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MONOTONE (A, B) ENTROPY STABLE NUMERICAL SCHEME FOR SCALAR
CONSERVATION LAWS WITH DISCONTINUOUS FLUX
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Abstract. For scalar conservation laws in one space dimension with a flux function discontinuous in
space, there exist infinitely many classes of solutions which are L1 contractive. Each class is character-
ized by a connection (A, B) which determines the interface entropy. For solutions corresponding to a
connection (A,B), there exists convergent numerical schemes based on Godunov or Engquist−Osher
schemes. The natural question is how to obtain schemes, corresponding to computationally less expen-
sive monotone schemes like Lax−Friedrichs etc., used widely in applications. In this paper we completely
answer this question for more general (A,B) stable monotone schemes using a novel construction of
interface flux function. Then from the singular mapping technique of Temple and chain estimate of
Adimurthi and Gowda, we prove the convergence of the schemes.
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1. Introduction

Let I = [s, S] ⊂ R be an interval and f , g are continuous functions on I. Define the discontinuous flux
function

F(x, u) = H(x)f(u) + (1 −H(x))g(u) (1.1)

where H(x) is the Heaviside function. Let u0 ∈ L∞(R) taking values in I. Consider the following scalar conser-
vation law:

ut + F(x, u)x = 0 x ∈ R, t > 0,
u(x, 0) = u0(x) x ∈ R.

(1.2)

A function u ∈ L∞
loc(R × R

+) is called a solution to (1.2) if u satisfies

(i) u is a weak solution, i.e. for all φ ∈ C1
c (R × R+), u satisfies∫ ∞

0

∫
R

[uφt + F(x, u)φx]dxdt +
∫

R

u0(x)φ(x, 0)dx = 0. (1.3)
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(ii) For x �= 0, u satisfies the Kruzkov entropy condition, i.e., u ∈ L∞(R × R+) and satisfies for all l ∈ R and
all non-negative test functions φ supported away from the interface {x = 0}∫ ∞

0

∫ ∞

0

[|u− l|φt + sgn(u− l)(f(u) − f(l))φx]dxdt ≥ 0,
∫ ∞

0

∫ 0

−∞
[|u− l|φt + sgn(u− l)(g(u) − g(l))φx]dxdt ≥ 0.

Basic questions related to this problem is, existence and uniqueness of the solutions and developing a proper
numerical scheme to capture them. It is well known that, in general (1.2) may not admit solutions, even if u0

is sufficiently smooth. Even if solutions exists, it may not be unique. The development of well-posed theory for
the problem (1.2) has been studied extensively in the recent past, see [1, 3, 5–9,11, 13, 15, 17, 22, 24, 26].

This type of problem appears in numerous models in physics and engineering, for example in modeling of
two phase flow in a porous media [13], in sedimentation problem [11,12] and in traffic flow [20].

Under suitable assumptions on f and g, this problem admits a solution. In general several solutions may
exist. To find a physically relevant unique solution, one has to impose an extra condition called an interface
entropy condition which was first introduced in [1] at the interface {x = 0}. Later, a family of interface entropy
conditions (called (A,B) entropy) were introduced in [5] and showed that in each class there exists a unique
solution.

Assume that the fluxes f and g are either bell-shaped or inverted bell-shaped functions having common end
points. Under this assumption, basically there are three known methods to study equation (1.2) with (A,B)
interface entropy condition.

(a) The Hamilton-Jacobi method: Hamilton-Jacobi method was used in [1,4] for strictly convex fluxes f and g,
where an explicit formulae for the solutions were obtained. Moreover, L1-contractivity of the solution was
shown.

(b) the vanishing Viscosity method: in [6], by using vanishing viscosity method, existence and uniqueness of
(A,B) interface entropy condition was studied.

(c) Numerical schemes: in [5, 9] the Godunov and Engquist−Osher type schemes were constructed for each
(A,B)-interface entropy. Convergence of the scheme and uniqueness of the solution satisfying (A,B) interface
entropy condition were shown.

In general, a constant data result in a non-constant solution and hence one can not expect a total variation
diminishing scheme. Moreover it was an open problem whether it is possible to get a total variation bound.
Recently a counter example was constructed in [2] to show that in any neighbourhood of the interface {x = 0},
the total variation becomes infinity. Hence the convergence analysis becomes difficult. This was over come by
using the singular mapping technique due to Temple [23] which has been adopted in [3, 5, 25] for Godunov and
Engquist−Osher type schemes.

Goal of this paper is to extend the numerical schemes originating from monotone schemes from a continuous
flux case to a discontinuous flux case. This can be done by

(1) Construction of an interface flux function for a given (A,B) connection.
(2) Using (1), construction of convergent monotone (A,B) stable numerical schemes.

Basic idea is to achive (1) as follows. First we consider the undercompressive intersection case, that is, f and
g intersect at c with f ′(c) > 0, g′(c) < 0. We construct an interface flux function l by using the decreasing
portion of f and the increasing portion of g above the connection (see Fig. 1). The same construction is not
possible if it is not undercompressive intersection case because the interface flux function l either is multivalued
or not stable with respect to (A,B). To overcome this difficulty we use the translation invariant property of
equation (1.2). Next we generate monotone (A,B) stable entropy numerical schemes from this interface flux
function l. To study the convergence analysis, a singular mapping technique is used, unlike in the case of
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Godunov or Engquist−Osher type schemes,singular mapping techniques become difficult for general schemes.
To overcome this difficulty we use the chain estimates of Adimurthi and Gowda ([19], p. 209).

Central schemes like Lax−Friedrichs schemes do not use solution of Riemann problems and its numerical fluxes
are calculated by point evaluation. This makes them very simple and easy to implement. Very much useful to
problems where the Riemann solution is not known or is too costly to be used. Eventhough Lax−Friedrichs
scheme is diffussive compared to other upwind schemes, it is used to construct FORCE scheme and high
resolution schemes. In [21], a high resolution schemes which is based on the staggered form of the Lax−Friedrichs
scheme is constructed and gives good resolution as of upwind schemes. Lax−Friedrichs scheme is the forerunner
for such central schemes and therefore it is important to extend it to discontinuous flux case. Lax−Friedrichs
scheme for discontinuous flux, considered in [16] converges to the solution obtained via vanishing viscosity
method and captures the particular connection,for example in a case where f and g intersects at α with f ′(α) > 0
and g′(α) < 0(under compressive intersection case). Lax−Friedrichs scheme [16] captures only A = B = α
connection. But different (A,B) entropy solution occurs in a natural way in the applications [9]. On the other
hand, the Lax−Friedrichs scheme presented here captures all (A,B) interface entropy solution.

This paper is organized as follows: in Section 2, we recall the basic definition of monotone flux, properties
of (A,B)-interface entropy condition and state the main results. In Section 3 we motivate and construct the
interface flux function. Section 4 is devoted to the proof of convergence of the monotone schemes. These schemes
are conservative, monotone but not consistent except at the end points. As a result, maximum principle is not
satisfied but we have only L∞ stability as in [3]. Singular mapping technique and chain estimate is used to
obtain a total variation bound in the singular variable. Following the idea of Crandall−Majda [10] we show that
the numerical scheme satisfy the (A,B)-interface entropy condition. Finally in Section 5, numerical experiments
are presented to compare the solution of Godunov scheme and Lax−Friedrichs scheme for the two phase flow
in porous media.

2. Preliminaries

Let I = [s, S] and Lip(I) denote the space of all Lipschitz continuous functions on I. For f ∈Lip(I), denote
L(f) the Lipschitz constant of f . Define

F(I) = {f ∈ Lip(I) : f has no local maxima in the interior of I} . (2.1)

Definition 2.1 (monotone Numerical flux). Let k ∈ F(I). Then K ∈ Lip(I × I) is said to be a monotone
numerical flux corresponding to k if

(i) K(a, a) = k(a).
(ii) a �→ K(a, b) is a non-decreasing function and b �→ K(a, b) is a non-increasing function.

Important examples.

(1) Godunov numerical flux KG:

KG(a, b) =

⎧⎨
⎩

min
[a,b]

k(θ) if a ≤ b,

max
[b,a]

k(θ) if b ≤ a.
(2.2)

(2) Engquist−Osher numerical flux KEO:

KEO(a, b) =
1
2

(
k(a) + k(b) −

∫ b

a

|k′(θ)|dθ
)
. (2.3)
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(3) Lax−Friedrichs numerical flux KLF : Let λ|k′(θ)| ≤ 1 for all θ, then

KLF (a, b) =
1
2

(
k(a) + k(b) − b− a

λ

)

=
1
2

(
k(a) + k(b) − 1

λ

∫ b

a

|ψ′(θ)|dθ
)

(2.4)

where ψ(θ) = θ.
Remark 2.2. Introduction of this ψ will play an important role in the construction of interface numerical flux
for Lax−Friedrichs scheme corresponding to the discontinous flux.

Construction of the numerical scheme. Throughout the paper we assume that f and g satisfies the follow-
ing.

(H) Hypothesis. Let f, g ∈ F(I) and F,G ∈ Lip(I × I). Assume that

(i) f(s) = g(s), f(S) = g(S).
(ii) F and G are monotone numerical fluxes of f and g respectively.

Before the construction of numerical schemes, let us recall the definition of (A,B) interface entropy condition.

Interface entropy conditions. Let f(θf) = minI f , g(θg) = minI g. Then

Definition 2.3. (A,B) ∈ (I × I) is called a connection with respect to f and g if

(i) f(B) = g(A),
(ii) A ≤ θg, B ≥ θf .

Next we define the points A and B such that g(A) = g(A), f(B) = f(B), A ≥ θg, B ≤ θf .

Definition 2.4. Let (A,B) be a connection and u be a solution of (1.2) having traces u±(t) = u(0±, t). Then
u is said to satisfy the (A,B) interface entropy condition if

meas
{
t > 0 : u+(t) ≥ B, u−(t) ≤ A, (u−(t), u+(t)) �= (A,B), (A,B), (A,B), (A,B)

}
= 0. (2.5)

Numerical schemes. Let F ,G and F be monotone numerical fluxes. Associated to these,we will define the
numerical scheme for (1.2) connecting F and G via F . This F is called as interface numerical flux.

Let h > 0 and define the space grid points xi as follows:

xi+ 1
2

= ih.

For the time discretization the time step is 	t > 0 and let tn = n	t. We also define

λ =
	t
h
, Ii = [xi− 1

2
, xi+ 1

2
), Ri,n = Ii × [tn, tn+1).

For an initial data u0 ∈ L∞(R, I), define

u0
i =

1
|Ii|

∫
Ii

u0(θ)dθ. (2.6)

Define the finite volume scheme for n ≥ 0, as follows:

un+1
i =uni − λ

(
F (uni , u

n
i+1) − F (uni−1, u

n
i )
)

if i ≥ 2

un+1
i =uni − λ

(
G(uni , u

n
i+1) −G(uni−1, u

n
i )
)

if i ≤ −1

un+1
1 =un1 − λ

(
F (un1 , u

n
2 ) − F (un0 , u

n
1 )
)

un+1
0 =un0 − λ

(
F (un0 , u

n
1 ) −G(un−1, u

n
0 )
)
. (2.7)
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Associated to the discretization, define the singular mapping total variation STV of u0 by

STV(u0) = sup
h>0

{ −1∑
i=−∞

|G(u0
i , u

0
i+1) −G(u0

i−1, u
0
i )| +

∞∑
i=2

|F (u0
i , u

0
i+1) − F (u0

i−1, u
0
i )|

+ |F (u0
1, u

0
2) − F (u0

0, u
0
1)| + |F (u0

0, u
0
1) −G(u0

−1, u
0
0)|
}
. (2.8)

and the piecewise constant function uh by

uh(x, t) = uni (x, t) if (x, t) ∈ Ri,n. (2.9)

It is easy to see that if u0 ∈ BV(R) then STV(u0) ≤ C||u0||BV , where C is a constant depending only on the
Lipschitz constant of F and G.

Next we state the main theorem regarding the convergence result.

Theorem 2.5. Let F , G satisfy the hypothesis (H). Assume that u0 and λ satisfies

(i) CFL conditions: λ L(F ) ≤ 1, λ L(G) ≤ 1, λ L(F ) ≤ 1 where L(k) denotes the Lipschitz constant of k.
(ii) STV(u0) <∞.

Then for fixed λ, there exist a subsequence hk → 0 such that uhk
converges to u in L1

loc to a solution of (1.2).

Goal. Given F , G and (A,B) entropy condition, the goal of this paper is to construct a monotone numerical
flux F such that

(i) F is an interface numerical flux.
(ii) F = F = G if f = g and A = B = θf = θg.
(iii) the associated scheme converges to an (A,B) entropy solution.

In order to achieve this goal we need the following stability condition.

Definition 2.6. F is said to satisfy (A,B) stability condition if

F (A,B) = g(A) = f(B). (2.10)

Then we have the following theorem,

Theorem 2.7. Let F satisfies (A,B) stability condition (2.10). Let u be a solution of (1.2) obtained in
Theorem 2.1 such that the trace of u exists at the interface. Then u satisfies interface entropy condition (2.5).
Furthermore the solution is unique.

In order to prove this theorem, we reformulate the interface entropy condition (2.5) based on [1,5,9] as follows.

Definition 2.8. Let (A,B) be a connection and u ∈L1
loc(R × R

+) having traces u±(t) for a.e. t > 0. Then
define

I(u, t) = (g(u−(t)) − g(A))sign(u−(t) −A) − (f(u+(t)) − f(B))sign(u+(t) −B). (2.11)

Then we have the following lemma.

Lemma 2.9. Let u be a solution of (1.2) having traces u±(t) for a.e. t > 0. Then u satisfies (A,B) interface
entropy condition if and only if for a.e. t > 0,

I(u, t) ≥ 0. (2.12)
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Proof. We prove the lemma for undercompressive case. The other cases follows similarly. Define L1 = {u+(t) ≥
B}, L2 = {u−(t) ≤ A}, L3 = {(u−(t), u+(t)) �= (A,B), (A,B), (A,B), (A,B)}. If t /∈ L3, then it is easy to see
I(u, t) = 0. Assume that t /∈ L1, then u+ < B. Since f(u+) = g(u−), hence either u− > A or u− < A. If u− < A,
then I(u, t) = −(g(u−)−g(A))+(f(u)−f(B)) = 0. If u− > A, then I(u, t) = (g(u−)−g(A))+(f(u+)−f(B)) ≥ 0.
Similarly if t /∈ L2, then I(u, t) ≥ 0. Therefore I(u, t) ≥ 0.

Next we assume that I(u, t) ≥ 0. We also assume that u− ≤ A and u+ ≥ B. Since f(u+) = g(u−), hence
either A ≤ u− ≤ A and B ≤ u+ ≤ B or u− < A and u+ > B. If A ≤ u− ≤ A and B ≤ u+ ≤ B

0 ≤ I(u, t) = (g(u−) − g(A)) + (f(u+) − f(B)) < 0

which gives contradiction if (u−(t), u+(t)) �= (A,B), (A,B), (A,B), (A,B). Again if u− < A and u+ > B, then

0 ≤ I(u, t) = −(g(u−) − g(A)) − (f(u+) − f(B)) < 0

which gives a contradiction. This completes the proof of the lemma. �

Before going to the proof of the main theorem, first let us describe the construction of interface numerical
fluxes F satisfying the (A,B) stability condition.

3. Construction of interface flux satisfying the (A, B) stablity condition

Let (A,B) be a connection and F
G

(a, b) denote the Godunov interface flux defined in [3]. The basic question
is, how to construct a interface function l ∈ Lip(I) such that F

G
(a, b) = LG(a, b) for all a, b ∈ I where LG(a, b)

denote the Godunov numerical flux associated to l? If the answer to this question is affirmative then using this
interface flux function “l”, one can generate other types of numerical schemes. In general,this is not true. But
with a certain types of translation, one can construct “l” satisfying the above condition. Then the goal of this
section is to use this “l” to construct other (A,B) stable numerical fluxes.

In order to understand this, first consider the case of undercompressive intersection. That is there exist
θf ≤ c ≤ θg such that

f(c) = g(c).

Hence let B ≤ θf , A ≥ θg such that
f(B) = f(B) = g(A) = g(A).

Now define the interface flux function l by

l(θ) =

⎧⎨
⎩
f(θ) if θ ≤ B
f(B) if B ≤ θ ≤ A
g(θ) if θ ≥ A.

(3.1)

It is easy to verify that (proof is given in Lem. 3.1)

F
G

(a, b) = LG(a, b).

Now the question is, can we use l to generate other types of monotone numerical fluxes like Engquist−Osher
and Lax−Friedrichs? Infact it is not, for example if we denote LLF to be the Lax−Friedrichs numerical flux
associated to l, then it is given by

LLF (a, b) =
1
2

(
l(a) + l(b) − 1

λ
(b− a)

)
.

Hence

LLF (A,B) =
1
2

(
l(A) + l(B) − 1

λ
(B −A)

)
= f(B) − 1

2λ
(B −A).

Hence LLF (A,B) = f(B) if and only if B = A. Hence LLF need not be (A,B) stable.
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f

g

B θf B A Agθ

Figure 1. Undercompressive intersection case.

g

f

θg B B

Figure 2. Overcompressive intersection case.

If f and g do not have undercompressive intersection then in general, associated interface flux l is not single
valued. Therefore we face two difficulties namely l may not be defined. Even if it is defined then the associated
numerical flux may not be (A,B) stable.

In the next section we overcome these difficulties and construct a general interface monotone fluxe satisfying
(A,B) stability.

Definition 3.1. Let B ≤ θf , A ≥ θg be such that

f(B) = f(B) = g(A) = g(A).

Then

(i) Undercompressive: f and g said to have undercompressive with respect to (A,B) if

B ≤ A, A,B ∈ [B,A].
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g

f

BA B A

Figure 3. Undercompressive intersection case.

(ii) Overcompressive: if (f, g) is not undercompressive with respect to (A,B).

Remark 3.2. The pair (f, g) are undercompressive need not imply that there exists a c ∈ (θf , θg) such that
f(c) = g(c), see Figure 3.

3.1. Translation invariance

Let δ1,δ2 ∈ R and define the linear maps α1 and α2 by α1(θ) = θ + δ1, α2(θ) = θ + δ2. Let Ij = αj(I) for
j = 1, 2 and ḡ(θ) = g(θ − δ1), θ ∈ I1, f̄(θ) = f(θ − δ2), θ ∈ I2. Let u be a function of (x, t) with values in I,
then define

ū(x, t) =
{
u(x, t) + δ1 if x < 0,
u(x, t) + δ2 if x > 0. (3.2)

Let

F(x, ū) = H(x)f̄(ū) + (1 −H(x))ḡ(ū),

and

ū0(x) =
{
u0(x) + δ1 if x < 0,
u0(x) + δ2 if x > 0.

Then we have the following translation invariant property.

Proposition 3.3. u is a solution of (1.2) if and only if ū is a solution of

ūt + F(x, ū)x = 0 x ∈ R, t > 0,
ū(x, 0) = ū0(x) x ∈ R.

(3.3)

Observe that f̄ and ḡ are defined on different intervals I2 and I1 respectively and range of ū0 for x < 0 and x > 0
are in the interval I1 and I2 respectively. Using this invariance property we define the interface flux function l
as follows.
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g
f

s A θg θf B S

Figure 4. Overcompressive intersection case.

ḡ
f̄

s2 α2(B) α2(B) α1(A) α1(A)

l

Figure 5. Overcompressive intersection case: l function.

3.2. Interface flux l for (A, B) connection

We consider the following cases.
Undercompressive case. In this case let α1(θ) = θ and α2(θ) = θ, i.e., δ1 = 0 = δ2. Let (A,B) be a given
connection. Define the function l : [s, S] → R by

l(θ) =

⎧⎪⎪⎨
⎪⎪⎩
f(θ) if s ≤ θ ≤ B

f(B) = g(A) if θ ∈ [B,A]

g(θ) if A ≤ θ ≤ S.

(3.4)
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With the above construction, we now define interfaces fluxes corresponds to Godunov, Engquist−Osher and
Lax−Friedrichs. Let ψ ∈ Lip([s, S]) such that

ψ = 0 on [B,A].

Let LG be the Godunov numerical flux associated to l. For a, b,∈ I = [s, S], define

F
G

(a, b) = LG(a, b) (3.5)

and

F
ψ
(a, b) =

1
2
(l(a) + l(b) −

∫ b

a

|ψ′(θ)|dθ). (3.6)

Overcompressive case. Let δ1, δ2 ∈ R be such that δ2 − δ1 = B −A. Then s− δ2 ≤ B − δ2 ≤ B − δ2 = A− δ1 ≤
A− δ1 ≤ S − δ1. Let α1(θ) = θ + δ1, α2(θ) = θ + δ2. Then define the interface flux l on I0 = [s− δ2, S − δ1] by

l(θ) =

⎧⎪⎨
⎪⎩
f̄(θ) = f(α2(θ)) if θ ≤ B − δ2

f(B) = g(A) if B − δ2 ≤ θ ≤ A− δ1

ḡ(θ) = g(α1(θ)) if A− δ1 ≤ θ ≤ S − δ1.

(3.7)

Now l(B − δ2) = f(B) = g(A) = l(A− δ1), hence l ∈ Lip(I0).
Now define the numerical fluxes corresponds to Godunov, Engquist−Osher and Lax−Friedrichs numerical

fluxes as follows: let ψ ∈ Lip(I0) such that

ψ(θ) = 0 θ ∈ [B − δ2, A− δ1].

Let LG denote the Godunov numerical flux associated to l. Then the Interface flux F
G

be defined by,

F
G

(a, b) = LG(a, b) a, b ∈ I0 (3.8)

and the interface flux associated to F
ψ

by

F
ψ
(a, b) =

1
2
[l(a) + l(b) −

∫ b

a

|ψ′(θ)|dθ]. (3.9)

By suitable choices of ψ, F
ψ

give raise to Engquist−Osher and Lax−Friedrichs numerical fluxes.
Then we have the following.

Lemma 3.4. Let F
G
, F

ψ
be defined as above. Then

(1) F
G

satisfies conditions (i) and (ii) of the definition of monotone flux (Def. 2.1) and stability condition (2.10).
Furthermore it coincides with the interface Godunov flux given in [3] when A = θg or B = θf , that is, in
the case of undercompressive, for a, b ∈ I

F
G

(a, b) = max(GG(a, S), FG(s, b))

and in the case of overcompressive, for a, b ∈ I,

F
G

(α1(a), α2(b)) = max(GG(a, S), FG(s, b)).
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(2) Let ψ satisfies the following CFL condition

||l′||∞ ≤ ||ψ′||∞, (3.10)

then following holds.

(i) F
ψ

is monotone in the sense of Definition 2.1 and F
ψ

satisfies the stability condition (2.10).
(ii) F

ψ
satisfies the consistency property at the end points, i.e., in the case of undercompressive,

F
ψ
(s, s) = f(s) = g(s)

F
ψ
(S, S) = f(S) = g(S)

(3.11)

and in the case of overcompressive,

F
ψ
(s− δ2, s− δ2) = f̄(s− δ2) = f(s) = g(s)

F
ψ
(S − δ1, S − δ1) = ḡ(S − δ1) = g(S) = f(S).

(3.12)

Proof. Since αj ’s are increasing functions. Therefore F
G

satisfies (i) of Definition 2.1. Now (ii) of Definition 2.1
follows from

F
G

(A,B) = LG(α1(A), α2(B))
= g(A) = F (B).

We verify the result in the case of A = θg, for other case A < θg the result follow similarly. Now

GG(a, S) =

{
g(a) if a ≥ θg

g(θg) if a ≤ θg

=

{
ḡ(α1(a)) if α1(a) ≥ α1(θg)

ḡ(α1(θg)) if α1(a) ≤ α1(θg).

Similarly FG(s, b) is given by

FG(s, b) =

{
f̄(α2(b)) if α2(b) ≤ α2(θf )

f̄(α2(θf )) if α2(b) ≥ α2(θf ).

Now consider several cases,
(1) b ≤ θf , a ≥ θg, then α2(b) ≤ α1(a)

max
(
GG(a, S), FG(s, b)

)
= max (g(a), f(b))

= max
(
ḡ(α1(a)), f̄(α2(b))

)
= LG (α1(a), α2(b)) .

(2) b ≤ θf , a ≤ θg, then α2(b) ≤ α1(θg)

max
(
GG(a, S), FG(s, b)

)
= max (g(θg), f(b))

=

{
f(b) if g(θg) ≤ f(b)

g(θg) if g(θg) ≥ f(b)

=

{
f̄(α2(b)) if α2(b) ≤ α1(a)

ḡ(α1(θg)) if α2(b) ≥ α1(a) or B̄ ≤ α1(b) ≤ α1(a) ≤ α1(θg)

= LG (α1(a), α2(b)) .
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(3) b > θf , a ≤ θg, hence, α2(b) > α2(θf )

max
(
GG(a, S), FG(s, b)

)
= max (g(θg), f(θf )) = g(θg),

and if α1(a) ≤ α2(b),
LG (α1(a), α2(b)) = min

[α1(a),α2(b)]
l = l(α1(θg)) = g(θg),

and if α2(b) ≤ α1(a), then B ≤ α2(b) ≤ α1(a) ≤ α1(θg),

LG (α1(a), α2(b)) = max
[α2(b),α1(a)]

l = l(α2(θf )) = g(θg).

(4) b > θf , a > θg, then l(α1(a)) = g(a), l(α2(b)) = g(θg),

max
(
GG(a, S), FG(s, b)

)
= max (g(a), f(θf)) = g(a),

and if α1(a) ≤ α2(b),
LG (α1(a), α2(b)) = min

[α1(a),α2(b)]
l = l(α1(a)) = g(a),

and if α1(a) ≥ α2(b)
LG (α1(a), α2(b)) = max

[α2(b),α1(a)]
l = l(α1(a)) = g(a).

This proves LG = F
G
.

Since ψ = 0 on [B,A], it follows that

F
ψ
(A,B) =

1
2

(
l(α1(A)) + l(α2(B)) − ∫ α2(B)

α1(A) |ψ′(θ)|dθ
)

= l(α1(A)) = g(A) = f(B)]

From (3.10) we have

∂F
ψ

∂a
(a, b) =

1
2

(l′(α1(a)) + |ψ′(α1(a))|) ≥ 0

∂F
ψ

∂b
(a, b) =

1
2

(l′(α2(b)) − |ψ′(α2(b))|) ≤ 0.

Hence Fψ satisfies (i) and (ii) of Definition 2.1. This Proves the lemma. �

By taking different choices of ψ, we construct interface numerical fluxes corresponds to Engquist−Osher and
Lax−Friedrichs scheme as follows:

(i) Engquist−Osher numerical flux. Let ψ = l, we have

F
EO

(a, b) =
1
2

(
l(a) + l(b) −

∫ b

a

|l′(θ)|dθ
)
. (3.13)

In the case of undercompressive a, b ∈ [s, S] and in the overcompressive case a, b ∈ [s− δ2, S − δ1].
(ii) Lax−Friedrichs numerical flux. Here we choose ψ such that ψ′(θ) = 1

λ sgn(l′(θ)), then

F
LF

(a, b) =
1
2

(
l(a) + l(b) − 1

λ

∫ b

a

|sgn(l′(θ))|dθ
)
. (3.14)
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(iii) Rusanov or Local Lax−Friedrichs numerical flux. Here we choose ψ′(θ) = m sgn(l′(θ)) where m =
max |l′(θ)| and maximum is taken in between a and b.

F
loc−LF

(a, b) =
1
2

(
l(a) + l(b) −m

∫ b

a

|sgn(l′(θ))|dθ
)
. (3.15)

In the undercompressive case a, b ∈ I and for overcompressive case a, b ∈ [s− δ2, S − δ1].

Remark 3.5. We remark that a similar analysis to what is done in this paper for f and g satisfying hypothesis
(H) can be done for the case where f and g satisfy following hypothesis:

(H̃). f and g have one global maximum no other local maximum in [s, S] and f , g satisfies (i) and (ii) of (H).

Remark 3.6. We have the following explicit formula for the Lax−Friedrichs interface numerical flux. Denote
a ∧ b = min(a, b) and a ∨ b = max(a, b). Then

F
LF

(a, b) =
1
2

[
C(a, b) − 1

λ
D(a, b)

]

where C(a, b) and D(a, b) given by the following.

(i) Undercompressive case. If f and g satisfies the hypothesis (H), then

C(a, b) = f(a ∧B) + f(b ∧B) + g(b ∨A) + g(a ∨A) − 2g(A),

D(a, b) = (b ∧B) + (b ∨A) − (a ∧B) − (a ∨A).

If f and g satisfies the hypothesis (H̃), then

C(a, b) = g(a ∧A) + g(b ∧A) + f(b ∨B) + f(a ∨B) − 2g(A),

D(a, b) = (b ∧A) + (b ∨B) − (a ∧A) − (a ∨B).

(ii) Overcompressive case. If f and g satisfies the hypothesis (H), then

C(a, b) = f(α−1
1

(
α−1

1 (a) ∧ α2(B)
)
) + f(α−1

1

(
α−1

2 (b) ∧ α2(B)
)
)

+ g(α−1
2

(
α−1

1 (a) ∨ α1(A)
)
) + g(α−1

2

(
α−1

2 (b) ∨ α1(A)
)
) − 2g(A),

D(a, b) = (α−1
2 (b) ∧ α2(B)) + (α−1

2 (b) ∨ α1(A))

− (α−1
1 (a) ∧ α2(B)) − (α−1

1 (a) ∨ α1(A)).

If f and g satisfies the hypothesis(H̃), then

C(a, b) = g(α−1
1

(
α−1

1 (a) ∧ α1(A)
)
) + g(α−1

1

(
α−1

2 (b) ∧ α1(A)
)
)

+ f(α−1
2

(
α−1

1 (a) ∨ α2(B)
)
) + f(α−1

2

(
α−1

2 (b) ∨ α2(B)
)
) − 2g(A),

D(a, b) = (α−1
2 (b) ∧ α1(A)) + (α−1

2 (b) ∨ α2(B))

− (α−1
1 (a) ∧ α1(A)) − (α−1

1 (a) ∨ α2(B)).
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Basic motivation to construct (A,B) stable monotone schemes is to take F in (2.7) as any one of F
G

, F
EO

or
F
LF

. Unfortunately if we take F = F
LF
, then the scheme (2.7) is not monotone as seen below. Assume that f

and g has undercompressive intersection. Let a, b be such that a, b > A and define

H(a, b, c) = b− λ[FLF (b, c) − F (a, b)].

Then we have ∂H
∂b = −λ

2 (f ′(b) − g′(b)). So we can not determine the sign of ∂H
∂b . But in the case of Godunov

and Engquist−Osher, the scheme (2.7) is monotone and (A,B) stable.
Therefore in the case of Lax−Friedrichs, scheme (2.7) has to be modified so that it is monotone and (A,B)

stable. This is done by modifying (2.7) at i = 2 and i = −1. First we define for the undercompressive case.
Using the translation invariance property of solutions, we can define the similar schemes for the other cases.

Godunov, Engquist−Osher and Lax−Friedrichs schemes. Now we define the different numerical schemes
corresponds to F

G
, F

EO
, F

LF
, F

loc−LF
. Define F̃ and G̃ as follows.

F̃ (a, b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

FG(a, b) if F = F
G

FEO(a, b) if F = F
EO

1
2
(
l(a) + f(b) − b−a

λ

)
if F = F

LF

1
2

(l(a) + f(b) −m1(b − a)) if F = F
loc−LF

G̃(a, b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

GG(a, b) if F = F
G

GEO(a, b) if F = F
EO

1
2

(
g(a) + l(b) − b− a

λ

)
if F = F

LF

1
2

(g(a) + l(b) −m2(b− a)) if F = F
loc−LF

where m1 is the maximum of |f ′| and |l′| over the interval [a, b] or [b, a] and m2 is the maximum of |g′| and |l′|
over the interval [a, b] or [b, a]. Next we define the scheme as follows

un+1
i = uni − λ

(
F (uni , u

n
i+1) − F (uni−1, u

n
i )
)

if i ≥ 3

un+1
2 = un2 − λ

(
F (un2 , u

n
3 ) − F̃ (un1 , u

n
2 )
)

un+1
1 = un1 − λ

(
F̃ (un1 , u

n
2 ) − F (un0 , u

n
1 )
)

un+1
0 = un0 − λ

(
F (un0 , u

n
1 ) − G̃(un−1, u

n
0 )
)

un+1
−1 = un−1 − λ

(
G̃(un−1, u

n
0 ) −G(un−2, u

n
−1)
)

un+1
i = uni − λ

(
G(uni , u

n
i+1) −G(uni−1, u

n
i )
)

if i ≤ −2. (3.16)

Convergence of numerical schemes. It is well known that for the discontinuous flux, Godunov and
Engquist−Osher schemes are monotone. It was an open problem to derive a monotone numerical scheme like
Lax−Friedrichs scheme which produces (A,B) entropy solution for the scalar conservation laws with discon-
tinuous flux. Here we first show that Lax−Friedrichs scheme defined above is monotone. In the next section,
using the singular mapping and chain estimates we prove the theorems. In the end, we give some numerical
experiments to show the performance of the above Lax−Friedrichs scheme.
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For the simplicity, we will concentrate only on the undercompressive case of fluxes f and g. For the other
cases the convergence analysis follows similarly. To prove the convergence we first show that the above scheme
is monotone. To see this, define the following:

H3(X,Y, Z) = Y − λ(F (Y, Z) − F (X,Y ))

H2(X,Y, Z) = Y − λ(F (Y, Z) − F̃ (X,Y ))

H1(X,Y, Z) = Y − λ(F̃ (Y, Z) − F (X,Y ))

H−1 = Y − λ(F (Y, Z) − G̃(X,Y ))

H−2 = Y − λ(G̃(Y, Z) −G(X,Y ))
H−3 = Y − λ(G(Y, Z) −G(X,Y )). (3.17)

Next we have the following lemma.

Lemma 3.7. Let 2λM ≤ 1 and a, b, c ∈ [s, S], then

(i) Hi(s, s, s) = f(s) = g(s) and Hi(S, S, S) = f(S) = g(S).
(ii) a �→ F̃ (a, b), a �→ G̃(a, b) are non decreasing and b �→ F̃ (a, b), b �→ G̃(a, b) are non increasing.
(iii) Hi is non decreasing in each of its variables.
(iv) Hi satisfies the following relations:

∂H3

∂X
(a, ·, ·) +

∂H3

∂Y
(·, a, ·) +

∂H3

∂Z
(·, ·, a) = 1

∂H3

∂X
(a, ·, ·) +

∂H3

∂Y
(·, a, ·) +

∂H2

∂Z
(·, ·, a) = 1

∂H3

∂X
(a, ·, ·) +

∂H2

∂Y
(·, a, ·) +

∂H1

∂Z
(·, ·, a) = 1

∂H2

∂X
(a, ·, ·) +

∂H1

∂Y
(·, a, ·) +

∂H−1

∂Z
(·, ·, a) = 1

∂H1

∂X
(a, ·, ·) +

∂H−1

∂Y
(·, a, ·) +

∂H−2

∂Z
(·, ·, a) = 1

∂H−1

∂X
(a, ·, ·) +

∂H−2

∂Y
(·, a, ·) +

∂H−3

∂Z
(·, ·, a) = 1

∂H−2

∂X
(a, ·, ·) +

∂H−3

∂Y
(·, a, ·) +

∂H−3

∂Z
(·, ·, a) = 1

∂H−3

∂X
(a, ·, ·) +

∂H−3

∂Y
(·, a, ·) +

∂H−3

∂Z
(·, ·, a) = 1.

Proof. (i) directly follows from the explicit formula of numerical fluxes. Now from the definition of F̃ , we have

F̃ (a, b) =
l(a) + f(b)

2
− 1

2λ
(b− a).

Therefore, under the CFL condition we obtain

∂F̃

∂a
=
l′(a)

2
+

1
2λ

≥ 0,

∂F̃

∂b
=
l′(b)
2

− 1
2λ

=
1
2λ

(λf ′(b) − 1) ≥ 0.
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This shows that a �→ F̃ (a, b) is non decreasing and b �→ F̃ (a, b) is non increasing. Similarly we can also prove
for G̃. This concludes the proof of (ii). �

From the monotonocity of the numerical fluxes it is clear that X �→ Hi(X,Y, Z) and Z �→ Hi(X,Y, Z) are non
decreasing. So we only need to show that Y �→ Hi(X,Y, Z) is non decreasing. Now using the explicit formula of
numerical fluxes we obtain

∂H3

∂Y
= 1 − λ

(
∂F

∂a
(Y, Z) − ∂F

∂b
(x, Y )

)
= 1 − λ

(
f ′(Y )

2
+

1
2λ

)
+ λ

(
f ′(Y )

2
− 1

2λ

)
= 0,

∂H2

∂Y
= 1 − λ

(
∂F

∂a
(Y, Z) − ∂F̃

∂b
(x, Y )

)
= 1 − λ

(
f ′(Y )

2
+

1
2λ

)
+ λ

(
f ′(Y )

2
− 1

2λ

)
= 0,

∂H1

∂Y
= 1 − λ

(
∂F̃

∂a
(Y, Z) − ∂F

∂b
(x, Y )

)
= 1 − λ

(
l′(Y )

2
+

1
2λ

)
+ λ

(
l′(Y )

2
− 1

2λ
|sgn(l′(b))|

)

=
1
2
(1 − |sgn(l′(b))|) ≥ 0.

This shows that Y �→ Hi(X,Y, Z), i = 1, 2, 3 are non decreasing. Similarly we can also prove that Y �→
Hi(X,Y, Z), i = −1,−2,−3 are non decreasing. This concludes the proof of (iii).

Now,

∂H3

∂X
(a, ·, ·) +

∂H3

∂Y
(·, a, ·) +

∂H3

∂Z
(·, ·, a) =λ

∂F

∂a
(a, ·) + 1 − λ

(
∂F

∂a
(a, ·) − ∂F

∂b
(·, a)

)

− λ
∂F

∂b
(·, a) = 1,

∂H3

∂X
(a, ·, ·) +

∂H3

∂Y
(·, a, ·) +

∂H2

∂Z
(·, ·, a) =λ

∂F

∂a
(a, ·) + 1 − λ

(
∂F

∂a
(a, ·) − ∂F

∂b
(·, a)

)

− λ
∂F

∂b
(·, a) = 1,

∂H3

∂X
(a, ·, ·) +

∂H2

∂Y
(·, a, ·) +

∂H1

∂Z
(·, ·, a) =λ

∂F

∂a
(a, ·) + 1 − λ

(
∂F

∂a
(a, ·) − ∂F̃

∂b
(·, a)

)

− λ
∂F̃

∂b
(·, a) = 1,

∂H2

∂X
(a, ·, ·) +

∂H1

∂Y
(·, a, ·) +

∂H−1

∂Z
(·, ·, a) =λ

∂F̃

∂a
(a, ·) + 1 − λ

(
∂F̃

∂a
(a, ·) − ∂F

∂b
(·, a)

)

− λ
∂F

∂b
(·, a) = 1,

∂H1

∂X
(a, ·, ·) +

∂H−1

∂Y
(·, a, ·) +

∂H−2

∂Z
(·, ·, a) =λ

∂F

∂a
(a, ·) + 1 − λ

(
∂F

∂a
(a, ·) − ∂F̃

∂b
(·, a)

)

− λ
∂G̃

∂b
(·, a) = 1. (3.18)
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This proves the first, second, third, fourth and fifth equality of (iv). Other equalities follows similarly. This
completes the proof of (iv).

4. Proof of Theorems 2.1 and 2.2

The aim of this section is to prove Theorems 2.1 and 2.2 for the scheme (3.16).
To prove the theorems, we need the following lemma which gives L∞-bounds and local L1-contraction of the

scheme (2.7). The idea of the proof is taken from [18].

Lemma 4.1.

(i) Let u0 ∈ L∞(R, [s, S]) be the initial data and uni be the solution satisfying (2.7). Then

s ≤ uni ≤ S for all i, n. (4.1)

(ii) Let u0, v0 ∈ L∞(R, [s, S]) be two initial data, and {uni }, {vni } be the corresponding solution of (2.7) respec-
tively. Then we have the following

∑
i0≤i≤j0

∣∣un+1
i − vn+1

i

∣∣ ≤ ∑
i0−1≤i≤j0+1

|uni − vni |

∑
i

∣∣un+1
i − vn+1

i

∣∣ ≤∑
i

|uni − vni |

Proof. Proof of this lemma for the case of Godunov and Engquist−Osher schemes can be found in [5, 9].
Therefore we let F = FLF , G = GLF , F = F

LF
in (3.16). Since s ≤ u0 ≤ S and hence for all i, s ≤ u0

i ≤ S. By
induction, assume that (4.1) holds for all n. Then from (i) and (ii) of Lemma 3.2 we have

s = H3(s, s, s) ≤ H3(uni−1, u
n
i , u

n
i+1) = un+1

i ≤ H3(S, S, S) = S if i ≥ 3

s = H2(s, s, s) ≤ H2(un1 , u
n
2 , u

n
3 ) = un+1

2 ≤ H2(S, S, S) = S

s = H1(s, s, s) ≤ H1(un0 , u
n
1 , u

n
2 ) = un+1

1 ≤ H1(S, S, S) = S

s = H−1(s, s, s) ≤ H−1(un−1, u
n
0 , u

n
1 ) = un+1

0 ≤ H−1(S, S, S) = S

s = H−2(s, s, s) ≤ H−2(un−2, u
n
−1, u

n
0 ) = un+1

−1 ≤ H−2(S, S, S) = S

s = H−3(s, s, s) ≤ H−3(uni−1, u
n
i , u

n
i+1) = un+1

i ≤ H−3(S, S, S) = S if i ≤ −2.

This proves (4.1). As the scheme (2.7) is monotone and conservative, the second inequality of (ii) follows as an
application of Crandall−Tartar Lemma. Next we prove the first inequality of (ii). We will prove this inequality for
i0 ≤ 0 and j0 ≥ 1. The other cases follow in the same manner. For θ ∈ [0, 1], we define pni (θ) = θuni + (1− θ)vni .
As ∂Hi

∂X (X,Y, Z) is independent of Y and Z, ∂Hi

∂Y (X,Y, Z) is independent of X and Z and ∂Hi

∂Z (X,Y, Z) is
independent of X and Y , henceforth we use the following notation

∂Hi

∂X
(X,Y, Z) =:

∂Hi

∂X
(X),

∂Hi

∂Y
(X,Y, Z) =:

∂Hi

∂Y
(Y ),

∂Hi

∂Z
(X,Y, Z) =:

∂Hi

∂Z
(Z).
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Now using the mean value theorem, we obtain

j0∑
i=3

|un+1
i − vn+1

i |

=
j0∑
i=3

|H3(uni−1, u
n
i , u

n
i+1) −H3(vni−1, v

n
i , v

n
i+1)|

≤
j0∑
i=3

(
|uni−1 − vni−1|

∫ 1

0

∂H3

∂X
(pni−1(θ))dθ + |uni − vni |

∫ 1

0

∂H3

∂Y
(pni (θ))dθ

+|uni+1 − vni+1|
∫ 1

0

∂H3

∂Z
(pni+1(θ))dθ

)

= |un2 − vn2 |
∫ 1

0

∂H3

∂X
(pn2 (θ))dθ + |un3 − vn3 |

∫ 1

0

(
∂H3

∂X
(pn3 (θ)) +

∂H3

∂Y
(pn3 (θ))

)
dθ

+
j0−1∑
i=4

|uni − vni |
(
∂H3

∂X
(pni (θ)) +

∂H3

∂Y
(pni (θ)) +

∂H3

∂Z
(pni (θ))

)
dθ

+|unj0 − vnj0 |
∫ 1

0

(
∂H3

∂Y
(pnj0 (θ)) +

∂H3

∂Z
(pnj0(θ))

)
dθ

+|unj0+1 − vnj0+1|
∫ 1

0

∂H3

∂Z
(pnj0+1(θ))dθ,

|un+1
2 − vn+1

2 | + |un+1
1 − vn+1

1 |

= |H2(un1 , un2 , un3 ) −H2(vn1 , vn2 , vn3 )| + |H1(un0 , un1 , un2 ) −H1(vn0 , vn1 , vn2 )|

≤ |un0 − vn0 |
∫ 1

0

∂H1

∂X
(pn0 (θ))dθ + |un1 − vn1 |

∫ 1

0

(
∂H2

∂X
(pn1 (θ)) +

∂H1

∂Y
(pn1 (θ))

)
dθ

+|un2 − vn2 |
∫ 1

0

(
∂H2

∂Y
(pn2 (θ)) +

∂H1

∂Z
(pn2 (θ))

)
dθ + |un3 − vn3 |

∫ 1

0

∂H2

∂Z
(pn3 (θ))dθ,

|un+1
0 − vn+1

0 | ≤ |un−1 − vn−1|
∫ 1

0
∂H−1
∂X (pn−1(θ))dθ + |un0 − vn0 |

∫ 1

0
∂H−1
∂Y (pn0 (θ))dθ

+|un1 − vn1 |
∫ 1

0

∂H−1

∂Z
(pn1 (θ))dθ,

|un+1
−2 − vn+1

−2 | + |un+1
−1 − vn+1

−1 |

≤ |un0 − vn0 |
∫ 1

0

∂H−2

∂Z
(pn0 (θ))dθ + |un−1 − vn−1|

∫ 1

0

(
∂H−2

∂Y
(pn−1(θ)) +

∂H−3

∂Z
(pn−1(θ))

)
dθ

+|un−2 − vn−2|
∫ 1

0

(
∂H−2

∂X
(pn−2(θ)) +

∂H−3

∂X
(pn−3(θ))

)
dθ

+|un−3 − vn−3|
∫ 1

0

∂H−3

∂X
(pn−3(θ))dθ,
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and
−2∑
i0

|un+1
i − vn+1

i |

=
−2∑
i0

|H−3(uni−1, u
n
i , u

n
i+1) −H−3(vni−1, v

n
i , v

n
i+1)|

≤ |un−1 − vn−1|
∫ 1

0

∂H−3

∂Z
(pn−1(θ))dθ + |un−2 − vn−2|

∫ 1

0

(
∂H−3

∂Y
(pn−2(θ)) +

∂H−3

∂Z
(pn−2(θ))

)
dθ

+
−3∑

i=i0+1

|uni − vni |
∫ 1

0

(
∂H−3

∂x
(pni (θ)) +

∂H−3

∂Y
(pni (θ)) +

∂H−3

∂Z
(pni (θ))

)

+|uni0 − vni0 |
∫ 1

0

(
∂H−3

∂x
(pni0(θ)) +

∂H−3

∂Y
(pni0(θ))

)

+|uni0−1 − vni0−1|
∫ 1

0

∂H−3

∂x
(pni0−1(θ))dθ.

Summing up all the above inequalities and using equalities (iii) of Lemma 3.2 we obtain the result. This proves
the lemma. �

Following [3], next we introduce singular mapping and we prove that the solution of the scheme (2.7) has a
total variation bound with respect to the singular mapping. This is done via the chain estimate of Adimurthi
and Gowda ([19], p. 209).

4.1. Singular mapping and chain estimates

Let k ∈ Lip(I) such that k is not locally constant in a neighbourhood of a point of interior local maxima if
it exist. Define k(θk) = min

I
k. Let a, b ∈ R and u ∈ I, define a+ = max(a, 0), a− = min(a, 0) so a = a+ + a−,

|a| = a+ − a−. In addition, we define

χ(a, b) =
{

1 if a < b,
0 if a ≥ b,

(4.2)

χ−(k, u) =
{

1 if u ≤ θk,
0 if u > θk,

(4.3)

χ+(k, u)) =
{

1 if u > θk,
0 if u ≤ θk.

(4.4)

Let K be a monotone numerical flux associated to k. Then we have the following results.

Proposition 4.2. Let a, b ∈ I, then

K(a, b) − k(θk) ≤ 0 if a ≤ θk ≤ b, (4.5)

k(b) −K(a, b) ≤ 0 if b ≤ a. (4.6)

Proof. From (i) of Definition 2.1, we have if a ≤ θk ≤ b, then

K(a, b) − k(θk) ≤ K(θk, b) − k(θk) ≤ K(θk, θk) − k(θk) = 0.

If b ≤ a, then
K(a, b)− k(b) ≥ K(b, b) − k(b) = 0.

This proves the proposition. �
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Lemma 4.3. Let {v1, . . . , vN} be a sequence in I such that v2 ≤ v3 ≤ . . . ≤ vN−1. Then
(1) If v2 ≤ v1, vN ≤ vN−1 then

∫ vN−1

v2

|k′(θ)|dθ ≤
N−1∑
j=2

|K(vj , vj+1) −K(vj−1, vj)| . (4.7)

(2) If vN ≤ vN−1 then

∫ vN−1

v1
|k′(θ)|dθ ≤

N−1∑
j=2

|K(vj , vj+1) −K(vj−1, vj)|

+χ(v1, v2) (k(v1) −K(v1, v2)) (χ−(k, v1) − χ+(k, v2)) .

(4.8)

(3) If v2 ≤ v1 then

∫ vN

v2
|k′(θ)|dθ ≤

N−1∑
j=2

|K(vj , vj+1) −K(vj−1, vj)|

+χ(vN , vN−1) (k(vN ) −K(vN−1, vN )) (χ+(k, vN ) − χ−(k, vN−1)) .

(4.9)

Proof.
(1) Let i be such that vi−1 ≤ θk ≤ vi. Since vN ≤ vN−1, v2 ≤ v1 then from (4.5) and (4.6)

k(vN ) −K(vN−1, vN ) ≤ 0,

k(v2) −K(v1, v2) ≤ 0,

K(vi−1, vi) − k(θk) ≤ 0.

Hence∫ vN−1

v2
k′+(θ)dθ =

∫ vN−1

θk
k′(θ)dθ

= k(vN−1) − k(θk)

= (k(vN−1) −K(vN−1, vN )) +
N−1∑
j=i

(K(vj , vj+1) −K(vj−1, vj)) + (K(vi−1, vi) − k(θk))

≤
N−1∑
j=i

|K(vj , vj+1) −K(vj−1, vj)|.

and

− ∫ vN−1

v2
k′−(θ)dθ = − ∫ θk

v2
k′(θ)dθ

= k(v2) − k(θk)

= (k(v2) −K(v1, v2)) −
i−1∑
j=2

(K(vj , vj+1) −K(vj−1, vj)) + (K(vi−1, vi) − k(θk))

≤
i−1∑
j=2

|K(vj , vj+1) −K(vj−1, vj)|.

Now (4.7) follows adding the above two estimates.
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(2) Let vN ≤ vN−1. If v2 ≤ v1, then χ(v1, v2)(k(v1) −K(v1, v2)) = 0 and hence (4.8) follows from (4.7). Hence
assume that v1 < v2. Let v1 ≥ θk, then from (4.6)∫ vN−1

v1
|k′(θ)|dθ = k(vN−1) − k(v1)

= (k(vN−1) −K(vN−1, vN )) +
N−1∑
j=2

(K(vj , vj+1) −K(vj−1, vj)) + (K(v1, v2) − k(v1))

≤
N−1∑
j=2

|K(vj , vj+1) −K(vj−1, vj)| + (K(v1, v2) − k(v1)).

If v1 ≤ θk, then choose i such that vi−1 ≤ θk ≤ vi and processed as in (1) to obtain

∫ vN−1

v1

|k′(θ)|dθ ≤ (k(v1) −K(v1, v2)) +
N−1∑
j=2

|K(vj , vj+1) −K(vj−1, vj)|.

Now (4.8) follows from these two estimates.
(3) Let v2 ≤ v1. If vN ≤ vN−1, then χ(vN−1, vN )(k(vN ) − K(vN−1, vN )) = 0, hence (4.9) follows from (4.7).
Therefore assume vN−1 < vN . Suppose vN ≤ θk, then �

∫ vN

v2
|k′(θ)|dθ = k(v2) − k(vN )

= (k(v2) −K(v1, v2)) +
N−1∑
j=2

(K(vj , vj+1) −K(vj−1, vj)) + (K(vN−1, vN ) − k(vN ))

≤
N−1∑
j=2

|K(vj , vj+1) −K(vj−1, vj)| + (K(vN−1, vN ) − k(vN ))

If vN > θk, choose i such that vi−1 ≤ θk ≤ vi and proceed as in (1) to obtain

∫ vN

v2

|k′(θ)|dθ ≤ (k(vN ) −K(vN−1, vN )) +
N−1∑
j=2

|K(vj , vj+1) −K(vj−1, vj)|.

Now (4.9) follows from these two estimates. This proves the lemma.

Definition 4.4. Let k ∈Lip(I) and A ∈ I, define the singular mapping ψk,A associated to k and A by

ψk,A(u) =
∫ u

A

|k′(θ)|dθ. (4.10)

4.2. Total variation bounds with respect to singular mapping

Let k1, k2 ∈Lip(I) satisfying the same hypothesis as in Proposition 4.1 . Let A1, A2 ∈ I and define

ψ1 = ψk1,A1 ψ2 = ψk2,A2 . (4.11)

Let K1 and K2 be two monotone numerical flux associated to k1 and k2 respectively. Let {vi} ⊂ I be a sequence.
Define the new sequence {Vi} by

Vi =

{
ψ1(vi) if i ≥ 1

ψ2(vi) if i ≤ 0.
(4.12)
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Let η− = limi→−∞ Vi and η+ = limi→∞ Vi, η = η− − η+. Then we have the following inequalities

∞∑
i=−∞

(Vi − Vi+1) = lim
N1→∞,N2→−∞

N1∑
N2

(Vi − Vi+1)

= lim
N1→∞,N2→−∞

(VN2 − VN1+1)

≤ lim
N→−∞

VN − lim
N→∞

VN = η− − η+ = η.

(4.13)

Hence
∞∑

i=−∞
(Vi − Vi+1)+ ≤ −

∞∑
i=−∞

(Vi − Vi+1)− + η. (4.14)

Therefore,

TV({Vi}) =
∞∑

i=−∞
|Vi − Vi+1| =

∞∑
i=−∞

(Vi − Vi+1)+ −
∞∑

i=−∞
(Vi − Vi+1)−

≤ −2
∞∑

i=−∞
(Vi − Vi+1)− + η.

(4.15)

Next we decompose the sequence {vi} into oscillatory and non-oscillatory parts as follows: define the subsets
{Ji} having the following properties. {vi} = ∪Ji. Let J1 = {v1, v2, . . . , vi1−1} such that

{
v2 ≤ v3 ≤ . . . ≤ vi1−1

vi1 < vi1−1.
(4.16)

For l ≥ 1, define Jl+1 = {vil , vil+1, . . . , vil+1−1},
{
vil ≤ vil+1 ≤ . . . ≤ vil+1−1

vil+1 < vil+1−1.
(4.17)

J0 = {vi0+1, . . . , v0} {
vi0+1 ≤ . . . ≤ v−2 ≤ v−1

vi0+1 < vi0 .
(4.18)

For l ≤ −1 define Jl = {vil+1, . . . , vil−1}
{
vil+1 ≤ . . . ≤ vil+1

vil+1 < vil .
(4.19)

Since ψ1, ψ2 are non decreasing functions and hence from (4.7) to (4.9) we have

(
ψ2(vij ) − ψ2(vij+1)

)
− = 0 for j ≤ 0(

ψ1(vij−1) − ψ1(vij )
)
− = 0 for j ≥ 1
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So, using Lemma 4.2, we have

−(ψ2(v−1) − ψ2(v0))− −
−2∑

i=i0+1

(ψ2(vi) − ψ2(vi+1))−

= −(ψ2(v−1) − ψ2(v0))− + ψ2(v−1) − ψ2(vi0+1)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ v0

vi0+1

|k′2(θ)|dθ if v−1 ≤ v0

∫ v−1

vi0+1

|k′2(θ)|dθ if v−1 ≥ v0

≤ χ(v−1, v0) (k2(v0) −K2(v−1, v0)) (χ+(k2, v0) − χ−(k2, v0))

+
−1∑

j=i0+1

|K2(vj , vj+1) −K2(vj−1, vj)|.

(4.20)

Similarly, using Lemma 4.2, we have

− (ψ1(v1) − ψ1(v2))− −
i1−1∑
i=2

(ψ1(vi) − ψ1(vi+1))−

≤ χ(v1, v2) (k1(v1) −K1(v1, v2)) (χ−(k1, v1) − χ+(k1, v1))

+
i1−1∑
j=2

|K1(vj , vj+1) −K1(vj−1, vj)|.
(4.21)

∑
vi∈Ji

(ψ2(vi) − ψ2(vi+1))− ≤
∑
vi∈Jj

|K2(vi, vi+1) −K2(vi−1, vi)| for j ≤ −1. (4.22)

∑
vi∈Ji

(ψ1(vi) − ψ1(vi+1))− ≤
∑
vi∈Jj

|K1(vi, vi+1) −K1(vi−1, vi)| for j ≥ 2. (4.23)

Combining all the estimates from (4.20) to (4.23) obtain the following Lemma.

Lemma 4.5 (Chain estimate). Let {vi} and {Vi} be the sequence defined as above, then

1
2
TV({Vi}) ≤− (ψ2(v0) − ψ1(v1))− +

−1∑
i=−∞

|K2(vi, vi+1) −K2(vi−1, vi)|

+
∞∑
i=2

|K1(vi, vi+1) −K1(vi−1, vi)| + η

2

+ χ(v1, v2) (k1(v1) −K1(v1, v2)) (χ−(k1, v1) − χ+(k1, v1))

+ χ(v−1, v0) (k2(v0) −K2(v−1, v0)) (χ+(k2, v0) − χ−(k2, v0)). (4.24)

With these preliminaries, let us go back to the fluxes f and g. Let F and G be two monotone fluxes associated
to f and g respectively. Let F satisfies condition (i) of Definition 2.1. We choose k1 = f , k2 = g and define,

zni =

{
ψ1(uni ) if i ≥ 1,

ψ2(uni ) if i ≤ 0.
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We define,

E = − (zn0 − zn1 )− + χ(un1 , u
n
2 )(f(un1 ) − F (un1 , u

n
2 ))(χ−(f, un1 ) − χ+(f, un1 )))

+ χ(un−1, u
n
0 )(g(un0 ) −G(un−1, u

n
0 ))(χ+(g, un0 ) − χ−(g, un0 ))

− |F (un0 , u
n
1 ) − G̃(un−1, u

n
0 )| − |F̃ (un1 , u

n
2 ) − F (un0 , u

n
1 )|

− |F (un2 , u
n
3 ) − F̃ (un1 , u

n
2 )| − |G̃(un−1, u

n
0 ) −G(un−2, u

n
−1)|. (4.25)

Lemma 4.6. Let zni be as defined above, then the following estimate holds, for all m,n ∈ N,

TV(zni ) ≤ 2STV(u0) + 2E + η∑
i

|zni − zmi | ≤ λL|n−m|STV(u0)

where E is given by (4.25) and STV(u0) is given by (2.8) and

L = max{Lip(ψ1),Lip(ψ2)}.
Proof. Using the chain estimate (Lem. 4.3) and Lemma 4.1 we have,

∞∑
−∞

|zni − zni−1| ≤ 2

(
i=−2∑
i=−∞

|G(uni , u
n
i+1) −G(uni−1, u

n
i )|

+ |G̃(un−1, u
n
0 ) − F (un0 , u

n
1 )| + |F̃ (un1 , u

n
2 ) − F (un0 , u

n
1 )|

+ |G̃(un−1, u
n
0 ) −G(un−2, u

n
−1)| + |F̃ (un1 , u

n
2 ) − F (un2 , u

n
3 )

+
∞∑
i=3

|F (uni , u
n
i+1) − F (uni−1, u

n
i )|
)

+ E + η

≤ 2
λ

∞∑
−∞

|un+1
i − uni | + 2E + η

≤ 2
λ

∞∑
−∞

|u1
i − u0

i | + 2E + η

≤ 2STV(u0) + 2E + η.

It is easy to see that for each n, E is bounded independent of the mesh parameters. To prove the second
inequality, without loss of generality we assume that n ≥ m. Then from Lemma 4.1 we have,∑

i

|zni − zmi | =
∑

i≤0 |zni − zmi | +∑i≥1 |zni − zmi |
≤ L

∑
i |uni − umi |

≤ L
∑
i

∑n−m+1
j=0 |un−ji − un−j−1

i |
≤ L|n−m|∑i |u1

i − u0
i |

≤ λL|n−m|STV(u0).

This completes the proof. �
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Next we show that if the monotone scheme converges to the solution then the solution satisfies interface
entropy condition. To prove that we use the idea of Crandall and Majda [10].

Numerical interface entropy condition. Here following the idea of Crandall and Majda [10] we show that
the monotone scheme for (1.2) satisfy the interface entropy condition. For a, b ∈ R, let a∨b = max(a, b), a∧b =
min(a, b). Let l1, l2 ∈ I, define

F̃ e(a, b) = F̃ (a ∨ l2, b ∨ l2) − F̃ (a ∧ l2, b ∧ l2), (4.26)

G̃e(a, b) = G̃(a ∨ l1, b ∨ l1) − G̃(a ∧ l1, b ∧ l1), (4.27)

F
e
(a, b) = F (a ∨ l1, b ∨ l2) − F (a ∧ l1, b ∧ l2). (4.28)

For φ ∈ C1
0(R+) define

φn(t) = φ(n	t), if (n− 1)	t < t ≤ n	t. (4.29)

Then we have the following.

Lemma 4.7. Let {uni } be the solution of the scheme (2.7) and uh be the corresponding piecewise constant
function as in (2.9). Let l1 = A, l2 = B, T > 0 and φ ∈ C1

0(R+) such that φ ≥ 0. Then

λ

∫ T

0

{
G̃e (uh(−2h, t), uh(−h, t)) − F̃ e (uh(h, t), uh(2h, t))

}
φh(t)dt

≥
∫ T

�t
(|uh(−h, t) −A| + |uh(h, t) −B|) (φh(t− λh) − φh(t)) dt

+ (|uh(−h, t+ 	t) −A| + |uh(h, T + 	t) −B|)φh(T )	t
− (|uh(−h,	t) −A| + |uh(h,	t) −B|)φh(	t)	t.

Proof. Let a1, a2, a3, a4 ∈ I, since H±1(X,Y, Z) is non decreasing function in each of its variable, we have

λ
(
G̃e(a1, a2) − F

e
(a2, a3)

)
= λ

(
G̃(a1 ∨ l1, a2 ∨ l1) − F (a2 ∨ l1, a3 ∨ l2)

)
+ a2 ∨ l1 − a2 ∨ l1

−λ
(
G̃(a1 ∧ l1, a2 ∧ l1) − F (a2 ∧ l1, a3 ∧ l2)

)
+ a2 ∧ l1 − a2 ∧ l1

= H−1(a1 ∨ l1, a2 ∨ l1, a3 ∨ l2) −H−1(a1 ∧ l1, a2 ∧ l1, a3 ∧ l2) − |a2 − l1|

≥ H−1(a1, a2, a3) ∨H−1(l1, l1, l2) −H−1(a1, a2, a3) ∧H−1(l1, l1, l2) − |a2 − l1|
= |H−1(a1, a2, a3) −H−1(l1, l1, l2)| − |a2 − l1|

similarly,
λ
(
F
e
(a2, a3) − F̃ e(a3, a4)

)
≥ |H1(a2, a3, a4) −H1(l1, l2, l2)| − |a3 − l2|.

Adding the above two inequalities we obtain,

λ
(
G̃e(a1, a2) − F̃ e(a3, a4)

)
≥ |H−1(a1, a2, a3) −H−1(l1, l1, l2)| − |a2 − l1|

+ |H1(a2, a3, a4) −H1(l1, l2, l2)| − |a3 − l2|. (4.30)
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Let l1 = A, l2 = B, then from (2.10) we have F (A,B) = g(A) = f(B). Hence

H1(A,B,B) = B − λ
(
F̃ (B,B) − F (A,B)

)
= B

H−1(A,A,B) = A− λ
(
F (A,B) − G̃(A,A)

)
= A.

Now, in (4.30) we choose, (a1, a2, a3, a4) = (un−1, u
n
0 , u

n
1 , u

n
2 ) and (l1, l2) = (A,B) to obtain

λ
(
G̃e(un−1, u

n
0 ) − F̃ e(un1 , u

n
2 )
)
≥ |un+1

0 −A| − |un0 −A|
+|un+1

1 −B| − |un1 −B|.

Now multiply this by φ(n	t) = φ(tn) and summing from 1 to N , (where n	t = T ), we get

λ

N∑
n=1

(
G̃e(un−1, u

n
0 ) − F̃ e(un1 , u

n
2 )
)
φ(tn) ≥

N∑
2

(|un0 −A| + |un1 −B|) (φ(tn−1 − φ(tn)))

+
(|uN+1

0 −A| + |uN+1
1 −B|)φ(tN )

− (|u1
0 −A| + |u1

1 − B|)φ(t1).

Multiply by 	t, we obtain

λ

∫ T

0

{
G̃e (uh(−2h, t), uh(−h, t)) − F̃ e (uh(h, t), uh(2h, t))

}
φh(t)dt

≥
∫ T

�t
(|uh(−h, t) −A| + |uh(h, t) −B|) (φh(t− λh) − φh(t)) dt

+ (|uh(−h, t+ 	t) −A| + |uh(h, T + 	t) −B|)φh(T )	t
− (|uh(−h,	t) −A| + |uh(h,	t) −B|)φh(	t)	t.

This proves the Lemma. �

As an immediate consequence of this is that the solution satisfies (A,B)-interface entropy condition under
suitable assumption on the convergence of the sequence uh.

Lemma 4.8. Let for a subsequence hk, uhk
→ u in L∞

loc(R+,L1
loc(R)). Assume also that for almost all t, as

hk → 0
(uhk

(−hk, t), uhk
(−2hk, t)) → (u(0−, t), u(0−, t)) (4.31)

(uhk
(hk, t), uhk

(2hk, t)) → (u(0+, t), u(0+, t)) (4.32)

then u satisfies the interface entropy condition.

Proof. Let φ ∈C1
0(R+) such that φ ≥ 0 and let T > 0. Since φhk

(t − hk) − φhk
(t) → 0 a.e. t as hk → 0, hence

from (4.31), (4.32) and by dominated convergence theorem, from Lemma 4.6 we obtain,

λ

∫ T

0

(
G̃e (u(0−, t), u(0−, t))− F̃ e (u(0+, t), u(0+, t))

)
φ(t)dt ≥ 0.

Hence for a.e. t
G̃e(u(0−, t), u(0−, t))− F̃ e(u(0+, t), u(0+, t)) ≥ 0.
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This implies, for a.e. t

sgn(u(0−, t) −A) ((g(u(0−, t))− g(A)) + (l(u(0−, t))− l(A)))

−sgn(u(0+, t)−B) ((f(u(0+, t) − f(B))) + (l(u(0−, t)) − l(B))) ≥ 0.

The next lemma shows that the u satisfies interface entropy condition. This completes the proof of the
Lemma. �

Let u be a weak solution such that traces u(0+, t) and u(0−, t) exists for a.e. t. Given a connection (A,B),
we define the interface entropy functional by

IAB(u) = sgn(u(0−, t) −A) ((g(u(0−, t)) − g(A)) + (l(u(0−, t)) − l(A)))

−sgn(u(0+, t) −B) ((f(u(0+, t)− f(B))) + (l(u(0+, t))− l(B))) .

Lemma 4.9. Let u be a weak solution such that traces u(0+, t) and u(0−, t) exists for a.e. t. Assume that
IAB(u) ≥ 0 for a.e. t. Then u satisfies the interface entropy condition (2.5).

Proof. We prove the above result for the case of undercompressive fluxes. The other cases will follow similarly.
Let u(0+, t) ≥ B, u(0−, t) ≤ A. Since f(u(0+, t)) = g(u(0−, t)), hence either A ≤ u(0−, t) ≤ A and B ≤
u(0+, t) ≤ B or u(0−, t) ≤ A and u+ ≥ B. We have the following cases.

Case 1. If u(0−, t) < A and u(0+, t) > B, then we have

0 ≤ IAB(u) = −(g(u(0−, t))− g(A)) − (l(u(0−, t)) − l(A)) − (f(u(0+, t)) − f(B)) − (l(u(0+, t)) − l(B)) < 0.

This gives a contradiction.

Case 2. If A < u(0−, t) < A and B < u(0+, t) < B, then we have

0 ≤ IAB(u) = (g(u(0−, t)) − g(A)) + (l(u(0−, t)) − l(A)) + (f(u(0+, t)) − f(B)) + (l(u(0+, t)) − l(B)) < 0.

This gives a contradiction. Therefore (u(0+, t), u(0−, t)) is one of the points (A,B), (A,B), (A,B), (A,B).
Hence u satisfies interface entropy condition (2.5). This completes the proof of the lemma. �

Next we indicate the proof of Theorems 2.1 and 2.2.
Proof of Theorem 2.1 and Theorem 2.2: The proof is exactly same as in [3]. From Lemma 4.4 {zni }
are total variation bounded and hence as in [3] there exist a subsequence hk → 0 such that uhk

converges in
L∞

loc(R+,L1
loc(R)) to a weak solution u of (1.2) with the property that u(0±, t) exist for a.e. t and satisfying

Kruzkov entropy condition away from x = 0. As the solution satisfies interface entropy condition, the proof of
Theorem 2.2 is exactly same as in [3, 5].

5. Numerical experiments

In this section, we present some numerical experiments for the Godunov as well as Lax−Friedrichs schemes
developed in Section 3 and compare their numerical performances. As in the case f = g, in the discontinuous
flux case also Lax−Friedrichs scheme is more diffusive compared to Godunov, but when mesh sizes goes to
zero both agree. Here we study their numerical performances when f and g have undercompressive as well
as overcompressive intersections. In Experiment 1, we consider undercompressive intersection of f and g with
undercompressive as well as overcompressive initial data. In Experiment 2, we consider overcompressive inter-
section of f and g with undercompressive as well as overcompressive initial data. In all the experiments, observe
that numerical solution satisfies (A,B) interface entropy condition. We will refer the solution of Godunov scheme
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Figure 6. Undercompressive intersection.
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Figure 7. Solution of Experiment 1.1 at T = 1.

and Lax−Friedrichs scheme, by G and LF respectively. To see the convergence, in all the numerical experiments
we compute the solution on coarser as well as on finer mesh.

Experiment 1. Undercompressive intersection case. Here we take the following example of two phase
flow as in [3], where f and g are of concave type functions (see Fig. 6) given by

f(u) =
20u2(1 − u)2

u2 + 2(1 − u)2
, g(u) =

50u2(1 − u)2

10u2 + (1 − u)2
·

We take the connection as (θg, B) = (0.317014, 0.472372). With this choice of f , g and connection (θg, B), we
compute the solution for the following Riemann problems.

Experiment 1.1. Undercompressive initial data. We take the following undercompressive data,

u0 =
{

0.8 if x < 0
0.2 if x > 0, (5.1)

that is f ′(.2) > 0 and g′(.8) < 0. In Figure 7a, comparison is made between Godunov scheme, Lax−Friedrichs
scheme with λ = 1/16, h = 8

200 and time T = 1. As expected Lax−Friedrichs scheme more diffusive than
Godunov scheme but as mesh size goes to zero Figure 7b (λ = 1/16, h = 8

400 ) shows both agrees.
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Figure 8. Solution of Experiment 1.2 at T = 1.
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Figure 9. Solution of Experiment 2.1 at T = 1.

Experiment 1.2. Overcompressive initial data. We take the following overcompressive data.

u0 =
{

0.2 if x < 0
0.8 if x > 0 (5.2)

We compute the solution for the above Riemann problem (5.2) with λ = 1/16, h = 8
200 (see Fig. 8a) and

λ = 1/16, h = 8
400 (see Fig. 8b) at time T = 1. Here also the figure shows that Lax−Friedrichs is more diffusive

than Godunov scheme but as mesh size goes to zero both agree.

Experiment 2. Overcompressive intersection case. By interchanging f and g we get overcompressive
intersection. In this case g and f becomes

g(u) =
20u2(1 − u)2

u2 + 2(1 − u)2
and f(u) =

50u2(1 − u)2

10u2 + (1 − u)2
·

We let the connection be (A, θf ) = (.63839972, .317014). With this choice of f , g and connection we compute
the solution for above initial datas (5.2), (5.1).

The solutions of Experiment 2 for initial data (5.1)(undercompressive data) and (5.2) (over compressive data)
at time T = 1 are presented in Figure 9 and Figure 10 respectively. Solutions in Figure 9a and Figure 10a are
computed with λ = 1/16, h = 8

200 and whereas Figures 9b and 10b is computed with λ = 1/16, h = 8
400 . Both
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Figure 10. Solution of Experiment 2.2 at T = 1.
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Figure 11. Left: Solution of the Lax−Friedrichs scheme given by Karlsen and Towers. Right:
Solution of the Lax−Friedrichs scheme given by (3.16).

the figure shows that the Lax−Friedrichs is more diffusive than Godunov scheme but as mesh size goes to zero
both the solutions coincide.

In the case of overcompressive data, the approximated solution computed by both the LF produces “spike” at
the interface, see Figure 10. The appearance of the spike is due to the construction of scheme using translation.
The height of the “spike” is independent of h and as mesh parameter h goes to zero the area, where the “spike”
form, is also goes to zero.

Like in the Lax−Friedrichs scheme given in [16], when the Riemann data (a, b) satisfies g′(a)f ′(b) > 0, here
also LF produces oscillation away from the interface, for example see the Figure 11. For this we take the following
initial data

u0(x) =
{

0.8 if x < 0,
0.9 if x > 0. (5.3)

and the fluxes are the same as in Experiment 1. In Figure 11 solution is computed for the initial data (5.3) with
λ = .1, h = 8/100 at time T = 1.
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6. Conclusion

In previous works [5, 9] numerical fluxes to discontinuous flux with (A,B) connection for Godunov,
Engquist−Osher respectively are constructed. But the construction of Lax−Friedrichs scheme for (A,B) con-
nection was left open. In this work we have generalized the construction of the interface numerical flux for
(A,B) entropy solution of conservation laws with discontinuous flux. From this one can construct monotone
numerical schemes. In particular it includes the standard fluxes like Gudunov, Engquist−Osher, Lax−Friedrichs
and Rusanov.
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