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Abstract. For a stationary Markov process the detailed balance condition is equivalent to the time-
reversibility of the process. For stochastic differential equations (SDE’s), the time discretization of
numerical schemes usually destroys the time-reversibility property. Despite an extensive literature on
the numerical analysis for SDE’s, their stability properties, strong and/or weak error estimates, large
deviations and infinite-time estimates, no quantitative results are known on the lack of reversibility of
discrete-time approximation processes. In this paper we provide such quantitative estimates by using
the concept of entropy production rate, inspired by ideas from non-equilibrium statistical mechanics.
The entropy production rate for a stochastic process is defined as the relative entropy (per unit time)
of the path measure of the process with respect to the path measure of the time-reversed process. By
construction the entropy production rate is nonnegative and it vanishes if and only if the process is
reversible. Crucially, from a numerical point of view, the entropy production rate is an a posteriori
quantity, hence it can be computed in the course of a simulation as the ergodic average of a cer-
tain functional of the process (the so-called Gallavotti−Cohen (GC) action functional). We compute
the entropy production for various numerical schemes such as explicit Euler−Maruyama and explicit
Milstein’s for reversible SDEs with additive or multiplicative noise. In addition we analyze the entropy
production for the BBK integrator for the Langevin equation. The order (in the time-discretization
step Δt) of the entropy production rate provides a tool to classify numerical schemes in terms of their
(discretization-induced) irreversibility. Our results show that the type of the noise critically affects the
behavior of the entropy production rate. As a striking example of our results we show that the Euler
scheme for multiplicative noise is not an adequate scheme from a reversibility point of view since its
entropy production rate does not decrease with Δt.
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1. Introduction

In molecular dynamics algorithms arising in the simulation of systems in materials science, chemical engi-
neering, evolutionary games, computational statistical mechanics, etc. the steady-state statistics obtained from
numerical simulations is of great importance [8, 27, 33]. For instance, the free energy of the system or free en-
ergy differences as well dynamical transitions between metastable states are quantities which are sampled in
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the stationary regime. At the microscopic level, physical processes are often modeled as interactions between
particles described by a system of stochastic differential equations (SDE’s) [8,15]. To perform steady-state sim-
ulations for the sampling of desirable observables, the solution of the system of SDE’s must possess a (unique)
ergodic invariant measure. The uniqueness of the invariant measure follows from the ellipticity or hypoellipticity
of the generator of the process together with irreducibility, which means that the process can reach at some
positive time any open set of the state space with positive probability [21,25]. Under such conditions, the point
distribution of the process converges to the invariant measure (ergodicity) while the process is stationary, i.e.
the distribution of the path of the process is invariant under time-shift, when the initial data are drawn from the
invariant measure. Moreover, many processes of physical origin, such as diffusion and adsorption/desorption of
interacting particles, satisfy the condition of detailed balance (DB), or equivalently, time-reversibility, i.e., the
distribution of the path of the process is invariant under time-reversal. It is easy to see that time-reversibility
implies stationarity but this a strictly stronger condition in general. The condition of detailed balance often
arises from a gradient-like behavior of the dynamics or from Hamiltonian dynamics if the time-reversal includes
reversal of the velocities.

However, the numerical simulation of SDE’s necessitates the use of numerical discretization schemes. Dis-
cretization procedures, except in very special cases, results in the destruction of the DB condition. This affects
the approximation process in at least two ways. First, the invariant measure of the approximation process, if
it exists at all, is not known explicitly and, second, the time reversibility of the process is lost. Several recent
results prove the existence of the invariant measure for the discrete-time approximation and provide error es-
timates [2, 3, 19, 20] but, to the best of our knowledge, there is no quantitative assessment of the irreversibility
of the approximation process. Of course there exist Metropolized numerical schemes such as MALA [26] and
variations thereof [4,15] which do satisfy the DB condition but they are numerically more expensive, especially
in high-dimensional systems, as they require an accept/reject step. Thus, a quantitative understanding of the
lack of reversibility for simpler discretization schemes can provide new insights for selecting which schemes are
closer to satisfying the DB condition.

The implications of irreversibility are only partially understood, both from the physical and mathematical
point of view. These issues have emerged as a main theme in non-equilibrium statistical mechanics and it is
well-known that irreversibility introduces a stationary current (net flow) to the system [11,18,23,28] but it is still
under investigation in statistical mechanics community how this current affects the long-time properties (i.e.,
the dynamics and large deviations) of the process such as exit times, correlation times and phase transitions of
metastable states. Nevertheless, a straightforward implication of irreversibility is the breaking of the symmetry
of fundamental quantities and observables: for example, if a process is reversible the autocorrelation function
R(s, t) of a given observable is symmetric, i.e. R(s, t) = R(t, s). Reversibility is a natural and fundamental
property of physical systems and thus, if numerical approximation results in the destruction of reversibility, one
should carefully quantify the irreversibility of the approximation process. More generally, structure preserving
numerical schemes have proved to be vastly superior (in stability) in deterministic ODE’s, e.g Stormer–Verlet
for Hamiltonian systems, [10] as well as in PDE, e.g. hyperbolic conservation laws and infinite dimensional
Hamiltonian systems, and there is no reason to believe it should be different in the numerical analysis of
stochastic processes. From a physical point of view the reason for detailed balance is the time-reversibility of
an underlying microscopic dynamics over which an (effective) stochastic model is presumably built. Hence,
violating such a condition reduces the physical interpretation of our stochastic model. The detailed balance
condition has many implications (Kubo-formula for the linear response and Onsager relations for the response
coefficients for example which are related to the symmetry of the autocorrelations functions) and as such it
should be preserved as much as possible in computational algorithms. In this paper we quantify irreversibility
in numerical schemes using the entropy production rate, which allows for a quantitative analysis of the path
space statistics, including the long-time, stationary time-series regime. The entropy production rate, defined as
the relative entropy (per unit time) of the path measure of the process with respect to the path measure of
the reversed process, is widely used in statistical mechanics for the study of non-equilibrium steady states of
irreversible systems [7, 11, 14, 18].
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A fundamental result on the structure of non-equilibrium steady states is the Gallavotti−Cohen fluctuation
theorem that describes the fluctuations (of large deviations type) of the entropy production [7, 11, 14, 18] and
this result can be viewed as a generalization of the Kubo-formula and Onsager relations far from equilibrium.
Specifically for diffusion processes, entropy production governs the long time statistics of the empirical measure
(also known as occupation statistics) as well as the current statistics through the Donsker–Varadhan rate
functional, [16,17]. For our purposes, it is important to note that the entropy production rate is zero when the
process is reversible and positive otherwise making entropy production rate a sensible quantitative measure of
irreversibility. Furthermore, if we assume ergodicity of the approximation process, the entropy production rate
equals the time-average of the Gallavotti−Cohen (GC) action functional which is defined as the logarithm of
the Radon-Nikodym derivative between the path measure of the process and the path measure of the reversed
process. A key observation of this paper is that GC action functional is an a posteriori quantity, hence, it is easily
computable during the simulation making the numerical computation of entropy production rate tractable. We
show that entropy production is a computable observable that distinguishes between different numerical schemes
in terms of their discretization-induced irreversibility and as such could allow us to adjust the discretization in
the course of the simulation.

We use entropy production to assess the irreversibility of various numerical schemes for reversible continuous-
time processes. A simple class of reversible processes, yet of great interest, is the overdamped Langevin
process with gradient-type drift [8, 9, 15]. The discretization of the process is performed using the explicit
Euler−Maruyama (EM) scheme and we distinguish between two different cases depending on the kind of the
noise. In the case of additive noise, under the assumption of ergodicity of the approximation process [2,3,19,20]
we prove that the entropy production rate is of order O(Δt2) where Δt is the time step of the numerical scheme.
In the case of multiplicative noise, the results are strikingly different. Indeed, under ergodicity assumption, the
entropy production rate for the explicit EM scheme is proved to have a lower positive bound which is indepen-
dent of Δt. Thus irreversibility is not reduced by adjusting Δt, as the approximation process converges to the
continuous-time process. The different behavior of entropy production depending on the kind of noise is one of
the prominent findings of this paper. As a further step in our study, we analyze the explicit Milstein’s scheme
with multiplicative noise (it is the next higher-order numerical scheme). We prove that the entropy production
rate of Milstein’s scheme decreases as time step decreases with order O(Δt).

Finally, we compute both analytically and numerically the entropy production rate for a discretization scheme
for Langevin systems which is another important and widely-used class of reversible models [8,15]. The Langevin
equation is time-reversible if in addition to reversing time, one reverses the sign of the velocity of all particles.
The noise is degenerate but the process is hypo-elliptic and under mild conditions the Langevin equation
is ergodic [20, 24, 31]. Our discretization scheme is a quasi-symplectic splitting scheme also known as BBK
integrator [5, 15]. We rigorously prove, under ergodicity assumption of the approximation process, that the
entropy rate produced by the numerical scheme for the Langevin process with additive noise is of order O(Δt),
hence, in terms of irreversibility it is an acceptable integration scheme.

The paper is organized in four sections. In Section 2 we recall some basic facts about reversible processes
and define the entropy production. Moreover we give the basic assumptions necessary for our proofs, namely,
the ergodicity of both continuous-time and discrete-time approximation process. In Section 3 we compute the
entropy production rate for reversible overdamped Langevin processes. The section is split into three subsections
for the additive and multiplicative noise for the Euler and Milstein schemes. In Section 4 we compute the entropy
production rate for the reversible (up to momenta flip) Langevin process using the BBK integrator. Conclusions
and future extensions of the current work are summarized in the fourth and final section.

2. Reversibility, Gallavotti−Cohen action functional, and entropy

production

Let us consider a d-dimensional system of SDE’s written as

dXt = a(Xt)dt + b(Xt)dBt (2.1)
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where Xt ∈ R
d is a diffusion Markov process, a : R

d → R
d is the drift vector, b : R

d → R
d×m is the diffusion

matrix, and Bt ∈ R
m is a standard m-dimensional Brownian motion. We will always assume that a and b are

sufficiently smooth and satisfy suitable growth conditions and/or dissipativity conditions at infinity to ensure
the existence of global solutions. The generator of the diffusion process is defined by

Lf =
d∑

i=1

ai
∂f

∂xi
+

1
2

d∑
i,j=1

(bbT )i,j
∂2f

∂xi∂xj
· (2.2)

for smooth test functions f . We assume that the process Xt has a (unique) invariant measure μ(dx), and that
it satisfies the Detailed Balance (DB) condition, i.e., its generator is symmetric in the Hilbert space L2(μ):

〈Lf, g〉L2(μ) = 〈f,Lg〉L2(μ) (2.3)

for suitable smooth test functions f, g.
A Markov process Xt is said to be time-reversible if for any n and sequence of times t1 < . . . < tn the finite

dimensional distributions of (Xt1 , . . . , Xtn) and of (Xtn , . . . , Xt1) are identical. More formally, let Pρ
[0,t] denote

the path measure of the process Xt on the time-interval [0, t] with X0 ∼ ρ. Let Θ denote the time reversal, i.e.
Θ acts on a path {Xs}0≤s≤t has

(ΘX)s = Xt−s (2.4)

Then reversibility is equivalent to Pμ
[0,t] = Pμ

[0,t] ◦ Θ and it is well-known that a stationary2 process which
satisfies the DB condition is time-reversible.

The condition of reversibility can be also expressed in terms of relative entropy as follows. Recall that for
two probability measure π1, π2 on some measurable space, the relative entropy of π1 with respect to π2 is given
by R(π1|π2) ≡ ∫ dπ1 log dπ1

dπ2
if π1 is absolutely continuous with respect to π2 and +∞ otherwise. The relative

entropy is nonnegative, R(π1|π2) ≥ 0 and R(π1|π2) = 0 if and only if π1 = π2. The entropy production rate of
a Markov process Xt is defined by

EPcont := lim
t→∞

1
t
R
(
Pρ

[0,t]|Pρ
[0,t] ◦ Θ

)
= lim

t→∞
1
t

∫
dPρ

[0,t] log
dPρ

[0,t]

dPρ
[0,t] ◦ Θ

(2.5)

If Xt satisfies DB and X0 ∼ μ then R(Pμ
[0,t]|Pμ

[0,t] ◦ Θ) is identically 0 for all t and the entropy production
rate is 0. Note that if X0 ∼ ρ �= μ then R(Pρ

[0,t]|Pρ
[0,t] ◦ Θ) is a boundary term, in the sense that it is O(1)

and so the entropy rate vanishes in this case in the large time limit (under suitable ergodicity assumptions).
Conversely when EPcont �= 0 the process is truly irreversible. The entropy production rate for Markov processes
and stochastic differential equations is discussed in more detail in [14, 18].

Let us consider a numerical integration scheme for the SDE (2.1) which has the general form

xi+1 = F (xi, Δt, ΔWi) i = 1, 2, . . . (2.6)

Here xi ∈ R
d is a discrete-time continuous state-space Markov process, Δt is the time-step and ΔWi ∈ R

m, i =
1, 2, . . . are i.i.d. Gaussian random variables with mean 0 and variance ΔtIm. We will assume that the Markov
process xi has transition probabilities which are absolutely continuous with respect to Lebesgue measure with
everywhere positive densities Π(xi, xi+1) := ΠF (x,Δt,ΔW )(xi+1|xi) and we also assume that xi has a invariant
measure which we denote μ̄(dx) and which is then unique and has a density with respect to Lebesgue measure.
In general the invariant measure for Xt and xi differ, μ �= μ̄ and xi does not satisfy a DB condition. Note also
that the very existence of μ̄ is not guaranteed in general. Results on the existence of μ̄ do exist however and
typically require that the SDE is elliptic or hypoellitptic and that the state space of Xt is compact or that a
global Lipschitz condition on the drift holds [2, 3, 19, 20].

2Stationarity is equivalent to starting the process Xt from its invariant measure, i.e., X0 ∼ µ.



MEASURING THE IRREVERSIBILITY OF NUMERICAL SCHEMES 1355

Proceeding as in the continuous case we introduce an entropy production rate for the Markov process xi. Let
us assume that the process starts from some distribution ρ(x)dx, then the finite dimensional distribution on
the time window [0, t] where t = nΔt is given by

P̄[0,t](dx0, . . . , dxn) = ρ(x0)Π(x0, x1) . . . Π(xn−1, xn)dx0 . . . dxn. (2.7)

For the time reversed path Θ(x0, . . . xn) = (xn, . . . , x0) we have then

P̄[0,t] ◦ Θ(dx0, . . . , dxn) = ρ(xn)Π(xn, xn−1) . . . Π(x1, x0)dx0 . . . dxn (2.8)

and the Radon-Nikodym derivative takes the form

dP̄[0,t]

dP̄[0,t] ◦ Θ
= exp(W (t))

ρ(x0)
ρ(xn)

(2.9)

where W (t) is the Gallavotti−Cohen (GC) action functional given by

W (t) = W (n; Δt) :=
n−1∑
i=0

log
Π(xi, xi+1)
Π(xi+1, xi)

· (2.10)

Note that W (t) is an additive functional of the paths and thus if xi is ergodic, by the ergodic theorem the
following limit exists

EP (Δt) = lim
t→∞

1
t
W (t) = lim

n→∞
1

nΔt
W (n; Δt) P̄ − a.s. (2.11)

We call the quantity EP (Δt) the entropy production rate associated to the numerical scheme. Note that we
have, almost surely,

EP (Δt) =
1

Δt
lim

n→∞
1
n

n−1∑
i=0

log
Π(xi, xi+1)
Π(xi+1, xi)

=
1

Δt

∫ ∫
μ̄(x)Π(x, y) log

Π(x, y)
Π(y, x)

dxdy (2.12)

and for concrete numerical schemes we will compute fairly explicitly the entropy production in the next sec-
tions. Since we are interested in the ergodic average we will systematically omit boundary terms which do not
contribute to ergodic averages and we will use the notation

W1(t)=̇W2(t) if lim
t→∞

1
t
(W1(t) − W2(t)) = 0 . (2.13)

For example we have

W (t) =̇ log
dP̄[0,t]

dP̄[0,t] ◦ Θ
· (2.14)

Note also that using (2.11) and (2.10), entropy production rate is tractable numerically and it can be easily
calculated “on-the-fly” once the transition probability density function Π(·, ·) is provided.

In the following sections we investigate the behavior of the entropy production rate for different discretization
schemes of various reversible processes in the stationary regime. However, before proceeding with our analysis,
let us state formally the basic assumptions necessary for our results to apply.

Assumption 2.1. We have

• The drift a and the diffusion b in (2.1) as well as the vector F in (2.6) are C∞ and all their derivatives have
at most polynomial growth at infinity.
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• The generatorL is elliptic or hypo-elliptic, in particular the transition probabilities and the invariant measure
(if it exists) are absolutely continuous with respect to Lebesgue with smooth densities. We assume that xt

is ergodic, i.e. every open set can be reached with positive probability starting from any point. For the
discretized scheme we assume that xi has smooth everywhere positive transition probabilities.

• Both the continuous-time process Xt and discrete-time process xi are ergodic with unique invariant measures
μ and μ̄, respectively. Furthermore for sufficiently small Δt we have

|Eμ[f ] − Eμ̄[f ]| = O(Δt) (2.15)

for functions f which are C∞ with at most polynomial growth at infinity.

Notice that inequality (2.15) is an error estimate for the invariant measures of the processes Xt and xi. The
rate of convergence in terms of Δt depends on the particular numerical scheme [19, 30]. Ergodicity results for
(numerical) SDEs can be found in [2, 3, 12, 19, 20, 26, 30–32]. For instance, if both drift term a(x) and diffusion
term b(x) have bounded derivatives of any order, the covariance matrix (bbT )(x) is elliptic for all x ∈ R

d and
there is a compact set outside of which holds xT a(x) < −C|x|2 for all x ∈ R

d (Lyapunov exponent) then it was
shown in [30] that the continuous-time process as well both Euler and Milstein numerical schemes are ergodic and
error estimate (2.15) holds. Another less restrictive example where ergodicity properties were proved is for SDE
systems with degenerate noise and particularly for Langevin processes [20,31]. Again, a Lyapunov functional is
the key assumption in order to handle the stochastic process at the infinity. More recently, Mattingly et al. [19]
showed ergodicity for SDE-driven processes restricted on a torus as well their discretizations utilizing only the
assumptions of ellipticity or hypoellipticity and the assumption of local Lipschitz continuity for both drift and
diffusion terms.

3. Entropy production for overdamped langevin processes

The overdamped Langevin process, Xt ∈ R
d, is the solution of the following system of SDE’s

dXt = −1
2
Σ(Xt)∇V (Xt)dt +

1
2
∇Σ(Xt)dt + σ(Xt)dBt (3.1)

where V : R
d → R is a smooth potential function, σ : Rd → R

d×m is the diffusion matrix, Σ := σσT : Rd → R
d×d

is the covariance matrix and Bt is a standard m-dimensional Brownian motion. We assume from now on that
Σ(x) is invertible for any x so that the process is elliptic. It is straightforward to show that the generator of
the process Xt satisfies the DB condition (2.3) with invariant measure

μ(dx) =
1
Z

exp(−V (x))dx (3.2)

where Z =
∫

Rd exp(−V (x))dx is the normalization constant and thus if X0 ∼ μ then the Markov process Xt is
reversible.

The explicit Euler−Maruyama (EM) scheme for numerical integration of (3.1) is given by

xi+1 = xi − 1
2
Σ(xi)∇V (xi)Δt +

1
2
∇Σ(xi)Δt + σ(xi)ΔWi (3.3)

with ΔWi ∼ N(0, ΔtIm), i = 1, 2, . . . are m-dimensional iid Gaussian random variables. The process xi is a
discrete-time Markov process with transition probability density given by

Π(xi, xi+1) =
1

Z(xi)
exp

(
1

2Δt

(
Δxi +

1
2
Σ(xi)∇V (xi)Δt − 1

2
∇Σ(xi)Δt

)T

×Σ−1(xi)
(

Δxi +
1
2
Σ(xi)∇V (xi)Δt − 1

2
∇Σ(xi)Δt

)) (3.4)
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where Δxi = xi+1 − xi and Z(xi) = (2π)m/2| det Σ(xi)|1/2 is the normalization constant for the multidi-
mensional Gaussian distribution. The following lemma provides the GC action functional for the explicit EM
time-discretization scheme of the overdamped Langevin process.

Lemma 3.1. Assume that detΣ(x) �= 0 ∀x ∈ R
d. Then the GC action functional of the process xi solv-

ing (3.3) is

W (n; Δt) =̇ − 1
2

n−1∑
i=0

ΔxT
i [∇V (xi+1) + ∇V (xi)] +

1
2

n−1∑
i=0

ΔxT
i [Σ−1(xi+1)∇Σ(xi+1) + Σ−1(xi)∇Σ(xi)]

+
1

2Δt

n−1∑
i=0

ΔxT
i

[
Σ−1(xi+1) − Σ−1(xi)

]
Δxi

(3.5)

where =̇ means equality up to boundary terms, as defined in (2.13).

Proof. The assumption for non-zero determinant is imposed so that the transition probabilities and hence the
GC action functional are non-singular. The proof is then a straightforward computation using (3.4) and (2.10).

W (n; Δt) :=
n−1∑
i=0

[log Π(xi, xi+1) − log Π(xi+1, xi)] =
n−1∑
i=0

[log Z(xi+1) − log Z(xi)]

− 1
2Δt

n−1∑
i=0

[(
Δxi +

1
2
Σ(xi)∇V (xi)Δt − 1

2
∇Σ(xi)Δt

)T

×Σ−1(xi)
(

Δxi +
1
2
Σ(xi)∇V (xi)Δt − 1

2
∇Σ(xi)Δt

)

−
(
−Δxi +

1
2
Σ(xi+1)∇V (xi+1)Δt − 1

2
∇Σ(xi+1)Δt

)T

×Σ−1(xi+1)
(
−Δxi +

1
2
Σ(xi+1)∇V (xi+1)Δt − 1

2
∇Σ(xi+1)Δt

)]

=̇ − 1
2Δt

n−1∑
i=0

[
ΔxT

i Σ−1(xi)Δxi +
1
4
∇V (xi)T Σ(xi)∇V (xi)Δt2 +

1
4
∇Σ(xi)T Σ−1(xi)∇Σ(xi)Δt2

+ ΔxT
i ∇V (xi)Δt − ΔxT

i Σ−1(xi)∇Σ(xi)Δt − 1
2
∇V (xi)T∇Σ(xi)Δt2

−ΔxT
i Σ−1(xi+1)Δxi− 1

4
∇V (xi+1)T Σ(xi+1)∇V (xi+1)Δt2− 1

4
∇Σ(xi+1)T Σ−1(xi+1)∇Σ(xi+1)Δt2

+ ΔxT
i ∇V (xi+1)Δt − ΔxT

i Σ−1(xi+1)∇Σ(xi+1)Δt +
1
2
∇V (xi+1)T∇Σ(xi+1)Δt2

]

=̇ − 1
2Δt

n−1∑
i=0

ΔxT
i

[
Σ−1(xi) − Σ−1(xi+1)

]
Δxi − 1

2

n−1∑
i=0

ΔxT
i [∇V (xi+1) + ∇V (xi)]

+
1
2

n−1∑
i=0

ΔxT
i [Σ−1(xi+1)∇Σ(xi+1) + Σ−1(xi)∇Σ(xi)]

where all the terms of the general form G(xi)−G(xi+1) in the sums were cancelled out since they form telescopic
sums which become boundary terms. �

Three important remarks can readily be made from the above computation.
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Remark 3.2. The numerical computation of entropy production rate as the time-average of the GC action
functional on the path space (i.e., based on (2.9)) at first sight seems computationally intractable due to the large
dimension of the path space. However, due to ergodicity, the numerical computation of the entropy production
can be performed as a time-average based on (2.11) and (3.5) for large n. Additionally, this computation can
be done for free and “on-the-fly” since the quantities involved are already computed in the simulation of the
process. The numerical entropy production rate shown in the following figures is computed using this approach.

Remark 3.3. It was shown in [18] that the GC action functional of the continuous-time process driven by (3.1)
equals the Stratonovich integral

Wcont(t) = −
∫ t

0

∇V (Xs) ◦ dXs = V (x0) − V (xt) (3.6)

which reduces to a boundary term as expected. This functional has the discretization

Wcont(t) ≈ 1
2

n−1∑
i=0

ΔxT
i [∇V (xi+1) + ∇V (xi)] (3.7)

and this is exactly the first term in the GC action functional W (n; Δt) for the explicit EM approximation process
(see (3.5)). However, the discretization scheme introduces two additional terms to the GC action functional
which may greatly affect the asymptotic behavior of entropy production as Δt goes to zero, as we demonstrate
in Section 3.2. Notice that when the noise is additive, i.e., when the diffusion matrix is constant, then these two
additional terms vanish and taking the limit Δt → 0, the GC action functional W (n; Δt), if exists, becomes the
Stratonovich integral Wcont(t) which is a boundary term.

Remark 3.4. The GC action functional W (n; Δt) consists of three terms (see (3.5)), each of which stems from
a particular term in the SDE. Thus, each term in the SDE contributes to the entropy production functional
a component which is totally decoupled from the other terms. The reason for this decomposition lies in the
particular form of the transition probabilities for the explicit EM scheme which are exponentials with quadratic
argument. This feature can be exploited for the study of entropy production of numerical schemes for processes
with irreversible dynamics. Indeed, if a non-gradient term of the form a(Xt)dt is added to the drift of (3.1), the
process is irreversible and its GC action functional is not anymore a boundary term and is given by [18]

Wcont(t)=̇ −
∫ t

0

Σ−1(Xt)a(Xt) ◦ dXt ≈ 1
2

n−1∑
i=0

ΔxT
i

[
Σ−1(xi)a(xi) + Σ−1(xi+1)a(xi+1)

]
(3.8)

On the other hand, due to the separation property of the explicit EM scheme, the GC action functional of the
discrete-time approximation process W (n; Δt) has the additional term

1
2

n−1∑
i=0

ΔxT
i [Σ−1(xi)a(xi) + Σ−1(xi+1)a(xi+1)]. (3.9)

Evidently, the discretization of Wcont(t) equals the additional term of the GC functional W (n; Δt). Thus, the
GC action functional W (n; Δt) is decomposed into two components, one stemming from the irreversibility of
the continuous-time process and another one stemming from the irreversibility of the discretization procedure.

3.1. Entropy production for the additive noise case

An important special case of (3.1) is the case of additive noise, i.e., when the covariance matrix does not
depend in the process, Σ(x) ≡ Σ. In this case, the SDE system becomes

dXt = −1
2
Σ∇V (Xt)dt + σdBt

X0 ∼ μ
(3.10)
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and the GC action functional is simply given by

W (n; Δt)=̇ − 1
2

n−1∑
i=0

ΔxT
i [∇V (xi+1) + ∇V (xi)] (3.11)

In this section we prove an upper bound for the entropy production of the explicit EM scheme. The proof
uses several lemmas stated and proved in Appendix A.

Theorem 3.5. Let Assumption 2.1 hold. Assume also that the potential function V has bounded fifth-order
derivative and that the covariance matrix Σ is invertible. Then, for sufficiently small Δt, there exists C =
C(V, Σ) > 0 such that

EP (Δt) ≤ CΔt2 (3.12)

Proof. Utilizing the generalized trapezoidal rule (A.1) for k = 3, the GC action function is rewritten as

W (n; Δt)=̇ − 1
2

n−1∑
i=0

ΔxT
i [∇V (xi+1) + ∇V (xi)]

=
n−1∑
i=0

⎧⎨
⎩−(V (xi+1) − V (xi)) +

∑
|α|=3

Cα[DαV (xi+1) + DαV (xi)]Δxα
i

+
∑

|α|=1,3,5

∑
|β|=5−|α|

Bβ [Rβ
α(xi, xi+1) + Rβ

α(xi+1, xi)]Δxα+β
i

⎫⎬
⎭

=̇
n−1∑
i=0

∑
|α|=3

Cα[DαV (xi+1) + DαV (xi)]Δxα
i

+
n−1∑
i=0

∑
|α|=1,3,5

∑
|β|=5−|α|

Bβ [Rβ
α(xi, xi+1) + Rβ

α(xi+1, xi)]Δxα+β
i .

(3.13)

Applying, once again, Taylor series expansion to DαV (xi+1), the GC action functional becomes

W (n; Δt)=̇
n−1∑
i=0

⎧⎨
⎩
∑
|α|=3

2CαDαV (xi)Δxα
i +

∑
|α|=3

Cα

∑
|β|=1

Dα+βV (xi)Δxα+β
i

⎫⎬
⎭

+
n−1∑
i=0

∑
|α|=1,3,5

∑
|β|=5−|α|

R̄β
α(xi, xi+1)Δxα+β

i

(3.14)

where R̄β
α(xi, xi+1) = Bβ [Rβ

α(xi, xi+1)+Rβ
α(xi+1, xi)]+�|α|=3R

α
β (xi, xi+1). Moreover, expanding Δxα

i using the
multi-binomial formula

Δxα
i =
(
−1

2
Σ∇V (xi)Δt + σΔWi

)α

=
∑
ν≤α

(
α

ν

)(
−1

2
Σ∇V (xi)Δt

)ν

(σΔWi)α−ν . (3.15)
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Then, the GC action functional becomes

W (n; Δt) =̇ 2
n−1∑
i=0

∑
|α|=3

∑
ν≤α

Cα

(
α

ν

)
DαV (xi)

(
−1

2
Σ∇V (xi)Δt

)ν

(σΔWi)α−ν

+
n−1∑
i=0

∑
|α|=3

∑
|β|=1

∑
ν≤α+β

Cα

(
α + β

ν

)
Dα+βV (xi)

(
−1

2
Σ∇V (xi)Δt

)ν

(σΔWi)α+β−ν

+
n−1∑
i=0

∑
|α|=1,3,5

∑
|β|=5−|α|

∑
ν≤α+β

(
α + β

ν

)
R̄β

α(xi, xi+1)
(
−1

2
Σ∇V (xi)Δt

)ν

(σΔWi)α+β−ν .

(3.16)

From (2.11), the entropy production rate is the time-averaged GC action functional as n → ∞. Thus,

EP (Δt) = lim
n→∞

W (n; Δt)
nΔt

=
2

Δt

∑
|α|=3

∑
ν≤α

Cα

(
α

ν

)
lim

n→∞
1
n

n−1∑
i=0

DαV (xi)
(
−1

2
Σ∇V (xi)Δt

)ν

(σΔWi)α−ν

+
1

Δt

∑
|α|=3

∑
|β|=1

∑
ν≤α+β

Cα

(
α + β

ν

)
lim

n→∞
1
n

n−1∑
i=0

Dα+βV (xi)
(
−1

2
Σ∇V (xi)Δt

)ν

(σΔWi)α+β−ν

+
1

Δt

∑
|α|=1,3,5

∑
|β|=5−|α|

∑
ν≤α+β

(
α + β

ν

)
lim

n→∞
1
n

n−1∑
i=0

R̄β
α(xi, xi+1)

(
−1

2
Σ∇V (xi)Δt

)ν

(σΔWi)α+β−ν .

(3.17)
The ergodicity of xi as well the Gaussianity of ΔWi guarantees that the first two limits in the entropy production
formula exist. Additionally, the residual terms, R̄β

α(xi, xi+1), are bounded due to the assumption on bounded
fifth-order derivative of V , hence, the third limit also exists. Note here that this assumption could be changed by
assuming boundedness of a higher order derivative and performing a higher-order Taylor expansion. Appendix A
gives rigorous proofs of these ergodicity statements. Hence,

EP (Δt) =
2

Δt

∑
|α|=3

∑
ν≤α

Cα

(
α

ν

)
Eμ̄

[
DαV (x)

(
−1

2
Σ∇V (x)Δt

)ν]
Eρ

[
(σy)α−ν

]

+
1

Δt

∑
|α|=3

∑
|β|=1

∑
ν≤α+β

Cα

(
α + β

ν

)
Eμ̄

[
Dα+βV (x)

(
−1

2
Σ∇V (x)Δt

)ν]
Eρ

[
(σy)α+β−ν

]

+
1

Δt

∑
|α|=1,3,5

∑
|β|=5−|α|

∑
ν≤α+β

(
α + β

ν

)
Eμ̄×ρ

[
R̄β

α(x, y)
(
−1

2
Σ∇V (x)Δt

)ν]
Eρ[(σy)α+β−ν ]

(3.18)

where μ̄ is the equilibrium measure for xi while ρ is the Gaussian measure of ΔWi. Using the Isserlis−Wick
formula we can compute the higher moments of multivariate Gaussian random variable from the second-order
moments. Indeed, we have

E [yν ] = E [yν1
1 . . . yνd

d ] = E
[
z1z2 . . . z|ν|

]
=
{

0 if |ν| odd∑∏
E [zizj ] if |ν| even (3.19)

where
∑∏

means summing over all distinct ways of partitioning z1, . . . , z|ν| into pairs. Moreover, E[zizj ] =
ΣijΔt, hence, applying (3.19) into (3.18) and changing the multi-index notation to the usual notation, the
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entropy production rate becomes

EP (Δt) =
2

Δt

d∑
k1=1

d∑
k2=1

d∑
k3=1

Ck1k2k3

{
Eμ̄

[
∂3V

∂xk1∂xk2∂xk3

(
−1

2
Σ∇V

)
k1

]
Σk2k3Δt2

+Eμ̄

[
∂3V

∂xk1∂xk2∂xk3

(
−1

2
Σ∇V

)
k2

]
Σk1k3Δt2

+Eμ̄

[
∂3V

∂xk1∂xk2∂xk3

(
−1

2
Σ∇V

)
k3

]
Σk1k2Δt2 + O

(
Δt3
)}

+
1

Δt

d∑
k1=1

d∑
k2=1

d∑
k3=1

d∑
k4=1

Ck1k2k3

{
Eμ̄

[
∂4V

∂xk1 . . . ∂xk4

]

× [Σk1k2Σk3k4 + Σk1k3Σk2k4 + Σk1k4Σk2k3 ] Δt2 + O
(
Δt3
)}

+
1

Δt
O
(
Δt3
)
.

(3.20)

Using that (− 1
2Σ∇V )ki = − 1

2

∑d
k4=1 Σkik4

∂V
∂xk4

, entropy production is rewritten as

EP (Δt) =
d∑

k1=1

d∑
k2=1

d∑
k3=1

d∑
k4=1

Ck1k2k3

{
Σk1k2Σk3k4

(
−Eμ̄

[
∂3V

∂xk1∂xk3∂xk4

∂V

∂xk2

]
+ Eμ̄

[
∂4V

∂xk1 . . . ∂xk4

])

+ Σk1k3Σk2k4

(
−Eμ̄

[
∂3V

∂xk1∂xk2∂xk4

∂V

∂xk3

]
+ Eμ̄

[
∂4V

∂xk1 . . . ∂xk4

])

+Σk1k4Σk2k3

(
−Eμ̄

[
∂3V

∂xk1∂xk2∂xk3

∂V

∂xk4

]
+ Eμ̄

[
∂4V

∂xk1 . . . ∂xk4

])}
Δt + O

(
Δt2
)
.

(3.21)
By a simple integration by parts, we observe that for any combination k1, . . . , k4 = 1, . . . , d

Eμ

[
∂3V

∂xk1∂xk2∂xk3

∂V

∂xk4

]
= Eμ

[
∂4V

∂xk1 . . . ∂xk4

]
(3.22)

where the expectation is taken with respect of μ which is the invariant measure of the continuous-time process.
However, in (3.21) the expectation is w.r.t. the invariant measure of the discrete-time process (i.e., μ̄ instead of
μ). Nevertheless, Assumption 2.1 guarantees that the alternation of the measure from μ to μ̄ costs an error of
order O(Δt). Hence, for any coefficient in (3.21), we obtain that∣∣∣∣Eμ̄

[
∂3V

∂xk1∂xk2∂xk3

∂V

∂xk4

]
− Eμ̄

[
∂4V

∂xk1 . . . ∂xk4

]∣∣∣∣ ≤ 2KΔt (3.23)

since the potential V as well its derivatives are sufficiently smooth. Hence, we overall showed that

EP (Δt) = O
(
Δt2
)

(3.24)

which completes the proof. �
Remark 3.6. Depending on the potential function the entropy production could be even smaller. For instance,
when the potential V is a quadratic function (i.e. the continuous-time process is an Ornstein−Uhlenbeck pro-
cess), then, it is easily checked by a trivial calculation of (3.11) that the GC action function is a boundary term,
thus, the entropy production of the explicit EM scheme is zero. However, for a generic potential V we expect
that the entropy production rate decays quadratically as a function of Δt but not faster.
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Figure 1. Upper panel: the GC action functional as a function of time for fixed Δt = 0.05. Its
variance is large necessitating the use of many samples in order to obtain statistically confident
quantities. Lower Panel: the entropy production rate as a function of time for the same Δt. It
converges to a positive value as expected.

3.1.1. Fourth-order potential on a torus

Lets now proceed with an important example where the potential is a forth-order polynomial while the
process takes values on a torus. Assume d = 2 while potential V = Vβ is given by

Vβ(x) = β

( |x|4
4

− |x|2
2

)
(3.25)

where β is a positive real number which in statistical mechanics has the meaning of the inverse temperature.
The diffusion matrix is set to σ =

√
2β−1Id. Based on [20], Assumption 2.1 is satisfied because the domain is

restricted to a torus, the potential is locally Lipschitz continuous and the covariance matrix is elliptic. Figure 1
presents both the GC action functional (upper panel) and the entropy production rate (lower panel) as a
function of time for fixed Δt = 0.05. Both quantities are numerically computed while the inverse temperature
is set to β = 10. Even though the variance of the GC action functional is large, entropy production which is
the cumulative sum of the GC functional converges due to the law of large numbers to a (positive) value after
relatively long time. Additionally, due to the ergodicity assumption, it converges to the correct value. Figure 2
shows the loglog plot of the numerical entropy production rate as a function of Δt for β = 20, 40, 60. Final
time was set to t = 2 × 106 while initial point was set to one of the attraction points of the deterministic
counterpart. For reader’s convenience, the thick black line denotes the O(Δt2) rate of convergence. This plot is
in agreement with the theorem’s estimate (3.12). Notice also that, for small Δt, entropy production rate is very
close to 0 and even larger final time is needed in order to obtain a statistically confident numerical estimate
for the entropy production. Moreover, as it is evident from the figure and the GC action functional in (3.11),
the dependence of the entropy production w.r.t. the inverse temperature is inverse proportional. Thus, from a
statistical mechanics point of view, the larger is the temperature the larger -in a linear manner- is the entropy
production rate of the numerical scheme.
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Figure 2. Entropy production rate as a function of time step Δt for additive noise. The
entropy production rate is of order O(Δt2) for small Δt while it decreases linearly as a function
of inverse temperature β.

3.2. Entropy production for the multiplicative noise case: Euler−Marayuma scheme

In this section we consider the EM scheme for overdamped Langevin processes with multiplicative noise. For
simplicity we restrict our discussion to the one dimensional case, but our results extend immediately to higher
dimension if the the diffusion matrix σ(x) is diagonal. We rewrite the GC action function given in Lemma 3.1,

W (n; Δt)=̇ − 1
2

n−1∑
i=0

[V ′(xi+1) + V ′(xi)]Δxi +
1
2

n−1∑
i=0

[Σ−1(xi+1)Σ′(xi+1) + Σ−1(xi)Σ′(xi)]Δxi

+
1

2Δt

n−1∑
i=0

[
Σ−1(xi+1) − Σ−1(xi)

]
Δx2

i

=: W1(n; Δt) + W2(n; Δt) + W3(n; Δt).

(3.26)

The first term W1(n; Δt) has been computed in the previous section and after an interesting and rather unex-
pected cancellation it was proved to be of order O(Δt2). For the multiplicative case, a cancellation also occurs
(see (3.30) and (3.31) below) but it does not fully eliminate the lower order term; in the end W1(n; Δt) con-
tributes to the entropy production an O(Δt) term. Additionally, W2(n; Δt) turns out to be the sum of gradient
terms since Σ−1(x)Σ′(x) = (log Σ(x))′. Thus, assuming a suitable condition on Σ(x), the same computation
as for W1(n; Δt) applies and the entropy production rate stemming from W2(n; Δt) is also of order O(Δt).
However, W3(n; Δt) contributes to the entropy production a nonzero, positive term which is of order O(1).
The following theorem summarizes the behavior of entropy production rate for the explicit EM scheme for
multiplicative noise.

Theorem 3.7. Let Assumption 2.1 hold and assume that the potential function V has a bounded fifth-order
derivative, while there exists M > 0 such that Σ(x) > M−1 for all x.

(a) If c := 3
4Eμ[(Σ−1)(x)(Σ′)2(x)], then, for sufficiently small Δt, there exists C = C(V, Σ) > 0 independent

of Δt such that
|EP (Δt) − c| ≤ CΔt (3.27)
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(b) Assuming that Eμ[(Σ−1)(x)(Σ′)2(x)] �= 0, then, for sufficiently small Δt, there exists a lower bound c′ =
c′(V, Σ) > 0 independent of Δt such that

c′ ≤ EP (Δt) (3.28)

Proof. The assumption that Σ(x) > M−1 ∀x, which is the ellipticity condition in one space dimension, is
necessary because it implies that Σ−1(x) as well its derivatives are bounded around 0. Additionally, as discussed
earlier both W1(n; Δt) and W2(n; Δt) contribute to the entropy production by a O(Δt) amount. Therefore we
can concentrate on the term W3(n; Δt); after a Taylor series expansion we have,

W3(n; Δt) =
1

2Δt

n−1∑
i=0

[(
Σ−1
)′

(xi)Δx3
i +

1
2
(Σ−1)′′(xi)Δx4

i

+
1

2Δt

n−1∑
i=0

∫ 1

0

(1 − t)(Σ−1)′′′(txi+1 + (1 − t)xi)dtΔx5
i

]

=
1

2Δt

n−1∑
i=0

3∑
k=0

(
3
k

)
(Σ−1)′(xi)

(
−1

2
Σ(xi)V ′(xi)Δt +

1
2
Σ′(xi)Δt

)k

(σ(xi)ΔWi)3−k

+
1

4Δt

n−1∑
i=0

4∑
k=0

(
4
k

)
(Σ−1)′′(xi)

(
−1

2
Σ(xi)V ′(xi)Δt +

1
2
Σ′(xi)Δt

)k

(σ(xi)ΔWi)4−k

+
1

2Δt

n−1∑
i=0

5∑
k=0

(
5
k

)∫ 1

0

(1 − t)(Σ−1)′′′ (txi+1 + (1 − t)xi) dt

×
(
−1

2
Σ(xi)V ′(xi)Δt +

1
2
Σ′(xi)Δt

)k

(σ(xi)ΔWi)5−k.

As in Theorem 3.5, applying the ergodic lemmas of the appendix, the entropy production rate stemming from
W3(n; Δt) equals to

EP3(Δt) = lim
t→∞

W3(n; Δt)
nΔt

=
1

2Δt2

3∑
k=0

(
3
k

)
Eμ̄

[
(Σ−1)′(x)(−1

2
Σ(x)V ′(x)Δt +

1
2
Σ′(x)Δt)kσ(x)3−k

]
Eρ[ΔW 3−k]

+
1

4Δt2

4∑
k=0

(
4
k

)
Eμ̄

[
(Σ−1)′′(x)(−1

2
Σ(x)V ′(x)Δt +

1
2
Σ′(x)Δt)kσ(x)4−k

]
Eρ[ΔW 4−k]

+
1

2Δt2

5∑
k=0

Eμ̄×ρ

[
R(x, y)(−1

2
Σ(x)V ′(x)Δt +

1
2
Σ′(x)Δt)kσ(x)5−k

]
Eρ[ΔW 5−k]

=
1

2Δt2

[
−3

2
Eμ̄[(Σ−1)′(x)Σ2(x)V ′(x)]Δt2 +

3
2

Eμ̄[(Σ−1)′(x)Σ′(x)Σ(x)]Δt2 + O
(
Δt3
)]

+
1

4Δt2
[
Eμ̄

[
(Σ−1)′′(x)Σ2(x)

]
3Δt2 + O

(
Δt3
)]

+
1

2Δt2
O(Δt3)

=
3
4

[
−Eμ̄

[
(Σ−1)′(x)Σ2(x)V ′(x)

]
+

1
2

Eμ̄[(Σ−1)′(x)(Σ2)′(x)] + Eμ̄[(Σ−1)′′(x)Σ2(x)]
]

+ O(Δt)

(3.29)
On the other hand,

Eμ[(Σ−1)′(x)Σ2(x)V ′(x)] = Eμ[(Σ−1)′′(x)Σ2(x)] + Eμ[(Σ−1)′(x)(Σ2)′(x)] (3.30)
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Figure 3. Entropy production rate as a function of time step Δt for multiplicative noise and
the explicit EM scheme. As Theorem 3.7 asserts, entropy production does not decrease as Δt
is decreased. This results in a permanent loss of reversibility which cannot be fixed by reducing
the time step. Star symbols denote the theoretical value of the lower bound as it is given by
the Theorem (i.e., c′ ≈ c = 3

4Eμ[(Σε)−1(x)(Σ′
ε)

2(x)]). The agreement between the theoretical
and the numerical values is excellent.

Using (2.15) in Assumption 2.1 we obtain, as in the additive case, that

EP3(Δt) − 3
4

Eμ̄[(Σ−1)(x)(Σ′)2(x)] = O(Δt) (3.31)

which concludes the proof of (a). Part (b) is a direct consequence of (a). �

3.2.1. Example: quadratic potential on R

Let the quadratic potential V (x) = x2

2 , and the diffusion term

σε(x) =

√
1

1 + εx2
· (3.32)

The choice of the diffusion term is justified by the fact that we can control its variation in terms of x, while sending
ε to zero, the additive noise case is recovered. The invariant measure of this process is the Gaussian measure
with zero mean and variance one. Moreover, all the assumptions of Theorem 3.7 are satisfied thus we expect
a O(1) behavior of the entropy production rate at least for small Δt. Indeed, Figure 3 shows the numerically-
computed entropy production as a function of Δt, which clearly does not decrease to zero as Δt tends to zero.
Consequently, the explicit EM scheme for the multiplicative noise case totally destroys the reversibility property
of the discrete-time approximation process independently of how small time-step is selected. Additionally, notice
that as ε decreases, entropy production also decreases. This behavior is expected since σ(x) → σ = constant as
ε → 0 and in combination with the quadratic potential V , EP (Δt) → 0 as ε → 0 for any Δt sufficiently small.
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3.3. Entropy production for the multiplicative noise case: Milstein scheme

Since the EM scheme has entropy production rate which does not decrease as Δt decreases, we turn our
attention to the Milstein’s scheme which is the next higher-order scheme [13,22]:

xi+1 = xi − 1
2
Σ(xi)V ′(xi)Δt +

1
2
Σ′(xi)Δt + σ(xi)ΔWi +

1
2
σ(xi)σ′(xi)(ΔW 2

i − Δt), (3.33)

which can be rewritten as
Δxi = a(xi)Δt + σ(xi)ΔWi +

1
4
Σ′(xi)ΔW 2

i , (3.34)

where a(xi) = − 1
2Σ(xi)V ′(xi)+ 1

4Σ′(xi). Since ΔWi is a zero-mean Gaussian random variable with variance Δt,
the transition probability for Milstein’s scheme is

Π(xi, xi+1) =
1

|√2πΔtZ(xi, Δxi)|

⎡
⎣exp

⎛
⎝− 1

2Δt

∣∣∣∣∣−σ(xi) +
√

Z(xi, Δxi)
1
2Σ′(xi)

∣∣∣∣∣
2
⎞
⎠

+ exp

⎛
⎝− 1

2Δt

∣∣∣∣∣σ(xi) +
√

Z(xi, Δxi)
1
2Σ′(xi)

∣∣∣∣∣
2
⎞
⎠
⎤
⎦

(3.35)

where
Z(xi, Δxi) = Σ(xi) + Σ′(xi) (Δxi − a(xi)Δt) . (3.36)

Notice also that Z(xi, Δxi) = (σ(xi) + 1
2Σ′(xi)ΔWi)2 ≥ 0 which is positive almost surely. Moreover, the

arguments of the exponentials in (3.35) are of different order in terms of Δt. Indeed, it is straightforward
to show that for small time step, Δt, the argument of the first exponential in (3.35) is of order O(1) while
the argument of the second exponential is of order O( 1

Δt ). Thus, as Δt tends to zero, the second exponential
becomes exponentially small and the dominating term is the first exponential. Therefore, using the fact that
log
(
e−a + e−b/Δt

)
= −a + O(e−b/Δt) for positive a and b, the GC action functional for Milstein’s scheme

reduces to

W (n; Δt) = − 1
2

n−1∑
i=0

log
Z(xi, Δxi)

Z(xi+1,−Δxi)

− 2
Δt

n−1∑
i=0

⎡
⎣
(
−σ(xi) +

√
Z(xi, Δxi)

1
2Σ′(xi)

)2

−
(
−σ(xi+1) +

√
Z(xi+1,−Δxi)

1
2Σ′(xi+1)

)2
⎤
⎦

=W1(n; Δt) + W2(n; Δt)

(3.37)

where Z(xi+1,−Δxi) = Σ(xi+1)+Σ′(xi+1) (−Δxi − a(xi+1)Δt). The following theorem demonstrates that the
entropy production of the Milstein Scheme is at least linear in Δt:

Theorem 3.8. Under the assumptions of Theorem 3.7 and for sufficiently small Δt, there exists C =
C(V, Σ) > 0 independent of Δt such that

EP (Δt) ≤ CΔt (3.38)

Proof. In order to compute the detailed asymptotics for W1(n; Δt) and W2(n; Δt) we write the partition function
Z(xi, Δxi) as

Z(xi, Δxi) = Σ(xi) + Σ′(xi) (Δxi − a(xi)Δt)

= Σ(xi+1) −
(

1
2
Σ′′(xi)Δx2

i +
1
6
Σ′′′(xi)Δx3

i + Σ′(xi)a(xi)Δt

)
+ O
(
Δx4

i

)
.

(3.39)
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Similarly we have

Z(xi+1,−Δxi) = Σ(xi+1) + Σ′(xi+1) (−Δxi − a(xi+1)Δt)

= Σ(xi) −
(

1
2
Σ′′(xi+1)Δx2

i − 1
6
Σ′′′(xi+1)Δx3

i + Σ′(xi+1)a(xi+1)Δt

)
+ O
(
Δx4

i

)
,

(3.40)

and thus

Z (xi+1,−Δxi) − Z(xi−1, Δxi−1) = − 1
2
(
Σ′′(xi+1)Δx2

i − Σ′′(xi−1)Δx2
i−1

)
+

1
6
(
Σ′′′(xi+1)Δx3

i + Σ′′′(xi−1)Δx3
i−1

)
− (Σ′(xi+1)a(xi+1) − Σ′(xi−1)a(xi−1)) Δt

(3.41)

is obtained. Moreover, in what follows and by slight abuse of O(·) notation, we repeatedly use the relation

[f(xi)g(xi±1) − f(xi±1)g(xi)] Δxk
i = O(Δxk+1

i ) (3.42)

which holds for any i, k = 0, 1, . . . and any smooth functions f and g and it is easily derived by suitable Taylor
expansions of the functions. We obtain for W1(n; Δt)

W1(n; Δt)

=
1
2

n−1∑
i=0

log
Z(xi+1,−Δxi)

Z(xi, Δxi)

=̇
1
2

n−1∑
i=0

log
Z(xi+1,−Δxi)
Z(xi−1, Δxi−1)

=
1
2

n−1∑
i=0

log
(

1 −
1
2 (Σ′′(xi+1)Δx2

i − Σ′′(xi−1)Δx2
i−1) + (Σ′(xi+1)a(xi+1) − Σ′(xi−1)a(xi−1))Δt + O(Δx3

i )
Z(xi−1, Δxi−1)

)

=
1
2

n−1∑
i=0

∞∑
k=1

( 1
2 (Σ′′(xi+1)Δx2

i − Σ′′(xi−1)Δx2
i−1) + O(ΔtΔxi + Δx3

i )
Z(xi−1, Δxi−1)

)k

=
1
4

n−1∑
i=0

[
Σ′′(xi+1)Δx2

i − Σ′′(xi−1)Δx2
i−1

Σ(xi) + O(Δt + Δx2
i )

+ O(ΔtΔxi + Δx3
i )
]

=
1
4

n−1∑
i=0

[
Σ′′(xi+1)Δx2

i − Σ′′(xi−1)Δx2
i−1

Σ(xi)

∞∑
k=0

(
O(Δt + Δx2

i )
)k

+ O(ΔtΔxi + Δx3
i )

]

=
1
4

n−1∑
i=0

[
Σ′′(xi+1)Δx2

i − Σ′′(xi−1)Δx2
i−1

Σ(xi)
+ O(ΔtΔxi + Δx3

i )
]

=̇
1
4

n−1∑
i=0

[(
1

Σ(xi)
− 1

Σ(xi+1)

)
Σ′′(xi)Δx2

i + O(ΔtΔxi + Δx3
i )
]

=
n−1∑
i=0

O(Δx3
i ) + Δt

n−1∑
i=0

O(Δxi) (3.43)
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The second term of the GC action functional is rewritten as

W2(n; Δt)

=
2

Δt

n−1∑
i=0

⎡
⎣(σ(xi+1) −

√
Z(xi+1,−Δxi)

1
2Σ′(xi+1)

)2

−
(

σ(xi) −
√

Z(xi, Δxi)
1
2Σ′(xi)

)2
⎤
⎦

=
2

Δt

n−1∑
i=0

⎡
⎢⎣
⎛
⎝σ(xi+1)−σ(xi)

(
1 − 1

2Σ(xi)

(
1
2Σ′′(xi+1)Δx2

i − 1
6Σ′′′(xi+1)Δx3

i +Σ′(xi+1)a(xi+1)Δt+O(Δx4
i )
))

1
2Σ′(xi+1)

⎞
⎠

2

−
⎛
⎝σ(xi) − σ(xi+1)

(
1 − 1

2Σ(xi+1)

(
1
2Σ′′(xi)Δx2

i + 1
6Σ′′′(xi)Δx3

i + Σ′(xi)a(xi)Δt + O(Δx4
i )
))

1
2Σ′(xi)

⎞
⎠

2
⎤
⎥⎦

=
2

Δt

n−1∑
i=0

[(
2
σ(xi+1) − σ(xi)

Σ′(xi+1)
+

1
2

Σ′′(xi+1)Δx2
i

σ(xi)Σ′(xi+1)
− 1

6
Σ′′′(xi+1)Δx3

i

σ(xi)Σ′(xi+1)
+

1
2

Σ′(xi+1)a(xi+1)Δt

σ(xi)Σ′(xi+1)
+ O(Δx4

i )
)2

−
(

2
σ(xi) − σ(xi+1)

Σ′(xi)
+

1
2

Σ′′(xi)Δx2
i

σ(xi+1)Σ′(xi)
+

1
6

Σ′′′(xi)Δx3
i

σ(xi+1)Σ′(xi)
+

1
2

Σ′(xi)a(xi)Δt

σ(xi+1)Σ′(xi)
+ O(Δx4

i )
)2
]

(3.44)

where a Taylor series expansion to the square root function was applied. Expanding the squares and keeping
only the terms that have order in terms of Δxi less than 5 we obtain that

W2(n; Δt)

=
2

Δt

n−1∑
i=0

[
4
(

(σ(xi+1) − σ(xi))2

Σ′(xi+1)2
− (σ(xi+1) − σ(xi))2

Σ′(xi)2

)

+ 2
(

Σ′′(xi+1)(σ(xi+1) − σ(xi))
σ(xi)Σ′(xi+1)2

+
Σ′′(xi)(σ(xi+1) − σ(xi))

σ(xi+1)Σ′(xi)2

)
Δx2

i

− 2
3

(
Σ′′′(xi+1)(σ(xi+1) − σ(xi))

σ(xi)Σ′(xi+1)2
− Σ′′′(xi)(σ(xi+1) − σ(xi))

σ(xi+1)Σ′(xi)2

)
Δx3

i

+ 4
(

a(xi+1)(σ(xi+1) − σ(xi))
σ(xi)Σ′(xi+1)

+
a(xi)(σ(xi+1) − σ(xi))

σ(xi+1)Σ′(xi)

)
Δt

+
(

Σ′′(xi+1)a(xi+1)
Σ(xi)Σ′(xi+1)

− Σ′′(xi)a(xi)
Σ(xi+1)Σ′(xi)

)
ΔtΔx2

i + O(Δx5
i ) + O(ΔtΔx3

i )
]

=
2

Δt

n−1∑
i=0

[
σ′(xi+1)2Δx2

i − σ′(xi+1)σ′′(xi+1)Δx3
i +
(

1
3σ′(xi+1)σ′′′(xi+1) + 1

4σ′′(xi+1)2
)
Δx4

i

σ(xi+1)2σ′(xi+1)2

− σ′(xi)2Δx2
i + σ′(xi)σ′′(xi)Δx3

i +
(

1
3σ′(xi)σ′′′(xi) + 1

4σ′′(xi)2
)
Δx4

i

σ(xi)2σ′(xi)2

+ 2
σ(xi+1)(σ′(xi+1)Δxi− 1

2σ′′(xi+1)Δx2
i )Σ

′′(xi+1)Σ′(xi)2+σ(xi)(σ′(xi)Δxi+ 1
2σ′′(xi)Δx2

i )Σ
′′(xi)Σ′(xi+1)2

σ(xi)σ(xi+1)Σ′(xi)2Σ′(xi+1)2

× Δx2
i
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+2
(

a(xi+1)(σ′(xi+1)Δxi− 1
2σ′′(xi+1)Δx2

i )
σ(xi+1)σ′(xi+1)σ(xi)

+
a(xi)(σ′(xi)Δxi+ 1

2σ′′(xi)Δx2
i )

σ(xi)σ′(xi)σ(xi+1)

)
Δt+O(Δx5

i ) + O
(
ΔtΔx3

i

)]

=
2

Δt

n−1∑
i=0

[(
1

σ(xi+1)2
− 1

σ(xi)2

)
Δx2

i −
(

σ′′(xi+1)
σ(xi+1)2σ′(xi+1)

+
σ′′(xi)

σ(xi)2σ′(xi)

)
Δx3

i

+
Σ′′(xi+1)Σ′(xi) + Σ′′(xi)Σ′(xi+1)

σ(xi)σ(xi+1)Σ′(xi)Σ′(xi+1)
Δx3

i + 2
a(xi+1) + a(xi)
σ(xi)σ(xi+1)

ΔxiΔt + O(Δx5
i ) + O

(
ΔtΔx3

i

)]

=
2

Δt

n−1∑
i=0

[
−
(

σ′(xi+1)
σ(xi+1)3

+
σ′(xi)
σ(xi)3

+
σ′′(xi+1)

σ(xi+1)2σ′(xi+1)
+

σ′′(xi)
σ(xi)2σ′(xi)

)
Δx3

i

+
(

σ′(xi+1)
σ(xi+1)2σ(xi)

+
σ′′(xi+1)

σ(xi+1)σ′(xi+1)σ(xi)
+

σ′(xi)
σ(xi)2σ(xi+1)

+
σ′′(xi)

σ(xi)σ′(xi)σ(xi+1)

)
Δx3

i + O
(
Δx5

i

)]

+ 4
n−1∑
i=0

[(
a(xi+1)
Σ(xi+1)

+
a(xi)
Σ(xi)

)
Δxi + O

(
Δx3

i

)]
(3.45)

After few more Taylor expansions in the first sum, the terms of order Δx3
i are cancelled out while the forth

order terms consists of differences of the form (3.42) thus they become fifth order. Moreover, the second sum
can be handled exactly as the terms W1 and W2 in EM scheme using (A.1) and the leading term is of order
O(Δx3

i ). Overall, we rigorously computed that

W2(n; Δt)=̇
1

Δt

n−1∑
i=0

O(Δx5
i ) +

n−1∑
i=0

O(Δx3
i ). (3.46)

Therefore, the entropy production for Milstein’s scheme in the one dimensional overdamped Langevin case
with multiplicative noise is at least of order

EP (Δt) = lim
t→∞

1
nΔt

(W1(n; Δt) + W2(n; Δt))

= lim
n→∞

1
n

n−1∑
i=0

O(Δxi) +
1

Δt
lim

n→∞
1
n

n−1∑
i=0

O(Δx3
i ) +

1
Δt2

lim
n→∞

1
n

n−1∑
i=0

O(Δx5
i )

= O(Δt) +
1

Δt
O(Δt2) +

1
Δt2

O(Δt3)

= O(Δt).

(3.47)

Here we used the fact that limn→∞ 1
n

∑n−1
i=0 f(xi)Δxk

i = O(Δt�
k
2 �), where �·� denotes the ceiling function; this

last relation is easily verified by substituting Δxi by (3.33) and then applying the ergodic average lemmas in
Appendix A. �

3.3.1. Quadratic potential on R

We compute numerically the entropy production as the time-average of the GC action functional. Figure 4
shows the numerically computed entropy production for the same example shown in Figure 3. Evidently, entropy
production rate decreases at least linearly as time step Δt is decreasing as Theorem 3.8 asserts.

Remark 3.9. We note that the rigorous asymptotics for the entropy production quickly become quite involved
as the Milstein scheme analysis demonstrates. However, the GC functional is easily accessible numerically and
this allows to assess the reversibility of each scheme computationally, as demonstrated in Figures 3 and 4.
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Figure 4. Entropy production rate as a function of time step Δt for the explicit Milstein’s
scheme. The decrease of the entropy production rate for this numerical scheme is at least linear.

4. Entropy production for Langevin processes

Let us consider another important class of reversible processes, namely the processes driven by the Langevin
equation

dqt = M−1ptdt

dpt = −∇V (qt)dt − γM−1ptdt + σdBt

(4.1)

where qt ∈ R
dN is the position vector of the N particles, pt ∈ R

dN is the momentum vector of the particles,
M is the mass matrix, V is the potential energy, γ is the friction factor (matrix), σ is the diffusion factor
(matrix) and Bt is a dN -dimensional Brownian motion. Even though the Langevin system is degenerate since
the noise applies only to the momenta, the process is hypoelliptic and is ergodic under mild conditions on V . The
fluctuation-dissipation theorem asserts that friction and diffusion terms are related with the inverse temperature
β ∈ R of the system by (

σσT
)

= 2β−1γ. (4.2)

The Langevin system is reversible (modulo momenta flip, see (4.5)) with invariant measure

μ(dq, dp) =
1
Z

exp (−βH(q, p)) dqdp. (4.3)

where H(q, p) is the Hamiltonian of the system given by

H(q, p) = V (q) +
1
2
pT M−1p. (4.4)

Indeed if L denotes the generator of (4.1), it is straightforward to verify the following modified DB condition

〈Lf(q, p), g(q, p)〉L2(μ) = 〈f(q,−p),Lg(q,−p)〉L2(μ) (4.5)

for any test functions f and g which are bounded, twice differentiable with bounded derivatives. This shows
that the Langevin process is reversible modulo flipping the momenta of all particles.
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The BBK integrator [5, 15] which utilizes a Strang splitting is applied for the discretization of (4.1). It is
written as

pi+ 1
2

= pi −∇V (qi)
Δt

2
− γM−1pi

Δt

2
+ σΔWi

qi+1 = qi + M−1pi+ 1
2
Δt

pi+1 = pi+ 1
2
−∇V (qi+1)

Δt

2
− γM−1pi+1

Δt

2
+ σΔWi+ 1

2

(4.6)

with ΔWi, ΔWi+ 1
2
∼ N(0, Δt

2 IdN ). Its stability and convergence properties were studied in [5, 15] while its
ergodic properties can be found in [19,20,31]. An important property of this numerical scheme which simplifies
the computation of the transition probabilities is that the transition probabilities are non-degenerate. We rewrite
the BBK integrator as

qi+1 = qi + M−1

[
pi −∇V (qi)

Δt

2
− γM−1pi

Δt

2

]
Δt + M−1σΔtΔWi (4.7a)

pi+1 =
(

I + γM−1 Δt

2

)−1 [ 1
Δt

M(qi+1 − qi) −∇V (qi+1)
Δt

2

]
+
(

I + γM−1 Δt

2

)−1

σΔWi+ 1
2

(4.7b)

and thus the transition probabilities of the discrete-time approximation process are given by the product

Π(qi, pi, qi+1, pi+1) = P (qi+1|qi, pi)P (pi+1|qi+1, qi, pi) (4.8)

where P (qi+1|qi, pi) is the propagator of the positions given by

P (qi+1|qi, pi) =
1
Z0

exp

{
− 1

Δt3

(
Δqi + M−1(pi −∇V (qi)

Δt

2
+ γM−1pi

Δt

2
)Δt

)T

× (σM−T M−1σT )−1

(
Δqi + M−1(pi −∇V (qi)

Δt

2
+ γM−1pi

Δt

2

)
Δt)

}
(4.9)

where Δqi = qi+1 − qi while P (pi+1|qi+1, qi, pi) is the propagator of the momenta given by

P (pi+1|qi+1, qi, pi) =
1
Z1

exp

{
− 1

Δt

(
pi+1 − (I + γ)M−1 Δt

2

)−1( 1
Δt

MΔqi −∇V (qi+1)
Δt

2

)T

(
σT (I + γM)−T (I + γM−1)σ

)−1
(

pi+1 − (I + γ)M−1 Δt

2

)−1( 1
Δt

MΔqi −∇V (qi+1)
Δt

2

)} (4.10)

Finally, since the Langevin process is reversible modulo flip of the momenta, the GC action functional takes the
form

W (n; Δt) =
n−1∑
i=0

log
Π(qi, pi, qi+1, pi+1)

Π(qi+1,−pi+1, qi,−pi)
· (4.11)

4.1. Langevin process with additive noise

In the following we assume for simplicity that particles have equal masses (i.e. M = mI) and that σ = σI,
γ = γI. In the next lemma we compute the GC action functional.
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Lemma 4.1. The GC action functional of the BBK integrator equals to

W (n; Δt)=̇
β

Δt

n−1∑
i=0

[
ΔpT

i Δqi − Δt2

2m

(∇V (qi)T pi + ∇V (qi+1)T pi+1

)]
(4.12)

Proof. Firstly, (4.9) and (4.10) are rewritten as

P (qi+1|qi, pi) =
1
Z0

exp

{
− m2

σ2Δt3

∣∣∣∣Δqi +
(

pi − 1
m
∇V (qi)

Δt

2
+

γ

m
pi

Δt

2

)
Δt

∣∣∣∣
2
}

(4.13)

and

P (pi+1|qi+1, qi, pi) =
1
Z1

exp

{
− 1

σ2Δt

∣∣∣∣
(

1 +
γΔt

2m

)
pi+1 −

(
m

Δt
Δqi − Δt

2
∇V (qi+1)

)∣∣∣∣
2
}

(4.14)

respectively. Then, as in the overdamped Langevin case, the computation of the GC action functional is
straightforward,

W (n; Δt) = − m2

σ2Δt3

n−1∑
i=0

[∣∣∣∣Δqi +
Δt2

2m
∇V (qi)

Δt

m

(
1 − γΔt

2m

)
pi

∣∣∣∣
2

−
∣∣∣∣−Δqi +

Δt2

2m
∇V (qi+1) +

Δt

m

(
1 − γΔt

2m

)
pi+1

∣∣∣∣
2
]

− 1
σ2Δt

n−1∑
i=0

[∣∣∣∣
(

1 +
γΔt

2m

)
pi+1 − m

Δt
Δqi +

Δt

2
∇V (qi+1)

∣∣∣∣
2

−
∣∣∣∣−
(

1 +
γΔt

2m

)
pi +

m

Δt
Δqi +

Δt

2
∇V (qi)

∣∣∣∣
2
]

= − m2

σ2Δt3

n−1∑
i=0

[
|Δqi|2 +

∣∣∣∣Δt2

2m
∇V (qi)

∣∣∣∣
2

+
∣∣∣∣Δt

m

(
1 − γΔt

2m

)
pi

∣∣∣∣
2

+
Δt2

m
ΔqT

i ∇V (qi)

− 2Δt

m

(
1 − γΔt

2m

)
ΔqT

i pi − Δt3

m2

(
1 − γΔt

2m

)
∇V (qi)T pi

− |Δqi|2 −
∣∣∣∣Δt2

2m
∇V (qi+1)

∣∣∣∣
2

−
∣∣∣∣Δt

m

(
1 − γΔt

2m

)
pi+1

∣∣∣∣
2

+
Δt2

m
ΔqT

i ∇V (qi+1)

+
2Δt

m

(
1 − γΔt

2m

)
ΔqT

i pi+1 − Δt3

m2

(
1 − γΔt

2m

)
∇V (qi+1)T pi+1

]

− 1
σ2Δt

n−1∑
i=0

[∣∣∣∣
(

1 +
γΔt

2m

)
pi+1

∣∣∣∣
2

+
∣∣∣ m
Δt

Δqi

∣∣∣2 +
∣∣∣∣Δt

2
∇V (qi+1)

∣∣∣∣
2

−
(

1 +
γΔt

2m

)
2m

Δt
pT

i+1Δqi

+
(

1 +
γΔt

2m

)
ΔtpT

i+1∇V (qi+1) − mΔqT
i ∇V (qi+1)

−
∣∣∣∣
(

1 +
γΔt

2m

)
pi

∣∣∣∣
2

−
∣∣∣ m
Δt

Δqi

∣∣∣2 − ∣∣∣∣Δt

2
∇V (qi)

∣∣∣∣
2

+
(

1 +
γΔt

2m

)
2m

Δt
pT

i Δqi

+
(

1 +
γΔt

2m

)
ΔtpT

i ∇V (qi) − mΔqT
i ∇V (qi)

]
.
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Thus we have,

W (n; Δt) =̇ − m2

σ2Δt3

n−1∑
i=0

[
Δt2

m
ΔqT

i (∇V (qi) + ∇V (qi+1)) +
2Δt

m

(
1 − γΔt

2m

)
ΔqT

i Δpi

−Δt3

m2

(
1 − γΔt

2m

)(∇V (qi+1)T pi+1 + ∇V (qi)T pi

)]

− 1
σ2Δt

n−1∑
i=0

[
−
(

1 +
γΔt

2m

)
2m

Δt
ΔpT

i Δqi − mΔqT
i (∇V (qi) + ∇V (qi+1))

+
(

1 +
γΔt

2m

)
Δt
(
pT

i ∇V (qi) + pT
i+1∇V (qi+1)

)]

=
2m

σ2Δt2

n−1∑
i=0

[
−
(

1 − γΔt

2m

)
ΔqT

i Δpi +
(

1 +
γΔt

2m

)
ΔqT

i Δpi

+
Δt2

2m

(
1 − γΔt

2m

)(∇V (qi+1)T pi+1 + ∇V (qi)T pi

)
−Δt2

2m

(
1 +

γΔt

2m

)(∇V (qi+1)T pi+1 + ∇V (qi)T pi

)]

=
2γ

σ2Δt

n−1∑
i=0

[
ΔpT

i Δqi − Δt2

2m

(∇V (qi+1)T pi+1 + ∇V (qi)T pi

)]

which is equal with (4.12). �

Remark 4.2. Proceeding as in Remark 3.3 we can compare the GC action functional of the BBK integrator
to the GC functional for the additive Langevin process with constant temperature, which is given, [18], by

Wcont(t) =
β

m

∫ t

0

∇V (qt)ptdt ≈ βΔt

2m

n−1∑
i=0

(∇V (qi+1)T pi+1 + ∇V (qi)T pi) (4.15)

and is a boundary term in continuous time. Comparing the GC functionals, it is evident that the discrete
version of Wcont(t) is contained in the functional W (n; Δt) given by (4.12). This is similar to the overdamped
Langevin case when discretized utilizing the explicit EM scheme. In addition the remaining term in the GC
action functional W (n; Δt) stems from the Strang splitting of the numerical scheme. Moreover, this additional
term critically affects the irreversibility of the discrete-time approximation process since it is the leading order
term in the entropy production rate, as shown in the following theorem.

Theorem 4.3. Let Assumption 2.1 hold. Assume also that the potential function V has bounded fifth-order
derivative. Then, for sufficiently small Δt, there exists C = C(N, γ, m) > 0 such that

EP (Δt) ≤ CΔt (4.16)

Proof. Solving (4.7a) for pi and multiplying with the transpose of pi, the square of the absolute of the momenta
equal to (

1 − γΔt

2m

)
|pi|2 =

m

Δt
pT

i Δqi +
Δt

2
pT

i ∇V (qi) − σpT
i ΔWi (4.17)

and similarly for pi+1 in (4.7b)(
1 +

γΔt

2m

)
|pi+1|2 =

m

Δt
pT

i+1Δqi +
Δt

2
pT

i+1∇V (qi+1) + σpT
i+1ΔWi+ 1

2
. (4.18)
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Taking the difference between the above two equations for the momenta, we obtain

|pi+1|2−|pi|2+
γΔt

2m

(|pi+1|2 + |pi|2
)

=
m

Δt
ΔpT

i Δqi−Δt

2
(
pT

i+1∇V (qi+1) + pT
i ∇V (qi)

)
+σ(pT

i+1ΔWi+ 1
2
+pT

i ΔWi)

(4.19)
hence, the GC action functional is rewritten as

W (n; Δt) =̇
β

Δt

n−1∑
i=0

[
ΔpT

i Δqi − Δt2

2m

(∇V (qi+1)T pi+1 + ∇V (qi)T pi

)]

=
β

m

n−1∑
i=0

[
|pi+1|2 − |pi|2 +

γΔt

2m

(|pi+1|2 + |pi|2
)− σ

(
pT

i+1ΔWi+ 1
2

+ pT
i ΔWi

)]

=̇
βγΔt

m2

n−1∑
i=0

|pi|2 − βσ

m

n−1∑
i=0

(
pT

i+1ΔWi+ 1
2

+ pT
i ΔWi

)
(4.20)

Using the fact that pi and ΔWi are independent while pi+1 and ΔWi+ 1
2

are not as well as the fact that the
momenta in the continuous setting are zero-mean Gaussian r.v. with variance m

β IdN , the entropy production
rate for the BBK integrator becomes

EP (Δt) =
βγ

m2
lim

n→∞
1
n

n−1∑
i=0

|pi|2 − βσ

mΔt
lim

n→∞
1
n

n−1∑
i=0

(
pT

i+1ΔWi+ 1
2

+ pT
i ΔWi

)

=
βγ

m2
Eμ̄[|p|2] − βσ2

mΔt
(
1 + γΔt

2m

)Eρ[|ΔW |2]

=
βγ

m2

(
mN

β
+ O(Δt)

)
− 4γ

Δt(2m + γΔt)
ΔtN

2

=
γ2N

m(2m + γΔt)
Δt + O(Δt)

(4.21)

which completes the proof. �

4.1.1. Quadratic potential on a torus

The conclusions of the above theorem are illustrated by a numerical example where the potential function is
quadratic, V (x) = |x|2

2 . Figure 5 shows the behavior of numerical entropy production rate as a function of Δt
computed as the time-average of the GC action functional. Number of particles was set to N = 5 while the
mass of its particle was set to m = 1. The variance of the stochastic term was set σ2 = 0.01 while the final
time was set to t = 2 × 105. The initial data was chosen randomly from the zero-mean Gaussian distribution
with appropriate variance. Notice also that due to the quadratic potential of this example Gaussian distribution
is also the invariant measure of the process. Thus, the simulation is performed at the equilibrium regime.
Evidently, the entropy production rate is of order O(Δt) as it is expected. Additionally, we plot (stars in the
Figure) the leading term of the theoretical value of the entropy production rate as it given by (4.21). Apparently,
the theoretical coefficient, Nγ2

2m2 , is very close to the numerically-computed coefficient. Finally, notice that the
entropy production rate is quadratically proportional to the friction factor γ which is in accordance with (4.21).

5. Summary and future work

In this paper we use the entropy production rate as a novel tool to assess quantitatively the (lack of) re-
versibility of discretization schemes for various reversible SDE’s. Reversibility of the discrete-time approximation
process is a desirable feature when equilibrium simulations are performed. The entropy production rate which
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Figure 5. Entropy production rate as a function of time step, Δt, for various friction factors γ.
The decrease of the entropy production rate is linear as Theorem 4.3 asserts. Additionally, the
theoretically-computed entropy production rate (star points) perfectly matches the numerically-
computed entropy rate.

is defined as the time-average of the relative entropy between the path measure of the forward process and
the path measure of the time-reversed process is zero when the process is reversible and positive when it is
irreversible. Thus, it provides a way to quantify the (ir)reversibility of the approximation process. Moreover,
under an ergodicity assumption, the entropy production rate can be computed numerically on-the-fly utilizing
the GC action functional. This is another attractive feature of the entropy production rate.

We computed the entropy production rate for overdamped Langevin processes both analytically and numeri-
cally when discretized with the explicit Euler−Maruyama scheme. One of the main finding in this paper is that
depending on the type of the noise – additive vs multiplicative – the entropy production for the explicit EM
scheme has a totally different behavior. Indeed, for additive noise entropy production rate is of order O(Δt2)
while for multiplicative noise it is of order O(1). Hence, reversibility of the discrete-time approximation process
does not depend only on the numerical scheme but also on the intrinsic characteristics of the SDE. For the
Milstein’s scheme the entropy production rate is O(Δt) for multiplicative noise. Furthermore, we computed
the entropy production rate both analytically and numerically for a discretization scheme of the Langevin pro-
cess with additive noise. Specifically, we computed the entropy production rate for the BBK integrator of the
Langevin equation which is a quasi-symplectic splitting numerical scheme. The rate of entropy production was
shown to be of order O(Δt).

This paper offers a new conceptual tool for the evaluation of discretization schemes of SDE systems simu-
lated at the equilibrium regime. We consider only the simplest schemes here and we will analyze in future work
the behavior of the entropy production for other numerical schemes such as fully implicit EM, drift-implicit
EM, higher-order schemes as well as different types of splitting methods. Moreover, other reversible or even
non-reversible processes can be analyzed in the same way, in particular extended, spatially-distributed pro-
cesses. Specifically, our proposed approach allows for computationally verifying detailed balance – using the
entropy production observable – for numerical approximations of stochastic processes. This feature can be a
practical tool for assessing numerical schemes, not just for the stochastic differential equations studied here,
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but also for complex spatiotemporal processes that are expected to satisfy detailed balance with respect to a
Boltzman−Gibbs distribution. First, a particularly interesting example, where the reversibility of the original
system is destroyed by numerical schemes in the form of spatio-temporal fractional step approximations of the
generator, arises in the (partly asynchronous) parallelization of Kinetic Monte Carlo algorithms [1,29]. Further-
more, a rich class of examples of complex spatiotemporal processes that are expected to satisfy detailed balance
is fluctuating hydrodynamics models such as the Landau Lifshitz Navier Stokes equation, see for instance corre-
sponding spatiotemporal numerical schemes in [6]. Finally, another possible extension of this work is to develop
adaptive schemes based on the a posteriori simulation of entropy production rate, which should guarantee the
reversibility or the approximate reversibility of the discrete-time approximation process. In this direction, the
decomposition of entropy production functional for Metropolis-adjusted Langevin algorithms (MALA) [15, 26]
should be further studied and understood. In fact, an immediate observation is that the probability of the
accept/reject step in MALA is the ratio of the forward and backward transition probabilities, and thus it is inti-
mately related to the entropy production observable. Our entropy production analysis of discretization schemes
(which can be used as a proposal in MALA) does not readily imply per se any results on the rate of rejection
in MALA but it intuitively suggests a connection between the two concepts that needs to be explored further.

Appendix A. Tools for proving Theorem 3.5

Lemma A.1 (generalized Trapezoidal Rule). For k odd,

V (xi+1) − V (xi) =
k∑

|α|=1,3,...

Cα[DαV (xi+1) + DαV (xi)]Δxα
i

+
k+2∑

|α|=1,3,...

∑
|β|=k+2−|α|

Bβ[Rβ
α(xi, xi+1) + Rβ

α(xi+1, xi)]Δxα+β
i

(A.1)

where α = (α1, . . . , αd) is a typical d-dimensional multi-index vector, DαV (x) = ∂|α|V
∂x

α1
1 ...∂x

αd
d

(x) is the αth partial

derivative while xα = xα1
1 . . . xαd

d . The coefficients Cα are defined recursively by

Cα =
1
2

for |α| = 1

Cα =
1
2

⎛
⎝ 1

α!
−

|α|−2∑
|γ|=1,3,...

1
(α − γ)!

Cγ

⎞
⎠ for |α| = 3, 5, . . . , k

(A.2)

while the coefficients Bβ are also recursively defined by

Bβ =
1
2

for |β| = 0

Bβ = −1
2

|β|∑
|γ|=2,4,...

1
γ!

Bβ−γ for |β| = 2, 4, . . . , k + 1
(A.3)

Finally, the remainder terms are given by Rβ
α(xi, xi+1) = |α|

α!

∫ 1

0 (1 − t)|α|−1Dα+βV ((1 − t)xi + txi+1)dt.

Proof. The starting point is the usual Taylor series expansion around xi

V (xi+1) − V (xi) =
k+1∑
|α|=1

1
α!

DαV (xi)Δxα
i +

∑
|α|=k+2

R0
α(xi, xi+1)Δxα

i (A.4)
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and around xi+1

V (xi+1) − V (xi) = −
k+1∑
|α|=1

1
α!

DαV (xi+1)(−Δxi)α −
∑

|α|=k+2

R0
α(xi+1, xi)(−Δxi)α. (A.5)

Adding the two equations we obtain the symmetrized Taylor series expansion for V given by

V (xi+1) − V (xi) =
1
2

k∑
|α|=1,3,...

1
α!

[DαV (xi+1) + DαV (xi)]Δxα
i

− 1
2

k+1∑
|α|=2,4,...

1
α!

[DαV (xi+1) − DαV (xi)]Δxα
i

+
1
2

∑
|α|=k+2

[R0
α(xi, xi+1) + R0

α(xi+1, xi)]Δxα
i .

(A.6)

Moreover, generalized trapezoidal formula (A.1) for DαV with |α| even is

DαV (xi+1) − DαV (xi) =
k−|α|∑

|γ|=1,3,...

Cγ [Dα+γV (xi+1) + Dα+γV (xi)]Δxγ
i

+
k+2−|α|∑
|γ|=1,3,...

∑
|β|=k+2−|α|−|γ|

Bβ [Rα+β
γ (xi, xi+1) + Rα+β

γ (xi+1, xi)]Δxβ+γ
i .

(A.7)

Hence, substituting (A.7) into (A.6), a recursive Taylor series expansion

V (xi+1) − V (xi) =
1
2

k∑
|α|=1,3,...

1
α!

[DαV (xi+1) + DαV (xi)]Δxα
i

− 1
2

k+1∑
|α|=2,4,...

1
α!

k−|α|∑
|γ|=1,3,...

Cγ [Dα+γV (xi+1) + Dα+γV (xi)]Δxα+γ
i

− 1
2

k+1∑
|α|=2,4,...

1
α!

k+2−|α|∑
|γ|=1,3,...

∑
|β|=k+2−|α|−|γ|

Bβ [Rα+β
γ (xi, xi+1) + Rα+β

γ (xi+1, xi)]Δxα+β+γ
i

+
1
2

∑
|α|=k+2

[R0
α(xi, xi+1) + R0

α(xi+1, xi)]Δxα
i

=
1
2

k∑
|α|=1,3,...

1
α!

[DαV (xi+1) + DαV (xi)]Δxα
i

− 1
2

k∑
|α|=3,5,...

|α|−2∑
|γ|=1,3,...

1
(α − γ)!

Cγ [DαV (xi+1) + DαV (xi)]Δxα
i

(A.8)
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+
1
2

∑
|α|=k+2

∑
|β|=k+2−|α|

[Rβ
α(xi, xi+1) + Rβ

α(xi+1, xi)]Δxα
i

− 1
2

k∑
|α|=1,3,...

∑
|β|=k+2−|α|

|β|∑
|γ|=2,4,...

1
γ!

Bβ−γ [Rβ
α(xi, xi+1) + Rβ

α(xi+1, xi)]Δxα+β
i

(A.9)

is obtained after rearrangements of the sums. Equating the same powers of (A.9) and (A.1), the coefficients Cα

and Bβ are obtained.
Thus far, we presented how to compute the coefficients of the generalized trapezoidal formula. A rigorous

proof of the lemma is then easily derived by induction on the order, k, of (A.1) and proceeding on the reverse
direction of the above formulae. �

Lemma A.2. Assume that the discrete-time Markov process xi driven by

xi+1 = F (xi, ΔWi) (A.10)

where ΔWi are i.i.d. Gaussian random variables is ergodic with invariant measure μ̄. Then,

(i) For sufficiently smooth function h we have

lim
n→∞

1
n

n−1∑
i=0

h(xi, ΔWi) = Eμ̄×ρ[h(x, y)]. (A.11)

(ii) For sufficiently smooth functions f and g we have

lim
n→∞

1
n

n−1∑
i=0

f(xi)g(ΔWi) = Eμ̄[f(x)]Eρ[g(y)]. (A.12)

(iii) For sufficiently smooth functions f and g and for bounded f holds that

lim
n→∞

1
n

n−1∑
i=0

f(xi, ΔWi)g(ΔWi) = Eμ̄×ρ[f(x, y)]Eρ[g(y)], (A.13)

where ρ is the Gaussian measure.

Proof. Proving (i) is based on showing that the transition density of the joint process zi = (xi, ΔWi) exists and
it is positive. Both are trivial since the transition density is the product of the two densities which are both
positive. Thus, irreducibility for the joint process is proved and in combination with stationarity, the joint process
is ergodic. Relation (ii) is a direct consequence of (i) for h(x, y) = f(x)g(y). By denoting f̄ = Eμ̄×ρ[f(x, y)] and
ḡ = Eρ[g(y)], (iii) is proved by applying (i), noting that∣∣∣∣∣ 1n

n−1∑
i=0

f(xi, ΔWi)g(ΔWi) − f̄ ḡ

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n−1∑
i=0

f(xi, ΔWi)g(ΔWi) − 1
n

n−1∑
i=0

f(xi, ΔWi)ḡ +
1
n

n−1∑
i=0

f(xi, ΔWi)ḡ − f̄ ḡ

∣∣∣∣∣
≤ M | 1

n

n−1∑
i=0

g(ΔWi) − ḡ| + |ḡ|| 1
n

n−1∑
i=0

f(xi, ΔWi) − f̄ |,

(A.14)

since f is bounded (i.e., |f | ≤ M). Hence, sending n → ∞, (iii) is proved. �



MEASURING THE IRREVERSIBILITY OF NUMERICAL SCHEMES 1379

References

[1] G. Arampatzis, M.A. Katsoulakis, P. Plechac, M. Taufer and L. Xu, Hierarchical fractional-step approximations and parallel
kinetic Monte Carlo algorithms. J. Comput. Phys. 231 (2012) 7795–7841.

[2] V. Bally and D. Talay, The law of the Euler scheme for stochastic differential equations. I. Convergence rate of the density.
Monte Carlo Methods Appl. 2 (1996) 93–128.

[3] V. Bally and D. Talay, The law of the Euler scheme for stochastic differential equations. I. Convergence rate of the distribution
function. Probab. Theory Related Fields 104 (1996) 43–60.

[4] N. Bou-Rabee and E. Vanden-Eijnden, Pathwise accuracy and ergodicity of Metropolized integrators for SDEs. Commut. Pure
Appl. Math. LXIII (2010) 0655–0696.

[5] A. Brunger, C.B. Brooks and M. Karplus, Stochastic boundary conditions for molecular dynamics simulations of ST2 water.
Chem. Phys. Lett. 105 (1984) 495–500.

[6] S. Delong, B.E. Griffith, E. Vanden-Eijnden and A. Donev, Temporal integrators for fluctuating hydrodynamics. Phys. Rev.
E 87 (2013) 11.

[7] G. Gallavotti and E.G.D. Cohen, Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett. 74 (1995)
2694–2697.

[8] C. Gardiner, Handbook of Stochastic Methods: for Physics, Chemistry and the Natural Sciences. Springer Series in Synergetics
(1985).

[9] D.T. Gillespie, Markov Processes: An Introduction for Physical Scientists. Academic Press, New York (1992).

[10] E. Hairer, Ch. Lubich and G. Wanner, Structure-preserving algorithms for ordinary differential equations, in Geometric Nu-
merical Integration. vol. 31 of Springer Ser. Comput. Math., 2nd edition. Springer-Verlag, Berlin (2006).
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