, see [5, 12, 13, 15] and, more recently, also in an industrial context [16].

In this paper, we aim at the study of these equations from a numerical point of view. First, we prove the
convergence of a finite volume algorithm to numerically integrate a class of one-dimensional conservation laws
with a nonlocal flow. Then, we use this algorithm to show peculiar properties of these nonlocal equations and,
in particular, how they differ from the usual local ones.

Consider the scalar equation{
∂tρ + ∂x (f(t, x, ρ) v(ρ ∗ η)) = 0

ρ(0, x) = ρo(x)
(t, x) ∈ R

+ × R (1.1)

which slightly extends, in the 1D case, the class of equations considered in [2, 7, 8]. Slightly extending [2], the
numerical scheme below allows to integrate (1.1) and we prove its convergence. As a byproduct, we also establish
an existence result for (1.1), thus slightly extending also ([7], Thm. 2.2) in the 1D case.
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In the case f(t, x, ρ) = ρ (1 − ρ)α, (1.1) reduces to the case considered in [2], motivated by a sedimentation
model, see also [1].

This numerical algorithm is implemented and then used to investigate various properties of (1.1). First,
we provide evidence that the usual Maximum Principle for scalar conservation laws fails in the case of (1.1),
see [4, 14, 21] in the different context of Vlasov−Poisson−Fokker−Planck systems. Another integration shows
that the total variation of the solution to (1.1) may well sharply increase, contrary to what happens in the
standard local situation. Remark that both these examples are in agreement with the estimates we rigorously
obtain on the approximate solutions.

Of particular interest is the limit η → δ, δ being the Dirac measure centered at the origin. Numerical
integrations apparently show that the solutions to (1.1) converge to its formal limit, namely{

∂tρ + ∂x (f(t, x, ρ) v(ρ)) = 0

ρ(0, x) = ρo(x)
(t, x) ∈ R

+ × R (1.2)

although no rigorous proof of this convergence is, to our knowledge, known. Remark that in the nonlocal case,
well posedness results are available also in the case of systems in several space dimensions, see [8,10]. Hence, the
ability of passing to the limit η → δ might help in the search for analytical results about systems of conservation
laws in several space dimensions.

The scheme below has an associated CFL condition. The CFL condition is often interpreted through a
comparison between the numerical propagation speed and the analytical one, see for instance [19], Section 4.4,
page 68. In the present nonlocal case (1.1), information propagates at an infinite speed, due to the presence of
the term η ∗ ρ. Nevertheless, also in the nonlocal case (1.1) a suitable CFL condition plays a key role, see (2.3).

Second, the scheme below is not monotone in the sense of the usual definition ([19], formula (12.42)), as follows
from the integration in Section 3.2. There, both constant initial data ρ̄ = 0 and ρ̄ = 1 yield constant solutions,
but the initial datum (3.5), although it attains values in [0, 1], yields a solution exceeding 1. Nevertheless, the
scheme (2.5) enjoys several properties of monotone schemes, proved in the lemmas in Section 2.

Remark 1.1. Throughout this work, we follow the usual habit of referring to (1.1) as to a nonlocal equation
and, hence, to the standard case (1.2) as to the local case. However, whenever the support of η is bounded, it
might seem more appropriate to call (1.1) a local equation and (1.2) the punctual case.

The next section deals with the definition of the algorithm and with the statement of the estimates which
ensure its convergence, as well as the entropicity of the limit solution. Section 3 deals with various numerical
integrations of (1.1). All proofs are deferred to the last Section 4.

2. Main results

Throughout, we set R
+ = [0, +∞[.

As a starting point, we state what we mean by solution to (1.1), see also ([7], Def. 2.1).

Definition 2.1. Let T > 0. Fix ρo ∈ L∞(R; R). A weak entropy solution to (1.1) on [0, T ] is a bounded
measurable Kružkov solution ρ ∈ C0

(
[0, T ];L1

loc(R; R)
)

to
{

∂tρ + ∂x (f(t, x, ρ)V (t, x)) = 0

ρ(0, x) = ρo(x)
where V (t, x) = v((ρ(t) ∗ η)(x)) .

For the definition of Kružkov solution, see for instance ([11], Sect. 6.2) or ([18], Def. 1). Here, as usual,

(ρ(t) ∗ η) (x) =
∫

R

ρ(t, ξ) η(x − ξ) dξ.
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Remark that the assumptions

f ∈ C2(R+ × R × R; R) and

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sup
t,x,ρ

|∂ρf(t, x, ρ)| < +∞
sup
t,x

|∂xf(t, x, ρ)| < C |ρ|

sup
t,x

∣∣∂2
xxf(t, x, ρ)

∣∣ < C |ρ|
∀ t, x f(t, x, 0) = 0

(2.1)

v ∈ (C2 ∩ W1,∞)(R; R) and η ∈ (C2 ∩ W2,∞)(R; R) (2.2)

ensure that the transport equation in Definition 2.1 fits in Kružkov framework, see [11,18]. From the modeling
point of view, it is natural to require that the kernel η attains only positive (or non-negative) values. However,
this requirement is not necessary for the analytical results below.

Below, Remark 2.3 and Lemma 2.5 provide uniform L∞ bounds on the solution to (1.1) under con-
ditions (2.1)–(2.2) on the equations and for data in L∞. Therefore, the apparently strong requirement
‖∂ρf‖L∞ < +∞ can be easily relaxed to

sup
t∈R+, x∈R, ρ∈[−M,M ]

|∂ρf(t, x, ρ)| < +∞

for a suitable positive M . Moreover, the usual sublinearity condition supt,x |∂xf(t, x, ρ)| < C(1 + |ρ|) takes the
form supt,x |∂xf(t, x, ρ)| < C|ρ| in (2.1) due to the assumption f(t, x, 0) = 0 for all t and x.

Introduce a uniform mesh with size h along the x axis and size τ along the t axis. Throughout, we assume
that the following CFL condition is satisfied:

λ
(
C h + 2 ‖∂ρf‖L∞

) ‖v‖L∞ ≤ 1
3

(2.3)

with C as in (2.1) and where, as usual, λ = τ/h. Although this CFL condition is somewhat more restrictive
than in the local case, it has the advantage that in the proofs of the main stability estimates below, one can
maintain the complexity of the proofs to a minimum. Moreover, (2.3) is not optimal in the sense that it does
not formally reduce to the usual CFL condition for the Lax–Friedrichs scheme in a local setting. However, our
strategy was to consider a simple numerical method for which calculations can be carried out with the utmost
clarity (leading us to choose the Lax–Friedrichs method), but for which the novel, nonlocal effects could also be
accounted for. Thus it would be interesting to optimize the calculations in the proofs below in order to reach a
more efficient CFL condition, although this falls outside the scope of this paper.

Consider the following Lax–Friedrichs type scheme:⎧⎪⎪⎨
⎪⎪⎩

ρn+1
j = ρn

j − λ
(
fn
j+1/2(ρ

n
j , ρn

j+1) − fn
j−1/2(ρ

n
j−1, ρ

n
j )
)

ρo
j =

1
h

∫ xj+1/2

xj−1/2

ρo(x) dx
(2.4)

where the numerical flux fn
j+1/2 in (2.4) is given by

fn
j+1/2(ρ1, ρ2) :=

f(tn, xj+1/2, ρ1) + f(tn, xj+1/2, ρ2)
2

v(cn
j+1/2) −

1
6 λ

(ρ2 − ρ1). (2.5)

Here, the convolution is computed through a standard quadrature formula using the same space mesh, as follows

cn
j+1/2 =

∑
k∈Z

h ρn
k+1/2 ηj+1/2−k (2.6)

where ρn
k+1/2 is any convex combination of ρn

k , ρn
k+1 and, for instance, ηj+1/2 = 1

h

∫ xj+1

xj
η(x) dx, for instance.
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The next three lemmas provide the basic properties of the algorithm (2.4), namely positivity, L1 and L∞

bounds. All proofs are deferred to Section 4.

Lemma 2.2 (Positivity). Let conditions (2.1)–(2.2) hold. Assume that h and τ satisfy the CFL condition (2.3).
If ρo

j ≥ 0 for all j, then the approximate solution constructed by the algorithm (2.4) is such that ρn
j ≥ 0 for all

j and n.

Remark 2.3. The proof of the above lemma clearly shows that if we assume ρo ≤ 0, then ρn ≤ 0 for all
n. Moreover, under the same assumptions (2.1)–(2.2)–(2.3), a straightforward modification of the proof of
Lemma 2.2 ensures that if there exists a ρ̄ ∈ R

+ such that f(t, x, ρ̄) = 0, then the inequality ρo ≥ ρ̄, respectively
ρo ≤ ρ̄, implies that ρn ≥ ρ̄, respectively ρn ≤ ρ̄, for all n.

Lemma 2.4 (L1 bound). Let conditions (2.1)–(2.2) hold. Assume that h and τ satisfy the CFL condition (2.3).
If ρo

j ≥ 0 for all j, then the approximate solution constructed by the algorithm (2.4) satisfies

‖ρn‖L1 ≤ ‖ρo‖L1 .

Lemma 2.5 (L∞ bound). Let conditions (2.1)–(2.2) hold. Assume that h and τ satisfy the CFL condition (2.3).
If ρo

j ≥ 0 for all j, then the solution constructed by the algorithm (2.4) satisfies

‖ρn‖L∞ ≤ ‖ρo‖L∞ eLt,

where L depends on C in (2.1), on various norms of f, v, η and on the L1 norm of the initial datum, see (4.4).

The next result concerns the bound on the total variation of the approximate solution constructed in (2.4).
In the standard Kružkov case, when the flow is independent from t and x, the total variation of the solution is
well know to be a non-increasing function of time, see ([3], Thm. 6.1). Here, on the contrary, the total variation
and the L∞ norm of the solution to (1.1) may well sharply increase due to the nonlocal terms, even when the
flow is independent from t and x, see Section 3.2.

Proposition 2.6 (Total variation bound). Let conditions (2.1)–(2.2) hold. Assume that h and τ satisfy the
CFL condition (2.3). If ρo

j ≥ 0 for all j, then the approximate solution constructed by the algorithm (2.4)
satisfies the following total variation estimate, for all n ≥ 0:

∑
j∈Z

∣∣ρn
j+1 − ρn

j

∣∣ ≤ eK1t
∑
j∈Z

∣∣ρo
j+1 − ρo

j

∣∣+ eK1t − 1
K1

K2, (2.7)

where the constants K1 and K2 depend on C in (2.1), on various norms of f, v, η and of the initial datum,
see (4.14).

As the explicit expressions in (4.14) show, in the standard case of the local homogeneous conservation law
∂tρ + ∂xf(ρ) = 0, we have v ≡ 1, η = 0, C = 0 and (2.7) reduces to the usual total variation diminishing
condition

∑
j∈Z

∣∣ρn
j+1 − ρn

j

∣∣ ≤∑j∈Z

∣∣ρo
j+1 − ρo

j

∣∣. We recall also that the form of (2.7) is consistent with that in
Theorem 2.5 of [9].

A first consequence of the bound on the total variation is the L1-Lipschitz continuity in time of the approxi-
mate solution, proved in the following lemma.

Lemma 2.7 (L1-Lipschitz continuity in time). Fix a positive T . Let conditions (2.1)–(2.2) hold. Fix strictly
positive h and τ satisfying the CFL condition (2.3). If ρo

j ≥ 0 for all j, then the approximate solution constructed
by the algorithm (2.4) is an L1-Lipschitz continuous function of time, in the sense that for any n, m ∈ N such
that n τ ≤ T and m τ ≤ T ,

‖ρn − ρm‖L1 ≤ C(T ) |n − m| τ
where the quantity C(T ) grows exponentially in time and depends on C in (2.1), on various norms of f, v, η and
of the initial datum, see (4.15).



ON THE NUMERICAL INTEGRATION OF SCALAR NONLOCAL CONSERVATION LAWS 23

The L∞ bound proved in Lemma 2.5, the total variation bound proved in Proposition 2.6 and the uniform
continuity in time that follows from Lemma 2.7 allow to apply Helly Theorem, for instance in the form of
Theorem 2.6 of [3], to the sequence of approximate solutions constructed through (2.4). A straightforward
limiting procedure, see for instance ([3], Sect. 6.2), thus ensures the existence of weak solutions to the Cauchy
problem for (1.1).

To obtain uniqueness, we prove that the approximate solutions (2.4) also satisfy a discrete entropy condition.
To this end, define for each k ∈ R the Kružkov numerical entropy flux as

F k
j+1/2(ρ1, ρ2) = fn

j+1/2(ρ1 ∨ k, ρ2 ∨ k) − fn
j+1/2(ρ1 ∧ k, ρ2 ∧ k), (2.8)

where a ∨ b = max(a, b) and a ∧ b = min(a, b).

Proposition 2.8 (Discrete entropy condition). Let conditions (2.1)–(2.2) hold. Assume that h and τ satisfy
the CFL condition (2.3). If ρo

j ≥ 0 for all j, then the approximate solution constructed by the algorithm (2.4)
verifies the discrete entropy inequality∣∣ρn+1

j − k
∣∣− ∣∣ρn

j − k
∣∣+ λ

(
F k

j+1/2(ρ
n
j , ρn

j+1) − F k
j−1/2(ρ

n
j−1, ρ

n
j )
)

+λ sgn(ρn+1
j − k)

(
f(tn, xj+1/2, k) v(cj+1/2) − f(tn, xj−1/2, k) v(cj−1/2)

) ≤ 0
(2.9)

for all k ∈ R.

3. Numerical integrations

3.1. A nonlocal traffic model

The classical Lighthill–Whitham [20] and Richards [23] (LWR) model for vehicular traffic consists of the
continuity equation ∂tρ + ∂x(ρ V ) = 0 supplied with a suitable speed law V = V (ρ). Here, as usual, t is time,
x an abscissa along a rectilinear road with neither entries nor exits and ρ ∈ [0, 1] is the (average) vehicular
density.

Equation (1.1) with

f(ρ) = ρ (1 − ρ), v(r) = Vmax (1 − r) and η(x) = α ((x − a)(b − x))5/2 χ
[a,b]

(x), (3.1)

where Vmax > 0, can be used as an LWR-type macroscopic model for vehicular traffic, where drivers adjust their
speed according to the local traffic density, so that the speed law takes the functional form

V (ρ) = Vmax (1 − ρ) (1 − ρ ∗ η).

The coefficient α in (3.1) is chosen so that
∫

R
η = 1. The parameters a and b are the horizon of each driver, in

the sense that a driver situated at x adjusts his speed according to the average vehicular density he sees on the
interval [x − b, x − a]. To emphasize their roles, we select below the two situations

a = −1/4
b = 0 and a = 0

b = 1/4.
(3.2)

In the former case, drivers look forward, while in the latter they look backward. We consider the initial datum

ρo(x) =
1
2

χ
[−2.8,−1.8]

(x) +
3
4

χ
[−1.2,−0.2]

(x) +
3
4

χ
[0.6, 1.0]

(x) + χ
[1.5,+∞[

(x) (3.3)

representing three groups of vehicles lining up in a queue.
The results in Section 2 ensure that for any ρo ∈ L1(R; [0, 1]), the Cauchy problem consisting of (1.1)–(3.1)

with initial datum ρo admits a unique solution ρ = ρ(t, x) attaining values in [0, 1]. However, the qualitative
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Figure 1. Integration of (1.1)–(3.1)–(3.3) in the two cases (3.2) at times t = 2.50, 5.01, 7.50,
10.00. Above, drivers look backward while below they look forward. Note, already on the first
column, the difference in the two evolutions, clearly due to the position of the support of η.
Here, the space mesh size is 0.0005.

behaviors of the solutions are rather different in the two situations in (3.2), see Figure 1. Clearly, the evolution
in the case of drivers looking forward (second line in Fig. 1) is far more reasonable, while the backward looking
case leads to big oscillations in the vehicular density.

We observe that the particular choice (3.1), in view of Definition 2.1 and thanks to the Maximum Principle
([18], Thm. 3), ensures that an initial data ρo attaining values in [0, 1] yields a solution also attaining values in
the same interval.

3.2. Increase of the total variation and of the L∞ norm

This paragraph is devoted to show that Lemma 2.2 and the total variation bound (2.7) are, at least qualita-
tively, optimal. Moreover, the example below shows that the nonlocal equation (1.1) does not enjoy two standard
properties typical of 1D scalar conservation laws, namely the maximum principle ([3], (iv) in Thm. 6.3), see also
([18], Thm. 3), and the diminishing of the total variation ([3], Thm. 6.1).

In Remark 2.3 the assumption that f(ρ̄) = 0 can not be replaced by v(ρ̄) = 0 to ensure that the solution
remains bounded between 0 and ρ̄. Let ρ̄ = 1 and consider (1.1) in the case

f(ρ) = ρ, v(r) = 1 − r and η(x) = α ((x − a)(b − x))5/2
χ

[a,b]
(x) (3.4)

with α chosen so that
∫

R
η = 1. Then, clearly, the initial data ρ̄(x) ≡ 1 and ρ̄(x) ≡ 0 are stationary solutions

to (1.1)–(3.4). However, as the numerical integration below shows, the initial datum

ρo(x) = 0.25 χ
[−1.35,−0,95]

(x) + χ
[−0.85,−0.25]

(x) + 0.75 χ
[−0.15, .25]

(x) (3.5)

which satisfies ρo(x) ∈ [0, 1] for all x ∈ R, yields a solution ρ = ρ(t, x) that exceeds ρ̄ = 1, showing
that (1.1)–(3.4) does not satisfy the Maximum Principle, see Figure 2.

Remark that the choice (3.4) leads to a flow in (1.1) which is independent both from t and x. In the standard
case of local scalar conservation laws, ([3], Thm. 6.1) ensures that the total variation of the solution may not
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Figure 2. Numerical integration of (1.1)–(3.4) with a = 0, b = 0.2 and with the initial
datum (3.5) at times t = 0.25, 0.50, 0.75. The graph at time t = 1 is in Figure 3, second row.
Note the sharp increase in both the L∞-norm and in the total variation. Here, the space mesh
size is 0.0005.

Figure 3. Above, total variation of the solution to (1.1)–(3.4)–(3.5) versus time, in the three
cases a = 0, b = 0.2; a = −0.1, b = 0.1 and a = −0.2, b = 0. Below, graph of the solutions at
time t = 1. Remark that the vertical scales in the leftmost diagram differs from that used in
the middle and on the right. Indeed, the initial total variation is the same, 4, in all cases.

increase in time. The numerical integration below shows that the total variation of the solution to (1.1)–(3.4)
may well sharply increase in a very short time, coherently with (2.7).

It is of interest to note that this behavior depends on the geometry of the support of η. Indeed, a translation
of the convolution kernel leads to very different solutions, see Figure 3. When the support is contained in R

+,
there is a sharp increase in the total variation. In the other two cases, when spt η is centered about the origin
or contained in R

−, there is a small increase in TV (ρ) for a small time interval, with a subsequent decrease.
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Figure 4. Left, the initial datum in (3.7) and, right, the flow (3.6) used in (1.2). Note its
change of convexity.

3.3. The nonlocal to local limit

In this section we use the algorithm (2.4) to investigate the limit in which η tends to a Dirac δ, so that
the nonlocal equation (1.1) tends, at least formally, to the local conservation law (1.2). To our knowledge, no
analytical result is at present available on this limit.

Consider (1.1) with flow and speed

f(t, x, ρ) = ρ, v(r) = (1 − r)3 χ
]−∞,1[

(r), (3.6)

see also Figure 4 left, while the convolution kernel and the initial datum are:

ηa(x) = αa (a2 − x2)5/2 χ
[−a,a]

(x), ρo(x) =
3
4

χ
[−1.8,−1.3[

(x) + χ
[−1.3,−0.8]

(x), (3.7)

and with the choices for a = 0.25, a = 0.1, a = 0.05, with αa computed so that
∫

R
ηa(x) dx = 1. As limit

case, we consider the standard conservation law (1.2) with f and v as in (3.6), see also Figure 4, right. In the
integration below, the solution ρ attains positive values, so that after an easy modification of v on R

− we can
assume that (2.2) holds.

The resulting numerical integrations, carried out satisfying the CFL condition (2.3), give the diagrams in
Figure 5. In the limit case of (1.2), the chosen initial datum leads to the formation of a rarefaction wave, a
shock and a mixed wave, due to the change of convexity of the flow, see the lowest line in Figure 5. To allow the
comparison among these integrations, in all of them the same uniform mesh size was used, namely Δx = 0.0004.
This makes the computation of the integral in the nonlocal convolution term relatively less accurate at low values
of a, nevertheless Δx is sufficiently small to ensure that a sufficient number of mesh points enter the computation
of the integral, also for small a. The numerical integrations shown in Figure 5 qualitatively suggest that in the
limit a → 0 the solution to (1.1)–(3.6)–(3.7) converges to that of (1.2)–(3.6). A more quantitative hint in this
direction is in Figure 6. Using the algorithm above, we computed the solution ρa to (1.1)–(3.6)–(3.7) for different
values of a and the solution ρ to (1.2)–(3.6), all at time t = 0.500. Figure 6 presents the plot of the L1-distance
‖ρa − ρ‖L1 versus 1/a.
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Figure 5. Integration of (1.1)–(3.6)–(3.7): first row a = 0.25; second a = 0.1, third a = 0.05.
Last row, integration of (1.2)–(3.6). The four columns display the times t = 0.5, 1.0, 1.5 and
2.0. Mixed waves are due to the non-convex flow (3.6), see Figure 4. The space mesh size is
0.0004.

4. Technical details

For any a, b ∈ R, we denote I(a, b) = ]a, b[ ∪ ]b, a[. We use below the following classical notations:

D+aj = aj+1 − aj , D−aj = aj − aj−1, D2aj = aj+1 − 2aj + aj−1 = (D+ − D−)aj

and recall the trivial identities

D+(ajbj) = (D+aj)bj+1 + (D+bj)aj , D−(ajbj) = (D−aj)bj + (D−bj)aj−1,

D2(ajbj) = (D2aj)bj + (D2bj)aj + D+ajD
+bj + D−ajD

−bj .

For later use, we note that the algorithm (2.4) can then be rewritten as

ρn+1
j = ρn

j − λ
D+
(
f(tn, xj−1/2, ρ

n
j ) v(cj−1/2)

)
+ D−(f(tn, xj+1/2, ρ

n
j ) v(cj+1/2)

)
2

+
1
6

D2ρn
j .
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Figure 6. L1-distance between the solution ρa to (1.1)–(3.6)–(3.7) and the solution ρ to (1.2)–
(3.6) at time t = 0.500, as a function of 1/a. Left, with a linear scale and, right, with a log
scale.

Proof of Lemma 2.2. Note that, by (2.4), standard computations lead to

ρn+1
j = (1 − αn

j − βn
j )ρn

j + αn
j ρn

j−1 + βn
j ρn

j+1 − λ
(
fn
j+1/2(ρ

n
j , ρn

j ) − fn
j−1/2(ρ

n
j , ρn

j )
)

. (4.1)

where

αn
j = λ

fn
j−1/2(ρ

n
j , ρn

j ) − fn
j−1/2(ρ

n
j−1, ρ

n
j )

ρn
j − ρn

j−1

and βn
j = −λ

fn
j+1/2(ρ

n
j , ρn

j+1) − fn
j+1/2(ρ

n
j , ρn

j )

ρn
j+1 − ρn

j

· (4.2)

We now show that under condition (2.3), the following inequalities hold:

αn
j ∈ [0, 1/3]

βn
j ∈ [0, 1/3]

1 − αn
j − βn

j ∈ [1/3, 1]

and λ
(
fn
j+1/2(ρ

n
j , ρn

j ) − fn
j−1/2(ρ

n
j , ρn

j )
)
≤ 1

3
ρn

j . (4.3)

Indeed,

βn
j = −λ

fn
j+1/2(ρ

n
j , ρn

j+1) − fn
j+1/2(ρ

n
j , ρn

j )

ρn
j+1 − ρn

j

= −λ

2

(
f(tn, xj+1/2, ρ

n
j+1) − f(tn, xj+1/2, ρ

n
j )

ρn
j+1 − ρn

j

v(cn
j+1/2) −

1
3 λ

)

= −λ

2
∂ρf(tn, xj+1/2, ζj+1/2) v(cn

j+1/2) +
1
6
,

So that

βn
j ≥ 1

2

(
1
3
− λ ‖∂ρf‖L∞ ‖v‖L∞

)
≥ 0

βn
j ≤ 1

2

(
1
3

+ λ ‖∂ρf‖L∞ ‖v‖L∞

)
≤ 1

3
·
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Entirely similar computations lead to analogous estimates for αn
j . The bounds on 1 − αn

j − βn
j follow. The last

term in (4.3), using (2.5) and (2.3), is estimated as follows

fn
j+1/2(ρ

n
j , ρn

j ) − fn
j−1/2(ρ

n
j , ρn

j )

≤
∣∣∣f(tn, xj+1/2, ρ

n
j ) v(cn

j+1/2) − f(tn, xj−1/2, ρ
n
j ) v(cn

j−1/2)
∣∣∣

≤ ∣∣f(tn, xj+1/2, ρ
n
j ) − f(tn, xj−1/2, ρ

n
j )
∣∣v(cn

j−1/2) +
∣∣f(tn, xj−1/2, ρ

n
j )
∣∣∣∣∣v(cn

j+1/2) − v(cn
j−1/2)

∣∣∣
≤ h

∣∣∂xf(tn, ζj , ρ
n
j )
∣∣ ‖v‖L∞ + 2 ‖∂ρf‖L∞ ‖v‖L∞

∣∣ρn
j

∣∣
≤ (C ‖v‖L∞ h + 2 ‖∂ρf‖L∞ ‖v‖L∞

) ∣∣ρn
j

∣∣
≤ (C h + 2 ‖∂ρf‖L∞

) ‖v‖L∞
∣∣ρn

j

∣∣
≤ 1

3 λ
ρn

j .

Using the bounds (4.3) in (4.1), we obtain

ρn+1
j ≥ (1 − αn

j − βn
j ) ρn

j + αn
j ρn

j−1 + βn
j ρn

j+1 −
1
3

ρn
j ≥ 0,

proving the positivity of the discrete solution. �

Proof of Lemma 2.4. Thanks to the positivity of the discrete solution, it is sufficient to compute

∥∥ρn+1
∥∥
L1 =

∑
j

h ρn+1
j

=
∑

j

h
(
ρn

j − λ
(
fn
j+1/2(ρ

n
j , ρn

j+1) − fn
j−1/2(ρ

n
j−1, ρ

n
j )
))

=
∑

j

h ρn
j − h λ

(
lim

i→−∞
fn
i+1/2(ρ

n
i , ρn

i+1) − lim
i→+∞

fn
i−1/2(ρ

n
i−1, ρ

n
i )
)

= ‖ρn‖L1

completing the proof. �

Proof of Lemma 2.5. For later use, estimate the quantity∣∣∣cn
j+1/2 − cn

j−1/2

∣∣∣ ≤∑
k∈Z

h
∣∣∣ρn

k+1/2

(
ηk−(j+1/2) − ηk−(j−1/2)

)∣∣∣
≤
∑
k∈Z

h ρn
k+1/2

∫ xk−j+1/2

xk−j−1/2

|η′(s)| ds

≤ h ‖ρn‖L1 ‖η′‖L∞

= h ‖ρo‖L1 ‖η′‖L∞ ,
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where Lemma 2.4 was used. Using the same estimates as in the proof of Lemma 2.2, equality (4.1) yields

ρn+1
j ≤ (1 − αn

j − βn
j ) ρn

j + αn
j ρn

j−1 + βn
j ρn

j+1

+λ
∣∣f(tn, xj+1/2, ρ

n
j ) − f(tn, xj−1/2, ρ

n
j )
∣∣ v(cn

j−1/2)

+λ
∣∣f(tn, xj−1/2, ρ

n
j )
∣∣ ∣∣∣D−v(cn

j+1/2)
∣∣∣

≤ (1 − αn
j − βn

j ) ‖ρn‖L∞ + αn
j ‖ρn‖L∞ + βn

j ‖ρn‖L∞

+λ
(
h
∣∣∂xf(tn, ζj , ρ

n
j )
∣∣ ‖v‖L∞ + ρn

j ‖∂ρf‖L∞ ‖v′‖L∞

∣∣∣cn
j+1/2 − cn

j−1/2

∣∣∣)
≤ ‖ρn‖L∞ + τ

(
C ‖v‖L∞ + ‖∂ρf‖L∞ ‖v′‖L∞ ‖ρo‖L1 ‖η′‖L∞

) ‖ρn‖L∞

≤ eLτ ‖ρn‖L∞

provided
L = C ‖v‖L∞ + ‖∂ρf‖L∞ ‖v′‖L∞ ‖ρo‖L1 ‖η′‖L∞ . (4.4)

A standard iterative argument completes the proof. �

Proof of Proposition 2.6. First, we write (2.4) for j and for j + 1, subtract and get

ρn+1
j+1 − ρn+1

j = ρn
j+1 − ρn

j − λ
(
fn
j+3/2(ρ

n
j+1, ρ

n
j+2) − fn

j+1/2(ρ
n
j , ρn

j+1) + fn
j+1/2(ρ

n
j , ρn

j+1) − fn
j−1/2(ρ

n
j−1, ρ

n
j )
)

.

Now add and subtract fn
j+3/2(ρ

n
j , ρn

j+1) + fn
j+1/2(ρ

n
j−1, ρ

n
j ), then rearrange to obtain

ρn+1
j+1 − ρn+1

j = An
j − λBn

j (4.5)

where

An
j = ρn

j+1 − ρn
j

−λ
(
fn
j+3/2(ρ

n
j+1, ρ

n
j+2) − fn

j+1/2(ρ
n
j , ρn

j+1) − fn
j+3/2(ρ

n
j , ρn

j+1) + fn
j+1/2(ρ

n
j−1, ρ

n
j )
)

Bn
j = fn

j+3/2(ρ
n
j , ρn

j+1) − fn
j+1/2(ρ

n
j , ρn

j+1) + fn
j−1/2(ρ

n
j−1, ρ

n
j ) − fn

j+1/2(ρ
n
j−1, ρ

n
j ). (4.6)

Consider first the term An
j . Recall (4.2) and observe that, after suitable rearrangements,

An
j = (ρn

j+1 − ρn
j )

×
[
1 + λ

fn
j+1/2(ρ

n
j , ρn

j+1) − fn
j+1/2(ρ

n
j , ρn

j )

ρn
j+1 − ρn

j

− λ
fn
j+3/2(ρ

n
j+1, ρ

n
j+1) − fn

j+3/2(ρ
n
j , ρn

j+1)

ρn
j+1 − ρn

j

]

+(ρn
j+2 − ρn

j+1)

(
−λ

fn
j+3/2(ρ

n
j+1, ρ

n
j+2) − fn

j+3/2(ρ
n
j+1, ρ

n
j+1)

ρn
j+2 − ρn

j+1

)

+(ρn
j − ρn

j−1)

(
λ
fn
j+1/2(ρ

n
j , ρn

j ) − fn
j+1/2(ρ

n
j−1, ρ

n
j )

ρn
j − ρn

j−1

)
(4.7)

= (1 − βn
j − γn

j+1)(ρ
n
j+1 − ρn

j ) + βn
j+1(ρ

n
j+2 − ρn

j+1) + γn
j (ρn

j − ρn
j−1)

where γn
j = λ

(
fn
j+1/2(ρ

n
j , ρn

j ) − fn
j+1/2(ρ

n
j−1, ρ

n
j )
)

/
(
ρn

j − ρn
j−1

)
and the bounds γn

j ∈ [0, 1/3] can be proved
exactly as was done with αn

j , thanks to the CFL condition (2.3). By convexity,∑
j∈Z

∣∣Aj
n

∣∣ ≤∑
j∈Z

∣∣ρn
j+1 − ρn

j

∣∣. (4.8)
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We now turn to the term Bn
j in (4.6). Since

Bn
j =

f(tn, xj+3/2, ρ
n
j )v(cj+3/2) − 2f(tn, xj+1/2, ρ

n
j )v(cj+1/2) + f(tn, xj−1/2, ρ

n
j )v(cj−1/2)

2
(4.9)

+
f(tn, xj+3/2, ρ

n
j+1) v(cj+3/2) − f(tn, xj+1/2, ρ

n
j+1) v(cj+1/2)

2
(4.10)

−f(tn, xj+1/2, ρ
n
j−1) v(cj+1/2) − f(tn, xj−1/2, ρ

n
j−1) v(cj−1/2)

2
, (4.11)

we consider the various terms separately.

(4.9) = v(cj+1/2)
f(tn, xj+3/2, ρ

n
j ) − 2f(tn, xj+1/2, ρ

n
j ) + f(tn, xj−1/2, ρ

n
j )

2

+f(tn, xj+1/2, ρ
n
j )

v(cj+3/2) − 2v(cj+1/2) + v(cj−1/2)
2

+
f(tn, xj+3/2, ρ

n
j ) − f(tn, xj+1/2, ρ

n
j )

2
v(cj+3/2) − v(cj+1/2)

2

+
f(tn, xj+1/2, ρ

n
j ) − f(tn, xj−1/2, ρ

n
j )

2
v(cj+1/2) − v(cj−1/2)

2

where ∣∣∣∣f(tn, xj+3/2, ρ
n
j ) − 2f(tn, xj+1/2, ρ

n
j ) + f(tn, xj−1/2, ρ

n
j )

2

∣∣∣∣
=
∣∣∣∣f(tn, xj+3/2, ρ

n
j ) − f(tn, xj+1/2, ρ

n
j )

2
− f(tn, xj+1/2, ρ

n
j ) + f(tn, xj−1/2, ρ

n
j )

2

∣∣∣∣
≤ h

2

∣∣∂xf(tn, ζj+1, ρ
n
j ) − ∂xf(tn, ζj−1, ρ

n
j )
∣∣

≤ h

2

∫ ζj+1

ζj−1

∣∣∂2
xxf(tx, x, ρn

j )
∣∣ dx

≤ C h2
∣∣ρn

j

∣∣
where (2.1) was used to get to the last line. Moreover,

v(cj+3/2) − 2v(cj+1/2) + v(cj−1/2)
2

=
v(cj+3/2) − v(cj+1/2)

2
− v(cj+1/2) + v(cj−1/2)

2

=
1
2

(
v′(ζj)(cn

j+1/2 − cn
j−1/2) − v′(ζj+1)(cn

j+3/2 − cn
j+1/2)

)
=

1
2

(v′(ζj) − v′(ζj+1)) (cn
j+1/2 − cn

j−1/2) −
1
2
v′(ζj+1)(cn

j+3/2 + 2cn
j+1/2 − cn

j−1/2)

=
1
2

v′′(ξj) (ζj − ζj+1) (cn
j+1/2 − cn

j−1/2) −
1
2

v′(ζj+1) (cn
j+3/2 + 2cn

j+1/2 − cn
j−1/2).

Note that we have |ζj − ζj+1| ≤
∣∣∣cn

j+3/2 − cn
j+1/2

∣∣∣+ ∣∣∣cn
j+1/2 − cn

j−1/2

∣∣∣, and so using Young’s inequality,
∣∣∣∣v(cj+3/2) − 2v(cj+1/2) + v(cj−1/2)

2

∣∣∣∣ ≤ 1
2
‖v′′‖L∞

[
3
2

∣∣∣cn
j+1/2 − cn

j−1/2

∣∣∣2 +
1
2

∣∣∣cn
j+3/2 − cn

j+1/2

∣∣∣2]

+
1
2
‖v′‖L∞

∣∣∣cn
j+3/2 + 2cn

j+1/2 − cn
j−1/2

∣∣∣.
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We now estimate the terms involving the discrete derivatives of cn
j in the expression above, exploiting the

regularity (2.2) of η. By (2.6), we have

∣∣∣cn
j+1/2 − cn

j−1/2

∣∣∣ =

∣∣∣∣∣
∑
k∈Z

h ρn
k+1/2 (ηk−(j+1/2) − ηk−(j−1/2))

∣∣∣∣∣
≤
∑
k∈Z

h
∣∣∣ρn

k−j−1/2

∣∣∣ ∣∣ηk+1/2 − ηk−1/2

∣∣
≤
∑
k∈Z

h
∣∣∣ρn

k−j−1/2

∣∣∣ ∫ xk+1/2

xk−1/2

|η′(s)| ds

≤ h ‖ρn‖L1 ‖η′‖L∞ . (4.12)

Similarly, ∣∣∣cn
j+3/2 + 2cn

j+1/2 − cn
j−1/2

∣∣∣ ≤∑
k∈Z

h
∣∣∣ρn

k−j−1/2

∣∣∣ ∣∣ηk−1/2 − 2ηk+1/2 + ηk+3/2

∣∣
≤ h

∑
k∈Z

h
∣∣∣ρn

k−j−1/2

∣∣∣ |η′(ζk+1) − η′(ζk)|

= h
∑
k∈Z

h
∣∣∣ρn

k−j−1/2

∣∣∣ ∫ ζk+1

ζk

|η′′(s)| ds

≤ h
∑
k∈Z

h
∣∣∣ρn

k−j−1/2

∣∣∣ ∫ xk+3/2

xk−1/2

|η′′(s)| ds

= 2 h2 ‖ρn‖L1 ‖η′′‖L∞ , (4.13)

to complete the estimate of (4.9) we use the results above to bound the remaining terms∣∣∣∣f(tn, xj+3/2, ρ
n
j ) − f(tn, xj+1/2, ρ

n
j )

2

∣∣∣∣ ≤ 1
2

h C
∣∣ρn

j

∣∣
∣∣∣∣v(cj+3/2) − v(cj+1/2)

2

∣∣∣∣ ≤ 1
2

h ‖v′‖L∞ ‖η′‖L∞ ‖ρo‖L1∣∣∣∣f(tn, xj+1/2, ρ
n
j ) − f(tn, xj−1/2, ρ

n
j )

2

∣∣∣∣ ≤ 1
2

h C
∣∣ρn

j

∣∣
∣∣∣∣v(cj+1/2) − v(cj−1/2)

2

∣∣∣∣ ≤ 1
2

h ‖v′‖L∞ ‖η′‖L∞ ‖ρo‖L1

and we are now able to complete the estimate of (4.9):

(4.9) ≤ h2 C ‖v‖L∞
∣∣ρn

j

∣∣
+‖∂ρf‖L∞

∣∣ρn
j

∣∣ (h2 ‖v′′‖L∞‖ρo‖2
L1 ‖η′‖L∞ + h2 ‖v′‖L∞ ‖ρo‖2

L1 ‖η′′‖L∞

)
+

1
2

h2 C ‖v′‖L∞ ‖η′‖L∞ ‖ρo‖L1

∣∣ρn
j

∣∣
= h2

[
C‖v‖L∞ +

(
‖∂ρf‖L∞ (‖v′′‖L∞‖η′‖L∞ + ‖v′‖L∞‖η′′‖L∞)

+
C

2
‖v′‖L∞‖η′‖L∞

)
‖ρo‖L1

]∣∣ρn
j

∣∣
≤ h2 ‖v‖W2,∞

(
C +

(
‖∂ρf‖L∞ +

C

2

)
‖η′‖W1,∞ ‖ρo‖L1

) ∣∣ρn
j

∣∣
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We now pass to estimate (4.10) and (4.11):

(4.10) + (4.11) =
1
2
(
f(tn, xj+3/2, ρ

n
j+1) − f(tn, xj+1/2, ρ

n
j+1)

)
v(cj+3/2)

+
1
2

f(tn, xj+1/2, ρ
n
j+1)

(
v(cj+3/2) − v(cj+1/2)

)
−1

2
(
f(tn, xj+1/2, ρ

n
j−1) − f(tn, xj−1/2, ρ

n
j−1)

)
v(cj+1/2)

−1
2

f(tn, xj−1/2, ρ
n
j−1)

(
v(cj+1/2) − v(cj−1/2)

)
=

1
2

h
(
∂xf(tn, ξj+1, ρ

n
j+1) v(cj+3/2) − ∂xf(tn, ξj , ρ

n
j−1) v(cj+1/2)

)
+

1
2

(
f(tn, xj+1/2, ρ

n
j+1) v′(γj+1) (cj+3/2 − cj+1/2)

−f(tn, xj−1/2, ρ
n
j−1) v′(γj) (cj+1/2 − cj−1/2)

)
for suitable ξj ∈ ]xj−1/2, xj+1/2

[
and γj ∈ I(cj−1/2, cj+1/2). Introducing ξ̂j ∈ ]ξj , ξj+1[, ζ̂j ∈ I(ρn

j−1, ρ
n
j+1), γ̂j ∈

I(γj , γj+1), ξ̌j ∈ ]xj−1/2, xj+1/2

[
, ζ̌j ∈ I(ρn

j−1, ρ
n
j+1), γ̌j ∈ I(γj , γj+1), δj ∈ I(cj+3/2 − cj+1/2, cj+1/2 − cj−1/2)

and using (2.1), (4.12), (4.13)

|(4.10) + (4.11)| ≤ 1
2

h
(∣∣∣∂2

xxf(tn, ξ̂j , ζ̂j)
∣∣∣ v(γ̂j+1)h +

∣∣∣∂2
ρxf(tn, ξ̂j , ζ̂j)

∣∣∣ v(γ̂j+1)
∣∣ρn

j+1 − ρn
j−1

∣∣
+
∣∣∣∂xf(tn, ξ̂j , ζ̂j)

∣∣∣ |v′(γ̂j+1)|
∣∣cj+3/2 − cj+1/2

∣∣)
+

1
2

(∣∣∂xf(tn, ξ̌j , ζ̌j)
∣∣ |v′(γ̌j)| |δj |h +

∣∣f(tn, ξ̌j , ζ̌j)
∣∣ |v′′(γ̌j)| |δj | |γj+1 − γj |

+
∣∣f(tn, ξ̌j , ζ̌j)

∣∣ |v′(γ̌j)|
∣∣cj+3/2 − 2cj+1/2 − cj−1/2

∣∣)
≤ 1

2
h
(
C ‖v‖L∞

∣∣∣ζ̂j

∣∣∣h +
∥∥∂2

ρxf
∥∥
L∞ ‖v‖L∞

∣∣ρn
j+1 − ρn

j−1

∣∣+ C ‖v′‖L∞ ‖ρo‖L1 ‖η′‖L∞

∣∣∣ζ̂j

∣∣∣h)
+

1
2

(
C ‖v′‖L∞ ‖ρo‖L1 ‖η′‖L∞

∣∣ζ̌j

∣∣ h2 + ‖∂ρf‖L∞ ‖v′′‖L∞ ‖ρo‖2
L1 ‖η′‖2

L∞
∣∣ζ̌j

∣∣h2

+2 ‖∂ρf‖L∞ ‖v′‖L∞ ‖ρo‖L1 ‖η′′‖L∞
∣∣ζ̌j

∣∣h2
)

=
1
2

C (1 + ‖η′‖L∞ ‖ρo‖L1) ‖v‖W1,∞

∣∣∣ζ̂j

∣∣∣ h2

+
1
2
(
C + ‖∂ρf‖L∞ ‖ρo‖L1 ‖η′‖L∞ + 2 ‖∂ρf‖L∞

) ‖v′‖W1,∞ ‖η′‖W1,∞ ‖ρo‖L1

∣∣ζ̌j

∣∣h2

+
1
2

∥∥∂2
ρxf
∥∥
L∞ ‖v‖L∞

∣∣ρn
j+1 − ρn

j−1

∣∣h.

The above bound allows to obtain the estimate for |Bj|:

|Bj| ≤ ‖v‖W2,∞

(
C +

(
‖∂ρf‖L∞ +

C

2

)
‖η′‖W1,∞ ‖ρo‖L1

) ∣∣ρn
j

∣∣h2

+
1
2

C (1 + ‖η′‖L∞ ‖ρo‖L1) ‖v‖W1,∞

∣∣∣ζ̂j

∣∣∣h2

+
1
2
(
C + ‖∂ρf‖L∞ ‖ρo‖L1 ‖η′‖L∞ + 2 ‖∂ρf‖L∞

) ‖v′‖W1,∞ ‖η′‖W1,∞ ‖ρo‖L1

∣∣ζ̌j

∣∣ h2

+
1
2

∥∥∂2
ρxf
∥∥
L∞ ‖v‖L∞

∣∣ρn
j+1 − ρn

j−1

∣∣ h.
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so that

∑
j∈Z

|Bj| ≤ ‖v‖W2,∞

(
C +

(
‖∂ρf‖L∞ +

C

2

)
‖η′‖W1,∞ ‖ρo‖L1

)
‖ρo‖L1 h

+
1
2

C (1 + ‖η′‖L∞ ‖ρo‖L1) ‖v‖W1,∞ ‖ρo‖L1 h

+
1
2
(
C + ‖∂ρf‖L∞ (2 + ‖ρo‖L1 ‖η′‖L∞)

) ‖v′‖W1,∞ ‖η′‖W1,∞ ‖ρo‖L1 h

+
1
2

∥∥∂2
ρxf
∥∥
L∞ ‖v‖L∞

⎛
⎝∑

j∈Z

∣∣ρn
j+1 − ρn

j−1

∣∣
⎞
⎠ h.

Recall now (4.5) and (4.8) to obtain

∑
j∈Z

∣∣ρn+1
j+1 − ρn+1

j

∣∣ ≤∑
j∈Z

|Aj | + λ
∑
j∈Z

|Bj| ≤ (1 + K1 τ)
∑
j∈Z

∣∣ρn
j+1 − ρn

j

∣∣+ K2 τ

where
K1 =

∥∥∂2
ρxf
∥∥
L∞ ‖v‖L∞

K2 =

[
3
2 C +

(‖∂ρf‖L∞ + C
) ‖η′‖W1,∞ ‖ρo‖L1

+ 1
2

(
C + ‖∂ρf‖L∞ (2 + ‖ρo‖L1 ‖η′‖L∞)

) ‖η′‖W1,∞

]
‖v‖W2,∞ ‖ρo‖L1 .

(4.14)

The estimate (2.7) now follows from standard iterative procedure. The proof of Proposition 2.6 follows imme-
diately. �

Proof of Lemma 2.7. We follow the same line as in Section 3 of [17]. Using (4.12), Lemma 2.2, Lemma 2.4 and
Proposition 2.6 compute preliminarily

∑
j∈Z

∣∣∣D+
(
f(tn, xj−1/2, ρ

n
j ) v(cn

j−1/2)
)∣∣∣

≤
∑
j∈Z

[
|∂xf(tn, ξj , ζj) v(γj)| h + |∂ρf(tn, ξj , ζj) v(γj)|

∣∣ρn
j+1 − ρn

j

∣∣
+|f(tn, ξj , ζj) v′(γj)|

∣∣∣cn
j+1/2 − cn

j−1/2

∣∣∣]
≤
∑
j∈Z

[
C ‖v‖L∞ ρn

j h + ‖∂ρf‖L∞ ‖v‖L∞
∣∣ρn

j+1 − ρn
j

∣∣
+‖∂ρf‖L∞ ‖v′‖L∞ ‖η′‖L∞ ‖ρo‖L1 max

{
ρn

j , ρn
j+1

}
h
]

≤ C‖v‖L∞ ‖ρo‖L1 + 2‖∂ρf‖L∞ ‖ρo‖2
L1 ‖η′‖L∞‖v′‖L∞ + ‖∂ρf‖L∞‖v‖L∞

∑
j∈Z

∣∣ρn
j+1 − ρn

j

∣∣
≤ C‖v‖L∞ ‖ρo‖L1 + 2‖∂ρf‖L∞ ‖ρo‖2

L1 ‖η′‖L∞‖v′‖L∞

+‖∂ρf‖L∞‖v‖L∞

⎛
⎝K2 t +

∑
j∈Z

∣∣ρo
j+1 − ρo

j

∣∣
⎞
⎠ eK1t.
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The term
∑

j∈Z

∣∣∣D−
(
f(tn, xj+1/2, ρ

n
j ) v(cn

j+1/2)
)∣∣∣ admits an analogous estimate. Moreover,

∑
j∈Z

∣∣D2ρn
j

∣∣ ≤ 2
∑
j∈Z

∣∣ρn
j+1 − ρn

j

∣∣ ≤ 2

⎛
⎝K2 t +

∑
j∈Z

∣∣ρo
j+1 − ρo

j

∣∣
⎞
⎠ eK1t.

Using the above estimates and (2.4) we get

∥∥ρn+1 − ρn
∥∥
L1 =

∑
j∈Z

h
∣∣ρn+1

j − ρn
j

∣∣
≤ τ

2

∑
j∈Z

∣∣∣D+
(
f(tn, xj−1/2, ρ

n
j ) v(cn

j−1/2)
)∣∣∣

+
τ

2

∑
j∈Z

∣∣∣D−
(
f(tn, xj+1/2, ρ

n
j ) v(cn

j+1/2)
)∣∣∣+ τ

6λ

∑
j∈Z

∣∣D2ρn
j

∣∣
≤ C(t)τ

where

C(t) = C‖v‖L∞ ‖ρo‖L1 + 2‖∂ρf‖L∞ ‖ρo‖2
L1 ‖η′‖L∞‖v′‖L∞

+
(‖∂ρf‖L∞ ‖v‖L∞ + 1

3λ

) (K2 t +
∑

j∈Z

∣∣ρo
j+1 − ρo

j

∣∣) eK1t,
(4.15)

completing the proof. �

Proof of Proposition 2.8. Fix n ∈ N and for any sequence (ρ)j∈Z define the transformation ρ �→ H(ρ) given by

Hn
j (ρ) = ρj − λ

(
fn
j+1/2(ρj , ρj+1) − fn

j−1/2(ρj−1, ρj)
)

, (4.16)

where the functions fn
j+1/2 are given by (2.5), but where, instead of (2.6), the sequence (cn

j+1/2)j∈Z is now an
arbitrary fixed sequence. Thus, Hn

j (ρ) depends only on ρj−1, ρj and ρj+1. Then, Hn is monotone, in the sense
that

∂Hn
j

∂ρi
≥ 0, i = j − 1, j, j + 1. (4.17)

The cases i = j ± 1 are easily verified. If i = j, using (2.5) we find

∂Hn
j

∂ρj
=

1
3
− λ

2
(
∂ρf(tn, xj+1/2, ρj) v(cj+1/2) − ∂ρf(tn, xj−1/2, ρj) v(cj−1/2)

)
≥ 1

3
− λ ‖∂ρf‖L∞ ‖v‖L∞

≥ 0

by the CFL condition (2.3). The definition (4.16) of Hn and (2.8) imply that for any k ∈ R

|ρj − k| − λ
(
F k

j+1/2(ρj , ρj+1) − F k
j−1/2(ρj−1, ρj)

)
= Hn

j (ρ ∧ k) − Hn
j (ρ ∨ k), (4.18)
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where k in the right-hand side above is understood as the sequence identically equal to k. The monotonicity
condition (4.17) and the scheme (2.4)–(2.5) ensure that

Hn
j (ρ ∧ k) − Hn

j (ρ ∨ k)
≥ Hn

j (ρ) ∧ Hn
j (k) − Hn

j (ρ) ∨ Hn
j (k)

= sgn
[
Hn

j (ρ) − k + λ
(
f(tn, xj+1/2, k) v(cj+1/2) − f(tn, xj−1/2, k) v(cj−1/2)

)]
× [Hn

j (ρ) − k + λ
(
f(tn, xj+1/2, k) v(cj+1/2) − f(tn, xj−1/2, k) v(cj−1/2)

)]
≥ sgn

(
Hn

j (ρ) − k
) [

Hn
j (ρ) − k + λ

(
f(tn, xj+1/2, k) v(cj+1/2) − f(tn, xj−1/2, k) v(cj−1/2)

)]
=
∣∣Hn

j (ρ) − k
∣∣+λ sgn

[
Hn

j (ρ) − k
][

f(tn, xj+1/2, k)v(cj+1/2) − f(tn, xj−1/2, k)v(cj+1/2)
]
. (4.19)

In the last inequality we used also the non-negativity of the function (a, b) �→ (sgn(a + b) − sgn(a))(a + b).
From (4.18) and (4.19) we conclude that

∣∣Hn
j (ρ) − k

∣∣− |ρj − k| + λ
(
F k

j+1/2(ρj , ρj+1) − F k
j−1/2(ρj−1, ρj)

)
+λ sgn(Hn

j (ρ) − k)
(
f(tn, xj+1/2, k) − f(tn, xj−1/2, k)

) ≤ 0.
(4.20)

Consider now the numerical approximation ρn
j given by the algorithm (2.4). Then, we apply (4.20) to ρn,

with the sequence cj+1/2 appearing in (4.16) as given by the convolution (2.6). Observing that Hn
j (ρn) = ρn+1

j ,
we conclude that (2.9) holds. �
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