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THE PERIODIC UNFOLDING METHOD FOR A CLASS OF PARABOLIC
PROBLEMS WITH IMPERFECT INTERFACES ∗

Zhanying Yang1

Abstract. In this paper, we use the adapted periodic unfolding method to study the homogeniza-
tion and corrector problems for the parabolic problem in a two-component composite with ε-periodic
connected inclusions. The condition imposed on the interface is that the jump of the solution is propor-
tional to the conormal derivative via a function of order εγ with γ ≤ −1. We give the homogenization
results which include those obtained by Jose in [Rev. Roum. Math. Pures Appl. 54 (2009) 189–222].
We also get the corrector results.
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1. Introduction

In this paper, we use the adapted periodic unfolding method to study the homogenization and corrector
problem for a linear parabolic problem in a domain Ω ⊂ Rn consisting of two components, a connected com-
ponent Ω1ε and a disconnected component Ω2ε. The latter is the union of ε-periodic connected inclusions of
size ε. The conditions prescribed on the interface Γ ε = ∂Ω2ε, separating Ω1ε from Ω2ε, are the continuity of
the conormal derivatives and a jump of the solution proportional to the conormal derivatives via a function of
order εγ .

This problem models the heat diffusion in a two-component composite conductor with an ε-periodic interface,
where the flux of temperature is proportional to the jump of the temperature field (see Carslaw and Jaeger [7]).
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More precisely, we consider, for the different values of the parameter γ ≤ 1, the homogenization and corrector
results for the following problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′1ε − div(Aε∇u1ε) = f1ε in Ω1ε × (0, T ),
u′2ε − div(Aε∇u2ε) = f2ε in Ω2ε × (0, T ),
Aε∇u1ε · n1ε = −Aε∇u2ε · n2ε on Γ ε × (0, T ),
Aε∇u1ε · n1ε = −εγhε(u1ε − u2ε) on Γ ε × (0, T ),
u1ε = 0 on ∂Ω × (0, T ),
u1ε(x, 0) = U0

1ε in Ω1ε,

u2ε(x, 0) = U0
2ε in Ω2ε,

(1.1)

where Aε(x) := A(x/ε), A being a periodic, bounded and positive definite matrix field, hε(x) := h(x/ε), with h
positive, bounded and periodic, fε = (f1ε, f2ε), U0

ε = (U0
1ε, U

0
2ε) and uε = (u1ε, u2ε). Here and in what follows,

any component indexed by i(= 1 or 2) is defined in Ωiε. Denote by niε the unitary outward normal vector
of ∂Ωiε.

This paper focuses on the study when γ ≤ −1. Indeed, for γ ≤ 1, the homogenization was studied by the
oscillating test functions method (see Tartar [21]) in Jose [18]. The corrector results were given in Donato and
Jose [11] for −1 < γ ≤ 1. But for the case of γ ≤ −1, to the best knowledge of the author, it was open. The
present paper is devoted to solving this problem.

More precisely, we first study the homogenization results for γ ≤ −1, which recover those in [18]. In particular,
we give the precise convergences of flux. For the exact statements, see Theorems 3.1−3.2. To obtain the corrector
results, it is necessary to impose some stronger assumptions than those of the homogenization results. More
precisely, we introduce the assumption on the data fε which is slightly weaker than that in [11], and the
assumption for the initial condition U0

ε which is equivalent to that in [11]. Then, we obtain the corrector results
(for γ ≤ −1) which are completely new. In particular, for the technical reason, we present them for γ < −1 and
γ = −1, respectively. For the exact statements, see Theorems 5.3 and 5.5.

The proofs of our results depend mainly on the periodic unfolding method, which was first introduced by
Cioranescu et al. in [4] for the case of fixed domains (see [5] for more details) and then extended to perforated
ones in Cioranescu et al. [6]. Later, Cioranescu et al. [3] gave a comprehensive presentation of the unfolding
method for perforated domains. Subsequently, this method was adapted to two-component domains which are
separated by a periodic interface in Donato et al. [13], where two unfolding operators over two-component
domains were introduced and their properties were discussed.

Concerning the time-dependent periodic unfolding method for fixed domains, we refer to Gaveau [17], where
some elementary results were listed without proofs. Recently, Donato and the author adapted some results
related to the unfolding method for perforated domains to time-dependent functions in [15], where detailed
proofs were given. There, in order to study problem (1.1), we adapt the unfolding method in two-component
domains in [13] to time-dependent problems (see Sect. 2). We introduce two unfolding operators: T ε

1 and T ε
2 .

The operator T ε
1 , originally denoted by T ∗

ε in [15], acts on functions defined on Ω1ε × (0, T ). The operator T ε
2

acts on functions defined on Ω2ε × (0, T ). The most important feature of these operators is that they map
functions defined on the oscillating domain into functions defined on the fixed domain. Hence, in some sense,
they play the role of the extension operators. Also, we list some results related to T ε

1 and T ε
2 . In particular,

we study the properties of their trace on the common boundary, which will be crucial to the treatment of the
interface terms.

For the elliptic problem corresponding to (1.1), Monsurrò [19, 20] gave the homogenization for γ ≤ −1.
For γ > −1, the homogenization was obtained by Donato and Monsurrò [12]. These results are based on the
oscillating test functions method. Corresponding corrector results for −1 < γ ≤ 1 were proved by Donato [8].
Recently, Donato et al. gave the new proofs of these results by the unfolding method in [13]. For the hyperbolic
problem corresponding to (1.1), Donato et al. proved the homogenization results for γ ≤ 1 in [9] and the
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corrector results for −1 < γ ≤ 1 in [10]. Our results are also related to those of parabolic problems in perforated
domains which were studied in Donato and Nabil [14].

This paper is organized as follows. In Section 2, we adapt the unfolding method for a two-component domain
in [13]. In particular, we present some important convergence results. Section 3 is devoted to the homogenization
of problem (1.1) according to the different values of γ. In Section 4, we introduce some assumptions on the initial
data and give the convergence of the energy. Section 5 focuses on the corrector results.

2. Periodic unfolding method in two-component domains

2.1. Some notations

Let Ω ⊂ Rn be an open and bounded set with Lipschitz boundary, and let ε be the general term of a sequence
of positive real numbers which converges to zero.

Denoted by Y = [0, l1) × · · · × [0, ln) the reference cell with li > 0, i = 1, · · ·, n. We suppose that Y1 and Y2

are two nonempty open disjoint subsets of Y such that

Y = Y1 ∪ Y2,

where Y1 is connected and Γ = ∂Y2 is Lipschitz continuous. Let ni be the unit outward normal to Yi, i = 1, 2.
For any k ∈ Zn, we denote

Y k = kl + Y, Γk = kl + Γ, Y k
i = kl + Yi,

where kl = (k1l1, · · ·, knln) and i = 1, 2.
For any fixed ε, let Kε = {k ∈ Zn | εY k

i ∩Ω �= ∅, i = 1, 2}. We suppose that

∂Ω ∩
( ⋃

k∈Zn

(εΓk)

)
= ∅.

Write the two components of Ω and the interface, respectively, by:

Ω2ε =
⋃

k∈Kε

εY k
2 , Ω1ε = Ω\Ω2ε, Γ ε = ∂Ω2ε.

Notice that ∂Ω and Γ ε are disjoint, the component Ω1ε is connected and the component Ω2ε is the union of
ε−n disjoint translated sets of εY2.

Now we introduce two spaces V ε and Hε
γ . Define V ε by

V ε := {v ∈ H1(Ω1ε) | v = 0 on ∂Ω},

endowed with the norm
‖v‖V ε = ‖∇v‖L2(Ω1ε).

For any γ ∈ R, the product space

Hε
γ := {u = (u1, u2) | u1 ∈ V ε, u2 ∈ H1(Ω2ε)}

is equipped with the norm:

‖u‖2
Hε

γ
= ‖∇u1‖2

L2(Ω1ε) + ‖∇u2‖2
L2(Ω2ε) + εγ‖u1 − u2‖2

L2(Γ ε).

Next we recall the following notations related to the unfolding method in [3, 5, 13]:

K̂ε = {k ∈ Z
n | εY k ⊂ Ω}, Ω̂ε = int

⋃
k∈K̂ε

ε(kl + Y ), Λε = Ω\Ω̂ε,
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Ω̂iε =
⋃

k∈K̂ε

εY k
i , Λiε = Ωiε\Ω̂iε, i = 1, 2, Γ̂ ε = ∂Ω̂2ε.

In what follows, we will use the following notations:

• θi = |Yi|/|Y |, i = 1, 2;
• MO(v) = 1

|O|
∫
O vdx;

• g̃ is the zero extension to Ω (resp., Ω × (0, T )) of any function g defined on Ωiε (resp., Ωiε × (0, T )) for
i = 1, 2;

• The letter T is a fixed positive constant in R.

Throughout this paper, we will also use the following general notations:

• c and C denote generic constants which do not depend upon ε.
• δij denotes the usual Kronecker symbol.
• The notation Lp(O) will be used both for scalar and vector-valued functions defined on the set O, when no

ambiguity arises.

2.2. Time-dependent unfolding operators in two-component domains

In this subsection, we adapt the unfolding method in two-component domains in [13] to time-dependent
problems. We introduce two unfolding operators: T ε

1 and T ε
2 , which map functions defined on the oscillating

domainsΩ1ε×(0, T ) andΩ2ε×(0, T ) into functions defined on the fixed domainsΩ×Y1×(0, T ) andΩ×Y2×(0, T ),
respectively. As stated in [3,13], this avoids the use of any extension operator. Next, we will recall some properties
of T ε

1 , which is exactly the unfolding operator T ∗
ε in perforated domains in [15]. We also list some properties

of T ε
2 . Moreover, we study some properties of the traces of T ε

1 and T ε
2 on the common boundary, which will be

used to treat the interface term.
For any z ∈ Rn, we use [z]Y to denote its integer part (k1l1, · · ·, knln) such that z − [z]Y ∈ Y , and set

{z}Y = z − [z]Y for z ∈ Rn.

Then for each x ∈ Rn, one has
x = ε

([x
ε

]
Y

+
{x
ε

}
Y

)
for x ∈ Rn.

Let us first recall the unfolding operator Tε for the fixed domain Ω × (0, T ) introduced in [17], where the
properties of Tε are shown without proofs.

Definition 2.1. For p ∈ [1,+∞) and q ∈ [1,∞], let φ be in Lq(0, T ;Lp(Ω)). The unfolding operator Tε :
Lq(0, T ;Lp(Ω)) �→ Lq(0, T ;Lp(Ω × Y )) is defined as follows:

T ε(φ)(x, y, t) =

{
φ
(
ε
[x
ε

]
Y

+ εy, t
)

a.e. for (x, y, t) ∈ Ω̂ε × Y × (0, T ),

0 a.e. for (x, y, t) ∈ Λε × Y × (0, T ).

In a similar way, we extend the unfolding operators in two-component domains in [13] to the following
time-dependent unfolding operators in two-component domains.

Definition 2.2. Let i = 1, 2. For p ∈ [1,+∞) and q ∈ [1,∞], let φ be in Lq(0, T ;Lp(Ωiε)). The unfolding
operator T ε

i : Lq(0, T ;Lp(Ωiε)) → Lq(0, T ;Lp(Ω × Yi)) is defined as follows:

T ε
i (φ)(x, y, t) =

{
φ
(
ε
[x
ε

]
Y

+ εy, t
)

a.e. for (x, y, t) ∈ Ω̂ε × Yi × (0, T ),

0 a.e. for (x, y, t) ∈ Λε × Yi × (0, T ).
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From this definition, the following properties are immediate:

(i) T ε
i (vw) = T ε

i (v)T ε
i (w), ∀w, v ∈ Lq(0, T ;Lp(Ωiε)),

(ii) T ε
i (ψϕ) = ϕT ε

i (ψ), ∀ψ ∈ Lp(Ωiε) and ϕ ∈ Lq(0, T ),
(iii) ∇y(T ε

i (φ)) = εT ε
i (∇φ), ∀φ ∈ Lq(0, T ;W 1,p(Ωiε)).

Lemma 2.3. Concerning T ε and T ε
i , we have the following:

T ε
i (ω|Ωiε×(0,T )) = T ε(ω)|Ω×Yi×(0,T ),

T ε
i (ψ) = T ε(ψ̃)|Ω×Yi×(0,T ),

where ω and ψ are defined on Ω × (0, T ) and Ωiε × (0, T ), respectively.
In Definitions 2.1 and 2.2, if φ is independent of t, then Tε and T ε

i (i = 1, 2) are the classical unfolding
operators defined in [4] and [13], respectively.

For simplicity, we always write T ε
i (φ) instead of T ε

i (φ|Ωiε×(0,T )) for any function φ defined in Ω × (0, T ).
Next we list some properties of T ε

i which are important to the study of the homogenization in Section 3.
For i = 1, the following results were proved in [15]. For i = 2, the proofs are essentially the same. For other
properties and related comments, we refer the reader to [3, 13, 15].

Proposition 2.4. Let i = 1, 2. For p ∈ [1,+∞) and q ∈ [1,∞], the operator T ε
i is linear and continuous

from Lq(0, T ;Lp(Ωiε)) to Lq(0, T ;Lp(Ω × Yi)). Let φ ∈ Lq(0, T ;L1(Ωiε)) and w ∈ Lq(0, T ;Lp(Ωiε)). For a.e.
t ∈ (0, T ), we have

(i)
1
|Y |

∫
Ω×Yi

T ε
i (φ)(x, y, t) dxdy =

∫
Ω̂iε

φ(x, t)dx =
∫

Ωiε

φ(x, t)dx −
∫

Λiε

φ(x, t)dx,

(ii) ‖T ε
i (w)‖Lp(Ω×Yi) = |Y |1/p‖w‖Lp(Ω̂iε) ≤ |Y |1/p‖w‖Lp(Ωiε).

Proposition 2.5. Let i = 1, 2. For q ∈ [1,+∞], let {φε} be a sequence in Lq(0, T ;L1(Ωiε)) such that∫ T

0

∫
Λiε

|φε| dxdt → 0. (2.1)

Then ∫ T

0

∫
Ωiε

φε dxdt− 1
|Y |

∫ T

0

∫
Ω×Yi

T ε
i (φε) dxdy dt→ 0.

As usual, this is denoted by ∫ T

0

∫
Ωiε

φε dxdt � 1
|Y |

∫ T

0

∫
Ω×Yi

T ε
i (φε) dxdy dt. (2.2)

In particular, for p, q ∈ (1,+∞), let {ϕε} and {ψε} be two sequences in Lq(0, T ;Lp(Ωiε)) and
Lq′

(0, T ;Lp′
(Ωiε)) (1/p+ 1/p′ = 1, 1/q + 1/q′ = 1), respectively. Suppose that

T ε
i (ϕε) → ϕi strongly in Lq(0, T ;Lp(Ω × Yi)),

T ε
i (ψε) ⇀ ψi weakly in Lq′

(0, T ;Lp′
(Ω × Yi)). (2.3)

Then for any η ∈ D(Ω), we have∫ T

0

∫
Ωiε

ϕεψεη dxdt → 1
|Yi|

∫ T

0

∫
Ω×Yi

ϕiψiη dxdy dt.
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Proposition 2.6. Let i = 1, 2.

(i) For p, q ∈ [1,∞), let w ∈ Lq(0, T ;Lp(Ω)). Then

T ε
i (w) → w strongly in Lq(0, T ;Lp(Ω × Yi)).

(ii) For p, q ∈ [1,∞), let {ωε} be a sequence in Lq(0, T ;Lp(Ω)) such that

ωε → ω strongly in Lq(0, T ;Lp(Ω)),

then we have
T ε

i (ωε) → ω strongly in Lq(0, T ;Lp(Ω × Yi)).

(iii) For p ∈ (1,∞) and q ∈ (1,∞], let {ϕε} be a sequence in Lq(0, T ;Lp(Ωiε)) such that

‖ϕε‖Lq(0,T ;Lp(Ωiε)) ≤ C.

If
T ε

i (ϕε) ⇀ ϕ weakly in Lq(0, T ;Lp(Ω × Yi)),

then we have
ϕ̃ε ⇀ θiMYi(ϕ) weakly in Lq(0, T ;Lp(Ω)).

For q = ∞, the weak convergences above are replaced by the weak∗ convergences, respectively.

Proposition 2.7. Let p, q ∈ [1,+∞). For i = 1, 2, let ωε ∈ Lq(0, T ;Lp(Ωiε)) and ω ∈ Lq(0, T ;Lp(Ω)), then
the following two assertions are equivalent:

(a) T ε
i (ωε) → ω strongly in Lq(0, T ;Lp(Ω × Yi));

(b) ‖ωε − ω‖Lq(0,T ;Lp(Ω̂iε)) → 0.

Furthermore, (a) together with ‖ωε‖Lq(0,T ;Lp(Λiε)) → 0 is equivalent to

‖ωε − ω‖Lq(0,T ;Lp(Ωiε)) → 0.

In the following, we are concerned with the action of the unfolding operators on the sequences in L2(0, T ;Hε
γ).

To do that, we first recall the following results related to V ε and Hε
γ .

Proposition 2.8 ([11], Rem. 2.3). There exists a positive constants C (independent of ε) such that

‖u‖H1(Ω1ε) ≤ C‖u‖V ε , ∀u ∈ V ε.

Proposition 2.9 ([11], Prop. 4.1). For γ ≤ 1, there exist two positive constants c1, c2 (independent of ε) such
that

c1‖u‖2
V ε×H1(Ω2ε) ≤ ‖u‖2

Hε
γ
≤ c2(1 + εγ−1)‖u‖2

V ε×H1(Ω2ε).

Now we show some results related to the jump on the interface. For convenience, we set

uε = (u1ε, u2ε).

By the definition of T ε
i (i = 1, 2), we have the following result (see also the proof of [13], Lem. 2.14).

Proposition 2.10. For γ ≤ 1, suppose that {uε} is a sequence in L2(0, T ;Hε
γ). Then for a.e. t ∈ [0, T ], we

have
1

ε|Y |

∫
Ω×Γ

|T ε
1 (u1ε) − T ε

2 (u2ε)|2 dxdσy =
∫

Γ̂ ε

|u1ε − u2ε|2dσx. (2.4)
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Remark 2.11. For γ ≤ 1, let {uε} be a bounded sequence in L2(0, T ;Hε
γ). By (2.4), Proposition 2.4(ii),

Propositions 2.8 and 2.9, we easily get the following uniform estimates:

‖T ε
1 (u1ε)‖L2(0,T ;L2(Ω×Y1)) + ‖T ε

1 (∇u1ε)‖L2(0,T ;L2(Ω×Y1)) ≤ c,

‖T ε
2 (u2ε)‖L2(0,T ;L2(Ω×Y2)) + ‖T ε

2 (∇u2ε)‖L2(0,T ;L2(Ω×Y2)) ≤ c,

‖T ε
1 (u1ε) − T ε

2 (u2ε)‖L2(0,T ;L2(Ω×Γ )) ≤ cε
1−γ
2 .

If we suppose further that uε satisfies

‖u1ε‖L∞(0,T ;L2(Ω1ε)) + ‖u2ε‖L∞(0,T ;L2(Ω2ε)) ≤ c,

then it follows that
‖T ε

1 (u1ε)‖L∞(0,T ;L2(Ω×Y1)) + ‖T ε
2 (u2ε)‖L∞(0,T ;L2(Ω×Y2)) ≤ c.

The following proposition is a straightforward consequence of Proposition 2.10.

Proposition 2.12. Let hε(x) = h(x/ε) with h ∈ L∞(Γ ) being a Y -periodic function. Suppose that φ ∈ D(Ω),
ϕ ∈ D(0, T ) and {uε} is a sequence in L2(0, T ;Hε

γ) with γ ≤ 1. Then for ε small enough,

ε

∫ T

0

∫
Γ ε

hε(u1ε − u2ε)φϕdσx dt =
1
|Y |

∫ T

0

∫
Ω×Γ

h(y)
[
T ε

1 (u1ε) − T ε
2 (u2ε)

]
T ε

1 (φ)ϕdxdσy dt. (2.5)

We complete this subsection with some convergence results related to the action of the unfolding operator
T ε

i (i = 1, 2) on the bounded sequences of L2(0, T ;Hε
γ), which are crucial to our homogenization results.

Theorem 2.13. Let γ ≤ 1. Suppose that {uε} is bounded in L2(0, T ;Hε
γ). Then there exist u1 ∈

L2(0, T ;H1
0 (Ω)), u2 ∈ L2(0, T ;L2(Ω)), û1 ∈ L2(0, T ;L2(Ω,H1

per(Y1))) and û2 ∈ L2(0, T ;L2(Ω,H1(Y2))) such
that, up to a subsequence (still denoted by ε),

(i) T ε
1 (u1ε) ⇀ u1 weakly in L2(0, T ;L2(Ω,H1(Y1))),

(ii) T ε
1 (∇u1ε) ⇀ ∇u1 + ∇yû1 weakly in L2(0, T ;L2(Ω × Y1)),

(iii) T ε
2 (u2ε) ⇀ u2 weakly in L2(0, T ;L2(Ω,H1(Y2))),

(iv) T ε
2 (∇u2ε) ⇀ ∇yû2 weakly in L2(0, T ;L2(Ω × Y2)), (2.6)

where MΓ (ûi) = 0, i = 1, 2. Moreover, if γ < 1, then u1 = u2 and

(i) if γ < −1, then
û1 = û2 − yΓ∇u1 on (0, T ) ×Ω × Γ, (2.7)

where yΓ = y −MΓ (y).
(ii) if γ = −1, then there exists ζ ∈ L2(0, T ;L2(Ω × Γ )) such that

ε−1
(
T ε

1 (u1ε) − T ε
2 (u2ε)

)
⇀ û1 − û2 + yΓ∇u1 + ζ weakly in L2(0, T ;L2(Ω × Γ )). (2.8)

Proof. The proof can be obtained by following the lines of the proofs of Theorem 2.12 in [3] (see also [15],
Thm. 2.19) and Theorem 2.20 in [13]. For the reader’s convenience, we repeat some details as follows.

Following the arguments in the proofs of Theorems 2.17–2.20 in [13] and Theorem 2.12 in [3] (see also [15],
Thm. 2.19), we obtain that (2.6) holds at least for a subsequence.

If γ < 1, Remark 2.11 gives

T ε
1 (u1ε) − T ε

2 (u2ε) → 0 strongly in L2(0, T ;L2(Ω × Γ )). (2.9)
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On the other hand, thanks to the properties of trace, (2.6)(i) implies

T ε
1 (u1ε) ⇀ u1 weakly in L2(0, T ;L2(Ω × Γ )).

Combining this with (2.6)(iii), (2.9) and noticing that u1 and u2 do not depend on y, we get

u1 = u2 for a.e. (x, t) ∈ Ω × (0, T ).

At last, (2.7) and (2.8) can be directly proved by following the arguments in the proof of Theorem 2.20
in [13]. �

3. Homogenization results

In this section, we use the adapted unfolding method presented in Section 2 to study the asymptotic behavior
of the parabolic problem in a two-component composite with ε-periodic connected inclusions.

To introduce the coefficient matrix, we define, for α, β ∈ R with 0 < α < β, the set M(α, β,O) of the n× n
matrix-valued functions B(x) ∈ (L∞(O))n×n such that

(B(x)λ, λ) ≥ α|λ|2, |B(x)λ| ≤ β|λ|

for any λ ∈ Rn and a.e. on O.
Assume that A = (aij(x))1≤i,j≤n is a Y -periodic matrix such that

A ∈M(α, β, Y ).

For any ε > 0, we set
Aε(x) = A(x/ε). (3.1)

Let h be a Y -periodic function such that

h ∈ L∞(Γ ) and ∃ h0 ∈ R s.t. 0 < h0 < h(y) a.e. in Γ.

Set
hε(x) = h(x/ε). (3.2)

In what follows, we always suppose γ ≤ −1 if not otherwise stated. For T > 0, we will consider the asymptotic
behavior, as ε→ 0, of the problem (1.1).

We suppose that

U0
ε := (U0

1ε, U
0
2ε) ∈ L2(Ω1ε) × L2(Ω2ε),

fε := (f1ε, f2ε) ∈ L2
(
0, T ;L2(Ω1ε)

)
× L2

(
0, T ;L2(Ω2ε)

)
. (3.3)

Set

W ε =
{
v = (v1, v2) ∈ L2(0, T ;V ε) × L2

(
0, T ;H1(Ω2ε)

)
such that v′1 ∈ L2

(
0, T ; (V ε)′

)
, v′2 ∈ L2

(
0, T ; (H1(Ω2ε))′

)}
with the norm defined by

‖v‖W ε = ‖v1‖L2(0,T ;V ε) + ‖v2‖L2(0,T ;H1(Ω2ε)) + ‖v′1‖L2(0,T ;(V ε)′) + ‖v′2‖L2(0,T ;(H1(Ω2ε))′).
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The variational formulation of problem (1.1) is to find uε = (u1ε, u2ε) ∈W ε such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈u′1ε, v1〉(V ε)′,V ε + 〈u′2ε, v2〉(H1(Ω2ε))′,H1(Ω2ε)

+
∫

Ω1ε

Aε∇u1ε∇v1 dx+
∫

Ω2ε

Aε∇u2ε∇v2 dx

+εγ

∫
Γ ε

hε(u1ε − u2ε)(v1 − v2) dσx =
∫

Ω1ε

f1εv1 dx+
∫

Ω2ε

f2εv2 dx

in D′(0, T ) for every (v1, v2) ∈ V ε ×H1(Ω2ε),
u1ε(x, 0) = U0

1ε in Ω1ε,

u2ε(x, 0) = U0
2ε in Ω2ε.

(3.4)

For every fixed ε, the abstract Galerkin method provides the existence and uniqueness of the solution of prob-
lem (3.4).

In order to study the homogenization of problem (1.1), we need the following assumptions:

Ũ0
ε ⇀ (θ1U0

1 , θ2U
0
2 ) weakly in L2(Ω) × L2(Ω),

f̃ε ⇀ (θ1f1, θ2f2) weakly in L2
(
0, T ;L2(Ω)

)
× L2

(
0, T ;L2(Ω)

)
. (3.5)

Under these assumptions, problem (3.4) has a unique solution uε with the following estimates (see [9], Prop. 3.4):⎧⎪⎨⎪⎩
‖u1ε‖L2(0,T ;V ε) + ‖u1ε‖L∞(0,T ;L2(Ω1ε)) < C,

‖u2ε‖L2(0,T ;H1(Ω2ε)) + ‖u2ε‖L∞(0,T ;L2(Ω2ε)) < C,

ε
γ
2 ‖u1ε − u2ε‖L2(0,T ;L2(Γ ε)) < C,

(3.6)

where the constant C is independent of ε.
The homogenization of problem (1.1) has been studied by the oscillating test functions method in Jose [18].

Here we use the unfolding method to study the homogenization, which will be crucial to get the corrector results.
Notice that, up to now, the corrector results for γ ≤ −1 can not be achieved by the Tartar’s oscillating test
function method yet. We also derive the precise convergence of flux.

The study of the homogenization results is carried out according to γ < −1 or γ = −1.

3.1. The case γ < −1

Theorem 3.1. Let Aε and hε be defined by (3.1) and (3.2), respectively. For γ < −1, suppose that uε is the
solution of (1.1) with (3.3) and (3.5). Then, there exist u1 ∈ L2(0, T ;H1

0 (Ω)), û1 ∈ L2(0, T ;L2(Ω,H1
per(Y1)))

and û2 ∈ L2(0, T ;L2(Ω,H1(Y2))) such that

(i) T ε
1 (u1ε) ⇀ u1 weakly in L2(0, T ;L2(Ω,H1(Y1)));

(ii) T ε
1 (∇u1ε) ⇀ ∇u1 + ∇yû1 weakly in L2(0, T ;L2(Ω × Y1));

(iii) T ε
2 (u2ε) ⇀ u1 weakly in L2(0, T ;L2(Ω,H1(Y2)));

(iv) T ε
2 (∇u2ε) ⇀ ∇yû2 weakly in L2(0, T ;L2(Ω × Y2));

(v) ũiε ⇀ θiu1 weakly in L2(0, T ;L2(Ω)). (3.7)

where MΓ (ûi) = 0 for i = 1, 2. The pair (u1, û) is the unique solution in L2(0, T ;H1
0(Ω)) ×

L2(0, T ;L2(Ω,H1
per(Y ))) with MΓ (û) = 0, of the problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−
∫ T

0

∫
Ω

u1Ψϕ
′ dxdt+

1
|Y |

∫ T

0

∫
Ω×Y

A(∇u1 + ∇yû)(∇Ψ + ∇yΦ)ϕdxdy dt

=
∫ T

0

∫
Ω

(θ1f1 + θ2f2)Ψϕdxdt,

for all ϕ ∈ D(0, T ), Ψ ∈ H1
0 (Ω) and Φ ∈ L2(Ω,H1

per(Y )),
u1(x, 0) = θ1U

0
1 + θ2U

0
2 in Ω,

(3.8)
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where û ∈ L2(0, T ;L2(Ω,H1
per(Y ))) is the extension by periodicity of the following function (still denoted by û):

û(·, y, ·) =

{
û1(·, y, ·) when y ∈ Y1,

û2(·, y, ·) − yΓ∇u1 when y ∈ Y2,
(3.9)

with yΓ = y −MΓ (y). Also, we have

û =
n∑

j=1

∂u1

∂xj
χ̂j , (3.10)

where χ̂j ∈ H1
per(Y )(j = 1, · · ·, n) is the solution of the cell problem{

−div
(
A(y)∇(χ̂j + yj)

)
= 0 in Y,

MY (χ̂j) = 0, χ̂j is Y -periodic.
(3.11)

And u1 is the unique solution of the homogenized problem⎧⎪⎨⎪⎩
u′1 − div(A0

γ∇u1) = θ1f1 + θ2f2 in Ω × (0, T ),
u1 = 0 on ∂Ω × (0, T ),
u1(x, 0) = θ1U

0
1 + θ2U

0
2 in Ω

(3.12)

with A0
γ = (a0

ij)1≤i,j≤n defined by

a0
ij = MY

(
aij +

n∑
k=1

aik
∂χ̂j

∂yk

)
· (3.13)

Moreover, we have the following convergences:

Aε∇̃u1ε ⇀ A1
γ∇u1 weakly in L2(0, T ;L2(Ω)),

Aε∇̃u2ε ⇀ A2
γ∇u1 weakly in L2(0, T ;L2(Ω)), (3.14)

where Al
γ = (al

ij)n×n (l = 1, 2) is defined by

al
ij = θlMYl

(
aij +

n∑
k=1

aik
∂χ̂j

∂yk

)
. (3.15)

Proof. In view of (3.6), Theorem 2.13 implies that convergences (3.7)(i)−(iv) hold at least for a subsequence
(still denoted by ε). By (3.6) and Proposition 2.6(iii), we further obtain that⎧⎪⎨⎪⎩

(i) ũiε ⇀ θiMYi(u1) weakly in L2(0, T ;L2(Ω)) for i = 1, 2,
(ii) Aε∇̃u1ε ⇀ θ1MY1 [A(∇u1 + ∇yû1)] weakly in L2(0, T ;L2(Ω)),
(iii) Aε∇̃u2ε ⇀ θ2MY2 [A(∇y û2)] weakly in L2(0, T ;L2(Ω)).

(3.16)

Notice that u1 is independent of y, we get convergence (3.7)(v) from (3.16)(i).
Let Ψ ∈ D(Ω). For i = 1, 2, let φi ∈ D(Ω) and ψi ∈ H1

per(Yi). Define viε by

viε(x) = Ψ(x) + εφi(x)ψε
i (x) and ψε

i (x) = ψi

(x
ε

)
· (3.17)

Then
∇viε = ∇Ψ + εψε

i∇φi + φi · (∇yψi)
( ·
ε

)
·
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By Proposition 2.6(ii),

T ε
i (viε) → Ψ, T ε

i (∇viε) → ∇Ψ + ∇yΦi strongly in L2(Ω × Yi),
T ε

i (φiψ
ε
i ) → Φi strongly in L2(Ω × Yi) with Φi(x, y) = φi(x)ψi(y). (3.18)

Let φ ∈ D(Ω) and ψ ∈ H1
per(Y ). During the proof of Theorem 3.1, we suppose φi = φ, ψi = ψ|Yi for i = 1, 2.

Let ϕ ∈ D(0, T ). From (3.7) and (3.18), we use Proposition 2.5 to obtain that∫ T

0

∫
Ωiε

uiεviεϕ
′ dxdt → θi

∫ T

0

∫
Ω

u1Ψϕ
′ dxdt,∫ T

0

∫
Ω1ε

Aε∇u1ε∇v1εϕdxdt → 1
|Y |

∫ T

0

∫
Ω×Y1

A(∇u1 + ∇yû1)(∇Ψ + ∇yΦ)ϕdxdy dt,∫ T

0

∫
Ω2ε

Aε∇u2ε∇v2εϕdxdt → 1
|Y |

∫ T

0

∫
Ω×Y2

A(∇y û2)(∇Ψ + ∇yΦ)ϕdxdy dt,∫ T

0

∫
Ωiε

fiεviεϕdxdt → θi

∫ T

0

∫
Ω

fiΨϕdxdt, (3.19)

where Φ(x, y) = φ(x)ψ(y). Choosing (v1εϕ, v2εϕ) as test function in the variational formulation (3.4), we get

−
∫ T

0

∫
Ω1ε

u1εv1εϕ
′ dxdt+

∫ T

0

∫
Ω1ε

Aε∇u1ε∇v1εϕdxdt

−
∫ T

0

∫
Ω2ε

u2εv2εϕ
′ dxdt+

∫ T

0

∫
Ω2ε

Aε∇u2ε∇v2εϕdxdt

=
∫ T

0

∫
Ω1ε

f1εv1εϕdxdt+
∫ T

0

∫
Ω2ε

f2εv2εϕdxdt. (3.20)

Passing to the limit, then making use of (3.9) and (3.19), we obtain the equation in (3.8). Here we also used
the density of D(Ω) in H1

0 (Ω) and the density of D(Ω) ⊗H1
per(Y1) in L2(Ω,H1

per(Y1)).
Setting Ψ = 0 in (3.8), we obtain

divyA(∇u1 + ∇yû) = 0.

Notice that u1 is independent of y and MΓ (û1) = 0. Hence we get (3.10). Then by a standard computation, we
get the convergence (3.14) from (3.16) and the following identity:

1
|Y |

∫
Y

A(∇u1 + ∇yû)∇Ψdy = A0
γ∇u1∇Ψ (3.21)

with A0
γ defined by (3.13).

Moreover, we obtain the equation in (3.12). By a similar argument as that in [15], we know the initial condition
is satisfied. Consequently, u1 solves problem (3.12) with A0

γ defined by (3.13).
Standard arguments give the ellipticity of A0

γ and the uniqueness of the solution of the homogenized problem.
Hence we get that the pair (u1, û) with MΓ (û) = 0 is the unique solution of problem (3.8) due to (3.10). This
implies that all convergences in Theorem 3.1 hold for the whole sequence. �

3.2. The case γ = −1

Theorem 3.2. Let Aε and hε be defined by (3.1) and (3.2), respectively. For γ = −1, suppose that uε is the
solution of (1.1) with (3.3) and (3.5). Then there exist u1 ∈ L2(0, T ;H1

0 (Ω)), û1 ∈ L2(0, T ;L2(Ω,H1
per(Y1)))

and û2 ∈ L2(0, T ;L2(Ω,H1(Y2))) such that (3.7), where MΓ (ûi) = 0 (i = 1, 2). The triple (u1, û1, ǔ2) is the
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unique solution in L2(0, T ;H1
0 (Ω)) × L2(0, T ;L2(Ω,H1

per(Y1)))× L2(0, T ; L2(Ω,H1
per(Y2))) with MΓ (û1) = 0,

of the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
∫ T

0

∫
Ω

u1Ψϕ
′ dxdt+

1
|Y |

∫ T

0

∫
Ω×Y1

A(∇u1 + ∇yû1)(∇Ψ + ∇yΦ1)ϕdxdy dt

+
1
|Y |

∫ T

0

∫
Ω×Y2

A(∇u1 + ∇yǔ2)(∇Ψ + ∇yΦ2)ϕdxdy dt

+
1
|Y |

∫ T

0

∫
Ω×Γ

h(y)(û1 − ǔ2)(Φ1 − Φ2)ϕdxdσy dt

=
∫ T

0

∫
Ω

(θ1f1 + θ2f2)Ψϕdxdt,

for all ϕ ∈ D(0, T ), Ψ ∈ H1
0 (Ω) and Φi ∈ L2(Ω,H1

per(Yi)), i = 1, 2,
u1(x, 0) = θ1U

0
1 + θ2U

0
2 in Ω.

(3.22)

Here ǔ2 ∈ L2(0, T ;L2(Ω,H1
per(Y2))) is the extension by periodicity of the following function (still denoted by

ǔ2):
ǔ2 = û2 − yΓ∇u1 − ζ, (3.23)

where yΓ = y −MΓ (y) and ζ is some function in L2(0, T ;L2(Ω)).
Moreover, we have

û1 =
n∑

j=1

∂u1

∂xj
χj

1 and ǔ2 =
n∑

j=1

∂u1

∂xj
χj

2, (3.24)

where (χj
1, χ

j
2) ∈ H1

per(Y1) ×H1(Y2)(j = 1, . . . , n) is the solution of the cell problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−div
(
A(y)∇(χj

1 + yj)
)

= 0 in Y1,

−div
(
A(y)∇(χj

2 + yj)
)

= 0 in Y2,

A(y)∇(χj
1 + yj) · n1 = −A(y)∇(χj

2 + yj) · n2 on Γ,

A(y)∇(χj
1 + yj) · n1 = −h(χj

1 − χj
2) on Γ,

MY1(χ
j
1) = 0, χj

1 is Y -periodic.

(3.25)

And u1 is the unique solution of the homogenized problem (3.12) with A0
γ = (a0

ij)1≤i,j≤n defined by

a0
ij = θ1MY1

(
aij +

n∑
k=1

aik
∂χj

1

∂yk

)
+ θ2MY2

(
aij +

n∑
k=1

aik
∂χj

2

∂yk

)
. (3.26)

We also have the following convergences:

Aε∇̃u1ε ⇀ A1
γ∇u1 weakly in L2(0, T ;L2(Ω)),

Aε∇̃u2ε ⇀ A2
γ∇u1 weakly in L2(0, T ;L2(Ω)), (3.27)

where Al
γ = (al

ij)n×n (l = 1, 2) is defined by

al
ij = θlMYl

(
aij +

n∑
k=1

aik
∂χj

l

∂yk

)
. (3.28)

Proof. The proof of Theorem 3.2 follows from a similar argument as that of Theorem 3.1. The only difference
is that we need to handle the interface term now.



THE PERIODIC UNFOLDING METHOD FOR A CLASS OF PARABOLIC PROBLEMS WITH IMPERFECT INTERFACES1291

Let ϕ ∈ D(0, T ) and viε (i = 1, 2) be given by (3.17). For the interface term, Proposition 2.12 shows that

ε−1

∫ T

0

∫
Γ ε

hε(u1ε − u2ε)(v1ε − v2ε)ϕdσx dt

=
∫ T

0

∫
Γ ε

hε(u1ε − u2ε)(φ1ψ
ε
1 − φ2ψ

ε
2)ϕdσx dt

=
1

ε|Y |

∫ T

0

∫
Ω×Γ

h(y)
[
T ε

1 (u1ε) − T ε
2 (u2ε)

][
ψ1T ε

1 (φ1) − ψ2T ε
2 (φ2)

]
ϕdxdσy dt.

On the other hand, Theorem 2.13 gives that there exists ζ ∈ L2(0, T ;L2(Ω)) such that

ε−1
[
T ε

1 (u1ε) − T ε
2 (u2ε)] ⇀ û1 − û2 + yΓ∇u1 + ζ weakly in L2(0, T ;L2(Ω × Γ )) (3.29)

for the above subsequence. From (3.18) and (3.29), we get

lim
ε→0

ε−1

∫ T

0

∫
Γ ε

hε(u1ε − u2ε)(v1ε − v2ε)ϕdσx dt

=
1
|Y |

∫ T

0

∫
Ω×Γ

h(y)
(
û1 − û2 + yΓ∇u1 + ζ

)
(Φ1 − Φ2)ϕdxdσy dt. (3.30)

We also notice that to prove u1 satisfies (3.12), we need the following identity

1
|Y |

∫
Ω×Y1

A(∇u1 + ∇yû1)(∇Ψ + ∇yΦ1) dxdy

+
1
|Y |

∫
Ω×Y2

A(∇u1 + ∇y ǔ2)(∇Ψ + ∇yΦ2) dxdy

+
1
|Y |

∫
Ω×Γ

h(y)(û1 − ǔ2)(Φ1 − Φ2) dxdσy

= A0
γ∇u1∇Ψ, (3.31)

where A0
γ = (a0

ij)1≤i,j≤n is defined by (3.26).
The other parts of the proof can be done by a similar argument as that in Theorem 3.1. �

Remark 3.3. For γ ≤ −1, Jose [18] proved that

Aε∇̃u1ε +Aε∇̃u2ε ⇀ (A1
γ +A2

γ)∇u1 weakly in L2(0, T ;L2(Ω)),

where Al
γ(l = 1, 2) is defined by (3.15) and (3.28) for γ < −1 and γ = −1, respectively. Here, we obtain

separately the convergences of Aε∇̃u1ε and Aε∇̃u2ε, as presented in Theorems 3.1 and 3.2.

4. Asymptotic behavior of the energy

In this section, we study the asymptotic behavior of the energy which plays a key role in the study of the
corrector results, as evidenced in [1, 11], to name a few. To do that, we need some stronger assumptions than
those of the convergence results.

Still let γ ≤ −1. We suppose that for the data fiε ∈ L2(0, T ;L2(Ωiε)), there exists fi ∈ L2(0, T ;L2(Ω)) such
that

‖fiε − fi‖L2(0,T ;L2(Ωiε)) → 0, i = 1, 2. (4.1)
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Remark 4.1.

(i) According to Proposition 2.7, assumption (4.1) is equivalent to∫ T

0

∫
Λiε

|fiε|2 dxdt→ 0,

T ε
i (fiε) → fi strongly in L2(0, T ;L2(Ω × Yi)). (4.2)

This implies that

(f̃1ε, f̃2ε) ⇀ (θ1f1, θ2f2) weakly in L2(0, T ;L2(Ω)) × L2(0, T ;L2(Ω)).

(ii) Donato and Jose [11] introduced the following assumption{
fiε ∈ L2(0, T ;L2(Ω)),
fiε → fi strongly in L2(0, T, L2(Ω)),

(4.3)

which implies assumption (4.1).

Next, we introduce some assumptions on the initial data (U0
1ε, U

0
2ε).

Concerning U0
iε ∈ L2(Ωiε)(i = 1, 2), we make the following assumption (see [11]): there exists U0 ∈ L2(Ω)

such that
Ũ0

1ε + Ũ0
2ε → U0 strongly in L2(Ω), (4.4)

which is equivalent to {
Ũ0

iε ⇀ θiU
0 weakly in L2(Ω), i = 1, 2,

‖U0
1ε‖2

L2(Ω1ε) + ‖U0
2ε‖2

L2(Ω2ε) → ‖U0‖2
L2(Ω).

(4.5)

Remark 4.2. Assumption (4.4) is also equivalent to

‖U0
iε − U0‖L2(Ωiε) → 0.

This is easily obtained from the fact that Ω1ε and Ω2ε are disjoint.

Now, we consider the asymptotic behavior of the energy. For each ε, the energy Eε(t) associated to prob-
lem (1.1) is defined by

Eε(t) :=
1
2

∫
Ω1ε

|u1ε(t)|2dx+
1
2

∫
Ω2ε

|u2ε(t)|2dx +
∫ t

0

∫
Ω1ε

Aε∇u1ε∇u1ε dxds

+
∫ t

0

∫
Ω2ε

Aε∇u2ε∇u2ε dxds+ εγ

∫ t

0

∫
Γ ε

hε|u1ε − u2ε|2 dσx ds. (4.6)

Choosing (u1ε, u2ε) as test function in (3.4) and integrating by parts, Eε(t) can be rewritten as

Eε(t) :=
1
2
‖U0

1ε‖2
L2(Ω1ε) +

1
2
‖U0

2ε‖2
L2(Ω2ε) +

∫ t

0

∫
Ω1ε

f1εu1ε dxds+
∫ t

0

∫
Ω2ε

f2εu2ε dxds. (4.7)

Theorem 4.3 (convergence of energy for γ ≤ −1). Let Aε and hε be defined by (3.1) and (3.2), respectively.
Suppose that (4.1) and (4.4) hold. If uε is the solution of problem (1.1) with γ ≤ −1, then

Eε → E strongly in C0([0, T ]),

where E is the energy associated to the corresponding homogenized problem, defined by

E(t) :=
1
2

∫
Ω

|u1|2dx+
∫ t

0

∫
Ω

A0
γ∇u1∇u1 dxds

with A0
γ being the corresponding homogenized matrix.
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Proof. From the homogenization results in Section 3, we have

T ε
i (uiε) ⇀ u1 weakly in L2(0, T ;L2(Ω,H1(Yi))), i = 1, 2.

By (3.6) and (4.2), we use Proposition 2.5 to obtain that

lim
ε→0

∫ t

0

∫
Ωiε

fiεuiε dxds = lim
ε→0

1
|Y |

∫ t

0

∫
Ω×Yi

T ε
i (fiε)T ε

i (uiε) dxdy ds

= θi

∫ t

0

∫
Ω

fiu1 dxds. (4.8)

Notice that a direct computation gives

E(t) =
1
2
‖U0‖2

L2(Ω) +
∫ t

0

∫
Ω

(θ1f1 + θ2f2)u1 dxds.

Combining this with (4.5), (4.7) and (4.8), we conclude that Eε → E, ∀t ∈ [0, T ]. Following the standard
framework of argument, we use the Ascoli−Arzelà theorem to get the proof of Theorem 4.3. �

5. Corrector results

In this section, we are devoted to the corrector results for problem (1.1) with γ ≤ −1, which are new. The
proofs mainly rely on the unfolding method. Our method is quite different from that in [11], which is used to
prove the correct results for the case −1 < γ ≤ 1.

Now we present two necessary results. The first one is the compactness result of ũ1ε+ũ2ε in C0([0, T ];H−1(Ω)),
which can be proved by repeating the proof of Theorem 4.8 in [11], step by step.

Proposition 5.1. Let γ ≤ −1. Suppose that (3.3) and (3.5) hold and uε is the solution of problem (1.1). Then,
we have

ũ1ε + ũ2ε → θ1u1 + θ2u2 in C0([0, T ];H−1(Ω)).

Moreover, we have
ũ1ε + ũ2ε → u1 in C0([0, T ];H−1(Ω)).

The second one is a classical result due to Cioranescu et al. [3].

Proposition 5.2. Let {Dε} be a sequence of n × n matrices in M(α, β,O) for some open set O, such that
Dε → D a.e. on O (or more generally, in measure in O). If ζε ⇀ ζ weakly in L2(O), then∫

O
Dζζ dx ≤ lim inf

ε→0

∫
O
Dεζεζε dx.

Furthermore, if

lim sup
ε→0

∫
O
Dεζεζε dx ≤

∫
O
Dζζ dx.

then ∫
O
Dζζ dx = lim

ε→0

∫
O
Dεζεζε dx and ζε → ζ strongly in L2(O).
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5.1. The case γ < −1

Theorem 5.3. Let Aε and hε be defined by (3.1) and (3.2), respectively. For γ < −1, suppose that uε is the
solution of problem (1.1) with (4.1) and (4.4). If u1 is the solution of the homogenized problem (3.12) with A0

γ

defined by (3.13), then we have

‖ũ1ε + ũ2ε − u1‖C0([0,T ];L2(Ω)) → 0,
‖∇u1ε − Cε∇u1‖L2([0,T ];L1(Ω1ε)) → 0,

‖∇u2ε − Cε∇u1‖L2([0,T ];L1(Ω2ε)) → 0, (5.1)

where the corrector matrix is defined by⎧⎪⎨⎪⎩
Cε(x) = C

(x
ε

)
a.e. on Ω,

Cij(y) = δij +
∂χ̂j

∂yi
(y) a.e. on Y,

(5.2)

with χ̂j being the solution of the cell problem (3.11).

The proof is based on the following lemma.

Lemma 5.4. Keep the notations and assumptions in Theorem 5.3. For any Φ ∈ C∞([0, T ],D(Ω)), set

ρε(t) :=
1
2

∫
Ω

|ũ1ε + ũ2ε − Φ|2dx+
∫ t

0

∫
Ω1ε

Aε(∇u1ε − Cε∇Φ)(∇u1ε − Cε∇Φ) dxds

+
∫ t

0

∫
Ω2ε

Aε(∇u2ε − Cε∇Φ)(∇u2ε − Cε∇Φ) dxds.

Then we have
lim sup

ε→0
‖ρε‖C0([0,T ]) ≤ ‖ρ‖C0([0,T ]), (5.3)

where

ρ(t) =
1
2
‖u1 − Φ‖2

L2(Ω) +
∫ t

0

∫
Ω

A0
γ(∇u1 −∇Φ)(∇u1 −∇Φ) dxds. (5.4)

Proof. We first decompose ρε into three terms:

ρε = ρ1ε + ρ2ε − ρ3ε, (5.5)

where

ρ1ε =
1
2

∫
Ω1ε

|u1ε|2dx+
1
2

∫
Ω2ε

|u2ε|2dx

+
∫ t

0

∫
Ω1ε

Aε∇u1ε∇u1ε dxds+
∫ t

0

∫
Ω2ε

Aε∇u2ε∇u2ε dxds,

ρ2ε =
1
2

∫
Ω

|Φ|2dx+ +
∫ t

0

∫
Ω1ε

AεCε∇ΦCε∇Φdxds+
∫ t

0

∫
Ω2ε

AεCε∇ΦCε∇Φdxds,

ρ3ε =
∫

Ω

(ũ1ε + ũ2ε)Φdx +
∫ t

0

∫
Ω1ε

AεCε∇Φ∇u1ε dxds+
∫ t

0

∫
Ω2ε

AεCε∇Φ∇u2ε dxds

+
∫ t

0

∫
Ω1ε

Aε∇u1εC
ε∇Φdxds +

∫ t

0

∫
Ω2ε

Aε∇u2εC
ε∇Φdxds. (5.6)
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Step 1. In this step, we consider the term ρ3ε which is more complicated than the other two terms. Write ρ3ε

in the form:
ρ3ε = ρ1

3ε + ρ2
3ε + ρ3

3ε,

where

ρ1
3ε =

∫
Ω

(ũ1ε + ũ2ε)Φdx,

ρ2
3ε =

∫ t

0

∫
Ω1ε

AεCε∇Φ∇u1ε dxds+
∫ t

0

∫
Ω2ε

AεCε∇Φ∇u2ε dxds,

ρ3
3ε =

∫ t

0

∫
Ω1ε

Aε∇u1εC
ε∇Φdxds +

∫ t

0

∫
Ω2ε

Aε∇u2εC
ε∇Φdxds.

For the term ρ1
3ε, we have

max
t∈[0,T ]

∣∣∣ ∫
Ω

[(ũ1ε + ũ2ε)Φ− u1Φ]dx
∣∣∣ ≤ ‖ũ1ε + ũ2ε − u1‖C0([0,T ];H−1(Ω))‖Φ‖C0([0,T ];H1

0(Ω)).

Thanks to Proposition 5.1, we obtain

ρ1
3ε →

∫
Ω

u1Φdx in C0([0, T ]).

For the term ρ2
3ε, by (3.7) and (5.2), we use Proposition 2.5 to get

ρ2
3ε(t) →

1
|Y |

∫ t

0

∫
Ω×Y1

A(y)[∇Φ + ∇yΦ̂][∇u1 + ∇yû1] dxdy ds

+
1
|Y |

∫ t

0

∫
Ω×Y2

A(y)[∇Φ+ ∇yΦ̂][∇u1 + ∇yû2] dxdy ds

=
1
|Y |

∫ t

0

∫
Ω×Y

A(y)[∇Φ + ∇yΦ̂][∇u1 + ∇yû] dxdy ds, ∀t ∈ [0, T ], (5.7)

where û is given by Theorem 3.1 and Φ̂ is defined by

Φ̂ =
n∑

i=1

∂Φ

∂xi
χ̂i. (5.8)

Furthermore, as we did for getting (3.21), we obtain

ρ2
3ε(t) →

∫ t

0

∫
Ω

A0
γ∇Φ∇u1 dxds, ∀t ∈ [0, T ]. (5.9)

The Ascoli−Arzelà theorem shows that convergence (5.9) still holds in C0([0, T ]). In fact, by (3.1) and the
assumption on Φ, the Hölder inequality gives

|ρ2
3ε| ≤‖A‖L∞(Y )‖Cε‖L2(Ω)‖∇Φ‖L2(0,T ;L∞(Ω))

·
[
‖∇u1ε‖L2(0,T ;L2(Ω1ε)) + ‖∇u2ε‖L2(0,T ;L2(Ω2ε))

]
.

From Proposition 8.5, 2, we know there exists a constant C1 (independent of ε) such that

‖Cε‖L2(Ω) ≤ C1. (5.10)
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Together with (3.1), (3.6) and the assumption on Φ, we have the following estimate:

|ρ2
3ε(t)| ≤ c, ∀t ∈ [0, T ],

where c is independent of t and ε. Moreover, as s→ 0+,

|ρ2
3ε(t+ s) − ρ2

3ε(t)| ≤ s
1
2 ‖A‖L∞(Y )‖Cε‖L2(Ω)‖∇Φ‖L∞(0,T ;L∞(Ω))

·
[
‖∇u1ε‖L2(0,T ;L2(Ω1ε)) + ‖∇u2ε‖L2(0,T ;L2(Ω2ε))

]
≤ cs

1
2 → 0, uniformly with respect to ε. (5.11)

Hence we conclude that

ρ2
3ε →

∫ t

0

∫
Ω

A0
γ∇Φ∇u1 dxds in C0([0, T ]).

For the term ρ3
3ε, arguing as we treated ρ2

3ε, we get

ρ3
3ε →

∫ t

0

∫
Ω

A0
γ∇u1∇Φdxds in C0([0, T ]).

Combining this with the convergence of ρ1
3ε and ρ2

3ε, we have

ρ3ε −→
∫

Ω

u1Φdx+
∫ t

0

∫
Ω

A0
γ∇Φ∇u1 dxds+

∫ t

0

∫
Ω

A0
γ∇u1∇Φdxds in C0([0, T ]). (5.12)

Step 2. For ρ2ε, we can easily verify that it is bounded in L∞(0, T ). Similar property holds for its time derivative
due to the smoothness of Φ. Following the computation in (5.7) and (5.9), we have

ρ2ε → 1
2

∫
Ω

|Φ|2dx+
∫ t

0

∫
Ω

A0
γ∇Φ∇Φdxds, ∀t ∈ [0, T ], (5.13)

where Φ̂ is defined by (5.8). Thus it follows that

ρ2ε →1
2

∫
Ω

|Φ|2dx+
∫ t

0

∫
Ω

A0
γ∇Φ∇Φdxds in C0([0, T ]). (5.14)

Step 3. For ρ1ε, it follows from (4.6) that

ρ1ε(t) ≤ Eε(t), ∀t ∈ [0, T ].

This yields
0 ≤ ρε(t) = ρ1ε(t) + ρ2ε(t) − ρ3ε(t) ≤ Eε(t) + ρ2ε(t) − ρ3ε(t), ∀t ∈ [0, T ]. (5.15)

By Theorems 4.3, (5.12) and (5.14), we have

Eε(t) + ρ2ε(t) − ρ3ε(t) → ρ(t) in C0([0, T ]).

This, together with (5.15), implies (5.3). The proof of Lemma 5.4 is completed. �

Proof of Theorem 5.3. By Lemma 5.4 and the classical density result, we can easily prove Theorem 5.3 by
standard arguments (see also [11]). For the reader’s convenience and the completeness, we include the following
details.

In view of u1 ∈ L2(0, T ;H1
0 (Ω))∩C0([0, T ];L2(Ω)), we know that for δ > 0, there exists Φ ∈ C∞([0, T ];D(Ω))

such that {
‖u1 − Φ‖C0([0,T ];L2(Ω)) ≤ δ,

‖∇u1 −∇Φ‖L2(0,T ;L2(Ω)) ≤ δ.
(5.16)
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Combining this with Lemma 5.4, we have

lim sup
ε→0

‖ρε‖C0([0,T ]) ≤ ‖ρ‖C0([0,T ]) ≤ cδ2, (5.17)

where c is independent of ε and δ.
The ellipticity of Aε implies that 1

2

∫
Ω |ũ1ε + ũ2ε − Φ|2dx ≤ ρε(t). Together with the triangle inequality

and (5.16), it follows that

lim sup
ε→0

‖ũ1ε + ũ2ε − u1‖2
C0([0,T ];L2(Ω)) ≤ lim sup

ε→0

{
2‖ũ1ε + ũ2ε − Φ‖2

C0([0,T ];L2(Ω)) + 2δ2
}

≤ c
(
lim sup

ε→0
‖ρε‖C0([0,T ]) + δ2

)
≤ cδ2. (5.18)

On the other hand, by the triangle inequality, (5.10), (5.16) and the Hölder inequality, we deduce that∫ T

0

‖∇u1ε − Cε∇u1‖2
L1(Ω1ε)dt+

∫ T

0

‖∇u2ε − Cε∇u1‖2
L1(Ω2ε)dt

≤ 2
∫ T

0

‖∇u1ε − Cε∇Φ‖2
L1(Ω1ε)dt+ 2‖Cε‖2

L2(Ω1ε)

∫ T

0

‖∇u1 −∇Φ‖2
L2(Ω1ε)dt

+ 2
∫ T

0

‖∇u2ε − Cε∇Φ‖2
L1(Ω2ε)dt+ 2‖Cε‖2

L2(Ω2ε)

∫ T

0

‖∇u1 −∇Φ‖2
L2(Ω2ε)dt

≤ c

∫ T

0

‖∇u1ε − Cε∇Φ‖2
L2(Ω1ε)dt+ c

∫ T

0

‖∇u2ε − Cε∇Φ‖2
L2(Ω2ε)dt+ cδ2.

Thanks to the ellipticity of Aε, we have∫ T

0

‖∇u1ε − Cε∇u1‖2
L1(Ω1ε)dt+

∫ T

0

‖∇u2ε − Cε∇u1‖2
L1(Ω2ε)dt ≤ c(ρε(T ) + δ2). (5.19)

This, together with (5.17) and (5.18), shows that

lim sup
ε→0

‖ũ1ε + ũ2ε − u1‖2
C0([0,T ];L2(Ω))

+ lim sup
ε→0

{
‖∇u1ε − Cε∇u1‖2

L2(0,T ;L1(Ω1ε)) + ‖∇u2ε − Cε∇u1‖2
L2(0,T ;L1(Ω2ε))

}
≤ c lim sup

ε→0
‖ρε‖C0([0,T ]) + cδ2 ≤ cδ2, (5.20)

which implies (5.1) owing to δ being arbitrary. �

5.2. The case γ = −1

For the case γ = −1, because of the presence of the integral of the jump between û1 and ǔ2 on the interface Γ
in the limit problem (3.22), the proofs of the corrector results are quite different from those in the case γ < −1.

Theorem 5.5. Let Aε and hε be defined by (3.1) and (3.2), respectively. For γ = −1, suppose that uε is the
solution of problem (1.1) with (4.1) and (4.4). If u1 is the solution of the homogenized problem (3.12) with A0

γ

defined by (3.26), then

‖ũ1ε + ũ2ε − u1‖C0([0,T ];L2(Ω)) → 0,
‖∇u1ε − Cε∇u1‖L2([0,T ];L1(Ω1ε)) → 0
‖∇u2ε −Dε∇u1‖L2([0,T ];L1(Ω2ε)) → 0, (5.21)
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where the corrector matrices Cε and Dε are defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cε(x) = C
(x
ε

)
a.e. on Ω1ε,

Cij(y) = δij +
∂χj

1

∂yi
(y) a.e. on Y1,

Dε(x) = D
(x
ε

)
a.e. on Ω2ε,

Dij(y) = δij +
∂χj

2

∂yi
(y) a.e. on Y2.

Here χj
2 ∈ H1

per(Y2) (still denoted by χj
2) is the extension by periodicity of χj

2, and (χj
1, χ

j
2) is the solution of the

cell problem (3.25).

To prove this result, we need the following result corresponding to Lemma 5.4.

Lemma 5.6. Keep the notations and assumptions in Theorem 5.5. For any Φ ∈ C∞([0, T ],D(Ω)), write

gε(t) :=
1
2

∫
Ω

|ũ1ε + ũ2ε − Φ|2dx+
∫ t

0

∫
Ω1ε

Aε(∇u1ε − Cε∇Φ)(∇u1ε − Cε∇Φ) dxds

+
∫ t

0

∫
Ω2ε

Aε(∇u2ε −Dε∇Φ)(∇u2ε −Dε∇Φ) dxds.

Then we have
lim sup

ε→0
‖gε‖C0([0,T ]) ≤ ‖ρ(t)‖C0([0,T ]), (5.22)

where ρ(t) is given by (5.4) with A0
γ defined by (3.26).

Proof. The proof of Lemma 5.6 follows from a similar argument as that of Lemma 5.4. Here, we only indicate
the different parts. We first decompose gε into three terms:

gε = g1ε + g2ε − g3ε, (5.23)

where

g1ε =
1
2

∫
Ω1ε

|u1ε|2dx+
1
2

∫
Ω2ε

|u2ε|2dx

+
∫ t

0

∫
Ω1ε

Aε∇u1ε∇u1ε dxds+
∫ t

0

∫
Ω2ε

Aε∇u2ε∇u2ε dxds,

g2ε =
1
2

∫
Ω

|Φ|2dx+
∫ t

0

∫
Ω1ε

AεCε∇ΦCε∇Φdxds+
∫ t

0

∫
Ω2ε

AεDε∇ΦDε∇Φdxds,

g3ε =
∫

Ω

(ũ1ε + ũ2ε)Φdx +
∫ t

0

∫
Ω1ε

AεCε∇Φ∇u1ε dxds+
∫ t

0

∫
Ω2ε

AεDε∇Φ∇u2ε dxds

+
∫ t

0

∫
Ω1ε

Aε∇u1εC
ε∇Φdxds+

∫ t

0

∫
Ω2ε

Aε∇u2εD
ε∇Φdxds. (5.24)

Step 1. In this step, we study the term g1ε. It is different from the corresponding one in the case γ < −1, due
to the consideration of interface term.

By (4.6), we have

g1ε = Eε − ε−1

∫ t

0

∫
Γ ε

hε|u1ε − u2ε|2 dσx ds, ∀t ∈ [0, T ].
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From Theorem 4.3, we know that
Eε → E strongly in C0([0, T ]). (5.25)

For the interface term ε−1
∫ t

0

∫
Γ ε h

ε|u1ε − u2ε|2dσxds, we know that it is bounded in H1(0, T ) due to (3.2)
and (3.6). By the compactness of the injection H1(0, T ) ⊂ C0([0, T ]), we get that

g1ε is compact in C0([0, T ]). (5.26)

On the other hand, for any t ∈ [0, T ], we use Proposition 2.10 to obtain

ε−1

∫ t

0

∫
Γ ε

hε(u1ε − u2ε)2 dσx ds ≥ ε−1

∫ t

0

∫
Γ̂ ε

hε(u1ε − u2ε)2 dσx ds

=
1
|Y |

∫ t

0

∫
Ω×Γ

h(y)
(
T ε

1 (u1ε) − T ε
2 (u2ε)

ε

)2

dxdσy ds. (5.27)

Notice that (3.23) and (3.29) imply ε−1
[
T ε

1 (u1ε)−T ε
2 (u2ε)] ⇀ û1− ǔ2 weakly in L2(0, T ;L2(Ω×Γ )). Combining

this with (5.27), then making use of Proposition 5.2 with D = h, we obtain

lim inf
ε→0

[
ε−1

∫ t

0

∫
Γ ε

hε(u1ε − u2ε)2 dσx ds
]
≥ 1

|Y |

∫ t

0

∫
Ω×Γ

h(y)(û1 − ǔ2)2 dxdσy ds, (5.28)

where û1 and ǔ2 are given by Theorem 3.2. Hence

lim sup
ε→0

g1ε ≤ E − 1
|Y |

∫ t

0

∫
Ω×Γ

h(y)(û1 − ǔ2)2 dxdσy ds, ∀t ∈ [0, T ]. (5.29)

Step 2. This step is devoted to the study of g3ε. Decompose g3ε into three terms:

g3ε = g1
3ε + g2

3ε + g3
3ε,

where

g1
3ε =

∫
Ω

(ũ1ε + ũ2ε)Φdx,

g2
3ε =

∫ t

0

∫
Ω1ε

AεCε∇Φ∇u1ε dxds+
∫ t

0

∫
Ω2ε

AεDε∇Φ∇u2ε dxds,

g3
3ε =

∫ t

0

∫
Ω1ε

Aε∇u1εC
ε∇Φdxds+

∫ t

0

∫
Ω2ε

Aε∇u2εD
ε∇Φdxds.

Repeating the arguments about ρ1
3ε in Lemma 5.4, we have

g1
3ε →

∫
Ω

u1Φdx in C0([0, T ]). (5.30)

For the term g2
3ε, by Proposition 2.5 and Theorem 3.2, arguing as we did for getting (5.7), we obtain

g2
3ε(t) →

1
|Y |

∫ t

0

∫
Ω×Y1

A(y)[∇Φ + ∇yΦ̂1][∇u1 + ∇yû1] dxdy ds

+
1
|Y |

∫ t

0

∫
Ω×Y2

A(y)[∇Φ + ∇yΦ̂2][∇u1 + ∇yǔ2] dxdy ds for any t ∈ [0, T ],
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where Φ̂i is defined by

Φ̂i =
n∑

j=1

∂Φ

∂xj
χj

i , i = 1, 2.

Moreover, (3.31) allows us to deduce

g2
3ε(t) →

∫ t

0

∫
Ω

A0
γ∇Φ∇u1 dxds− 1

|Y |

∫ t

0

∫
Ω×Γ

h(y)(Φ̂1 − Φ̂2)(û1 − ǔ2) dxdσy ds, ∀t ∈ [0, T ]. (5.31)

This convergence still holds in C0([0, T ]) due to the Ascoli−Arzelà theorem. In fact, it is easily obtained from
the following estimate corresponding to that of ρ2

3ε:

|g2
3ε(t)| ≤ ‖A‖L∞(Y )

{
‖Cε‖L2(Ω1ε)‖∇Φ‖L2(0,T ;L∞(Ω))‖∇u1ε‖L2(0,T ;L2(Ω1ε))

+ ‖Dε‖L2(Ω2ε)‖∇Φ‖L2(0,T ;L∞(Ω))‖∇u2ε‖L2(0,T ;L2(Ω2ε))

}
.

In [19], Monsurrò proved that there exist two constants C1 and C2 (independent of ε) such that

‖Cε‖L2(Ω1ε) ≤ C1 and ‖Dε‖L2(Ω2ε) ≤ C2. (5.32)

Together with (3.1), (3.6) and the assumption on Φ, we have

|g2
3ε(t)| ≤ c, ∀t ∈ [0, T ],

where the constant c is independent of t and ε. Moreover, as s→ 0+, we get the following estimate corresponding
to (5.11):

|g2
3ε(t+ s) − g2

3ε(t)| ≤ s
1
2 ‖A‖L∞(Y )‖∇Φ‖L∞(0,T ;L∞(Ω))

·
{
‖Cε‖L2(Ω1ε)‖∇u1ε‖L2(0,T ;L2(Ω1ε)) + ‖Dε‖L2(Ω2ε)‖∇u2ε‖L2(0,T ;L2(Ω2ε))

}
≤ cs

1
2 → 0, uniformly with respect to ε.

Hence we have

g2
3ε →

∫ t

0

∫
Ω

A0
γ∇Φ∇u1 dxds− 1

|Y |

∫ t

0

∫
Ω×Γ

h(y)(Φ̂1 − Φ̂2)(û1 − ǔ2) dxdσy ds in C0([0, T ]). (5.33)

Similarly, we also have

g3
3ε →

∫ t

0

∫
Ω

A0
γ∇u1∇Φdxds− 1

|Y |

∫ t

0

∫
Ω×Γ

h(y)(û1 − ǔ2)(Φ̂1 − Φ̂2) dxdσy ds in C0([0, T ]). (5.34)

Step 3. For any t ∈ [0, T ], following the computation in (5.31), we obtain the following pointwise limit

g2ε →1
2

∫
Ω

|Φ|2dx+
1
|Y |

∫ t

0

∫
Ω×Y1

A(y)[∇Φ+ ∇yΦ̂1][∇Φ+ ∇yΦ̂1] dxdy ds

+
1
|Y |

∫ t

0

∫
Ω×Y2

A(y)[∇Φ+ ∇yΦ̂2][∇Φ+ ∇yΦ̂2] dxdy ds

=
1
2

∫
Ω

|Φ|2dx+
∫ t

0

∫
Ω

A0
γ∇Φ∇Φdxds− 1

|Y |

∫ t

0

∫
Ω×Γ

h(y)(Φ̂1 − Φ̂2)2 dxdσy ds.

Moreover, the same arguments as those of ρ2ε in Lemma 5.4 show that

g2ε →1
2

∫
Ω

|Φ|2dx+
∫ t

0

∫
Ω

A0
γ∇Φ∇Φdxds

− 1
|Y |

∫ t

0

∫
Ω×Γ

h(y)(Φ̂1 − Φ̂2)2 dxdσy ds in C0([0, T ]). (5.35)
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Now we focus on gε. Making use of (5.26)−(5.30) and (5.33)–(5.35), we have

gε is compact in C0([0, T ])

and

0 ≤ lim sup
ε→0

gε ≤ ρ− 1
|Y |

∫ t

0

∫
Ω×Γ

h(y)
[
(û1 − ǔ2) − (Φ̂1 − Φ̂2)

]2 dxdσy ds ≤ ρ, ∀t ∈ [0, T ],

where we used the assumption on h in the last inequality. This implies the desired result. �

Proof of Theorem 5.5. With Lemma 5.6 at our disposal, the Proof of Theorem 5.5 is completed by repeating
the details in the Proof of Theorem 5.3. �

Remark 5.7. For the case γ ∈ (−1, 1], the corrector results were proved by the oscillating test functions method
in [11]. In fact, these results can be also proved by the periodic unfolding method. The argument is similar to
that of Theorem 5.3.
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[20] S. Monsurrò, Erratum for the paper Homogenization of a two-component composite with interfacial thermal barrier. Adv.
Math. Sci. Appl. 14 (2004) 375–377.
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